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Chapter 1

General introduction

1.1 Background and objectives

A significant amount of colloidal particles with their sizes of few nm to few µm such

as clay minerals and natural organic matters can be found in the natural water, turbid

water generated by a heavy rain, and in soils as shown in Fig. 1.1.1. The colloidal

particles have some important characters; small in size, large specific surface area, a

large amount of reactive surface sites, and charged surfaces due to surface functional

groups, isomorphous substitution, and ion adsorption. These natures provide colloidal

particles with the ability to adsorb contaminants such as heavy metals and agricultural

chemicals. Once these particles are transported in the groundwater, they play an

important role to control transport phenomena in water environments[1, 2]. Colloidal
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Figure 1.1.1: Schematic representation of aggregation and sedimentation relevant to
transport properties of colloidal particles such as clay minerals and metal oxides in
water environments.
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particles aggregate in accordance with the change in chemical and hydrodynamic

conditions around the particles. The aggregation of colloidal particles increases

the size of transport unit. As a consequence, the transport properties also largely

change[3]. Therefore, understanding the aggregation process of the colloidal particles

is important to control the transport phenomena of colloidal particles in solid-liquid

separation processes and in the prediction of spreading of contaminants in soil and

water environments.

The aggregation process is typically determined by the physicochemical interaction

and the collision frequency between the colliding particles[2]. The former is mainly

composed of the van der Waals (vdW) attraction and the electrical double layer forces

as shown in Fig. 1.1.2. The net force can be described as the sum of these interaction

forces according to the classical theory by the Derjaguin-Landau-Verwey-Overbeek

(DLVO), so-called the DLVO theory[4, 5]. The collision is mainly induced by Brownian

motion in quiescent fluid and by the velocity difference in fluid such as laminar shear

and turbulent flows as depicted in Fig. 1.1.3[6, 7, 8, 9, 10, 11].

Theoretical formulation for aggregation kinetics in Brownian motion and a laminar

shear flow was undertaken by Smoluchowski[12], while the corresponding formulation

in isotropic turbulence was derived by Saffman and Turner[13]. Unfortunately, their

formulation neglects any interactions although the colliding particles hydrodynamically

����

�� ���

���
���

�����������	
�

��������� �	�����
����������


Figure 1.1.2: Schematic picture of the van der Waals attraction and electrostatic
forces between colloidal particles explained in DLVO theory
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Figure 1.1.3: Schematic view of three typical collision modes to form aggregates such
as Brownian motion, laminar shear, and turbulent flows.
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and physicochemically interact with each other in more realistic system. Therefore,

in general, their expression causes the overestimation in aggregation rates between

colloidal particles.

To reduce such overestimation in the aggregation rates, one should include the

physico-chemical and hydrodynamic interactions. The physico-chemical interactions

can be described by the DLVO theory as mentioned above. The hydrodynamic

interactions mean that changes in the velocities or forces acting on each neighboring

particles from those for an isolated particle result from the disturbance induced by

their existence. In the case of particles in creeping flow where the Reynolds number

is sufficiently low, the hydrodynamic interaction has been formulated as a form

of resistance-mobility problem to express the linear relationship between particle

velocities and forces by Brenner[14, 15]. For example, when particles approach each

other, the fluid in the gap between the particles is squeezed out, and the induced large

velocity gradient between the gap causes the inter-particle viscous repulsion called a

lubrication effect.

The aggregation induced by Brownian motion is called Brownian aggregation

mainly determined by diffusion flux and physico-chemical interactions. The effect

of physico-chemical interactions on Brownian aggregation has been incorporated

by including the contribution from the conservative forces given by the gradient of

potential energy to the inter-particle collision flux[16]. The effect of hydrodynamic

interaction has been introduced by taking into account the correction factor to the

relative diffusion coefficients between particles due to the additional drag based on the

Brenner’s formulation[17]. Thereafter, a useful approximated correlation function to

the hydrodynamic correction factor[17] has been proposed by Honig[18].

Typically, aggregation between identical colloidal particles is impeded by the

electrostatic repulsion attributed to the excess osmotic pressure due to the overlapped

electrical double layers at low salt concentration. Such condition is called the slow

aggregation regime. By increasing salt concentration and decreasing the electrostatic

repulsion due the electrical screening, the aggregation is accelerated and its rates

reach to a plateau above a certain salt concentration, so-called the critical coagulation

concentration (CCC). Above CCC, the repulsions become negligible. Such condition
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is called the fast aggregation regime. The experimental verifications for the prediction

of the Brownian aggregation rates focusing on the fast and slow regions have been

performed by many researchers[19, 20, 21]. Their experimental results of Brownian

aggregation are explained by DLVO theory in a qualitative manner. Nevertheless,

the well-known considerable quantitative discrepancies between experiments and the

theory were observed at conditions in the presence of the electrostatic repulsion. The

developments of surface force apparatus and atomic force microscope have allowed us

to directly measure the interaction forces between surfaces. The direct force measure-

ments have confirmed the validity of DLVO theory except in the range of several Å of

surface separation distance[22]. However, in the landmark study by Behrens et al.[23],

quantitative agreements between experimental and theoretical values for Brownian

aggregation rates even in the presence of the electrostatic repulsion have been reported

in the case of low surface charge densities (≤ 3 mC/m2).

In their study of Brownian aggregation[23], colloidal particles are immersed in indif-

ferent monovalent electrolyte solutions, in which ions do not adsorb on their surface.

However, more practically, the particles may co-exist with multivalent ions[24, 25, 26],

polyelectrolytes[27, 28], and/or hydrophobic organic ions[29] such as surfactants[30, 31],

and they can be strongly adsorbed onto the particle surfaces. Such ion adsorptions

accompany the compensation of the surface charge amounts on the surfaces, and

enhance the particle aggregation by diminishing the electrical repulsion between the

particles. Furthermore, the excess accumulation of ions even may induce the change

in the sign of the net surface charges, so-called charge reversal[32] with the additional

region of slowed aggregation by the recovered electrical repulsion[27, 31]. Although

the Brownian aggregation kinetics with the DLVO theory explains the experimental

data reasonably well even for such situations using the complementary measurements

of their charging behaviors such as zeta potentials through electrophoretic mobilities,

some researchers have been trying to model the charging behaviors by including

inter-ion correlations[33], or specific interactions with the surfaces[34, 29]. Therefore,

modeling the charging behaviors of colloidal particles are still questioning.

In contrast to Brownian aggregation in quiescent fluid, the aggregation caused

by shearing motion of fluids is called shear aggregation. The effect of inter-particle



1.1 Background and objectives 5

interactions on shear aggregation has been included by calculating the particle collision

flux with the trajectory analysis[35], which is a method to calculate the time evolution

of relative particle positions by integrating the relative velocity determined by the

balance of hydrodynamic and physico-chemical forces[35, 36, 37]. The trajectory

analysis has been applied for the analysis of turbulent aggregation rates as a first

approximation because the flow in the smallest eddies of a turbulence is expected to

be analogous to the shear flow with a mean local shear rate in the turbulence[38].

This assumption is presumable if the length scale, where coagulation occurs, is smaller

than the Kolmogoroff microscale of the turbulence. The validity of this approxi-

mation has been confirmed by previous researchers in the absence of electrostatic

repulsion[6, 38, 39, 40].

More recently, the systematic measurements of the shear aggregation in the presence

of the electrostatic repulsion have been carried out as a function of salt concentration

at different shear rates[7, 41]. They have reported that the bending point of shear

aggregation rates as a function of salt concentration, which corresponds to the CCC

for shear aggregation, increases with shear rates, and more gradual dependence on

salt concentration is found in higher shear rates. This experimental observations are

consistent with the theoretical predictions by the trajectory analysis qualitatively.

However, quantitative comparisons of experiments with theory have not yet been

performed since approximate expressions of electrostatic repulsion for low electric

potential case was used in the previous calculation[35]. This approximation is not valid

for high potential cases where we often encounter in experiments.

The review mentioned above is on homo-aggregation process meaning that aggre-

gates are formed through the collision between identical particles. However, systematic

experiments of hetero-aggregation between different particles are still lacking, yet

practically important. In the recent study, Lin et al. have reported the measured

Brownian hetero-aggregation rates between oppositely-charged particles as a function

of pH and KCl concentration[42]. They have shown the increase in hetero-aggregation

rates with decreasing salt concentration due to electrostatic attraction and the

agreements between experiments and DLVO theory. More recently, Cao et al. have

measured the hetero-aggregation rates between oppositely-charged particles in the
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presence of multivalent ions[43]. They reported that the aggregation is slower for

hetero-aggregation than homo-aggregation in the range of salt concentration where

one of two different particles undergoes a charge reversal. That is attributed to the

stronger repulsion between charge reversed particles with weak-charge and highly-

charged non-reversed ones than the repulsion for the charge-reversed particles. Yet,

no one has known if these observations hold even on other systems such as focusing on

ion specific effects[44, 45].

For shear hetero-aggregation, the previous works have calculated the hetero-

aggregation for oppositely-charged particles in a simple shear flow[46, 47] and have

applied it for the corresponding experimental data in a turbulent flow[48]. They

have reported the qualitatively similar trends: the increase in the turbulent hetero-

aggregation rates between oppositely-charged particles is observed with decreasing KCl

concentration as reported in the case of Brownian aggregation. In addition, Yamauchi

et al.[49] has reported the measured results of the turbulent hetero-aggregation rates

for oppositely-charged and unequal-sized particles as a function of particle size ratio

with the analysis using the corresponding correlation equation in a simple shear flow

without the electrostatic forces proposed by Han and Lawler[50]. They have observed

the substantial quantitative discrepancy between the experimental and calculated

values, showing that the experiments are approximately constant with decreasing the

size ratio, while the calculations largely decrease down to more than 1000 times smaller

than the experimental data. However, the explanation to the discrepancy still remains

unresolved.

To unveil the issues given above, we have extensively investigated the charging and

aggregation behaviors of model colloidal particles. First, we focus on the effect of

electrostatic repulsion on aggregation in a shear flow with its analysis. Second, we

study the charging behavior of model colloid experiencing charge reversal induced

by the adsorption of hydrophobic ions. Third, the charge reversal effects on homo-

and hetero-Brownian aggregation rates are examined by the measurements and its

analysis based on DLVO theory. Finally, the understanding of hetero-aggregation is

complemented by analyzing the flow type effects on the turbulent hetero-aggregation

for unequal-sized particles as a function of particle size ratio.
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1.2 Outline of this thesis

This thesis consists of 8 chapters with the four research topics that will be introduced

from Chapter 4 to Chapter 7, which are preceded by Chapter 1 general introduction

and Chapters 2 and 3 for summarizing fundamental theories used here. In the last

Chapter 8, the summary of this thesis is given.

First of all, we have already mentioned the backgrounds and objectives of this thesis

in this Chapter 1. In Chapter 2, we briefly summarize the DLVO theory with some

theoretical expressions used in this thesis. In Chapter 3, we explain the fundamentals

on electrophoresis and aggregation kinetics. Then, by using these theories, we analyze

the charging behavior for model colloidal particles and its aggregation kinetics in a

simple shear flow in Chapter 4. Furthermore, we apply a simple charging model to

analyze the measured data of electrophoretic mobilities in the presence of hydrophobic

monovalent ions which induce a charge reversal in Chapter 5. Then, in Chapter 6, to

clarify effects of charge reversal on aggregation, we examine anion specific effects on

Brownian homo- and hetero-aggregation rates with charge reversal. In order to better

understand the flow effects on hetero-aggregation, Chapter 7 deals with the analysis

of turbulent hetero-aggregation for unequal-sized particles by using the calculations in

two different types of flow. Finally, the obtained results from Chapter 4 to Chapter 7

are summarized as the concluding remarks of this thesis in Chapter 8.
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Chapter 2

Fundamental theory on

colloidal interactions - DLVO

theory -

2.1 Introduction

In our daily life including food processing, paintings, cosmetics, and water purifica-

tion, we need to control the colloidal suspensions to be quickly aggregated or dispersed

by controlling the mutual interactions between particles. The fundamental interaction

is given by the balance of the van der Waals attraction, which universally acts between

particles, and electrostatic repulsion originated from particle surface charges. The the-

ory describing the interaction was established by Derjaguin, Landau[4], Verwey, and

Overbeek[5]. After these researchers, it is now widely accepted as DLVO theory. In

this theory, charged surfaces develop the ionic atmosphere around them by accumu-

lating counter ions with Coulombic forces. This is called the electrical double layer

(EDL). Overlapping of the electrical double layers results in local increase of disjoining

pressures and electrostatic repulsion between the surfaces.

In this chapter, we summarize the potential distribution near an isolated plate as a

typical example. We also briefly explain the framework of van der Waals attraction orig-

inated from molecular dispersion forces and the electrostatic repulsion between plates
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with the Derjaguin approximation as described below.

2.2 Potential distribution near an isolated plate

In general, colloidal particles are charged in the nature, for instance, by dissociation

reaction of surface functional groups such as carboxylic group, and/or isomorphous

replacement in clay minerals. Since the charging by dissociation reaction depends on

chemical compositions in suspended solutions such as pH and salt concentration, it

is called variable charges. In the case of isomorphous replacement, for example, by

replacing Si with valence electron number 4 in Si tetrahedron with Al whose valence

electron number is 3 smaller than that of Si, the clay minerals acquire negative charges

to remain electrical neutrality. In this case, the charge amounts of the minerals do

not change with the chemical conditions in solutions. This is thus called permanent

charges. With these charging mechanisms, colloids bear charges on their surfaces, and

induce the electrostatic repulsion between them. Such electrostatic repulsion increases

with charge amounts on the particles and decrease with increasing salt concentration

by electrical screening due to the compression of electrical double layer. Because of the

screening of long-ranged forces by ions, the electrical repulsion decays exponentially

with surface separation distance. These effects are included in diffuse electrical double

layer theory or DLVO theory[4, 5]．First of all, as a basics, let us consider about

potential distribution near an isolated plate.

2.2.1 Poisson-Boltzmann equation

Let us consider a plate which has charges on the surface adjacent to an electrolyte

solution. Such charged plate attracts ions with the opposite sign of the charge respect

to the surface, so-called counter ions, to the surface via Coulombic attraction. Mean-

while, the ions tend to spread diffusively due to their thermal motion, in other words,

diffusional force which can be described as osmotic pressure difference due to concen-

tration gradient as shown in Fig. 2.2.1. At equilibrium state, the ionic distribution

around the charged surface is determined by the balance between the electrical force

and the diffusional force. By neglecting ion-ion interactions, the ionic concentration
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Differential volume element
with cross section area A

Potential
force

Diffusive force
(Osmotic pressure
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x
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x

C(x)

Figure 2.2.1: Schematic view of the boltzmann distribution balancing between diffu-
sion and potential force

distribution follows the Boltzmann distribution as

Ci(x) = Ci,b exp

(
−zieψ(x)

kBT

)
, (2.2.1)

where Ci(x) is the concentration of certain ionic species i with the valence of zi at the

position x from the surface, Ci,b is its bulk concentration, e is the elementary charge,

ψ(x) is the electrical potential at the position x, kB is the Boltzmann constant, T is

the absolute temperature.

From the Maxwell equation in matter, the relationship between divergence of electric

field and charge distribution in space, so-called Gauss’s law is given by the following

equation

∇ ·E =
ρe
ϵrϵ0

, (2.2.2)

where E is the electric field, ρe is the volume charge density, ϵr is the relative dielectric

constant of the medium, and ϵ0 is the dielectric constant of the vacuum. Here, we put

the relationship between electrical potential and field in electrostatics Eq.(2.2.3) into

Eq.(2.2.2)

E = −∇ψ. (2.2.3)
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Figure 2.2.2: Schematic view of the electrical double layer adjacent to an isolated
charged plate.

One obtains Poisson’s equation giving the relationship between the electrical potential

and the volume charge density as

∇2ψ = − ρe
ϵrϵ0

. (2.2.4)

Now, let us assume that the isolated plate is covered with uniform charge density. It

allows us to consider that the electrical potential is a function of the position x from

the surface. With this assumption, Poisson’s equation (Eq.(2.2.4)) is reduced to one-

dimensional equation as follows:

d2ψ

dx2
= − ρe

ϵrϵ0
. (2.2.5)

In an electrolyte solution adjacent to an isolated charged surface, the charge distri-

bution is determined by the composition of ions distributed (Fig. 2.2.2) as described

by Eq.(2.2.1)．

ρe =
∑
i

zieCi(x). (2.2.6)

Therefore, substituting Eqs.(2.2.1) and (2.2.6) into Eq.(2.2.5), we can obtain the fol-

lowing equation

d2ψ

dx2
= − e

ϵrϵ0

∑
i

ziCi,b exp

(
−zieψ(x)

kBT

)
. (2.2.7)
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Eq.(2.2.7) is called the Poisson-Boltzmann (PB) equation, which is a non-linear second-

order differential equation. Equation (2.2.7) is a governing equation for the electrical

potential distribution near charged surfaces in the electrolyte solution.

For low electrical potential case of Eq.(2.2.7),
∣∣∣ zieψ(x)kBT

∣∣∣≪ 1， we can use the Taylor

expansion to linearize Eq.(2.2.7), so-called Debye-Hückel (DH) approximation. With

the DH approximation and electrical neutrality
∑
i zieCi = 0, one obtains the following

equation:

d2ψ

dx2
= κ2ψ, (2.2.8)

where κ is the Debye parameter given by

κ =

(
1

ϵrϵ0kBT

∑
i

z2i e
2Ci,b

) 1
2

. (2.2.9)

Its inverse κ−1 has the dimension of length. It is therefore called the Debye length

characterizing the measure of thickness of the electrical double layer. For an isolated

charged plate, the boundary condition for Eq.(2.2.8) is described by

ψ(x)
∣∣
x=0

= ψ0,

dψ

dx

∣∣∣
x→∞

= 0, (2.2.10)

where ψ0 is the surface potential of the isolated surface. Then, the solution of Eq.(2.2.8)

is given by the following equation

ψ(x) = ψ0 exp(−κx). (2.2.11)

Eq.(2.2.11) indicates that the Debye length means the characteristic decay length of

electrical potential in low potential case.

For symmetric (z:z type) electrolyte solution containing ions with the same valence of

z in opposite sign of charges, we can derive an analytical solution for Eq.(2.2.7) without

the liner approximation with the boundary condition Eq.(2.2.10) as

ψ(x) =
4kBT

ze
tanh−1

[
tanh

(
zeψ0

4kBT

)
exp(−κx)

]
. (2.2.12)
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Eq.(2.2.12) is called the Gouy-Chapman equation. Eq.(2.2.7) for symmetric electrolyte

solution case can be easily integrated once to obtain the potential gradient as

dψ(x)

dx
= −

(
8CbkBT

ϵrϵ0

) 1
2

sinh

(
zeψ(x)

2kBT

)
. (2.2.13)

By taking the volume integral of Gauss’s law for a closed space V , we have

∫
V

∇ ·EdV =
1

ϵrϵ0

∫
V

ρedV. (2.2.14)

Applying Gauss’s divergence theorem on the left side, one can obtain

∫
S

E · ndS =
1

ϵrϵ0

∫
V

ρedV. (2.2.15)

Now, we set the closed space V so that it has the surface S which is always parallel

to the charged plate. With this assumption, the electric field induced by the charged

plate is also perpendicular to the surface S. Then, we have E ·n = En where En is the

normal component of the electric field on the surface S. In this one-dimensional case,

En = −dψ
dx

∣∣
x=0

. The volume integral on the right side means the total charge Q inside

the surface S. Thus, by setting the cross section in the closed volume V parallel to the

charged plate as A, we can obtain the following equation

−dψ
dx

∣∣∣∣
x=0

A =
Q

ϵrϵ0
,

where
∫
S
dS = A. In the above equation, defining the surface charge density σ as

σ = Q/A, we obtain

σ = −ϵrϵ0
dψ

dx

∣∣∣∣
x=0

. (2.2.16)

Then, substituting Eq.(2.2.13) with the boundary condition Eq.(2.2.10) into

Eq.(2.2.16), we obtain

σ = (8ϵrϵ0CbkBT )
1
2 sinh

(
zeψ0

2kBT

)
=

2ϵrϵ0κkBT

ze
sinh

(
zeψ0

2kBT

)
, (2.2.17)
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where we use the definition of the Debye parameter Eq.(2.2.9). Eq.(2.2.17) is the rela-

tionship between surface potential ψ0 and charge density σ for symmetrical electrolyte

solution, especially, for monovalent salt, it is called the Grahame equation.

2.3 Van der Waals attraction

The van der Waals force universally acts between particles. Several types of van

der Waals forces are based on different origins but are essentially electrical interactions

originated from the interactions between permanent and/or instantaneously induced

dipoles of polar/non-polar molecules. Therefore, the exact treatment of van der Waals

forces requires the knowledge of quantum mechanics. According to the form of its

interactions, the van der Waals forces can be categorized to three types, namely, the

Keesom interaction(dipole-dipole), the Debye interaction(dipole-induced dipole), and

the London interaction(induced dipole-induced dipole). These categories mean orien-

tation, induction, and dispersion forces, respectively[51]. First, without going to such

exact treatments, we just show the intermolucular potential is inversely proportional

to the sixth power of the distance as the common property of the van der Waals forces

by considering the dipole-dipole interaction.

Let us consider the electrostatic potential ψ(r) generated by an electrical dipole (Fig.

2.3.1). With the linearity of Maxwell’s equation, generally, the electrostatic potential

induced at the distance r can be expressed by the superposition of the potential by the

two point charges. From Coulomb’s law, the electrostatic potential generated by the

Figure 2.3.1: Schematic representation of the electrical dipole with an induced electric
field.



16 Chapter 2 Fundamental theory on colloidal interactions - DLVO theory -

two point charges is given by

ψ(r) =
−q

4πϵrϵ0r
+

+q

4πϵrϵ0(r − dr)

=
q

4πϵrϵ0
r−1

[(
1− dr

r

)−1

− 1

]
. (2.3.1)

If dr is so small that dr
r ≪ 1 and (1 − dr/r)−1 ≈ 1 + dr/r with linear approximation,

we have

ψ(r) ≈ q

4πϵrϵ0
r−1

[
1 +

dr

r
− 1

]
=

qdr

4πϵrϵ0r2
=

p

4πϵrϵ0r2
(2.3.2)

where p = qdr is the magnitude of the dipole moment.

With the above result, we calculate the electrostatic energy U of the dipole when it

is moved from infinity to the position r as shown in Fig. 2.3.2 (a). UA is given by the

product of the charge and potential

UA = q1ψ(r + dr)− q1ψ(r)

= q1ψ(r) + q1
dψ

dr
dr − q1ψ(r) = q1

dψ

dr
dr,

where we use the linear approximation as dr is small enough. With E(r) = −dψ
dr ,

UA = −q1drE(r) = −p1E(r) = − p1p2
2πϵrϵ0r3

, (2.3.3)

where p1 = q1dr in Eq.(??), and p = p2 in Eq.(2.3.2) are used. Note that the sign of

the case in Fig. 2.3.2 (b) is reversed as UB = −UA.

Now, let us consider the cases where the dipoles are aligned in one dimension as

depicted in Fig. 2.3.2. We assume that the existence probabilities of the two states

in Fig. 2.3.2 (a,b) follow the Boltzmann distribution. With the linear approximation,

we can obtain

exp

(
− UA
kBT

)
≈ 1− UA

kBT
, exp

(
− UB
kBT

)
≈ 1− UB

kBT
.
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The averaged interaction energy U can be approximately expressed as the sum of prod-

ucts of the probability that each state can be taken and its realized value as

U ≈
(
1− UA

kBT

)
UA +

(
1− UB

kBT

)
UB = − 2U2

B

kBT
= − 2p21p

2
2

4π2ere0kBT

1

r6
,

where we use the fact that UB = −UA. Therefore, by defining the proportional coeffi-

cient λ, one obtains the common property of the van der Waals forces as

U = − λ

r6
. (2.3.4)

With this equation, we can see that the molecular forces are short-ranged. In this thesis,

since we usually treat the van der Waals forces between the macro-bodies composed of

same materials, it is always attractive. However, in general, according to the Lifshitz

theory[52], the Hamaker constant, which is a measure of the magnitude of the van

der Waals forces, can be both positive and negative depending on the combination of

materials and media. Therefore, the van der Waals forces for macro-bodies can be both

attractive and repulsive.

2.3.1 Van der Waals attraction between two plates

In the previous section, inter-molecular van der Waals attraction is shown to be short-

range forces ∝ −1/r6 described in Eq.(2.3.4). Based on Eq.(2.3.4) with the additivity

assumption, the van der Waals attraction between macro-bodies can be long-range

Figure 2.3.2: Another electrical dipole in the electric field induced by the electrical
dipole around the Origin O: dipole moment (a) in the same direcion and (b) in the
opposite direction.
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forces[53].

First, let us start to calculate the van der Waals attraction between a molucule and

an infinite plate as shown in Fig. 2.3.3. We set the x-axis normal to the plate surface,

and put a molecule 1 at the origin with the separation distance h (Fig. 2.3.3 (a)). We

consider a circular ring with the inner and outer radii of r and r+dr, and the thickness

of dx inside the plate as in Fig. 2.3.3 (b). From the Pythagorean theorem with small

dr and dx, the molecule 1 and all molecules in the ring are at the equal distance

with (r2 + x2)
1
2 . With Eq.(2.3.4), the van der Waals attractive potential between the

molecule at the origin and one in the ring can be expressed by

− λ

(r2 + x2)
6
2

= − λ

(r2 + x2)3
. (2.3.5)

Since the volume of the ring is 2πrdrdx, the total number of molecules in the ring is

given by 2Nπrdrdx where N is the volume density of molecules in the plate. These

all molecules of 2Nπrdrdx equally interact with the molecule 1 by the van der Waals

attraction, hence, the summation of their interactions represents the van der Waals

potential between the molecule 1 and the ring as

−λN2πrdrdx

(r2 + x2)3
. (2.3.6)

The interaction V (h) between the molecule 1 and the infinite plate can be derived by

integrating with the ranges of 0 < r <∞ and h < x <∞, that is,

V (h) = −
∫ ∞

h

dx

∫ ∞

0

dr
λN2πr

(r2 + x2)3
. (2.3.7)

Changing the variable r = x tan θ and dr = x
cos2 θdθ with the integration interval of

0 < x <∞ → 0 < θ < π/2, we have

V (h) = −λN2π

∫ ∞

h

dx

∫ π
2

0

dθ
x

cos2 θ

x tan θ

x6(1 + tan2 θ)3

= −λN2π

∫ ∞

h

dx

∫ π
2

0

dθ
x2 tan θ

x6 cos2 θ
cos6 θ

= −λN2π

∫ ∞

h

dx

∫ π
2

0

dθ
sin θ cos3 θ

x4
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= −λN2π

∫ ∞

h

dx

x4

∫ π
2

0

dθ
d

dθ

(
− cos4 θ

4

)
= −λN2π

∫ ∞

h

dx

x4

[
−cos4 θ

4

]π
2

0

= −λN2π

∫ ∞

h

dx

4x4

= −λN2π

∫ ∞

h

dx

4x4

= −λN2π

[
− dx

12x3

]∞
h

= −λNπ
6h3

. (2.3.8)

Next, with Eq.(2.3.8), we can calculate the van der Waals potential between infinite

plates as shown in Fig. 2.3.4. In this case, we put the surface of the infinite plate 1

at the origin and the infinite plate 2 at the surface separation distance of x = h. The

interaction between the molecules constituting the infinite plate 2 at x > h and the

infinite plate 1 is equal to the case when h→ x in Eq.(2.3.8). Let us set the circular disc

with the area of S and the thickness of dx parallel to the infinite plates at the position

Molecule 1

Molecule 1

Infinite plate

�

Figure 2.3.3: Interaction between an infinite plate and a molecule: interaction be-
tween a molecule and (a) an infinite plate, (b) a circular ring in the infinite plate.
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x satisfying x > h as depicted in Fig. 2.3.4. Since the volume of the disc is Sdx, the

total number of molecules in the disc is expressed by NSdx. All the molecules in the

disc interact with the infinite plate 1 by the van der Waals attraction in Eq.(2.3.8),

thus, we have the following equation by taking the summation of all these interactions

−λN
2πSdx

6x3
. (2.3.9)

By integrating Eq.(2.3.9) with the range of h < x < ∞, we can obtain the van der

Waals attractive potential between the infinite plate 1 and the infinitely thick disc with

the area of S, that is,

−λN
2πS

6

∫ ∞

h

dx

x3
= −λN

2πS

6

[
− 1

2x2

]∞
h

= −λN
2πS

12h2
. (2.3.10)

Dividing Eq.(2.3.10) by S, we obtain the van der Waals attractive potential between

infinite plates per unit area V PvdW (h) as follows

V PvdW (h) = − AH

12πh2
, (2.3.11)

Infinite plate 1 Infinite plate 2

Infinite plate 1

Figure 2.3.4: Interaction between infinte plates: interaction between an infinite plate
and (a) another infinite plate, (b) a circular plate parallel to infinite plates.
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where we define AH = λN2π2 and AH is the Hamaker constant having the dimension

of energy [ML2T−2] and characterizes the magnitude of the van der Waals attraction.

Although the value of Hamaker constant can be calculated by the Lifshitz theory[52], it

is often treated as an experimental parameter. From Eq.(2.3.11), the van der Waals at-

traction between macro-bodies such as the plates is a long-range potential proportional

to h−2.

2.3.2 Derjaguin approximation

With Eq.(2.3.11), we can estimate the van der Waals potential energy per unit area

between two plates. However, such equation can not be directly used to, for example,

spherical particles. To overcome this, Derjaguin developed the method to calculate the

mutual interaction between particles from the result in plate-plate configuration. This

is called the Derjaguin approximation[54]. In this method, first, one divides the sphere

surfaces into parallel rings whose centers are on the line connecting the centers of the

two spheres as shown in Fig. 2.3.5, and approximates the inter-particle interaction as

the summation of the plate-plate interaction between the opposed rings on the surfaces

of two spheres over the whole spheres. It neglects the interaction with others than the

opposed rings.

Let us set the plate-plate interaction (force, potential energy) fP (H) with the plate-

plate separation distance H, and consider the inter-particle interaction between two

spheres with the radii of R1, R2 (Fig. 2.3.5)．If the particle separation distance h is

small so that h≪ R1 and h≪ R2, the inter-particle interaction can be approximated by

summing up the interaction between the rings with the area of 2πydy on each spheres.

Figure 2.3.5: Schematic representation of the Derjaguin approximation: inter-particle
interaction as a summation of inter-circular ring interaction.
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Here, we set the separation distances between each opposed rings H = h+ z1 + z2 and

set the inter-particle interaction to fS(h):

fS(h) =

∫ H→∞

H=h

fP (H)2πydy. (2.3.12)

This equation conventionally takes the summation from the particle separation h to ∞,

since the radii of rings change with the distances H. It is analytically useful because it

can take the limit of infinity including about all possible ring radius. The distance H

can be known with z1 and z2 calculated by the particle distance and the Pythagorean

theorem as

H = h+ z1 + z2

= h+R1 − (R2
1 − y2)

1
2 +R2 − (R2

2 − y2)
1
2

= h+R1

1−{1− ( y

R1

)2
} 1

2

+R2

1−{1− ( y

R2

)2
} 1

2

 .
With assuming only part of spheres near the closest surfaces contributes to the inter-

particle interaction and being y
R1
, y
R2

≪ 1, the bracket terms in the above equation can

be rewritten by linear approximation as

{
1−

(
y

R1

)2
} 1

2

≈ 1 +
1

2

(
y

R1

)2

,

{
1−

(
y

R2

)2
} 1

2

≈ 1 +
1

2

(
y

R2

)2

.

Then, we have

H ≈ h+
1

2

y2

R1
+

1

2

y2

R2
.

Differentiating this equation respect to y, one obtains

dH ≈
(

1

R1
+

1

R2

)
ydy.

Finally, substituting this equation into the integral in Eq.(2.3.12)

fS(h) =
2πR1R2

R1 +R2

∫ ∞

h

fP (H)dH. (2.3.13)
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Eq.(2.3.13) is called the Derjaguin approximation. With Eq.(2.3.13), we can calculate

the inter-particle force FS(h) to substitute the force per unit area between flat plates

FP (H) as

FS(h) =
2πR1R2

R1 +R2

∫ ∞

h

FP (H)dH.

The integral on the right hand side is equal to the potential energy per unit area between

the plates V P (h) and can be rewritten as the relationship between FS(h) and V P (h)

below

FS(h) =
2πR1R2

R1 +R2

∫ ∞

h

FP (H)dH =
2πR1R2

R1 +R2
V P (h). (2.3.14)

Eq.(2.3.14) is the original form presented in the paper by Derjaguin in 1934[54, 22].

In general, a conservative force satisfies the following relationship with the potential

energy as

FS(h) = −dV
S

dh
. (2.3.15)

By integrating Eq.(2.3.15), we can calculate the potential energy between two spheres

as follows

V S(h) =

∫ ∞

h

FS(h)dh. (2.3.16)

Therefore, with the Derjaguin approximation, if we know the force per unit area be-

tween parallel plates, we can calculate the inter-particle force by Eq.(2.3.14). From

Eq.(2.3.15), we can construct the inter-particle potential energy Eq.(2.3.16). By sub-

stituting Eq.(2.3.14) into Eq.(2.3.16), this can be rewritten as

V S(h) =
2πR1R2

R1 +R2

∫ ∞

h

V P (H)dH. (2.3.17)

We often use this Derjaguin approximation to calculate the van der Waals attractive

and electrostatic repulsive forces/potential energies in following sections.
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2.3.3 Van der Waals attraction for sphere-sphere interaction

using Derjaguin approximation

Using the Derjaguin approximation Eq.(2.3.13) to Eq.(2.3.11), we can obtain the van

der Waals attractive potential between two spherical particles V SvdW (h) as

V SvdW (h) =
2πR1R2

R1 +R2

∫ ∞

h

V P (H)dH

= − R1R2A

6(R1 +R2)h
, (2.3.18)

where H is the plate-plate separation distance, and h is the closest distance between

spheres. Especially, for equal-sized particles with the radius of R, Eq.(2.3.18) reduces

to

V SvdW (h) = −AHR

12h
. (2.3.19)

2.3.4 Van der Waals attraction between spheres without Der-

jaguin approximation

With the additivity assumption, Bradley calculated the London van der Waals attrac-

tive potential for spherical particles in the case of small particle-particle distances[55].

His calculation has been modified by correcting the small distance approximation and

the matter that is not symmetrical in the radial direction of two spherical particles by

Hamaker[56]. Now, it is called the Hamaker summation which gives the London van

der Waals attraction for spherical particles without the Derjaguin approximation as

described later.

As we see in the previous section, the van der Waals potential can be written as the

volume integral on each spheres

V S = −
∫
V1

dV1

∫
V2

dV2
N2λ

r6
, (2.3.20)

where V is the particle volume, and dV is the volume element. Indices 1 and 2 denote
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the properties of each particles 1 and 2, and r is the distance between dV1 and dV2. Let

us consider the spherical particle 1 with the radius of R1 as shown in Fig. 2.3.6. By

taking its center as O and a point P outside the sphere 1 with the length of |OP | = R,

the surface of a sphere with the radius of r around P cut out the surface S(ABC) from

the sphere 1 around O in Fig. 2.3.6. Considering the surface integration on S(ABC)

in spherical coordinates with the fact that the arc lengths of the surface elements on

S(ABC) are rdθ in θ direction and r sin θdϕ in ϕ direction, we can calculate S(ABC)

by integrating the product of these arc lengths in the ranges of 0 < ϕ < 2π, 0 < θ < θ0.

That is,

S(ABC) =

∫ 2π

0

dϕ

∫ θ0

0

r2 sin θdθ. (2.3.21)

Since θ0 takes the value of 0 < θ0 <
π
2 , we can obtain the following relationship using

the law of cosines

R2
1 = R2 + r2 − 2rRcosθ0. (2.3.22)

Therefore, performing the integration in Eq.(2.3.21), we have

S(ABC) =

∫ 2π

0

dϕ

∫ θ0

0

r2 sin θ

= 2πr2 [− cos θ]
θ0
0

= 2πr2 [− cos θ0 + 1] .

��

�
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�

��
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�

�
	

�	 � �

Figure 2.3.6: Interaction between a molecule and cut surfaces in a particle.
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Using Eq.(2.3.22) leads to

S(ABC) = 2πr2
[
R2

1 −R2 − r2

2rR
+ 1

]
= π

r

R

[
R2

1 − (R− r)2
]
. (2.3.23)

By multiplying Eq.(2.3.23) by dr, we obtain the volume between broken lines at r and

r + dr. With the number of molecules in S(ABC)dr given by NS(ABC)dr, the van

der Walls potential between a molecule at the point P and the sphere 1, VP , can be

calculated by integrating the product of Eq.(2.3.23) and Eq.(2.3.4) with the range of

R−R1 < r < R+R1 as

VP = −
∫ R+R1

R−R1

λN

r6
π
r

R

[
R2

1 − (R− r)2
]
dr. (2.3.24)

To calculate the van der Waals potential between two spheres, we put the sphere 2 at O2

so that the center distance of the sphere 1 and 2 is |O1O2| = C as shown in Fig. 2.3.7.

Eq.(2.3.24) gives the van der Waals potential between the sphere 1 around O1 and the

molecules in the volume element between broken lines on the distances of R and R+dR

in the sphere 2. Therefore, its integration over the whole sphere (C−R2 < R < C+R2)

provides the van der Waals potential between the two spheres V SvdW (h), that is,

V SvdW (h) =

∫ C+R2

C−R2

VPNπ
R

C

[
R2

2 − (C −R)2
]
dR.
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Figure 2.3.7: Interaction between a particle and cut surfaces in another particle.
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By substituting Eq.(2.3.24) into this equation, we have

V SvdW (h) = −λN
2π2

C

∫ C+R2

C−R2

[
R2

2 − (C −R)2
]
dR

∫ R+R1

R−R1

1

r5
[
R2

1 − (R− r)2
]
dr.

We can perform the partial integral respect to r as:

∫ R+R1

R−R1

1

r5
[
R2

1 − (R− r)2
]
dr =

[
−1

4r4
{R2

1 − (R− r)2}
]R+R1

R−R1

+

∫ R+R1

R−R1

1

4r4
2(R− r)dr

=

∫ R+R1

R−R1

R

2r4
dr −

∫ R+R1

R−R1

1

2r3
dr

=

[
− R

6r3

]R+R1

R−R1

−
[
− R

4r2

]R+R1

R−R1

= − R

6(R+R1)3
+

R

6(R−R1)3
+

1

4(R+R1)2
− 1

4(R−R1)2

=
1

12

{
− 2R

(R+R1)3
+

2R

(R−R1)3
+

3

(R+R1)2
− 3

(R+R1)2

}
=

1

12

{
−2(R+R1)− 2R1

(R+R1)3
+

2(R−R1) + 2R1

(R−R1)3

+
3

(R+R1)2
− 3

(R+R1)2

}
=

1

12

{
2R1

(R+R1)3
+

2R1

(R−R1)3
+

1

(R+R1)2
− 1

(R+R1)2

}
.

Substituting this to the integral,

V SvdW (h) = −λN
2π2

C

∫ C+R2

C−R2

[
R2

2 − (C −R)2
]
dR

× 1

12

{
2R1

(R+R1)3
+

2R1

(R−R1)3
+

1

(R+R1)2
− 1

(R+R1)2

}
.

We can calculate each term by using the partial integral. For the first term,

∫ C+R2

C−R2

2R1{R2
2 − (C −R)2}

(R+R1)3
dR =

[
−R1{R2

2 − (C −R)2}
(R+R1)2

]C+R2

C−R2

+

∫ C+R2

C−R2

2R1(C −R)

(R+R1)2
dR

=

[
−2R1(C −R)

R+R1

]C+R2

C−R2

−
∫ C+R2

C−R2

2R1

R+R1

=
2R1R2

(C +R1 +R2)
+

2R1R2

(C +R1 −R2)
− 2R1 [ln(R+R1)]

C+R2

C−R2

=
2R1R2

C + (R1 +R2)
+

2R1R2

C + (R1 −R2)
− 2R1 ln

C +R1 +R2

C +R1 −R2
.
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With the similar way, the second term is calculated as

∫ C+R2

C−R2

2R1{R2
2 − (C −R)2}

(R−R1)3
dR =

2R1R2

C − (R1 −R2)
+

2R1R2

C − (R1 +R2)
+2R1 ln

C − (R1 +R2)

C − (R1 −R2)
.

For the third term,

∫ C+R2

C−R2

{R2
2 − (C −R)2}
(R+R1)2

dR =

[
−{R2

2 − (C −R)2}
R+R1

]C+R2

C−R2

+

∫ C+R2

C−R2

2(C −R)

R+R1
dR

= [2(C −R) ln(R+R1)]
C+R2

C−R2
+ 2

∫ C+R2

C−R2

ln(R+R1)dR

= [2(C −R) ln(R+R1)]
C+R2

C−R2
+ [2(R+R1) ln(R+R1)]

C+R2

C−R2

−2

∫ C+R2

C−R2

R+R1

R+R1
dR

= −2R2 ln(C +R1 +R2)− 2R2 ln(C +R1 −R2)

+2(C +R1 +R2) ln(C +R1 +R2)

−2(C −R2 +R1) ln(C − (R1 +R2))− 4R2

= 2C ln
C +R1 +R2

C +R1 −R2
+ 2R1 ln

C +R1 +R2

C +R1 −R2
− 4R2.

Similarly, the fourth term is calculated

−
∫ C+R2

C−R2

{R2
2 − (C −R)2}
(R+R1)2

dR = −2C ln
C − (R1 −R2)

C − (R1 +R2)
−2R1 ln

C − (R1 +R2)

C − (R1 −R2)
+4R2.

The summation of these calculated terms is given by the following equation:

2R1R2

C + (R1 +R2)
+

2R1R2

C + (R1 −R2)
+

2R1R2

C − (R1 −R2)
+

2R1R2

C − (R1 +R2)

+2C ln
(C +R1 +R2)(C − (R1 +R2))

(C +R1 −R2)(C − (R1 −R2))

=
4R1R2C

C2 − (R1 +R2)2
+

4R1R2C

C2 − (R1 −R2)2
+ 2C ln

C2 − (R1 +R2)
2

C2 − (R1 −R2)2
.

When this integration result is substituted into the original expression, we obtain

V SvdW (h) = −λN
2π2

6

[
2R1R2

C2 − (R1 +R2)2
+

2R1R2

C2 − (R1 −R2)2
+ ln

C2 − (R1 +R2)
2

C2 − (R1 −R2)2

]
.

(2.3.25)
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To simplify this equation, we introduce some variables. First, the center distance

between the two spheres C is given by

C = R1 +R2 + h, (2.3.26)

where h is the closest surface separation distance. We define x and y as follows

x =
h

2R1
, y =

2R2

2R1
=
R2

R1
, (2.3.27)

where x is the ratio of the particle distance h and the diameter of the sphere 1 2R1, y is

the ratio of the diameter of the two spheres. By introducing Eq.(2.3.26) and Eq.(2.3.27),

we can rewrite Eq.(2.3.25), for instance, the first term becomes

1

12

4R1R2

C2 − (R1 +R2)2
=

1

12

4R1R2

(R1 +R2)2 + 2h(R1 +R2) + h2 − (R1 +R2)2

=

4R1R2

4R2
1

( h
2R1

)2 + 2hR1

4R2
1
+ 2hR2

4R2
1

=
y

x2 + xy + x
.

By rewriting other terms, Eq.(2.3.25) can be expressed as

V SvdW (h) = −AH

12

[
y

x2 + xy + x
+

y

x2 + xy + x+
+ 2 ln

x2 + xy + x

x2 + xy + x+ y

]
, (2.3.28)

where AH = λN2π2 is the Hamaker constant. Hamaker discussed some cases where the

newly introduced variables are small and large in his paper[56].

For equal-sized particles y = 1. With the particle radius R, we obtain

V SvdW (h) = −AH

12

[
1

x2 + 2x
+

1

x2 + 2x+ 1
+ 2 ln

x2 + 2x

x2 + 2x+ 1

]
. (2.3.29)

By introducing s = 2 + h
R and using the following relations

1

2

1

x2 + 2x
=

1

2

4

4 h2

4R2 + 4 2h
2R

=
2

h2

R2 + 4 hR
=

2
h2

R2 + 4 hR + 4− 4

=
2(

2 + h
R

)2 − 4
=

2

s2 − 4
,
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1

2

1

x2 + 2x+ 1
=

1

2

4

4 h2

4R2 + 4 2h
2R + 4

=
2

h2

R2 + 4 hR + 4

=
2(

2 + h
R

)2 =
2

s2
,

we can obtain the following equation:

V SvdW (h) = −AH

6

[
2

s2 − 4
+

2

s2
+ ln

s2 − 4

s2

]
. (2.3.30)

Eq.(2.3.30) is the van der Waals potential for equal-sized particles without retardation

effects, which cause the reduction of the van der Waals attraction at longer distances due

to the finite propagation speed of the light and electromagnetic field. Some expressions

have been derived by the previous works[57, 58, 59]. We use the one in Ref. [57] in the

following chapter.

2.4 Electrostatic interaction

When the charged surfaces accompanied with the electrical double layer approach

with each other, it results in the overlapped double layers and thus the electrostatic

interaction between the surfaces emerges due to the local increase in the sum of osmotic

pressure and the Maxwell’s stress (tension in one-dimension). Throughout this thesis,

we use the Derjaguin approximation to calculate inter-particle electrostatic interactions.

Let us consider a volume element Adx with the cross section A separated by the

distances between x and x+ dx from a charged surface in an electrolyte solution, and

the force balance on the volume element Adx as shown in Fig. 2.4.1. In the electrolyte

solution, ions are distributed following the Boltzmann distribution. The volume element

is in balance by the pressure on the faces at x and x+dx, and the electrical force acting

on the charges inside the Adx. If we set the pressure as p(x), the charge density as ρe,

the force balance on the volume element Adx is given by

p(x)A− p(x+ dx)A− ρeAdx
dψ

dx
= 0.

Here, we define that the force in the positive x-axis direction is positive. The direction

of the electrical force depends on the sign of the charges. From the force balance, we



2.4 Electrostatic interaction 31

obtain

p(x+ dx)− p(x)

dx
+ ρe

dψ

dx
= 0

⇔ dp

dx
+ ρe

dψ

dx
= 0. (2.4.1)

Since the charge distribution follows the Poisson equation, substituting Eq.(2.2.5) into

the equation above leads to

dp

dx
− ϵrϵ0

d2ψ

dx2
dψ

dx
= 0

⇔ dp

dx
− ϵrϵ0

d

dx

[
1

2

(
dψ

dx

)2
]
= 0

⇔ d

dx

[
p− 1

2
ϵrϵ0

(
dψ

dx

)2
]
= 0.

Thus, we can obtain the following equation

p(x)− 1

2
ϵrϵ0

(
dψ

dx

)2

= Const. (2.4.2)

The second term on the left hand side means Maxwell’s stress term. At equilibrium,

Eq.(2.4.2) is independent of the position from the surface. This means that the differ-

ence of the pressure and Maxwell’s stress near or between the surfaces is constant. The

force per unit area has the same dimension of the energy per unit volume. Therefore,

C
h
a
rg

e
d
 s

u
rf

a
ce

Cation

Anion

Figure 2.4.1: Schematic representation of an electrical potential distribution in an
electrolyte solution adjacent to an isolated plate: a force balance at a control volume
and an electrical potential distribution between two paralell plates.



32 Chapter 2 Fundamental theory on colloidal interactions - DLVO theory -

Eq.(2.4.2) can be interpreted that the sum of pressure and electric energy is conserved

irrespective of the position at equilibrium.

The electrical potential distribution between two charged surfaces is determined by

the interaction between them. To relate the pressure p(x) with the electrical potential

ψ(x), we rewrite Eq.(2.4.1) by multiplying dx on the both side as

dp = −ρedψ. (2.4.3)

Since the ions follow the Boltzmann distribution, one can substitute Eq.(2.2.1) and

Eq.(2.2.6) into Eq.(2.4.3) to obtain the following equation:

dp = −
∑
i

zieni,b exp

(
−zieψ(x)

kBT

)
dψ. (2.4.4)

Using the fact that the electrical potential decays to zero as the distance from the

surfaces approaches to infinity, we can simply integrate Eq.(2.4.4) as

p(x)− pb = kBT
∑
i

Ci,b

[
exp

(
−zieψ(x)

kBT

)
− 1

]
, (2.4.5)

where pb is the pressure in the bulk solution. By subtraction of pb from Eq.(2.4.2), we

can define the expression for the disjoining pressure due to the electrical double layer

Πdl as

Πdl = kBT
∑
i

Ci,b

[
exp

(
−zieψ(x)

kBT

)
− 1

]
− ϵrϵ0

2

(
dψ(x)

dx

)2

. (2.4.6)

This equation Eq.(2.4.6) can be used to calculate the pressure between the charged

surfaces even for asymmetrical surfaces such as oppositely-charged surfaces.

For symmetrically charged surfaces separated by distance L, the gradient of electrical

potential between the surfaces at the midpoint L/2 becomes zero as described below

dψ

dx

∣∣∣
x=L/2

= 0.

Therefore, at x = L/2, from Eq.(2.4.6), the disjoining pressure between the symmetrical

surfaces is given by the osmotic pressure at the midpoint L/2. That is, in symmetrical
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electrolyte solution, Eq.(2.4.6) becomes

Πdl(L) = 2CbkBT

[
cosh

(
zeψm(L)

kBT

)
− 1

]
, (2.4.7)

where ψm(L) = ψ(L/2). Note that the pressure Πdl(L) and midpoint potential

ψm(L) = ψ(L/2) depend on the separation distance L. From Eq.(2.4.7) for the

symmetrically charged plates with the Derjaguin approximation Eq.(2.3.13), the

electrostatic repulsion between two spheres FSedl(y) can be calculated by

FSedl(y) =
2πR1R2

R1 +R2

∫ ∞

y

Πdl(L)dL

=
2πR1R2

R1 +R2
V Pedl(y)

= 4πnbkBT
R1R2

R1 +R2

∫ ∞

y

[
cosh

(
zeψm(L)

kBT

)
− 1

]
dL, (2.4.8)

where y is the particle separation distance, as an integration variable, and V Pedl(y) is

the electrostatic repulsive energy per unit area between the charged surfaces. From

the relationship between conservative force and potential Eq.(2.3.15), the inter-particle

electrostatic potential energy V Sedl(h) is given as follows

V Sedl(h) =

∫ ∞

h

FSedl(y)dy

= 4πCbkBT
R1R2

R1 +R2

∫ ∞

h

∫ ∞

y

[
cosh

(
zeψm(L)

kBT

)
− 1

]
dLdy, (2.4.9)

where h is the inter-particle distance. For equal-sized particles, Eq.(2.4.9) becomes

V Sedl(h) = 2πCbRkBT

∫ ∞

h

∫ ∞

y

[
cosh

(
zeψm(L)

kBT

)
− 1

]
dLdy. (2.4.10)

These expressions of Eq.(2.4.8) and Eq.(2.4.10) can be applied for symmetrical elec-

trolyte solution and charged surfaces with arbitrary electrical potential. These equa-

tions need numerical integrations.

For low potential case, zeψm(L)
kBT

< 1, Eq.(2.4.7) can be expanded with Taylor’s series

taking until its second-order since x < 1 ⇒ expx = 1+ x+ x2

2! +… and the first term
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is canceled with the expansion of exp(−x),

FPedl ≈ 2CbkBT

[
1 +

1

2

(
zeψm(L)

kBT

)2
]
− 1

= CbkBT

(
zeψm(L)

kBT

)2

=
1

2
ϵrϵ0κ

2ψm(L)2. (2.4.11)

Note that we use the definitions of cosh and the Debye screening parameter Eq.(2.2.9).

In Fig. 2.4.1, where the surface potentials are different ψ0,1 ̸= ψ0,2, the poten-

tial gradient at the midpoint does not become zero. Since Eq.(2.4.6) is satisfied, the

disjoining pressure for low potential case can be expressed as

FPedl(L) =
1

2
ϵrϵ0

[
κ2ψm(L)2 −

(
dψ

dx

)2

x=L/2

]
. (2.4.12)

Putting the Debye parameter for general electrolyte Eq.(2.2.9), Eq.(2.4.12) can be used

for general electrolyte solution case with low potential. For arbitrary potential case,

Eq.(2.4.7), if the charged surfaces have the same sign of charges but not symmetrical,

Behrens et al. have used an analytical solution for non-linear PB equation[60].

2.4.1 Linear superposition approximation

From Eq.(2.2.12), we have

tanh

(
zeψ(x)

4kBT

)
= tanh

(
zeψ0

4kBT

)
exp(−κx).

If the position x is far from the surface so that zeψ(x)
kBT

≪ 1, we can apply the linear

approximation to above equation

ψ(x) =
4kBT

ze
tanh

(
zeψ0

4kBT

)
exp(−κx) = ψeff exp(−κx), (2.4.13)

with

ψeff =
4kBT

ze
tanh

(
zeψ0

4kBT

)
, (2.4.14)
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where ψeff is the effective potential defined by the analogy of the Debye-Hückel approx-

imation Eq.(2.2.11). If the surfaces are separated by large distances so that Eq.(2.4.13)

is valid, the midpoint potential ψm(L) between the symmetrical surfaces separated by

the distance L can be expressed by the linear superposition of the potentials from the

each surfaces, so-called linear superposition approximation (LSA),

ψm(L) ≈ 2× 4kBT

ze
tanh

(
zeψ0

4kBT

)
exp

(
−κL

2

)
. (2.4.15)

From Eq.(2.4.11), we can calculate the electrostatic repulsive force per unit area between

the same surfaces via the linear superposition approximation as

FPedl = CbkBT
z2e2

k2BT
2

82k2BT
2

z2e2
tanh2

(
zeψ0

4kBT

)
exp (−κL)

= 64nbkBTγ
2
0 exp (−κL) , (2.4.16)

where γ0 = tanh
(
zeψ0

4kBT

)
. With Eq.(2.3.15), the electrostatic potential energy per unit

area is given by

V Pedl(L) =

∫ ∞

L

FPedldL

=
64CbkBT

κ
γ20 exp (−κL) . (2.4.17)

Using the Derjaguin approximation, for the same and equal-sized particles, the inter-

particle electrostatic potential V Sedl(h) is described by

V Sedl(h) = πR

∫ ∞

h

V Pedl(L)dL

=
64πRCbkBT

κ2
γ20 exp (−κh) . (2.4.18)

2.4.2 Charge regulation model

When the interacting charged surfaces approach with each other, they regulates their

surface charges to maintain the chemical equilibrium on their ionic groups. This is

called charge regulation. For negatively-charged surfaces, since their surface potentials
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increase in magnitude attracting more protons when approaching as shown in Fig.

2.4.1. However, they have to reduce their surface charges to keep the free energy in

the system constant by protonation.

Let us consider the surface with carboxylic surface groups. The ionization of this

surface is described by the following dissociation reaction

−COOH ⇌ −COO− +H+ (KH), (2.4.19)

where KH is the dissociation constant for deprotonation given by

Γ−COO− asH+

Γ−COOH
= KH, (2.4.20)

where aSH+ is the surface activity of protons following the Boltzmann distribution as

aSH+ = aH+,b exp
(
− eψ0

kBT

)
. Setting the total site density of the surface groups Γtot =

Γ−COOH + Γ−COO− , we obtain the surface charge density as follows

σI(ψ0) = −eΓ−COO− = − eΓtot

1 +
(
aH+,b/KH

)
exp

(
− eψ0

kBT

) , (2.4.21)

where the super-script I means the value in the inner layer where the dissociation

reaction happens. With the analogy of Eq.(2.2.16) to the surfaces, one obtains the

relationship on the both surfaces at x = ±L/2

∫
S

E · ndS =
1

ϵrϵ0

∫
V

ρedV

⇔ −
∫
S

∇ψ · ndS =
1

ϵrϵ0
Q

⇔ −dψ
dn

∣∣∣
x=±L/2

S =
1

ϵrϵ0
Q

⇔ dψ

dn

∣∣∣
x=±L/2

= −σ
I(ψ0)

ϵrϵ0
(2.4.22)

⇔ ±dψ
dx

∣∣∣
x=±L/2

=
σI(ψ0)

ϵrϵ0
, (2.4.23)

where we redefined the range of positions as x = ±L/2 and used normal derivative

dψ
dn = ∇ψ·n obtained from the chain rule of composite function, and n is the unit normal

vector to the surfaces meaning that ∇ψ · n|x=−L/2 = dψ
dx

∣∣
x=−L/2 and ∇ψ · n|x=L/2 =
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−dψ
dx

∣∣
x=L/2

. Eq.(2.4.23) indicates that the electrical boundary condition depends on

the surface potentials determined with the interaction between the charged surfaces,

changing with the surface separation distance.

For simplicity, let us see the case in symmetrical electrolyte solution. In this case,

Eq.(2.2.7) can be expressed as Gouy-Chapman theory as

d2ψ(x)

dx2
=
kBT

ze
κ2 sinh

(
zeψ(x)

kBT

)
, (2.4.24)

where we used the definition of sinh(x) = (exp(x)− exp(−x))/2 and the Debye param-

eter. By introducing non-dimensional electrical potential Ψ(x) = zeψ(x)/(kBT ), we

obtain

d2Ψ(x)

dx2
= κ2 sinhΨ(x), (2.4.25)

This equation can be easily integrated once by multiplying dΨ(x)/dx on the both sides

as

dΨ(x)

dx

d2Ψ(x)

dx2
= κ2 sinhΨ(x)

dΨ(x)

dx

⇔ 1

2

d

dx

(
dΨ(x)

dx

)2

= κ2
d

dx
{coshΨ(x)}.

Then, we have (
dΨ(x)

dx

)2

= 2κ2 coshΨ(x) + C1, (2.4.26)

where C1 is the integration constant. Set the midpoint between the surfaces separated

by the distance L to the origin x = 0, the potential gradient at x = 0 becomes zero, in

other words, the boundary conditions are given by

dΨ(x)

dx

∣∣∣
x=0

= 0, (2.4.27)

Ψ(x = 0) = Ψm = cosh−1(1 + P/2), (2.4.28)

with[61]

P =
Πdl

CbkBT
= 2(coshΨ− 1).
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From Eq.(2.4.27) and Eq.(2.4.28), we can express the integration constant to be C1 =

−2κ2 coshΨm, and Eq.(2.4.26) can be rewritten as

(
dΨ(x)

dx

)2

= 2κ2{coshΨ(x)− coshΨm}. (2.4.29)

Let us introduce the expressions Ω(x) = exp[Ψ(x)−Ψm] and ξ = exp(Ψm),

(
d

dx
{Ψm + lnΩ(x)}

)2

= κ2{eΨm+lnΩ(x) + e−{Ψm+lnΩ(x)} − eln ξ − e− ln ξ}

⇔
(

1

Ω(x)

dΩ(x)

dx

)2

= κ2[ξΩ(x) + {ξΩ(x)}−1 − ξ − ξ−1].

By multiplying the both side of above equation by Ω(x)2 and factorizing it, one obtains

(
dΩ(x)

dx

)2

= κ2[ξΩ(x)3 + ξ−1Ω(x)− ξΩ(x)2 − ξ−1Ω(x)2]

= κ2ξ−1Ω(x){1− Ω(x)}{1− ξ2Ω(x)}.

Taking the square root of this equation, we have

dΩ(x)

dx
= ±κξ− 1

2

√
Ω(x){1− Ω(x)}{1− ξ2Ω(x)}. (2.4.30)

Here, we consider negatively-charged surfaces. That is, Ψ(x = ±L/2) ≤ 0，dΨ/dx ≤

0 for x ≥ 0. With the symmetry of the system, it allows us that solving the half region

divided by the midpoint is equal to solving the whole region. The second condition

dΨ/dx ≤ 0 for x ≥ 0 can be known from the fact that the midpoint potential can not

be lower than the surface potential if the surfaces are negatively-charged. This second

condition and the definition of Ω(x) indicate that always Ω(x) ≥ 0, and dΩ/dx =

ΩdΨ/dx ≤ 0. Therefore, in this case, Eq.(2.4.30) can only be negative as

dΩ(x)

dx
= −κξ− 1

2

√
Ω(x){1− Ω(x)}{1− ξ2Ω(x)}. (2.4.31)

With the variable separation of Eq.(2.4.31), we can obtain

dΩ√
Ω(1− Ω)(1− ξ2Ω)

= − κ√
ξ
dx. (2.4.32)
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By integrating Eq.(2.4.32) in the ranges 0 → x for the left-hand side, and Ω(0) = 1 →

Ω(x) for the right-hand side, we have

− κx√
ξ
=

∫ Ω

1

dΩ′√
Ω′(1− Ω′)(1− ξ2Ω′)

. (2.4.33)

With the change of variables as Ω = sin2 θ and dΩ = 2 sin θ cos θdθ, the integral interval

becomes θ : π/2 → sin−1
√
Ω, and we obtain with splitting the interval of integral as

− κx

2
√
ξ
=

∫ sin−1
√
Ω

π/2

dθ√
1− ξ2 sin2 θ

=

∫ sin−1
√
Ω

0

dθ√
1− ξ2 sin2 θ

−
∫ π/2

0

dθ√
1− ξ2 sin2 θ

. (2.4.34)

In Eq.(2.4.34), we define the elliptic integral of the first kind as follows

u =

∫ ϕ

0

dθ√
1−m2 sin2 θ

= F (ϕ,m). (2.4.35)

The integral of Eq.(2.4.35) with ϕ = π/2, K(m), is specially called the complete elliptic

integral of the first kind. The Jacobian elliptic function is defined as an inverse function

of the integral Eq.(2.4.35) with

sn(u,m) = sinϕ, (2.4.36)

cn(u,m) = cosϕ =
√

1− sn2(u,m), (2.4.37)

dn(u,m) =
dϕ

du
=

1

du/dϕ
=
√
1−m2sn2(u,m), (2.4.38)

cd(u,m) =
cn(u,m)

dn(u,m)
= sn(K(m)− u,m), (2.4.39)

where the equation for cd(u,m) means the periodicity of the elliptic function. From

above equations, Eq.(2.4.34) can be expressed as

− κx

2
√
ξ
= −u = sn−1

√
Ω(x)−K(ξ), (2.4.40)

where sn−1 is the inverse function of sn(u,m). By transferring the second term of the

right-hand side to the center and using the definition of the inverse function with the
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square root, we can obtain the following equation with Eq.(2.4.39) as

Ω(x) = sn2(K(ξ)− u, ξ) = cd2(u, ξ), (2.4.41)

where u = κx/(2
√
ξ). Recalling the definition of Ω(x) and Ψ(x), the exact solution of

the potential between parallel plates for similarly-charged surfaces can be given by

ψ(x) = ψm +
2kBT

ze
ln cd(u, ξ). (2.4.42)

Even though we need to calculate the elliptic function numerically, we can determine

the electrical potential between charged plates.

The charge density of the interacting parallel plates can be derived from Eq.(2.4.42)

and Gauss’s law Eq.(2.4.23). From the symmetry of the electrical potential described

by Eq.(2.4.42), the charge densities on each plate are identical. Therefore, we just

require to calculate the charge density on the one plate located at x = L/2 as:

σ = −ϵrϵ0
dψ(x)

dn

∣∣∣
x=L/2

=
ϵrϵ0kBT

ze

dΨ(x)

dx

∣∣∣
x=L/2

=
ϵrϵ0kBT

ze

dΨ(x)

dx

∣∣∣
x=L/2

=
ϵrϵ0kBT

ze
Ω−1 dΩ(x)

du

du

dx

∣∣∣
x=L/2

=
ϵrϵ0kBT

ze
cd−2(u, ξ)

d

du
{cd2(u, ξ)} d

dx

(
κx

2
√
ξ

) ∣∣∣
x=L/2

=
ϵrϵ0kBT

ze
cd−1(u, ξ)

d

du
{cd(u, ξ)} κ√

ξ

∣∣∣
x=L/2

.

Using the following equation

d

du
{cd(u, ξ)} =

d

du

(
cn(u, ξ)

dn(u, ξ)

)
=

d
du{cn(u, ξ)}dn(u, ξ) + cn(u, ξ) ddu{dn(u, ξ)}

dn2(u, ξ)

=
−cn(u, ξ)dn2(u, ξ) + ξ2cn2(u, ξ)sn(u, ξ)

dn2(u, ξ)

=
(ξ2 − 1)sn(u, ξ)

dn2(u, ξ)
,
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we can finally obtain the surface charge density as follows

σ =
ϵrϵ0kBT

ze
cd−1(u, ξ)

(ξ2 − 1)sn(u, ξ)

dn2(u, ξ)

κ√
ξ

∣∣∣
x=L/2

=
ϵrϵ0kBT

ze

κ(ξ2 − 1)√
ξ

sn(u, ξ)

cn(u, ξ)dn(u, ξ)

∣∣∣
x=L/2

. (2.4.43)

Eq.(2.4.43) denotes that the charge density is determined by the midpoint potential or

the osmotic pressure with Eq.(2.4.28) at x = L/2 since u = κx/(2
√
ξ).

2.4.3 Constant (linearized) charge regulation

In the case of the charge regulating surfaces, we have to consider the relationship be-

tween surface charge density σ(ψ0) and electrical potential ψ0 as depicted in Fig. 2.4.2.

The curve is given by ionization charge models such as Eq.(2.4.21). The solid lines for

infinite and finite separation are given by Eq.(2.2.17) for the isolated surface charge

density and Eq.(2.4.43) for the interacting one, respectively. If we define the surface

potential for an isolated plate as ψiso0 , the intersection point of the line by Eq.(2.4.21)

with the one by Eq.(2.2.17) gives the solution of the two equations Eqs.(2.4.21) and

(2.2.17).

Charge model �I(�0) 

Figure 2.4.2: Charge-potential relationship with a charge regulation model.
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It is sometimes difficult to exactly know the ionization isotherm for the surfaces

such as Eq.(2.4.21) to be incorporated in the boundary condition for calculating the

electrostatic interaction. Such boundary conditions can make the boundary value prob-

lems complicated because of its nonlinearity. To mitigate this difficulty, the lineariza-

tion to the boundary condition has been proposed to solve the linearized problem,

Eq.(2.2.8), by the previous researcher[62]. It has been used to solve the nonlinear

Poisson-Boltzmann equation Eq.(2.2.7)[63, 64]. Within this concept, the relationship

between σ(ψ0) and ψ0 is approximated with the tangential line at ψ0 = ψiso0 . This can

be interpreted as a linear approximation of σI(ψ0) around ψ0 = ψiso
0

. Thus, it is called

the linearized regulation model or constant charge regulation model. The tangential

line is given by the following equation

σI(ψ0) ≈ σtan(ψ0) = σ(ψiso
0

)− CI(ψ0 − ψiso
0

), (2.4.44)

with

CI = −
[
dσI

dψ0

]
ψ0=ψ

iso
0

, (2.4.45)

where CI (≥ 0) is the inner layer capacitance which has the unit of electrostatic capaci-

tance per unit area. Eq.(2.4.44) gives the linearized boundary condition on the surfaces.

For further use, this can be rewritten for the charged surfaces located at x = ±L/2 as

±ϵrϵ0
dψ

dx

∣∣∣
x=±L/2

= σ
(
ψiso

±

)
− CI±

[
ψ(±L/2)− ψiso

±

]
, (2.4.46)

where ψiso
±

is the surface potential, σ
(
ψiso

±

)
is the surface charge density, CI± is the

inner layer capacitance of the two isolated surfaces, and ψ(±L/2) is the potential at the

interacting surfaces. The inner layer capacitance CI± for each surfaces can be readily

treated by introducing the regulation parameter

p± =
Cdl±

Cdl± + CI±
, (2.4.47)
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where Cdl± = dσ±
dψ±

is the diffuse layer capacitance of the isolated surfaces. When the regu-

lation parameter p± is unity, the problem reduces to the constant charge (CC) condition,

while p± = 0, it reduces to the constant potential (CP) condition as classical limiting

cases. This constant charge regulation model can be easily used for asymmetrically

charged surfaces and also general electrolyte solutions with the appropriate expressions

for the diffuse layer charge density as used in the previous researchers[65, 66, 67, 68].

2.5 DLVO theory

Up to the previous section, we have seen the fundamental framework for the van der

Waals attraction and electrostatic repulsion between identical particles. Within DLVO

theory, the net mutual interaction acting on particles is expressed as the superposition

of the van der Waals attraction and the electrostatic repulsion. DLVO theory gives

us a perspective to discuss the aggregation-dispersion of colloids by the balance of the

attraction and repulsion. The net potential can be described by the superposition of

the van der Waals and electrostatic potentials as follows

V (h) = VvdW (h) + Vedl(h). (2.5.1)

We show an example of the calculations of the DLVO potential in Fig. 2.5.1. In Fig.

2.5.1, we assume the carboxylated polystyrene latex particles with the diameter of

2R = 1.5 µm, and the site density of Γtot=1.136 nm−2 in 10 mM KCl solution at pH 3.5.

The dotted line is the van der Waals potential, and the broken lines are the electrostatic

potential. The solid lines are calculations of the net interaction potential. Depending on

the electrostatic boundary conditions, the black, red, and blue lines are calculated with

the constant charge (CC), charge regulation (CR), and constant potential (CP) models,

respectively. The maximum values in the potential located around the Debye length

are called the energy barrier. The first minimum from the origin is called the primary

minimum, and the second one is called the secondary minimum. The higher energy

barrier obviously means the stronger repulsion impeding the particle aggregation. To

form aggregates in the primary minimum by overcoming the energy barrier, the particles

require the higher energy than the barrier. The reason why the DLVO theory has
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been widely accepted is that it explains the Schulze-Hardy rule known as an empirical

rule[69]. This suggests that ions with higher valence enhance aggregation, and the

critical coagulation concentration described later is inversely proportional to the 2nd-

6th power of the ionic valence.

To show this relation, let us express the net potential for equal-sized particles as the

superposition of Eq.(2.3.19) and Eq.(2.4.18), that is,

V S(h) =
64πRCbkBT

κ2
γ2

0
exp (−κh)− AR

12h
. (2.5.2)

The energy barrier as shown in Fig.2.5.1 decreases with decreasing electrostatic repul-

sion by increase of electrolyte concentrations and decrease of surface potentials. The

salt concentration, where the energy barrier disappears, is here called the critical coag-

ulation concentration (CCC). Since the energy barrier is the maximum on the potential

curve, the potential gradient at the position on the barrier is zero. Hence, the disap-
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Figure 2.5.1: Relationship between interaction energy and surface separation. A
carboxyl latex particle with a diameter of 1.5 µm and a site density of 1.136 nm−2

at ionic strength 10 mM and pH 3.5. Dotted line, broken lines, and solid lines are
van der Waals attratction, electrostatic repulsion, and total pair interaction energy,
respectively.
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pearance of the energy barrier means the potential at the barrier becomes zero, that is,

Vmax = 0. Therefore, the critical coagulation concentration Cb,c satisfies the following

equations

dV S

dh
= −64πRCb,ckBT

κ
γ20 exp (−κh) +

AR

12h2
= 0, (2.5.3)

V S(h) =
64πRCb,ckBT

κ2
γ20 exp (−κh)−

AR

12h
= 0. (2.5.4)

Dividing Eq.(2.5.3) by −κ, we have

64πRCb,ckBT

κ2
γ20 exp (−κh)−

AR

12κh2
= 0. (2.5.5)

Comparing Eq.(2.5.5) with Eq.(2.5.4), one obviously requires to be κh = 1 in order to

hold these equations simultaneously. By substituting κh = 1, we can obtain

64πRCb,ckBT

κ2
γ20 exp (−1)− ARκ

12
= 0

⇔ 64πCb,ckBT

A
γ20 exp (−1) =

κ3

12

⇔ 64πCb,ckBT

A
γ20 exp (−1) =

1

12

(
2z2e2Cb,c
ϵrϵ0kBT

) 3
2

⇔ C
1
2

b,c =
768πkBT

A
γ20 exp (−1)

(
ϵrϵ0kBT

2z2e2

) 3
2

⇔ Cb,c =
(768)2π2(kBT )

2

A2
γ40 exp (−2)

(
ϵrϵ0kBT

2z2e2

)3

⇔ Cb,c =
(384)2π2(ϵrϵ0)

3(kBT )
5

2A2e6 exp(2)

γ40
z6
. (2.5.6)

In the case of high surface potential ψ0, with the definition of hyperbolic function,

we can rewrite as γ0 = tanh
(
zeψ0

4kBT

)
≈ ±1. Eq.(2.5.6) gives the relation that Cb,c

is proportional to the sixth power of the ion valence z as partially mentioned in the

Schulze-Hardy rule for high surface potential case. More generally, the Schulze-Hardy

rule can written as follows[69]

Cb,c =
Const.

zx
(2 < x < 6). (2.5.7)



46 Chapter 2 Fundamental theory on colloidal interactions - DLVO theory -

In the high surface potential limit, Eq.(2.5.7) reduces to x → 6. This means that the

dependence of CCC on ion valence can be weak for low potential case.

In this chapter, we have summarized the DLVO theory with the analytical expressions

for the van der Waals attraction and the electrostatic interaction used in this thesis.

In next Chapter 3, we give a summary of aggregation kinetics including the DLVO

theory. The expressions explained in next chapter are used to analyze the experimental

aggregation rates in the following chapters.
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Chapter 3

Electrophoresis and

aggregation kinetics

3.1 Introduction

We have seen that colloidal particles interact with each other through the electro-

static interaction in the previous section. The electrostatic interaction is affected by

the charging state of colloidal particles. Quantifying the charge amount is crucial when

quantifying aggregation rates. Therefore, investigating the charging behavior of col-

loidal particles is still a big issue in colloid science. In this chapter, we briefly explain

the basic theory on the electrophoretic mobility as a way to estimate the surface charges

of colloidal particles used in this thesis. The aggregation rate coefficients including the

physico-chemical interactions such as the DLVO force are explained. First, we shortly

mention the basic concepts about electrophoresis. Then, we outline the fundamentals

on aggregation kinetics to describe the coagulation process.

3.2 Electrophoresis

There are a lot of ways to estimate the charging behavior of colloidal particles such as

electrophoresis, streaming potential, adsorption experiment, potentionmetric titration,

and electro-acoustic methods and so on[70]. In this study, we have employed the elec-

trophoretic method to evaluate the charging behavior of colloids. The electrophoresis
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is widely used for particulate materials. When applying an electric field to particle sus-

pensions, the particles suspended in the solution move along with the direction of the

applied electric field. This is called the electrophoresis as depicted in Fig. 3.2.1. In the

electrophoretic method, by measuring the velocity of particles in the applied electrical

field, we can estimate the charge amounts on the particles. The electrophoretic veloc-

ity divided by the magnitude of the applied field is called the electrophoretic mobility

(EPM). The analysis on experimental values of electrophoretic mobility allows us to

confirm the validity of charging models and to obtain the amount of charges on col-

loidal particles. With the estimates of charge, we can discuss the relationship between

their charging and aggregation behavior. Here, we see a basic equation to analyze the

electrophoretic mobilities.

3.2.1 Theoretical expression for electrophoretic mobility

When the Debye length κ−1, which is the measure of the thickness of electrical double

layer, is thin compared to the particle radius R, that is, κR≫ 1, the electric field and

the flow field near the particle can be regarded as parallel to the particle surface. In

such a case, the electrophoretic mobility µm in an electrolyte solution can be expressed

by the following Smoluchowski equation:

µm =
U

E
=
ϵrϵ0
η
ζ, (3.2.1)

where η is the viscosity of the medium, U is the particle migration velocity, and E is

the magnitude of the applied electric field. ζ is the zeta potential which is defined as

the electric potential at the position of slipping plane from the surface. The position of

slipping plane is the distance from the surface to the outer boundary of the fluid layer

around the particle moving together with the particle. Eq.(3.2.1) indicates the linear

relationship between ζ and µm , making it convenient to be widely used to convert

the experimental electrophoretic mobility to the corresponding zeta potential. In a

theoretical manner, for example, the zeta potential ζ can be calculated by introducing

the distance of slipping plane xs to the Gouy-Chapman equation Eq.(2.2.12) as

ζ = ψ(x = xs)[23]. However, the linear relationship in Eq.(3.2.1) does not hold in
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higher zeta potential case. With high ζ, the ion distribution around the particle in the

presence of the applied electric field differs from the spherically symmetric equilibrium

distribution in the absence of the applied field. The electrical double layer deforms as

depicted in Fig. 3.2.1. This reduces the electrophoretic velocity through the additional

electrical force due to polarization, and the viscous drag force from the ions moving

to the opposite direction of the particle motion. Such effects are called the relaxation

effect in electrophoresis. With considerable relaxation effects, the relationship between

the electrophoretic mobility and the zeta potential has been shown to be non-linear by

numerical calculation combining the hydrodynamic equation with the ionic transport

in the electric field[71]. They showed that the electrophoretic mobility can have its

maximum when plotted against ζ, indicating its double-valuedness. Such relaxation

effects have been validated in previous experiments[23, 72, 73, 74].

Ohshima has derived approximated analytical expressions with relaxation effects

by solving the Stokes equation for creeping flow including ionic transport and

electrostatics[75, 76, 77]. Ohshima’s approximated analytical equation[75] is in good

agreement with the numerical results by O’Brien-White[71] when κR > 10, showing

that the analytical equation captures the relaxation effects well. Therefore, in this

thesis, we have employed the Ohshima equation[75] for symmetrical monovalent

electrolyte cases to calculate theoretical electrophoretic mobilities as described later.

However, for more general cases such as asymmetrical electrolyte solution, we have used

the numerical program by O’Brien-White[71] or the CellMobility program provided by

V

Deformation of EDL

Motion of ions in EDLMotion of particle

Figure 3.2.1: The schematic view of the electrophoresis with relaxation effect.
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the authors of Refs. [78, 79, 80].

3.3 Aggregation kinetics

The aggregation kinetics describes the growth process of aggregates with time by

the analogy of reaction kinetics. The parameter representing the growth rate of the

aggregates corresponding to the reaction rate constant is called the aggregation rate

coefficients formulated by Smoluchowski[12]. In this section, we outline expressions of

the aggregation rate coefficients for interacting colloidal particles depending on collision

modes between particles. These expressions are used in the following sections for a

theoretical analysis.

3.3.1 Population balance equation

The smallest unit of colloidal particles considered in the system is called the primary

particle or singlet. An aggregate composed of z primary particles is called zth floc.

The relative motion of particles with Brownian motion, shearing flow, and differential

sedimentation induces aggregation. As a consequence, the number concentration of zth

floc Nz varies with time. In the Smoluchowski treatment, one assumes the following

conditions: (i) the aggregation is irreversible and breaking up does not occur after

contact, (ii) no multi-body collision occur more than three body collisions, meaning

that only two body collisions happen, (iii) the primary particles are spherical and

mono-dispersed. With these above assumptions, the temporal change of Nz, dNz/dt,

can be described by the following equation

dNz
dt

=
1

2

∑
i+j=z

kijNiNj −Nz

∞∑
i=1

kizNi, (3.3.1)

where kij is the aggregation rate coefficients between ith flocs and jth flocs. Eq.(3.3.1)

is called the population balance equation. The first term on the right-hand side in

Eq.(3.3.1) describes the process to form the z(= i + j)th flocs due to the collision of

ith flocs and jth flocs. The second term expresses the loss of zth flocs by aggregation

of zth flocs with other arbitrary flocs.

Here, we focus on aggregation process at early stage where only aggregation between
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the primary particles happens to form the secondary particles composed of two primary

particles. In this case, Eq.(3.3.1) can be rewritten with respect to the temporal change

of the number concentration for the primary and secondary particles

dN1

dt
= −k11N1(0)

2,
dN2

dt
=

1

2
k11N1(0)

2, (3.3.2)

where k11 is the aggregation rate coefficients between two primary particles, N1(0) is

the initial number concentration of the primary particles at time t = 0.

3.3.2 Brownian aggregation rate coefficients

Brownian aggregation is caused by the collision due to Brownian motion. The Brow-

nian aggregation rate coefficients can be derived by considering the relative diffusion

process between interacting colloidal particles[12, 16, 17, 18]. Taking the center of jth

flocs as the origin, and taking the r axis outward, we consider the flux by diffusion

and conservative forces. First, the relative velocity of ith flocs colliding to jth flocs at

the origin v can be calculated by the balance between the conservative force acting on

the particles and the hydrodynamic resistance. From Fig. 3.3.1, taking the positive

direction of force in the direction of r, the relative velocity v can be expressed by

ξv = −dV
S

dr
, (3.3.3)

where ξ is the hydrodynamic resistance factor. V S is the physico-chemical interaction

potential between ith and jth flocs. The Stokes-Einstein relation is given by

Dij =
kBT

ξ
, (3.3.4)

where Dij is the relative diffusion coefficients of ith and jth flocs. With Eq.(3.3.4), the

relative velocity v can be described by

v = − Dij

k
B
T

dV S

dr
. (3.3.5)
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Note that we take the coordinate outward, and define the outward flux in r to be

positive. Thus, one calculate the total flux as the summation of the diffusion flux given

by Fick’s law JB and the one induced by the conservative force JV described as the

product of the number concentration of ith flocs ni and the relative velocity v as follows

J(r) = J
B
+ J

V

= Dij

(
dni

dr
+

1

k
B
T

dV S

dr
ni

)
. (3.3.6)

At equilibrium, the number of ith flocs colliding to the spherical surface with the radius

r per unit time, that is, collision frequency Z [s−1] is given by the following equation[81]．

Z = 4πr2J(r)

= 4πr2Dij

(
dni
dr

+
1

kBT

dV S

dr
ni

)
= Const. (3.3.7)

The distribution y(r) can be expressed by

y(r) = ni exp

(
V S

kBT

)
. (3.3.8)

dy

dr
=

(
dni

dr
+

1

kBT

dV S

dr
ni

)
exp

(
V S

kBT

)
. (3.3.9)

Figure 3.3.1: The schematic view of the flux and the coordinate system for Brownian
aggregation. The radial axis is taken to the direction pointed out from a reference
particle which is set on the origin.
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We define the radii of ith and jth flocs as ai and aj , respectively. Since the ith flocs

form (i + j)th flocs when aggregated, the boundary conditions are given by ni = 0 at

r = ai + aj , and y(r) → n
i,b

as r → ∞ where n
i,b

is the number concentration of the

ith flocs in the bulk. From Eq.(3.3.7) and Eq.(3.3.9), we can obtain

dy =
Z

4πDijr2
exp

(
V S

kBT

)
dr. (3.3.10)

By integrating Eq.(3.3.10) with the boundary conditions, we have

∫ ni,b

0

dy =

∫ ∞

ai+aj

Z

4πDijr2
exp

(
V S

kBT

)
dr

⇔ Z = 4πni,b

[∫ ∞

ai+aj

1

4πDijr2
exp

(
V S

kBT

)
dr

]−1

. (3.3.11)

There are many jth particles more than one in the bulk. Therefore, by multiplying the

bulk number concentration of jth particles nj,b by Z, one obtains the collision frequency

per unit volume between ith and jth flocs. That is,

Znj,b = 4πni,bnj,b

[∫ ∞

ai+aj

1

Dijr2
exp

(
V S

kBT

)
dr

]−1

. (3.3.12)

We call the part other than ni,bnj,b on the right hand side in Eq.(3.3.12) the Brownian

aggregation rate coefficients kij,B

kij,B = 4π

[∫ ∞

ai+aj

1

Dijr2
exp

(
V S

kBT

)
dr

]−1

. (3.3.13)

The expression of Dij taking into account hydrodynamic interactions is given by

Dij =
1

Bij(h)

(
kBT

6πaiη
+

kBT

6πajη

)
, (3.3.14)

with

Bij(h) =
6(h/aij)

2 + 13(h/aij) + 2

6(h/aij)2 + 4(h/aij)
，　 aij =

2aiaj
ai + aj

. (3.3.15)

Bij(h) is a non-dimensional function describing the hydrodynamic retardation due to

the squeezing flow between particles when approaching[17, 18]．h is the particle sep-
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aration distance expressed as h = r − (ai + aj). With Eq.(3.3.14), Eq.(3.3.13) can be

rewritten as follows

kij,B =
2kBT

3η

(
1

ai
+

1

aj

)[∫ ∞

0

Bij(h)

(h+ ai + aj)2
exp

(
V S(h)

kBT

)
dh

]−1

= αij,Bk
Smo

ij,B , (3.3.16)

with

k
Smo

ij,B =
2kBT

3η

(
1

ai
+

1

aj

)
(ai + aj), (3.3.17)

where r = h+ai+aj . Eq.(3.3.17) is the Brownian aggregation rate coefficients with any

interactions formulated by Smoluchowski[12]. αij,B in Eq.(3.3.16) is called the capture

efficiency for Brownian aggregation given as

αij,B =

[
(ai + aj)

∫ ∞

0

Bij(h)

(h+ ai + aj)2
exp

(
V S(h)

kBT

)
dh

]−1

. (3.3.18)

The capture efficiency αij,B expresses the effects of inter-particle interactions on ag-

gregation and its inverse is called the stability ratio W normalized by the aggregation

rate without any interactions. The stability ratio widely used experimentally is the one

normalized by the aggregation rate kf with only the van der Waals attraction in the

absence of the electrostatic interactions[20, 36]. That is,

W =
kf

k
=

∫∞
0

Bij(h)
(h+ai+aj)2

exp
(
V S(h)
kBT

)
dh∫∞

0
Bij(h)

(h+ai+aj)2
exp

(
V S
vdW (h)

kBT

)
dh
, (3.3.19)

where V SvdW (h) is the van der Waals potential for spherical particles.

3.3.3 Hydrodynamic interactions in linear shear flows

In the previous section, we have shown the Brownian aggregation rate coefficients

in quiescent fluid. However, aggregation happens in flow fields in many industrial

processes such as food processing, water treatment, and so on. Thus, to formulate

aggregation kinetics for particles immersed in a shearing fluid, we need to consider the

particle velocity in the flow under the influence of hydrodynamic interactions between
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colloidal particles.

Comprehensive formulations for hydrodynamic interactions have been done in a linear

flow[15, 82, 83, 84, 85]. For further use, we summarize the particle velocity including

the hydrodynamic interactions in two typical types of linear flow such as simple shear

flow and axisymmetrical extensional flow as drawn in Fig. 3.3.2. Consider a linear

flow u with the velocity gradient of ∇u = Gij as

ui = Gijxj , Gij = Eij +Ωij , (3.3.20)

where r = xj is the position vector, E = Eij = 1
2 (Gij + Gji) is the rate-of-strain

tensor, and Ω = Ωij = 1
2 (Gij − Gji) is the rate-of-rotation tensor. So, let us put

two particles with radii of R1 and R2 at the origin and the position r in this linear

shear flow field u. Since the ambient linear flow is disturbed due to the existence of the

particles and inter-particle hydrodynamic interactions, such disturbed flow can be given

by the superposition of the ambient flow and the disturbed effect with hydrodynamic

interactions. Thus, the relative velocity between the two particles Vi(r) can be written

as[82]

Vi(r) = Gijxj −
[
A(r, ρ)

xixj
r2

+ B(r, ρ)
(
δij −

xixj
r2

)]
Ejkxk, (3.3.21)

where A(r, ρ) and B(r, ρ) are hydrodynamic interaction functions as described later.

δij is the Kronecker’s delta.

�

�

(a) Simple shear flow (b) Axisymmetrical extensional flow

Figure 3.3.2: Schematic view of typical linear flows for (a)simple shear flow and
(b)axisymmetrical extensional flow, respectively.
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For simple shear flow u = Gx2e1, Eq.(3.3.21) can be rewritten

V (r) = Gx2e1 − A(r, ρ)

r2


x21 x1x2 x1x3

x2x1 x22 x2x3

x3x1 x3x2 x23




1
2Gx2

1
2Gx1

0

− B(r, ρ)


1 0 0

0 1 0

0 0 1




1
2Gx2

1
2Gx1

0



−B(r, ρ)
r2


x21 x1x2 x1x3

x2x1 x22 x2x3

x3x1 x3x2 x23




1
2Gx2

1
2Gx1

0


= Gx2e1 − A(r, ρ)

r2
[
Gx21x2e1 +Gx22x1e2 +Gx1x2x3e3

]
−B(r, ρ)

[
1

2
Gx2e1 +

1

2
Gx1e2

]
+
B(r, ρ)
r2

[
Gx21x2e1 +Gx22x1e2 +Gx1x2x3e3

]
. (3.3.22)

Here, the relative position between the two particles can be described in the Cartesian

coordinate (x1, x2, x3) or the spherical coordinate (r, θ, ϕ) with the relationship between

them given by

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (3.3.23)

e1 = er sin θ cosϕ+ eθ cos θ cosϕ− eϕ sinϕ, (3.3.24)

e2 = er sin θ sinϕ+ eθ cos θ sinϕ+ eϕ cosϕ, (3.3.25)

e3 = er cos θ − eθ sin θ. (3.3.26)

��

��

��

�

�����

�

�

�

Figure 3.3.3: Schematic representation of Cartesian and spherical polar coordinate
systems.
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By using these relationships, we can write Eq.(3.3.22) as

V (r) = er
[
Gr(1−A(r, ρ)) sin2 θ sinϕ cosϕ

]
+eθ [Gr(1− B(r, ρ)) sin θ sinϕ cos θ cosϕ]

+eϕ

[
−Gr sin θ

{
sin2 ϕ+

B(r, ρ)
2

(
cos2 ϕ− sin2 ϕ

)}]
. (3.3.27)

With Eq.(3.3.27), we can calculate the relative particle velocity of two particles in a

simple shear flow in the spherical coordinate (r, θ, ϕ).

Next, for pure straining flow, let E1, E2, E3 to be the three principal rates of strain

of the bulk flow, where E1 ≤ E2 < E3 of which only two are independent because

of mass conservation law. That is, the sum of them must be zero. With the velocity

u = E1x1e1 +E2x2e2 +E3x3e3, Eq.(3.3.21) can be rewritten in a similar way derived

Eq.(3.3.27) as

V (r) = er
[
r(1−A(r, ρ)){E3 cos

2 θ + (E1 cos
2 ϕ+ E2 sin

2 ϕ) sin2 θ}
]

+eθ
[
r(1− B(r, ρ)) sin θ cos θ{E1 − E3 + (E2 − E1) sin

2 ϕ}
]

+eϕ [r(1− B(r, ρ)) sinϕ cosϕ{E2 − E1} sin θ] . (3.3.28)

For axisymmetrical extensional flow with E1 = E2 = −G, E3 = 2G, Eq.(3.3.28) can be

reduced to the following equation

V (r) = er
[
Gr(1−A(r, ρ)){3 cos2 θ − 1}

]
+eθ [−3Gr(1− B(r, ρ)) sin θ cos θ] . (3.3.29)

We use these velocity distributions to calculate the shear aggregation rate coefficients

in the following sections.

3.3.4 Aggregation rate coefficients in a simple shear flow

Aggregation rate coefficients in a simple shear flow has been derived by considering

the relative motion of colliding particles due to the velocity gradient in the surrounding

fluid[12]. Such relative motion can be calculated by using the trajectory analysis based

on hydrodynamics[35, 37, 86]. We show the schematic representation of the trajectory

analysis as depicted in Fig. 3.3.4. Let us consider the two particles with the radii
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of Ri and Rj in a simple shear flow with the velocity field of uy = Gx. Neglecting

the Brownian motion of the particles, the particle relative motion is determined in a

deterministic way. In this situation, the relative trajectory of the reference particle j

and the colliding one i can be determined by the balance of the physico-chemical and

hydrodynamic interactions. Therefore, the collision frequency between the particles i

and j can be calculated as the number of particles per unit time flowing into the cross

section through which the trajectories passes to finally collide and form the aggregate,

so-called the capture cross section, on the x−z plane sufficiently away from the reference

particle. That is,

Z = 4GNi

∫ zmax

0

∫ xc (z
′)

0

x′dx′dz′ (3.3.30)

where xc(z) is the shape of the boundary of the capture cross section separating the

trajectories whether aggregation happen or not. zmax is the maximum value of z on

the capture cross section. It means the capture cross section is characterized by x
c
(z)

and zmax . Hence, its expression per unit volume is given by

ZNj = 2GNiNj

∫ zmax

0

[xc(z
′)]2dz′. (3.3.31)

Figure 3.3.4: Schematic representation of a trajectory analysis. Up the particle rela-
tive velocity described by Eqs.(3.3.36-3.3.38), xc(z) the boundary between aggregation
or not on x− z plane at the released point(y = −100Ri), and zmax the maximum of z
on the boundary, respectively.
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Therefore, in a similar manner for Brownian diffusion, the aggregation rate coefficients

in a simple shear flow can be expressed by the following equation

kij,sh = 2G

∫ zmax

0

[xc(z
′)]2dz′. (3.3.32)

In the absence of any inter-particle interactions, the particle trajectory follows the

streamline of the shear flow without being disturbed by the existence of each other.

This case corresponds to the one with xc(z) =
√
(Ri +Rj)2 − z2 and zmax = Ri + Rj

in Eq.(3.3.32). Thus, the aggregation rate coefficients without any interactions k
Smo

ij,sh is

given by[12]

k
Smo

ij,sh =
4

3
G(Ri +Rj)

3. (3.3.33)

By using Eq.(3.3.33), Eq.(3.3.32) can be rewritten as

kij,sh = αij,sh
4

3
G(Ri +Rj)

3, (3.3.34)

with

αij,sh =
3

2(Ri +Rj)3

∫ zmax

0

[xc(z
′)]2dz′, (3.3.35)

where αij,sh is the capture efficiency for aggregation in a simple shear flow. αij,sh can

be regarded as the ratio of finally aggregating particles among the particles flowing into

the capture cross section in the case without any interactions.

To calculate the capture efficiency, let us explain briefly to determine xc(z) and

zmax which characterize the capture cross section by using the trajectory analysis. As

mentioned above, neglecting the Brownian diffusion, the relative colliding trajectory

between two particles can be determined in a deterministic way, and it can be described

by the following trajectory equations[87]

dr∗

dt∗
= r∗(1−A(r∗, ρ)) sin2 θ sinϕ cosϕ

+
G(r∗, ρ)
6πηGR2

i

(FvdW + Fedl), (3.3.36)

dθ

dt∗
= (1− B(r∗, ρ)) sin θ cos θ sinϕ cosϕ, (3.3.37)

dϕ

dt∗
= cos2 ϕ− B(r∗, ρ)

2
cos 2ϕ, (3.3.38)



60 Chapter 3 Electrophoresis and aggregation kinetics

where r∗ = r/Ri (Ri >= Rj) is the non-dimensional distance between particle centers,

ρ = Rj/Ri is the size ratio, and t
∗ = Gt is the non-dimensional time. A(r∗, ρ), B(r∗, ρ),

and G(r∗, ρ) are the hydrodynamic interaction functions depending on r∗ and ρ. FvdW

and Fedl in Eq.(3.3.36) are the van der Waals attractive and electrostatic interaction

forces, respectively. The hydrodynamic parts in these equations are equivalent to ones

in Eq.(3.3.27), but look different because of the different direction of the ambient simple

shear flow.

A(r∗, ρ), B(r∗, ρ), and G(r∗, ρ) at long separation distances can be expressed as

follows[17, 82]．

A(r∗, ρ) =
5(1 + ρ3)

2r∗3
− 3(1 + ρ5) + 5ρ2(1 + ρ)

2r∗5
+

25ρ3

r∗6
, (3.3.39)

B(r∗, ρ) = 1 + ρ5 + (5/3)ρ2(1 + ρ)

r∗5
, (3.3.40)

G(r∗, ρ) = 1 +
1

ρ
. (3.3.41)

In the case of equal-sized particles ρ = 1, A(r∗, ρ), B(r∗, ρ), and G(r∗, ρ) at short

separation distances are given by [82, 87]．

A(r∗, ρ) = 1− 4.077h∗, (3.3.42)

B(r∗, ρ) = 0.4060 +
0.78

lnh∗
, (3.3.43)

G(r∗, ρ) = 4h∗(1 + 1.34h∗ lnh∗), (3.3.44)

where h∗ = r∗ − ρ− 1 is the normalized surface separation distance. In this thesis, we

employed the interpolated functions of A(r∗, ρ), B(r∗, ρ), and G(r∗, ρ) for intermediate

separation distances tabulated by Wang[88].

The time evolution of the relative position of two particles can be calculated by

integrating Eqs.(3.3.36-3.3.38). To solve the set of these ordinary differential equations,

we use the fourth-order Runge-Kutta method. Changing released points of a particle

from x−z plane at y∗ = y/R = −100 in the velocity field uy = Gx, each trajectory from

a release point is judged whether aggregation occurs or not in a deterministic way. The

calculation is stopped when the relative position of the particles results in one of the

following three cases as (i) r∗−λ−1 < ϵ∗ = ϵ/R, where ϵ is the minimum separation, (ii)

ϕ > π/2, or (iii) y∗ = 10. The former two cases (i) and (ii) correspond to aggregation.

The last case (iii) means that each particle is separated and no aggregation occurs. In

the present study, ϵ∗ = 10−7 was adopted to avoid computational divergence[89].



3.3 Aggregation kinetics 61

3.3.5 Turbulent aggregation rate coefficients

The turbulent aggregation rate coefficients can be derived by considering the parti-

cle flux to the reference particle as described above. The aggregation rate coefficients

in a homogeneous isotropic turbulence has been formulated by Saffman and Turner

(1956)[13]. First, let us consider the case without inter-particle interactions where par-

ticles move along with the fluid stream line. According to the Kolmogoroff’s hypothesis

of locally isotropic turbulence, the orientational information of flow is lost as the energy

cascade process proceeds to smaller eddies in a well-developed turbulence. The trans-

ferred energy is finally dissipated to heat in the smallest eddies. The flow in the local

scale becomes isotropic independent of the flow direction in the large scale turbulence.

If particle collisions happen in the smallest eddies which are often larger than colloidal

length scales, we can assume that the surrounding flow field is a homogeneous isotropic

turbulence. As in the case of the Brownian aggregation, we take the coordinate sys-

tem outward from the center of a jth floc. With the collision radius of Rc = ai + aj ,

the turbulent aggregation rate coefficients can be calculated by the averaged flow rate

passing inward through the spherical surface S with the radius of Rc located around

the center of jth flocs

kSTij = −
∫
wr<0

wrdS, (3.3.45)

where wr is the velocity difference in the radial direction between the origin and the

surface S, and the upper bar means the average over all possible motion. The minus

sign on the right-hand side is for making influx positive since the radial component of

the velocity against the inflow is wr < 0 with the coordinate system taken outward.

The product of Eq.(3.3.45) and NiNj is the collision frequency per unit volume between

ith and jth flocs. In an isotropic turbulence, since there is no correlation between the

particle position and the nature of turbulence, the average in the above equation is

equal to the one at the fixed point in space.

To obtain an analytical expression for the turbulent aggregation rate coefficients, one

needs to evaluate the integral in Eq.(3.3.45). First, from the equation of continuity, we
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have the following equation:

∫
wr<0

wrdS +

∫
wr>0

wrdS = 0. (3.3.46)

Eq.(3.3.46) means that even if the fluid is moving at random with the relative radial

velocity taking various positive and negative values on the surface S, the net flow rate

on S is always zero. This indicates that the inflow and outflow have a same absolute

value, but the opposite sign. Using the facts that |wr| = −wr if wr < 0 and |wr| = wr

if wr > 0, the surface integral for the absolute value of wr on the surface S is given by∫
S

|wr|dS =

∫
wr<0

|wr|dS +

∫
wr>0

|wr|dS

= −
∫
wr<0

wrdS +

∫
wr>0

wrdS

= −2

∫
wr<0

wrdS,

where we used the equation of continuity, Eq.(3.3.46). Therefore, by taking the average

of the above equation, Eq.(3.3.45) can be evaluated as follows

kSTij =
1

2

∫
S

|wr|dS =
1

2

∫
S

|wr|dS

= 2πR2
c |wr|. (3.3.47)

In Eq.(3.3.47), we use the commutativity of the surface integral and average, and the

fact that the average is constant irrespective of the position on the surface S since the

average in Eq.(3.3.45) is equal to the one at the fixed point in space in an isotropic

turbulence.

When the collision radius is smaller than the Kolmogoroff microscale of turbulence, we

can write |wr| = Rc|∂ur

∂r | where |∂ur

∂r | is the averaged absolute value of the longitudinal

derivative for the radial velocity component. According to Taylor’s isotropic turbulence

theory, the mean square of the longitudinal derivative for the radial velocity component

is given by (
∂ur
∂r

)2

=
ϵT
15ν

, (3.3.48)
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where ϵT is the turbulent energy dissipation rate per unit mass, ν is the kinematic

viscosity. This implies that the extensional component in the flow is more dominant

for the energy dissipation. From the isotropy, we have

∂ur
∂r

= 0. (3.3.49)

With Eq.(3.3.49), we know that the variance of ∂ur

∂r is equal to Eq.(3.3.48). From the

experimental result by Townsend[90], one assumes that ∂ur

∂r approximately follows the

normal distribution. With these assumptions, the probability density function P
(
∂ur

∂r

)
of ∂ur

∂r can be described by the following equation

P

(
∂ur
∂r

)
=

1√
2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵT /(15ν)

]
. (3.3.50)

Let us calculate |∂ur

∂r | with Eq.(3.3.50)

∣∣∣∣∂ur∂r
∣∣∣∣ = ∫ ∞

−∞

∣∣∣∣∂ur∂r
∣∣∣∣ 1√

2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵT /(15ν)

]
d

(
∂ur
∂r

)

=

∫ ∞

0

∣∣∣∣∂ur∂r
∣∣∣∣ 1√

2π
√
ϵT /(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵT /(15ν)

]
d

(
∂ur
∂r

)

+

∫ 0

−∞

∣∣∣∣∂ur∂r
∣∣∣∣ 1√

2π
√
ϵT /(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵT /(15ν)

]
d

(
∂ur
∂r

)
.

With the property of the absolute value, we can calculate the first term on the right-

hand side as

(First term) =

∫ ∞

0

∂ur
∂r

1√
2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵ

T
/(15ν)

]
d

(
∂ur
∂r

)
.

For the second term,

(Second term) =

∫ 0

−∞

∣∣∣∣∂ur∂r
∣∣∣∣ 1√

2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵ

T
/(15ν)

]
d

(
∂ur
∂r

)

= −
∫ 0

∞

∂ur
∂r

1√
2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵ

T
/(15ν)

]
d

(
∂ur
∂r

)

=

∫ ∞

0

∂ur
∂r

1√
2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵ

T
/(15ν)

]
d

(
∂ur
∂r

)
.
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Hence, we have

∣∣∣∣∂ur∂r
∣∣∣∣ = 2

∫ ∞

0

∂ur
∂r

1√
2π
√
ϵ
T
/(15ν)

exp

[
−

(
∂ur

∂r

)2
2ϵ

T
/(15ν)

]
d

(
∂ur
∂r

)
.

Using the relation with the variance σ2 as

1√
2πσ2

∫ ∞

0

x exp

(
− x2

2σ2

)
dx =

σ√
2π
. (3.3.51)

One obtains ∣∣∣∣∂ur∂r
∣∣∣∣ = 2√

2π

√
ϵ
T

15ν
=

√
2ϵ

T

15πν
. (3.3.52)

By substituting this result Eq.(3.3.52) into Eq.(3.3.47), we can obtain the turbulent

aggregation rate coefficients without any interactions as follows

kSTij = 2πR3
c

√
2ϵ

T

15πν
= R3

c

√
8πϵ

T

15ν
. (3.3.53)

The turbulent aggregation rate coefficients including inter-particle interactions kij,T can

be expressed as the product of Eq.(3.3.53) and the capture efficiency αij,T . That is,

kij,T = αij,T k
ST
ij = αij,TR

3
c

√
8πϵ

T

15ν
. (3.3.54)

In this thesis, we calculate the capture efficiency αij,T by the trajectory analysis as

introduced above, even though the trajectory analysis is strictly valid in a shear flow.

However, we apply the trajectory analysis to the turbulent coagulation as a first ap-

proximation because the flow in the smallest eddies of a turbulence is expected to be

analogous to the shear flow with a mean local shear rate in the turbulence[38] as men-

tioned above. This assumption is presumable if the length scale where coagulation

occurs is smaller than the scale in the smallest eddies. This expansion of the trajectory

analysis to the turbulent aggregation has been done by Higashitani for the first time[38].

The validity of this approximation has been confirmed by previous researchers in the

case where no electrostatic interaction[6, 38, 39, 40].

In this chapter, we have summarized the basic concepts of electrophoresis such as the

relaxation effect and aggregation rate coefficients used in the following chapters. First
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of all, we apply these expressions to analyze electrophoretic mobilities and aggregation

rates in a simple shear flow for model colloidal particles with surface sulfate groups in

next Chapter 4.
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Chapter 4

Effect of ionic strength and

shear rate on aggregation in a

shear flow

4.1 Introduction

In the previous chapters, so far, we have summarized fundamental theoretical con-

cepts used in this thesis.

As mentioned above, aggregation processes are basically determined by the physic-

ochemical interaction and the collision mode between the particles[2]. The former is

mainly composed of the van der Waals (vdW) attraction and the electrical double layer

repulsion. The net force can be given by the sum of these interaction forces according

to the classical theory by the Derjaguin-Landau-Verwey-Overbeek (DLVO), so-called

the DLVO theory[4, 5]. The collision mode is composed of the collision due to Brownian

motion in quiescent fluid and the velocity difference in fluid such as laminar shear and

turbulent flow[6, 7, 8, 9, 10, 11].

Theoretical formulation for aggregation kinetics by Brownian motion and a laminar

shear flow was undertaken by Smoluchowski[12]. Unfortunately, Smoluchowski’s for-

mulation neglects any interactions, although the colliding particles hydrodynamically

and physicochemically interact with each other in more realistic systems. Without any
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interaction, the trajectory of colliding particles is rectilinear. On the contrary, the colli-

sion trajectory with inter-particle interaction becomes curvilinear. Taking into account

the physicochemical and hydrodynamic interactions, one can modify the Smoluchowski

collision rate ZSmol for identical particles with a radius of R in a simple shear flow with

a shear rate of G as

Z = αZSmol, (4.1.1)

where ZSmol = 32R3GN0/3, N0 and α are the initial total number concentration of

the particles and a capture efficiency, respectively. The capture efficiency α reflects the

effect of hydrodynamic and physicochemical interactions between the particles on the

aggregation rate. The capture efficiency has been numerically calculated with trajec-

tory analysis by many researchers[36, 37, 35, 86, 87, 88, 89, 46, 47].

So far, however, the previous researchers computed the trajectory by using the dou-

ble layer repulsion based on the linearized Poisson-Boltzmann equation, which is only

applicable under the condition where electric potential between the particle surfaces is

low. That is, the previously calculated results can not be applied to the aggregation

of particles with high surface potential often faced in the realistic case. Moreover, the

theoretical calculations with the trajectory analysis in the presence of the double layer

repulsion have not been quantitatively compared with the systematic experimental data

taken using the well-characterized colloidal particles. On the contrary, the kinetic the-

ory in Brownian coagulation has shown that it is quantitatively consistent with the

experimental data in some limited conditions[23]. Here, we focus on the experimental

data by Sato et al.[41]. They measured the capture efficiencies as a function of KCl

concentration in a simple shear flow using the well-characterized and highly charged

latex particles. Their experimental data are systematically taken in well-defined system

and include the rates in the presence of the repulsive double layer forces. Nevertheless,

their data have not been substantially analyzed due to the problem of the previous

calculation which assumes the low potential condition in the evaluation of the electrical

repulsion. Therefore, the kinetics of aggregation in flow fields has not yet been sub-

jected to intense study in spite of its scientific and practical importance.

In the present study, we calculate the capture efficiency of charged colloidal particles

in a simple shear flow on the basis of hydrodynamic trajectory analysis incorporating
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the double layer repulsion with the exact non-linear Poisson-Boltzmann solution in the

symmetrical electrolyte solution. Furthermore, from the comparison between theoret-

ical and experimental values in the well-defined system, we discuss the validity of the

theory with trajectory analysis for the shear-induced aggregation. It should be noted

that such comparisons have never been attempted in the presence of the double layer

repulsion.

4.2 Experiments

4.2.1 Materials

In the present study, we analyze the experimental data of aggregation rate of

polystyrene sulfate latex (PSL) particles with two different diameters of 1.96 and

2.8 µm by Sato et al.[41]. The smaller particles were synthesized by means of

surfactant-free aqueous polymerization. The larger particles were purchased from

Interfacial Dynamic Corporation. These PSL particles with the density of 1.055 g/cm3

are spherical, monodisperse and have the sulfate head-groups on the surface which are

strong acid. The surfaces are thus considered to be negatively charged with a constant

surface charge density irrespective of pH and ionic strength. On the one hand, the

magnitude of surface potential decreases with increasing ionic strength by screening

effect. The surface charge densities for the larger and smaller particles were known to

be σ = −70 mC/m2 reported by the manufacturer and σ = −60 mC/m2 taken from

the literature[41], respectively. The ionic strength was controlled by KCl solution.

More details of these particles are found in elsewhere[41]. All experiments were carried

out at 20 ℃.

4.2.2 Electrophoresis

Electrophoretic mobility of these particles was measured as a function of KCl con-

centration by using a laser Doppler velocimetry setup (ZetaSizer Nano ZS and 2000,

Malvern) to confirm the validity of the standard electrokinetic model described above.

The experimental procedures are as follows. Firstly, the colloidal suspensions were pre-

pared by mixing the required amount of stock latex suspension, KCl solution, and pure
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water. Secondary, the suspensions were injected into the cell for electrophoretic mea-

surement. Finally, the cell was set in the instrument and the electrophoretic mobility

was measured.

4.2.3 Aggregation in a shear flow

Aggregation experiments in a simple shear flow were performed by using a Couette

flow device composed of two concentric cylinders. The Couette flow device generates

steady laminar shear flows in the gap between the two cylinders by rotating the outside

cylinder. Changing the revolution speed of the outer cylinder Ω , the averaged shear

rate in the gap Gave can be controlled and calculated by

Gave =
4Ω(

1
r21

− 1
r22

)
(r22 − r21)

, (4.2.1)

where r1 and r2 are the outer radius of the inside cylinder and the inner radius of

the outside cylinder, respectively. The value of Gave is used as G in Eq.(3.3.36) in the

trajectory analysis. The aggregation experiments of the particles were carried out as a

function of KCl concentration. The required amounts of latex suspension, KCl solution,

and pure water were mixed and immediately poured into the gap in the Couette flow

device. Then, the suspension was subjected to a shear flow with three shear rates of

G = 23, 46, 92 s−1. The rotation was stopped in a certain period of time and the

suspension was sampled to measure the total particle number concentration N(t) at

elapsed time t by a Coulter particle counter. From the measured relationship between

N(t) and t, the capture efficiency α can be obtained with the following expression by

assuming the constant volume fraction of particles in the early stage of aggregation

process[41]

ln

[
N(t)

N0

]
= −α4ϕG

π
t, (4.2.2)

where ϕ is the volume fraction of particles in the suspension. These experiments were

performed at low volume fraction ϕ of 0.4− 3.8× 10−5. Therefore, we assume that the

effect of volume fraction on the flow field is negligible.



4.3 Theory 71

4.3 Theory

4.3.1 Electrophoretic mobility and zeta potential

Electrophoresis has been extensively used to study the charging behavior of colloidal

particles[23, 72]. We thus adopt the electrophoresis to evaluate the charging properties

of colloidal particles, such as surface charge density and potential, through the analysis

of experimental data by a standard electrokinetic model as described below.

With the Poisson-Boltzmann equation in 1:1 (symmetrical) electrolyte solution, the

surface charge density σ can be related to the surface potential ψ0,iso for the isolated

particle surface as[91]

σ =
2ϵrϵ0κkBT

e
sinh

(
eψ0,iso

2kBT

)
, (4.3.1)

with

κ =

√
2Cbe2

ϵrϵ0kBT
, (4.3.2)

where ϵrϵ0, κ, Cb, kB, T , and e are the permittivity of the medium, the Debye pa-

rameter, the bulk concentration of the electrolyte, the Boltzmann constant, absolute

temperature, and the elementary charge, respectively. κ−1 is usually called the Debye

length which is the measure of the thickness of electrical diffuse double layer.

The electrophoretic mobility µm is defined as the ratio of translational velocity of a

particle U induced by the applied electric field and the magnitude of the applied electric

field E in a solution.

µm =
U

E
. (4.3.3)

Assuming that the surface charge density is constant which is fulfilled for the sulfate

latex particles used in Sato’s study, the surface potential is determined from Eq.(4.3.1).

The evaluated surface potential can be used to calculate electrophoretic mobility µm if

the ψ0,iso equals to the zeta potential ζ which is defined as an electrical potential at

the outer end of immobile fluid layer near the surface. The electrophoretic mobility µm

in a solution with a viscosity η is often calculated using the Helmholtz-Smoluchowski

equation, which is also simply called the Smoluchowski equation, given by the following
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equation as described above
µm =

ϵrϵ0
η
ζ. (4.3.4)

This equation is conveniently used to transform the experimental electrophoretic mo-

bility to ζ because the relationship is linear and simple. However, it is not readily

applicable to the case of high ζ where the relationship between the electrophoretic

mobility and ζ becomes non-linear by the relaxation effect which gives rise to the ap-

pearance of the minimum/maximum electrophoretic mobility by decreased translational

velocity of a particle due to the deformation of electrical double layer. The deformation

is caused by the motion of counter-ion due to the applied electric field in the opposite

direction of particle motion and becomes more significant with increasing the surface

potential and decreasing the salt concentration. The non-linear relationship has been

confirmed using the theoretical computation by O’Brien and White[71], and a number

of experimental studies[23, 72, 73].

Approximate analytical expressions of electrophoretic mobility including the relax-

ation effect for a sphere have been proposed by Ohshima[75, 76]. In the present study,

we use Ohshima’s equations because they are accurate when κR is larger than 10. The

large κR means that the particle radius is considerably larger than the thickness of

the double layer. This condition is satisfied in Sato’s study. In the 1:1 symmetrical

electrolyte solution such as KCl, the analytical expression of electrophoretic mobility

µm is given by

µm = sgn(ζ)
ϵrϵ0
η

{
|ζ|+

(
kBT

e

)[
− 2F

1 + F
H +

M
κR

]}
, (4.3.5)

with

F =
2

κR
(1 + 3m+){exp(e|ζ|/(2kBT ))− 1}, (4.3.6)

H = ln

[
1 + exp(e|ζ|/(2kBT ))

2

]
, (4.3.7)

M = −18

(
t+

t3

9

)
+

15F

1 + F

(
t+

7t2

20
+
t3

9

)
− 6(1 + 3m−)(1− exp(−|ζ̃|/2))I

+
12F

(1 + F )2
H +

9|ζ̃|
1 + F

(m−I +m+H)− 36F

1 + F

(
m−I

2 +
m+

1 + F
H2

)
, (4.3.8)
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ζ̃ = eζ/(kBT ), (4.3.9)

t = tanh(|ζ̃|/4), (4.3.10)

K = 1− 25

3(κR+ 10)
exp

(
− κR

6(κR− 6)
|ζ̃|
)
, (4.3.11)

I = ln

[
1 + exp(−|ζ̃|/2)

2

]
, (4.3.12)

m+ =
2ϵrϵ0kBT

3ηe2
λ+ , (4.3.13)

where ζ̃ is the non-dimensional ζ potential, sgn(ζ) is a function defined as −1 when

ζ < 0 and +1 when ζ ≥ 0. Also,m+ and λ+ are the scaled drag coefficient of counter-ion

and the drag coefficient of the counter ion species, and m− is the scaled drag coefficient

of co-ion defined by Eq.(4.3.13) replacing λ+ to λ− respectively. The third term in

Eq.(4.3.5) including a function of M can be neglected when κR is considerably large.

The ionic drag coefficient λ± is defined as

λ± =
NAe

2|z±|
Λ0
±

, (4.3.14)

where NA, z±, and Λ0
± are Avogadro’s number, the ion valence, the limiting conduc-

tance of the each ionic species, respectively. To calculate the electrophoretic mobility,

we use the values of the limiting conductance taken from the literature[92, 93].

4.3.2 Trajectory analysis

Capture efficiency is calculated by trajectory analysis[35, 36]. Consider two particles

with a radius of R and a surface potential of ψ0,iso , which is a electrical potential on

the isolated particle surface, in a simple shear flow with a shear rate of G. The relative

position between the two particles can be described in the Cartesian coordinate (x, y, z)

or the spherical coordinate (r, θ, ϕ). The relative velocity of the particles is determined

by the following trajectory equations as described above[87].

dr∗

dt∗
= r∗(1−A(r∗, ρ)) sin2 θ sinϕ cosϕ+

G(r∗, ρ)
6πηGR2

(FvdW + Fedl), (4.3.15)

dθ

dt∗
= (1− B(r∗, ρ)) sin θ cos θ sinϕ cosϕ, (4.3.16)

dϕ

dt∗
= cos2 ϕ− B(r∗, ρ)

2
cos 2ϕ, (4.3.17)
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where t, r∗ = r/R, t∗ = Gt, and ρ are time, dimensionless center-to-center distance

of the particles, dimensionless time, and size ratio, respectively. A, B, and G are also

hydrodynamic interaction functions that depend on ρ and r∗. In the present study, we

use the expression of A, B, and G for ρ = 1 given by some researchers[17, 82, 86, 87, 88],

because the particles have the same radius R. The more detailed expressions are ex-

plained in the previous chapter.

In Eq.(4.3.15), FvdW and Fedl are the van der Waals attractive force and the double

layer repulsive force, respectively. The van der Waals attraction including the retarda-

tion effect is calculated by the following expressions[46, 47, 89]. That is, if p < 0.590,

FvdW = − AHR

(1 + ρ)h2
1 + 3.54p

6(1 + 1.77p)2
, (4.3.18)

and if p ≥ 0.590,

FvdW = − AHR

(1 + ρ)h2

(
2.45

15p
− 2.17

30p2
+

1.18

105p3

)
, (4.3.19)

where h = r − 2R, AH, and p = 2πh/λL are surface separation distance between two

equal size particles, the Hamaker constant, and dimensionless distance in which λL is

the London wavelength and has been usually taken λL = 100 nm. The value of λL is

comparable to the travel distance of light during one rotation of a Bohr atom electron;

c/ν ≈ 100 nm where c and ν are the speed of light and the frequency of rotation of a

Bohr atom electron[22].

In symmetrical (z : z type) electrolyte solutions such as KCl, Fedl can be calculated

by using the Derjaguin approximation as follows[60]:

Fedl = 2πCbRkBT

∫ ∞

h

[
cosh

(
eψm(L)

kBT

)
− 1

]
dL, (4.3.20)

where ψm(L) is the mid-plane potential between two identical plates with a plate-to-

plate distance of L. If the electrolyte is symmetrical, ψm(L) can be related to the

surface charge density σ by[60]

σ =
ϵrϵ0κkBT

e

exp(2eψm/(kBT ))− 1

exp(eψm/(2kBT ))

sn(ν|m)

cn(ν|m)dn(ν|m)
, (4.3.21)
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where sn(ν|m), cn(ν|m), and cd(ν|m) are the Jacobian elliptic functions of argument

ν = κL/[4 exp(eψm/(2kBT ))] and parameter m = exp(2eψm/(kBT )) as explained in

the previous chapter.

The temporal change of relative position between two colliding particles can be calcu-

lated using Eqs.(4.3.15)-(4.3.17) by the forth Runge-Kutta method. The previous chap-

ter mentions how to terminate each calculation from released points to judge whether

aggregation occurs or not in a deterministic way in more detail. Then, the bound-

ary between aggregation or not on x − z plane at the released point, xc(z) and the

maximum of z on the boundary, zmax can be evaluated with the trajectory analysis

described above. With the xc(z) and zmax, the particle collision rate Z in Eq.(4.1.1) is

calculated by integrating the particle flux passing through inner region of the boundary

given by

Z = 4N0G

∫ zmax

0

∫ xc(z
′)

0

x′dx′dz′

= 2N0G

∫ zmax

0

[xc(z
′)]2dz′. (4.3.22)

From Eq.(4.1.1), Eq.(4.3.22) and the Smoluchowski collision rate Zsmol, the capture

efficiency α is calculated as follows

α =
3

16

∫ z∗
max

0

[x∗c(z
∗)]2dz∗, (4.3.23)

where z∗ = z/R, z∗max and x∗c(z
∗) = xc/R.

Moreover, we uses a model including the probabilistic distribution in surface charge

density to examine the effect of surface charge variation on capture efficiency[21]. When

two colliding particles with normal-distributed surface charge density approach to each

other, the capture efficiency can be calculated on average as

αave =

∫ ∞

−∞

∫ ∞

−∞
α(σ1, σ2)P (σ1, σ2)dσ1dσ2, (4.3.24)

where σ1 and σ2 are the surface charge densities of each particles. The σ1 and σ2 are

normally distributed and follow the joint probability density function P (σ1, σ2) with
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the standard deviation ∆σ as

P (σ1, σ2) =
1

2π(∆σ)2
exp

[
− (σ1 − σ0)

2

2(∆σ)2

]
× exp

[
− (σ2 − σ0)

2

2(∆σ)2

]
, (4.3.25)

where CV = ∆σ/σ0 is the coefficient of variance. In the case of CV = 0, Eq.(4.3.24)

reduces to the one without the distribution in surface charge density, just the value of

σ0 is used.

4.4 Results and Discussion

4.4.1 The electrophoretic mobility

In Figs. 4.4.1 and 4.4.2, measured electrophoretic mobilities (open circles) are

shown with theoretical ones (lines). The solid and broken lines are the theoretical

calculation with the relaxation effect (Eq.(4.3.5) proposed by Ohshima) and without

the relaxation (Eq.(4.3.4) proposed by Smoluchowski), respectively. Surface charge

densities σ of −60 mC/m2 for the smaller latex and −70 mC/m2 for the larger par-

ticles were taken from the literature[41]. From Figs. 4.4.1 and 4.4.2, we see that

the experimental values of electrophoretic mobility decrease with decreasing the KCl

concentration and show a minimum value. The minimum value indicates that the re-
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Figure 4.4.1: The relationship between electrophoretic mobility and KCl concentra-
tion for the particles with the diameter of 2R = 1.96 µm: Open circles and lines are
experimental values and theoretical values calculated by standard electrokinetic model,
respectively.



4.4 Results and Discussion 77

laxation effect becomes significant with increasing the surface potential and with the

decrease of the KCl concentration. The theoretical values including the relaxation ef-

fect agree with the experimental ones whereas the calculations without the relaxation

effect significantly deviate from the experimental values at low KCl concentration. In

the lowest KCl concentration, where the absolute surface potential is the highest, the

Ohshima theory slightly overestimates the experimental ones. The discrepancies are not

significant compared to the Smoluchowski’s theory. But there is the difference between

Ohshima theory and experiment. Similar differences have been observed by some other

researchers at low ionic strength[11, 23]. In the case of low ionic strength and high

surface potential, the relaxation effects are significant. As a result, the electrophoretic

mobility shows the minimum value. While the theory including the relaxation cap-

tures the mobility minimum, differences exist between the experimental data and the

theoretical values in such conditions. The discrepancy is probably caused by the incom-

pleteness of the relaxation theory. At high surface potential and low salt concentration,

the surface strongly attracts and concentrates the counter-ions near the surface. Be-

cause the theory does not include the effect of finite size of ions, the exact description

of the layer structure and mobility of accumulated ion near the surface are still lacking.

In any case, from the analysis, we conclude that the standard electrokinetic model and

the charge densitiy are valid for both particles, in particular, in the KCl concentration
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Figure 4.4.2: The relationship between electrophoretic mobility and KCl concentra-
tion for the particles with the diameter of 2R = 2.8 µm: Open circles and lines are
experimental values and theoretical values calculated by standard electrokinetic model,
respectively.
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larger than 10−3 M. Therefore, the surface charge densities used in the electrophoretic

mobility are used for the trajectory analysis in the following section.

4.4.2 Capture efficiency in a shear flow

Measured and theoretical capture efficiencies for different shear rates are shown in

Fig. 4.4.3 for smaller particles (2R = 1.96 µm) and Fig. 4.4.4 for larger particles

(2R = 2.8 µm). Symbols are experimental data. Solid and dotted lines are theoretical
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Figure 4.4.3: Capture efficiency vs. KCl concentration for the particles with the
diameter of 2R = 1.96 µm: Open circles are experimental values taken from Sato et
al.[41]. Open circles are experimental values taken from Sato et al.[41]. Solid and
dotted lines are theoretical values calculated by trajectory analysis using the exact PB
solution with the standard deviation of ∆σ = 0.3σ0 and 0, respectively.
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Figure 4.4.4: Capture efficiency vs. KCl concentration for the particles with the di-
ameter of 2R = 2.8 µm: Open circles are experimental values taken from Sato et al.[41].
Solid and dotted lines are theoretical values calculated by trajectory analysis using the
exact PB solution with the standard deviation of ∆σ = 0.3σ0 and 0, respectively.
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values calculated by trajectory analysis using non-linear Poisson-Boltzmann solution

with the standard deviation of ∆σ = 0.3σ0 and 0, respectively. The theoretical values

obtained by using the trajectory analysis are calculated with the Hamaker constant of

AH = 2.0 × 10−21 J for both particles. This value of AH for polystyrene latex par-

ticles has been confirmed to agree with the Lifshitz theory considering the effects of

surface roughness and have been verified by the direct force measurement by atomic

force microscope[94]. When we calculate the repulsive double layer force in this study,

the surface charge density of the particles is assumed to be constant as the electrostatic

boundary condition. This boundary condition is valid for the used particle surfaces

bearing the strong acid groups, whose deprotonation is independent of pH and the sur-

face separation, which means that protonation occurs to remain the surface equilibria

when the surfaces approach to contact. It should be emphasized that the double layer

repulsion is calculated without adjustable parameters, since the validity of the surface

charge densities is confirmed by describing the experimental electrophoretic mobility

with the standard electrokinetic model.

From Figs. 4.4.3 and 4.4.4, we find that the calculated and measured capture effi-

ciencies decrease with decreasing the KCl concentration, demonstrating that the aggre-

gation is impeded by the increased double layer repulsion. Furthermore, the calculated

capture efficiencies qualitatively describe the experimental trend. In particular, from

both figures, we find that, in both experiment and theoretical calculation, (1) CCC

shifts to higher KCl concentration and (2) the dependencies of capture efficiencies on

the KCl concentration slightly become more gradual as the shear rate increases. In

addition, more gradual slope in the relationship between capture efficiency and KCl

concentration below CCC is observed for the larger particle. This trend is also repro-

duced by the trajectory analysis. The agreement between theory and experiment in the

trends of capture efficiency found in this study provides an evidence of the usefulness

of the trajectory analysis for the study of shear-induced aggregation. However, the

calculated values of CCC do not perfectly agree with experimental ones as shown in

Fig. 4.4.5. Moreover, in the slow aggregation regime below CCC, the capture efficien-

cies are not in quantitative agreement with the experimental ones. Also, theoretical

capture efficiencies in the absence of double layer force in Fig. 4.4.3 are slightly lower
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Figure 4.4.5: Critical Coagulation Concentration (CCC) vs. Shear rate G for the
particles with the diameter of 2R = 1.96 µm and 2R = 2.8 µm: Symbols and solid lines
are experimental values taken from Sato et al.[41] and theoretical values calculated by
trajectory analysis with the exact PB solution, respectively.

than the experimental values. These discrepancies might be caused by Brownian diffu-

sional effects and the additional non-DLVO forces such as hydration force, and charge

heterogeneity[22, 23]. However, even though the effect of charge heterogeneity on α

could be partially included in the calculation by considering the distributed charge

density, the differences between the theories with ∆σ = 0.3σ0 and 0 are insignificant.

This suggest that the effect of charge heterogeneity might not be significant in this

case. Therefore, we guess that including coupled effects of Brownian motion on capture

efficiency could be a next step to discuss the origin of these discrepancies.

4.5 Conclusion

We analyzed capture efficiency of a negatively charged sulfate latex particles as a

function of KCl concentration and shear rate on the basis of the trajectory analysis

for the first time. In the calculation of the double layer repulsion with the non-linear

Poisson-Boltzmann equation, the constant charge (CC) boundary condition was used.

This is because it is valid for the latex particles bearing strong acid (sulfate) groups

whose charges are independent of pH. The validity of surface charge densities as an

input value to calculate the repulsive force was confirmed by the electrophoretic mea-

surements with the analysis by the standard electrokinetic model. Calculated capture
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efficiencies were in reasonable agreement with experimental values taken from the pre-

vious study[41]. Our finding suggests that the trajectory analysis is valuable for the

study on the aggregation in flow fields. However, the quantitative differences between

measured and calculated capture efficiencies were observed in the presence of the double

layer repulsion even with the use of the exact Poisson-Boltzmann solution. The differ-

ence might be caused by additional non-DLVO forces[23, 22], and Brownian fluctuation

which are not included in the present analysis. Moreover, whereas the constant charge

model is assumed in this study, the charge regulation could be significant when they

approach in short distances because the proton concentration on their surface could be

increased due to the high surface potential when approaching with each other. This

might even cause the protonation of their sulfate group to regulate their surface charges

and reduce the electrical repulsion between them. Therefore, one could try the other

electrical boundary condition such as charge regulation model.
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Chapter 5

Effect of hydrophobic

monovalent ions on charge

reversal of model colloids

5.1 Introduction

In the previous Chapter 4, we have analyzed the effect of ionic strength and shear rate

on aggregation rates in a simple shear flow for the sulfate latex particles with constant

charges quantified by the electrophoretic measurements and its analysis. We do not

consider ion adsorption onto the colloid surfaces in the previous chapter. However, the

ion adsorption often happens in environments because there can be strongly-adsorbed

ions such as multivalent counter-ions and hydrophobic organic ions. Such counter-ion

adsorption compensates the surface charge amounts on the colloids and subsequently

affects the aggregation behavior of colloids. Therefore, in this Chapter 5, we investigate

the charging behavior of colloidal particles in the presence of hydrophobic ions.

Again, the stability of colloidal dispersion against aggregation-sedimentation is one

of the important issues for scientific interest and industrial and technological appli-

cations such as foods storage, inks, paints, water treatment, and colloid-facilitated

transport[1, 2]. The stability of colloids can be commonly explained by the Derjaguin,

Landau, Verwey, and Overbeek (DLVO) theory[4, 5] in which interparticle interactions
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are composed of the van der Waals attraction and electrical double layer force. Partic-

ularly, the electrical double layer force is regulated by the charging behavior of colloidal

particles. Therefore, one needs to estimate the surface charge of colloidal particles to

predict their stability.

The surface charging properties of colloidal particles are strongly affected by the ad-

sorption of oppositely-charging species such as polyelectrolytes[27, 28], surfactants[30,

31], and multivalent ions[24, 25, 43] onto the surfaces. Such adsorption can induce

so-called charge reversal/overcharging which causes the change in sign of the net sur-

face charges due to the excess accumulation of counter ionic species[32]. To reveal the

mechanism of charge reversal, many studies have been done with the approaches of

Monte-Carlo simulation and molecular dynamics including inter-ion correlation[95, 33],

ionic specificity[96], and hydrophobic interaction[97]. The previous studies have demon-

strated that the hydrophobicity of ions and colloids can significantly influence the sur-

face/electrokinetic charge density in the presence of large hydrophobic ions[97, 34, 98,

29]. Notably, the previous research with molecular dynamics simulation[97] has con-

firmed the linear relationship between the isoelectric point (IEP), which is the concen-

tration where the charge reversal occurs, and the surface charge density by assuming

a constant adsorption free energy of ions[34, 99]. Nevertheless, the intrinsic energy of

adsorption for hydrophobic tetraphenylphosphonium (TPP+) ions onto polystyrene sul-

fate latex surfaces decreases with increasing the surface charge density[29] even though

the hydrophobic ion concentration at the IEP increases with the increase of the charge

density as shown in the previous studies[97, 34]. This finding suggests that the intrin-

sic adsorption energy of hydrophobic ions can be a function of surface charge density.

However, the effect of charge density on the intrinsic energy of adsorption of hydropho-

bic ions remains ambiguous because the previous work used sulfate latex particles with

different charge densities and sizes[29].

In the present study, to clarify the effect of surface charges on the adsorption of

hydrophobic ions, which induces the reverse of sign in the surface (or zeta) potential,

we measured and analyzed the electrophoretic mobilities of carboxylate polystyrene

latex particles in the presence of hydrophobic tetraphenylphosphonium (TPP+) ions.

Carboxyl latex particles have carboxyl groups on their surface, and thus the negative
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Figure 5.2.1: Structural formula of tetraphenylphosphonium chloride TPPCl

surface charge density increases with pH due to their deprotonation. This feature of

carboxylated latex particles enables us to examine the effect of charge density and

hydrophobic interaction on the adsorption of TPP+ ions onto the surfaces without

changing the size of particles.

5.2 Experiments

5.2.1 Materials

Carboxylated polystyrene latex particles (Molecular Probes) were employed as model

colloidal particles. The used carboxyl latex particles have pH-dependent negative

charges due to the deprotonation of the carboxyl groups on the particle surface. The

manufacturer reports that the chargeable site density on the surface Γtot is 1.136 nm−2,

the diameter 2a is 1.5±0.03 µm, and the density is 1.055 g/cm3, respectively. KCl (JIS

special grade, Wako Pure Chemical Industries) and tetraphenylphosphonium chloride

TPPCl (EP grade, Tokyo Chemical Industry Co.) were used to prepare the electrolyte

solutions. The structural formula of TPPCl is shown in Fig. 5.2.1. The pH was ad-

justed by the addition of HCl (JIS special grade, Wako Pure Chemical Industries) and

KOH solutions. Carbonate free KOH solution was prepared by following the method de-

scribed in the literature[100]. Before the sample preparation, all solutions were filtered

with a 0.20 µm pore filter (DISMIC 25HP, ADVANTEC). All solutions and suspensions

were prepared from deionized water (Elix, MILLIPORE) and degassed before use.
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5.2.2 Electrophoretic measurements

Electrophoretic mobility (EPM) was measured by electrophoretic light scattering

technique with Zetasizer NANO-ZS (Malvern). Measurements were carried out as a

function of solution pH at different mixed molar ratio X=[TPP+]/[K+] with fixed ionic

strength, where [TPP+] and [K+] denote the concentrations of TPP+ and K+. The pH

was adjusted in the range from 3 to 11 with HCl and KOH solutions. Ionic strengths

were 10 mM and 50 mM, and the mixed molar ratios X were 0, 0.01, 0.1, 0.5, 5 and

∞. The particle concentration was set to 50 mg/L in all experiments. The samples

were prepared by mixing the required volumes of the suspension of the carboxyl latex

particles, KCl solution, TPPCl solution, pH adjuster, and degassed water. The pH was

measured with a combination electrode (ELP-035, TOA-DKK). All the experiments

were carried out at 20 ℃.

5.3 Modeling

5.3.1 Charging model

The surface charge of the used particle arises from the deprotonation of carboxyl

group. That is,

−COOH ⇌ −COO− +H+. (5.3.1)

The dissociation equilibrium between the carboxyl groups and the proton in the elec-

trolyte solution is characterized by the proton dissociation constant defined as[23]

pKH = − log10KH = − log10
Γ−COO−asH+

Γ−COOH
, (5.3.2)

where Γ−COO− , Γ−COOH, and a
s
H+ are the surface activities of dissociated and proto-

nated carboxyl groups, and proton, respectively. KH is the acid dissociation constant.

The value of pKH used in this study is 4.9 from the literature[23]. The surface activ-

ity of proton is related to the bulk activity abH+ and the surface potential ψ0 via the
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Boltzmann equation

asH+ = abH+ exp

(
− eψ0

kBT

)
, (5.3.3)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute

temperature. Since the surface charge density is attributed to the dissociated carboxyl

groups on the surface, the relationship between the surface charge density and the

surface potential due to deprotonation can be described as

σ0 = −eΓ−COO− = − eΓtot

1 + 10pKH−pH exp
(
− eψ0

kBT

) , (5.3.4)

where Γtot is the total site density of surface carboxyl groups including dissociated and

protonated ones.

The TPP+ ions strongly adsorb onto the surfaces of the polystyrene latex particles

which are hydrophobic. To describe the adsorption of the TPP+ ions, we introduce the

Stern layer model with the following equation[30, 34]:

Γs = 2rsCTPP

(
−−ϕ+ eψd

kBT

)
, (5.3.5)

where the Γs is the amount of adsorbed TPP+ ions in the Stern layer, rs is the ra-

dius of adsorbed TPP+ ion with the value of 2rs = 0.94 nm[34] used in present study,

CTPP is the bulk concentration of TPPCl, ψd is the diffuse layer potential, ϕ is the

non-electrostatic chemical/intrinsic adsorption energy per ion. The term of chemi-

cal/intrinsic adsorption energy represents the energies other than from electrostatic

origin. To incorporate the dependency of the non-electrostatic adsorption energy on

the surface charge density proposed by the previous work[29], we have introduced the

following simple linear interpolation to calculate the value of ϕ as

ϕ = (ϕmin − ϕmax)
σ0

−eΓtot
+ ϕmax, (5.3.6)

where ϕmin and ϕmax are the minimum and the maximum non-electrostatic chemi-

cal/intrinsic adsorption energy per ion. These values are determined below in Section

4.
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With Eq. (5.3.5), we can express the Stern layer charge density σs as

σs = eNAΓs, (5.3.7)

where NA is the Avogadro number. This equation suggests that the adsorbed amount

of TPP+ ions in the Stern layer is in charge of the development of the Stern layer charge

density σs.

The relationship between the diffuse layer charge density σd and the diffuse layer

potential ψd for our system is given by the Grahame equation for monovalent salt as

follows[21]:

σd = −2ϵrϵ0κkBT

e
sinh

(
eψd
2kBT

)
, (5.3.8)

with the Debye length κ−1 as

κ−1 =

(
ϵrϵ0kBT

2(CKCl + CTPPCl)NAe2

) 1
2

, (5.3.9)

where CKCl and CTPPCl are the concentrations of KCl and TPPCl, and ϵ0 is the

dielectric constant of vacuum, ϵr = 80.4 is the relative dielectric constant of water. For

the surface bearing weak-acidic groups with the Stern layer, one needs to assume the

following linear relationship[21]

σ0 = Cs(ψ0 − ψd), (5.3.10)

where Cs is the Stern layer capacitance. We set the value to Cs = ϵrϵ0/rs by assuming

the thickness of the Stern layer is the radius of TPP+ ion rs.

According to the principle of electroneutrality, the sum of surface σ0, the Stern layer

σs, and diffuse layer charge densities σd must be zero. It requires the condition below:

σ0 + σs + σd = 0. (5.3.11)

The set of Eqs. (5.3.2-5.3.11) is solved numerically to obtain the diffuse layer potential

ψd for the successive calculation of the zeta potential ζ. Particularly, in a pure KCl

solution, the above set of equation is solved with the conditions ψd = ψ0, σs = 0, and
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Figure 5.3.1: Graphical representation of 1-pKH Stern-Gouy-Chapman model with
TPP+ adsorption

Cs → ∞ meaning no Stern layer for pure KCl case.

To calculate the electrophoretic mobility in the following section, the zeta potential

ζ from ψd, which is set to ψd = ψ0 for pure KCl solution, is calculated with the Gouy-

Chapman theory via

ζ = ψ(xs) =
4kBT

e
tanh−1

[
tanh

(
eψd
4kBT

exp(−κxs)
)]

, (5.3.12)

where xs is the distance to the slipping plane. The value of xs for pure KCl case is set to

xs=0.25 nm[23], while the value for mixed KCl and TPPCl case is set to xs = rs=0.47

nm with the assumption that the extent of the slipping plane coincides with the outer

edge of the adsorbed TPP+ ion on the surface.

5.3.2 Electrophoretic mobility (EPM)

The electrophoretic mobilities (EPMs) are calculated from the zeta potential using the

Ohshima equation including the relaxation effect[75] and the Smoluchowski equation

neglecting the relaxation effect. We have calculated the electrophoretic mobilities with

the same equation used in Section 3, Eq. (4.3.5). In this chapter, the values of the

limiting molar conductance of each ions employed 66.17 for K+, 20.7 for TPP+, and

68.68 for Cl− which are taken from the literature[93, 101].
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5.4 Results and Discussion

We plot the EPMs of carboxyl latex particles as a function of the solution pH at

different ionic strengths in Fig. 5.4.1 (a,b) for 10 mM and Fig. 5.4.1 (c,d) for 50

mM, respectively. In Fig. 5.4.1, the symbols are experimental values, the solid lines

are the theoretical values calculated by the Ohshima equation including the relaxation

effect, and the dashed lines are the theoretical values calculated by the Smoluchowski

equation neglecting the relaxation effect. While the lines in Fig. 5.4.1 (a,c) are drawn

with the constant non-electrostatic intrinsic energy of TPP+ adsorption of ϕ = 6 kBT ,

the lines in Fig. 5.4.1 (b,d) are obtained with the assumption that the energy for

TPP+ adsorption linearly varies with the surface charge density from 6 kBT to 4 kBT .

The value of 6 kBT is taken from the literature[34]. They also reported that the free

energy of transfer for a phenyl group from water to organic solvents is approximately

3 kBT and it is closely related to the adsorption energy. It should be noted that the

value of 6 kBT corresponds to the situation where two of four phenyl groups on TPP+

ions adsorb onto hydrophobic polystyrene latex surfaces[34]. These values used in the

literature are comparable with the values we used.

In the case of pure KCl solution, X=[TPP+]/[K+]=0, the electrophoretic mobility

in magnitude increases with pH. It shows that the particles are highly negatively

charged at high pH due to the deprotonation of carboxyl groups. The experimental

electrophoretic mobilities in the solution including TPP+ in Fig. 5.4.1 show positive

values at low pH, indicating that the occurrence of charge inversion. This inversion

is attributed to the adsorption of TPP+ on the surfaces by hydrophobic interaction

between phenyl groups of TPP+ ions and the polystyrene surface. With increasing pH,

the positive electrophoretic mobilities decrease. Then, the electrophoretic mobilities

reverse again to negative values. This charge re-reversal means that the increased

number of deprotonated carboxyl groups at high pH outnumbers the adsorbed amount

of TPP+ ions. In addition, the charge re-reversal pHs shift to higher pH with increasing

the mixed molar ratio X and the ionic strength. This is because larger amounts of

deprotonated carboxyl groups are required to compensate more adsorbed TPP+ ions

associated with abundant TPP+ ions in bulk solution. However, the experimental
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electrophoretic mobilities at 50 mM and mixed molar ratios higher than X=5 in Fig.

5.4.1 (c,d) are positive and do not show the charge re-reversal regardless of pH. This

can be ascribed to the existence of excess amounts of adsorbed TPP+ ions even though

all carboxyl groups are deprotonated at high pH.

From the comparison of calculated values with two different models, Smoluchowski

equation and Ohshima equation, we confirm that differences in calculated elec-

trophoretic mobilities between these two methods are not so significant for our case.

This can be rationalized by relatively low zeta potentials which are induced by the

charge reversal, and thus the relaxation effect is not significant.

In the comparison with theoretical values calculated by assuming the constant

non-electrostatic intrinsic energy of adsorption in Fig. 5.4.1 (a,c), one finds that

the calculations capture the experimental trends. However, the calculations with

the constant adsorption energy overestimates the adsorption amount of TPP+ ions

and cannot describe the experimentally observed charge re-reversal of electrophoretic

mobilities at high pH with higher mixed molar ratios. In contrast, the calculated

mobilities obtained by assuming that the intrinsic energy of adsorption in Fig. 5.4.1

(b,d) is proportional to the surface charge density can successfully reproduce the charge

re-reversal for all the conditions and even in high mixed molar ratios. Therefore, our

result suggests that the intrinsic energy of adsorption of TPP+ decreases from 6 kBT

to 4 kBT with increasing charge density. This finding is consistent with the result that

the intrinsic energy of TPP+ adsorption decreases with increasing the surface charge

density of sulfate latex particles with different diameters[29], and complements their

finding by monodisperse carboxylated latex particles with pH-variable surface charge.

Moreover, on the basis of our results above, we suggest the reason why the intrinsic

energy of adsorption for TPP+ ions can be dependent on the surface charge density

as follows. As the deprotonation of surface carboxyl groups progresses with increasing

pH, the particle surfaces become less hydrophobic. Such relatively low hydrophobicity

can make difficult TPP+ ions to be accumulated near the surfaces. Therefore, the

adsorption energy decreases with the surface charge density, in other word, the number

of dissociated surface groups. Hence, such reduction in the adsorption energy might

cause the charge re-reversed electrophoretic mobilities from positive to negative due to
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the deprotonation of carboxyl groups. This suggestion also can rationalize the result

of the previous study[29] because high surface charge densities of the sulfate latex

particles mean larger number of surface sulfate groups on their surfaces.

Even though the proposed simple modeling captures the experimental trends

represented by the charge re-reversal, there are still quantitative discrepancies in

intermediate mixed molar ratios, for instance, X=0.01 and 0.1 at 10 and 50 mM. This

could suggest us that the adsorption behavior in mixed solution of KCl and TPPCl

Figure 5.4.1: The relationship between electrophoretic mobility of carboxyl latex
particles and pH in mixed solution of KCl and TPPCl at 10 mM for (a,b) and 50 mM
for (c,d). Symbols are experimental values. Solid and dashed lines are theoretical val-
ues calculated by the Ohshima equation and the Smoluchowski equation, respectively.
Mixed molar ratios X=[TPP+]/[K+] are 0, 0.01, 0.1, 0.5, 5 and ∞ from lower to upper
lines. Calculated values in (a,c) are obtained by assuming the constant non-electrostatic
intrinsic energy of TPP+ adsorption and theoretical values in (b,d) are calculated by
assuming pH-dependent intrinsic energy of TPP+ adsorption.
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can be more complex than the simple model used in this chapter. The discrepancies in

solution containing K+ ions at higher pH could be explained by K+ binding to the de-

protonated carboxylic groups[102] by decreasing the amounts of surface charge, which

decreases the magnitude of mobilities. However, such explanation is not applicable at

lower pH because of less deprotonated groups. So, the discrepancies at lower pH within

our simple modeling seem to be attributed to mixed effects due to mutual interaction

between K+ and TPP+ ions. Since TPP+ ions have larger hydrophobicity, in other

words, higher affinity to the hydrophobic latex surfaces than K+ ions, TPP+ ions

tend to accumulate near the surface than K+ ions. In addition, K+ ions experience

electrical repulsion with TPP+ ions and less attraction with the surface due to its

lower surface charge density at low pH. These interactions between the surface and

ions might cause the depletion of K+ ions between the surface and TPP+ ions, which

can augment the TPP+ adsorption by depletion forces. Related specific ionic effects

have been examined in the previous work[96], however, mixed effects of ions with

different surface affinity on the adsorption are still under consideration. Molecular

dynamics and Monte Carlo simulation would help to clarify this enhanced adsorption

in mixed solution.

Another possible effect, which can apparently reduce the adsorption energy in

our modeling, is to consider ionic steric effect due to ionic saturation and finite size

effects in adsorption process. Along with an approximated mean field model for the

steric effect discussed in the previous research[34], an estimate for the excess chemical

potential of TPP+ at the Stern layer is given by µex ≈ kBT ln(1 + Csv), where

Cs = Γs/(2rs) calculated from Eq. (5.3.5) is the TPP+ concentration at the Stern

layer, and v ≈ 200 cm3/mol is the volume of the cation approximated as the value

for TPAs+ (tetraphenyl arsonium ion)[103]. In 50 mM solution of pure TPPCl with

constant adsorption energy of ϕ = 6 kBT , one estimates Cs ≈ 2.38 M, and leads a

repulsive free energy with µex ≈ 0.39kBT . This value is still smaller than the reduction

of adsorption energy of |ϕmax − ϕmin| = 2kBT , suggesting that the steric effect is not

dominant in the TPP+ adsorption. Therefore, our interpretation can be valid in the

solution where TPPCl is dominant, although we need more sophisticated theoretical

treatment for the reduction of adsorption energy in the future.
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5.5 Conclusion

Electrophoretic mobilities of carboxyl latex particles were measured in mixed solu-

tions of KCl and TPPCl as a function of the pH, the ionic strength, and the mixed molar

ratio of X=[TPP+]/[K+] to reveal the effect of hydrophobicity on the charge reversal.

We observed that the charge reversal of the latex occurred at low pH in the presence

of hydrophobic TPP+ ions because of hydrophobic interaction. With increasing pH,

the EPMs were reversed again due to the increased deprotonation of carboxylic groups

and the reduction of hydrophobic interaction. With the theoretical analysis describing

such charge re-reversal, we found the reduction in the intrinsic energy of adsorption of

TPP+ with increasing the charge density from 6kBT at the lowest charge density to

4kBT at the highest charge density. This finding supports the conclusion in the previ-

ous work[29] and suggests that the non-electrostatic energy of adsorption of TPP+ is

dependent on the surface charge density of adsorbents.
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Chapter 6

Effect of anionic species on

Brownian

homo/hetero-aggregation of

oppositely-charged particles

6.1 Introduction

In the previous chapter 5, we have shown that even hydrophobic monovalent counter

ions can induce a charge reversal due to the specific adsorption onto the charged sur-

faces. Such charge reversal can substantially influence the aggregation stability of

colloidal particles by varying the electrostatic interactions between them[104].

Generally, the stability of colloidal suspensions can be strongly affected by the pres-

ence of multivalent counter-ions, as already noted by Schulze[105] and Hardy[106]. Col-

loidal suspensions are destabilized by forming aggregates of colloidal particles, whereby

the early stage of aggregation is governed by the formation of particle doublets. Again,

Derjaguin, Landau, Verwey, and Overbeek (DLVO)[4, 5] have shown that the forma-

tion of particle doublets is classified to the following two regions, so-called fast and slow

aggregation. The fast aggregation process is controlled by the particle pairs colliding
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by Brownian or fluid motion, and interacting mainly via the van der Waals attrac-

tion. Usually, this process occurs at high salt concentrations where the electrostatic

repulsion between particles is screened. The slow aggregation process is rate-limited

to overcome an energy barrier due to the electrical repulsion, and it is enhanced in

low salt concentrations. The transition between these two regions is observed at a

rather certain concentration, called as the critical coagulation concentration (CCC).

The Schulze-Hardy rule states that the CCC strongly decreases with increasing the

valence of counter-ions[107, 2]. These trends have been affirmed by systematic experi-

ments in different types of aqueous particle suspensions in the presence of multivalent

counter-ions[108, 109, 110, 111, 112, 113, 26].

Time-resolved light scattering techniques have verified to be much useful not only

for aggregation studies on ionic valence effects[23, 114], but also for ones on ion specific

effects[44, 45]. Despite of the same ionic valence in solutions, each counter-ions can

have different affinities to a surface, which may induce the strong adsorption of ions on

oppositely charged particles and destabilize the particles. In addition, such adsorption

also causes a charge reversal of the particles as seen in the previous chapter 5. As a re-

sult, the particles are re-stabilized at intermediate salt concentrations[45]. The DLVO

theory can be used to interpret such phenomena with the aid of the complemented

measurements for their charging behaviors such as zeta potentials. Again, within the

DLVO theory, the interaction force is modeled by a superposition of van der Waals

and double layer forces. Even though we might not always apply these interpretations,

we believe that a reasonably good understanding of the stability of aqueous colloidal

suspensions has been attained nowadays.

However, this understanding solely holds for homo-aggregation, meaning that aggre-

gates are being formed out of identical particles. Hetero-aggregation, meaning that ag-

gregates are being formed out of different particles, is much less understood. The most

particular reason for this situation is that measuring hetero-aggregation rates is more

difficult than for homo-aggregation. The typical drawback is that in a binary mixture of

colloidal particles, the hetero-aggregation can happen simultaneously with two different

types of homo-aggregation, and these three processes are required to separate suitably

in order to extract the hetero-aggregation rate. One can overcome this difficulty by
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performing experiments with two types of particles which have different signs of their

surface charge, but with the equal size and bulk composition. To study such system,

one may use any of the existing methods to investigate homo-aggregation, and measure

the apparent aggregation rate, typically increased rates of hydrodynamic radius of the

system, as a function of the mixing ratio of the two types of particles. In the early stage

of aggregation, the hetero-aggregation rate can be evaluated from the dependence of the

apparent aggregation rate on the ratio of particle concentrations[115, 116]. While such

experiments can be easily analyzed, this technique is extremely cumbersome, and limits

the options of particles to be studied. Despite these restrictions, a similar method was

also used to investigate the heteroaggregation of particles with widely different shapes

and sizes[117, 118]. While these measurements could provide useful conclusions too,

the analysis remains qualitative.

Recently, some researchers have proposed an alternative technique, which can be

utilized to study hetero-aggregation in any kind of binary mixtures of differently sized

colloidal particles[42]. This technique is based on time-resolved simultaneous multi-

angle light scattering, and exploits the specific angular dependence of the form factors

of the different doublets to distinguish the contributions from hetero-aggregation and

homo-aggregation. While this technique offers wider options of particles, its disadvan-

tage is that the analysis of experimental data is more complex, and requires the form

factors of the asymmetric dimers. However, for spherical and mono-disperse particles,

these form factors can be accurately and numerically calculated using the T-matrix

method[119, 120].

Despite these complexities, hetero-aggregation processes were tackled by these tech-

niques. An important finding was that the hetero-aggregation rate between oppositely

charged particles is comparable to the ones for homo-aggregation at high salt levels, but

becomes faster with decreasing the salt concentration[42, 48, 121]. This trend can be

rationalized by the augmented attractive electrical double layer forces acting between

oppositely charged particles in low salt concentrations. A similar tendency could be

also observed for the deposition kinetics of colloidal particles onto oppositely charged

collector beads[122, 123]. Another important finding was made by examining the depen-

dence of the hetero-aggregation rate between two types of oxide particles or amphoteric
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polystyrene latex particles with two different isoelectric points upon pH. This rate be-

comes the fastest when the pH is between the two isoelectric points, where they are

oppositely charged, but is quickly diminished below and above these points[124, 115].

These findings confirm the importance of electrical double layer forces in these processes.

However, they reported the apparent stability ratio of binary colloidal suspensions, and

extracting the hetero-aggregation rate was not attempted. However, more recently, to

quantify the hetero-aggregation more accurately, the previous work has measured the

hetero-aggregation rates of oppositely-charged particles in the presence of multivalent

ions[43] by utilizing the multi-angle light scattering with T-matrix method. They have

reported the novel pattern of the hetero-aggregation with charge reversal, which shows

more repulsive behaviors in intermediate concentrations due to stronger electrostatic

repulsion between the charge-reversed particles and highly-charged ones than the repul-

sions between the charge-reversed ones. This repulsive behavior of hetero-aggregation

for asymmetrically charged particles has been supported by the DLVO theory[66], and

they also pointed out that the importance of electrical boundary conditions such as

constant potential and constant charge ones on the hetero-aggregation process around

the isoelectric point for the charge-reversed particles[66, 43].

Anionic specific effects on hetero-aggregation processes however have not been in-

vestigated so far. For this reason, in the present work, we study binary suspensions

of amidine and sulfate latex particles with different types of anions with same valency.

These particles are oppositely charged in the presence of indifferent monovalent salts

such as KCl. However, when ions specifically adsorb to the oppositely-charged surfaces,

the charge of one particle type becomes neutralized and even reversed, while the other

particle type remains highly charged. Experimental studies in such situations have not

been performed yet, and the present study reports the measurements of anionic effects

on hetero-aggregation rates for the first time.

6.2 Conclusion

In this study, we have measured both Brownian homo- and hetero-aggregation rates

and corresponding stability ratios for positively- and negatively-charged particles in

the presence of different anionic species of monovalent and divalent electrolytes. These
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experimental results of the stability ratios are analyzed by using the classical DLVO

theory with the corresponding zeta potentials for each particles in the different types

of electrolyte solutions. The calculations are in reasonably good agreements with the

experimental data.

Especially, with the cases where the positively-charged particles reverse its charge

due to the adsorption of anionic species and the sign of charge of the negatively-charged

particles are not changed, we have found that the hetero-aggregation with charge rever-

sal can be more repulsive than the one for homo-aggregation of the positively-charged

particles experiencing charge reversal in the range of intermediate salt concentrations,

which is induced by the anionic specificity on the positively-charged particles. This

experimental trends indicate that the electrostatic interactions between the two types

of particles are more repulsive than the ones between the positively-charged particles

with less charge amounts due to its charge reversal causing a weaker repulsion. The

negatively-charged sulfate latex particles are more highly-charged developing a stronger

repulsion with the charge reversed amidine latex particles.

For the monovalent phosphate anion case, the hetero-aggregation between the

oppositely-charged particles shows the stability ratio higher than one below the

isoelectric point of the amidine latex particles. This might suggest that the surface

potential for the amidine latex are reversed when the highly-charged sulfate latex

approaches as for the case of the constant charge model, and might be attributed to

its strong affinity of phosphate ions to the amidine surface and less repulsion with the

sulfate latex.

In addition, although the amidine latex particles are reversed its charge in the

divalent SeO2−
4 solution, its homo-aggregation above the isoelectric point does not

show the increased stability ratio due to less electrostatic repulsion in higher ionic

strengths. While the hetero-aggregation between the amidine and sulfate latex are

impeded by the stronger repulsion between them, again due to the highly-charged

sulfate latex particles. Notably, these experimental values can be reasonably described

by the classical DLVO theory with proper boundary conditions.
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Chapter 7

Analysis on aggregation of

unequal-sized particles in a

mixing flow

7.1 Introduction

In the previous chapter 6, we have shown the importance of anion species on both

Brownian homo- and hetero-aggregation rates with charge reversal. The validity of

the DLVO theory to explain the more repulsive behaviors of the hetero-aggregation is

demonstrated. More generally, however, the hetero-aggregation can happen not only

in quiescent condition, but also in sheared flow such as mixing flow. So, we have to

consider how hetero-aggregation proceeds in shear.

Some researchers have tackled questions to understand the shear hetero-aggregation.

Adler calculated the capture efficiency of hetero-aggregation for unequal-sized particles

in a simple shear flow with different size ratios of smaller and larger particle radii by the

trajectory analysis described above[125]. He has reported that the capture efficiency

in a simple shear flow considerably decreases with decreasing size ratio even in the

absence of electrostatic repulsion. Such decrease of the capture efficiency can be ratio-

nalized to consider the opened and closed trajectories around the large particle. First,

within the trajectory analysis neglecting Brownian motion, the colliding particles can
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form aggregates if their relative trajectory between the reference and another particles

approaches and attaches to the reference particle due to the van der Waals attraction.

The opened trajectory is the relative trajectory approaching from far away towards the

reference particle and flowing out to infinity in the absence of attractive forces. The

closed trajectory is the ones going out from and back to the reference particle, which

does not contribute to the net particle flux towards the reference particle. These three

types of trajectory can not cross each other because of its deterministic nature of the

hydrodynamic equation. Hence, since the closed trajectory is extended to further away

from the collision surface with increasing asymmetry in the particle radii as noted by

Adler[125, 87], the hetero-aggregation for unequal-sized particles in a simple shear flow

are significantly impeded due to less trajectories entering to the reference particle. Such

observation has been verified by the others[50] who summarized their calculations as

the correlation equation of the capture efficiency in a simple shear flow.

The practical importance of pure straining flow such as plane and axisymmetrical ex-

tensional flow has been noted by the previous works[36, 86]. Particularly, Zeichner has

demonstrated that the hydrodynamic interactions are less significant in an extensional

flow than in a simple shear flow[36]. As a result, the aggregation in an extensional

flow are more effectively enhanced than the one in a simple shear flow. This can be

caused by the vorticity accompanied with a simple shear flow, where the contribution

to the relative velocity is not affected by hydrodynamic interactions as obviously seen

in the trajectory equations. This also corresponds to a rigid rotation of a particle pair.

The rotation due to the vorticity decreases the time interval for particles interacting

with each other through the van der Waals attraction to overcome hydrodynamic in-

teractions. In principal, no closed trajectory exists in the extensional flow[86, 87]. This

means that the extended closed trajectory with decreasing the size ratio does not ap-

pear to slow down aggregation in a pure straining flow. Therefore, we expect that the

significant reduction of capture efficiency by size ratio found in shear hetero-aggregation

is not significant in extensional flow. In addition, some researchers have suggested that

the flow in the smallest eddies where turbulent aggregation occurs can be effectively

represented by assuming an axisymmetrical extensional flow[126, 127, 128].

However, the experimental observations are still ambiguous on the effect of size ratio
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on the orthokinetic hetero-aggregation. The previous work reported that the aggre-

gation is facilitated with decreasing the size ratio[129], while the opposite trend has

been reported that the hetero-aggregation is enhanced with increasing the size ratio

by the other[130]. Hence, to clarify this problem, Yamauchi has measured the hetero-

aggregation for unequal-sized and oppositely-charged particles in a turbulent flow gen-

erated by stirring as a function of the size ratio[49]. They reported that the capture

efficiencies of turbulent hetero-aggregation are roughly constant with decreasing the

size ratio in contrast to the drastic decrease of values calculated using the correlation

equation in a simple shear flow by the previous work[50]. Explanation to such insensi-

tivity of the capture efficiency on size ratio is still lacking.

Therefore, in the present study, to give insights to the experimental trend observed

by Yamauchi[49], we calculate the capture efficiency of the hetero-aggregation for

unequal-sized particles in an axisymmetrical extensional flow by the convevtive-diffusion

approach[128, 131] and the ones in a simple shear flow by the correlation equation men-

tioned above[50]. Furthermore, from the comparison of theoretical values with exper-

imental ones obtained by Yamauchi[49], we discuss the validity of the theory used in

this study for the shear hetero-aggregation. It should be noted that such comparisons

have never been attempted to clarify the effect of different types of flow on orthokinetic

aggregation.

7.2 Conclusion

We have analyzed the experimental data obtained by Yamauchi[49] with the calcu-

lations by solving the convective-diffusion equation in an uniaxial extentional flow[131]

and by the trajectory analysis in a simple shear flow[50] in the absence of the electrical

forces. By comparing between these results, we have shown that the turbulent hetero-

aggregation for unequal-sized particles can be more comparable with the calculation by

convective-diffusion equation Eq.(??) in the extensional flow than the one calculated

by the trajectory analysis in a simple shear flow[50]. This might imply that the flow

in the microscale turbulence is more likely to be approximated as an axisymmetrical

extensional flow than a simple shear flow as noted by Batchelor[126, 127].
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Chapter 8

Concluding remarks

In this thesis, we have examined the charging and aggregation behaviors of

polystyrene latex particles with sulfate, amidine, or carboxyl groups as model colloidal

particles. The charging properties such as surface charge densities and zeta potentials

have been studied as a function of salt concentration and types. The charge reversal

due to counter-ion adsorption has been examined by the electrophoretic method

throughout this thesis. Using the measured electrokinetic potentials, we have analyzed

the rate of homo-aggregation in a simple shear flow by the trajectory analysis with

DLVO theory. The anionic specificity on both Brownian homo- and hetero-aggregation

with charge reversal has been discussed by DLVO theory. Furthermore, to clarify the

effect of flow on hetero-aggregation, we have analyzed the hetero-aggregation rates

for unequal-sized particles in a mixing flow with the convective-diffusion equation for

uniaxial extensional flow. As a result, we have shown that the DLVO theory works for

homo- and hetero-aggregation by Brownian diffusion and flow fields.

Here, as concluding remarks, let us summarize the conclusions obtained in this

thesis as follows:

1. We have shown that the trajectory analysis with non-linear Poisson-Boltzmann

solution is valid to predict aggregation rates in a simple shear flow with electro-

static repulsion by the quantitative comparison of experiments with theory for

well-characterized particles for the first time. Our calculation captures typical

behaviors of aggregation in a shear flow such as increase in critical coagulation

concentration with shear rate G.
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2. By analyzing the electrophoretic mobility for carboxyl latex particles in the pres-

ence of TPP+ ions, which induce the charge reversal due to the ion adsorption on

the particle surface with its hydrophobicity, we found the reduction in the intrin-

sic energy of adsorption of TPP+ with increasing the charge density from 6kBT

at the lowest charge density to 4kBT at the highest charge density. This finding

supports the conclusion in the previous work[29] and suggests that the non-

electrostatic energy of adsorption of TPP+ is dependent on the surface charge

density of adsorbents.

3. We have demonstrated that hetero-aggregation with charge reversal induced

by counter-anions can be more repulsive than homo-aggregation for positively-

charged particles, which experience charge reversal, due to the stronger interac-

tions with highly- and negatively-charged particles.

4. In the case of monovalent phosphate anion, we have observed that hetero-

aggregation between the positively- and negatively-charged particles can be

repulsive even below the isoelectric point. This suggests that the weak-positive

surface (diffuse layer) potential on the amidine latex can be overcompensated

when approaching to the surface with high-negative surface (diffuse layer)

potential. These two experimental findings have been supported by DLVO

theory.

5. We have shown that the hetero-aggregation for unequal-sized particles in a mixing

flow can be more analogous to the calculation by convective-diffusion equation

in an uniaxial extensional flow than the one calculated by the trajectory analysis

in a simple shear flow[50]. This infers that the flow in the microscale turbulence

is more likely to be axisymmetrical extensional flow than simple shear flow as

noted by Batchelor[126, 127].

As described above, we have extensively investigated the validity of DLVO theory in

kinetics of Brownian and shear aggregation by comparing the theory with experiments

in model systems. We could have validated the theory even for more complex systems

such as hetero-aggregation in Brownian diffusion and shear flow. Therefore, our results

can give us more detailed insights to understand and control the stability of homo- and
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hetero-aggregation in more realistic systems. To confirm the validity of our results,

studying the hetero-aggregation for unequal-sized particles in different flows such as

oscillating flow would clarify the effects of flow types on shear aggregation. The observed

less sensitivity of hetero-aggregation in pure straining flow on size ratio can reasonably

explain the experimental trends. However, its applicability to turbulent aggregation is

still questioning. Considering the theory in randomly fluctuating flow[132, 8] could be

a way to discuss the universality of our conclusion. At this moment, we would leave

this problem in future studies.
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R. Hidalgo-Álvarez. The hydrophobic effect as a driving force for charge inversion

in colloids. Soft Matter, 5(7):1350, 2009.

[35] T. G. M. van de Ven and S. G. Mason. The microrheology of colloidal dispersions

VII. Orthokinetic doublet formation of spheres. Colloid and Polymer Science,

255(5):468–479, may 1977.

[36] G. R. Zeichner and W. R. Schowalter. Use of trajectory analysis to study stability

of colloidal dispersions in flow fields. AIChE Journal, 23(3):243–254, may 1977.

[37] W. R. Schowalter. Stability and Coagulation of Colloids in Shear Fields. Annual

Review of Fluid Mechanics, 16(1):245–261, jan 1984.

[38] K. Higashitani, K. Yamauchi, Y. Matsuno, and G. Hosokawa. Turbulent coagu-

lation of particles dispersed in a viscous fluid. Journal of Chemical Engineering

of Japan, 16(4):299–304, 1983.

[39] Y. Adachi, M. A. Cohen Stuart, and R. Fokkink. Kinetics of Turbulent Coag-

ulation Studied by Means of End-over-End Rotation. Journal of Colloid and

Interface Science, 165:310–317, 1994.

[40] M. Kobayashi and D. Ishibashi. Absolute rate of turbulent coagulation from

turbidity measurement. Colloid and Polymer Science, 289(7):831–836, feb 2011.

[41] D. Sato, M. Kobayashi, and Y. Adachi. Capture efficiency and coagulation rate of

polystyrene latex particles in a laminar shear flow: Effects of ionic strength and

shear rate. Colloids and Surfaces A: Physicochemical and Engineering Aspects,

266(1-3):150–154, 2005.

[42] W. Lin, M. Kobayashi, M. Skarba, C. Mu, P. Galletto, and M. Borkovec. Het-

eroaggregation in Binary Mixtures of Oppositely Charged Colloidal Particles.

Langmuir : the ACS journal of surfaces and colloids, (35):1038–1047, 2006.
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cific ion effects on the electrokinetic properties of iron oxide nanoparticles: ex-

periments and simulations. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys,

17(17):17069–17078, 2015.

[97] C. Calero, J. Faraudo, and D. Bastos-González. Interaction of monovalent ions
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