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Abstract 

Emiliania huxleyi is a dominant bloom-forming coccolithophore. It is one of 

the five alkenone-producing haptophytes and is a major contributor to the global 

biogeochemical cycles in the cosmopolitan marine environment. Alkenones are unique 

lipids having long chain methyl ketones (C37-C40) with 2-4 trans double bonds. The 

numbers of the trans unsaturation bonds in the molecules indicate the temperatures at 

which the molecules were synthesized by the organisms, thus, it is very useful for 

estimating temperature in the paleoenvironment. These molecules are also used for 

estimating paleo pCO2. For these reasons, alkenones are considered valuable 

biomarkers for geochemical studies. The long-chain compounds are also found to be 

useful as a feedstock for biofuels. Despite these applications, the biosynthesis pathways, 

physiological functions, and metabolic profile of the alkenones are not well-known. The 

trans unsaturation of alkenones is very similar to that of cis unsaturation of the 

membrane lipid fatty acids, with regard to changes in temperature. Therefore, alkenones 

are assumed to be structural components. However, recent studies reveal that the 

accumulation characteristics of alkenones are more similar to neutral lipids like 

triglycerides (TAGs). Also, as alkenone producers accumulate relatively less amounts of 

TAGs, alkenones are assumed to be storage lipids. In addition to alkenones, it is 

observed that E. huxleyi also distributes a major portion of its carbon into several 

photosynthetic components such as low-molecular-weight compounds (LMCs), 

β-glucan (a neutral polysaccharide, NP) and acid polysaccharides (AP). Having such a 

variety of carbon (C) storage components, limits the understanding of C allocation 

mechanism and lipid metabolism in E. huxleyi. Therefore, we are interested in (1) 

elucidating how alkenones and other lipids contribute to energy storage,   carbon 
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fixation, and cellular carbon-partitioning in relation to other cellular components, and 

(2) establishing a comprehensive lipidomic analysis method for future exploration of the 

E.huxleyi lipid metabolism. 

Part 1, Elucidation of carbon allocation mechanism into alkenones and other 

energy storage components under nitrogen limitation 

The general C-metabolism in algae is highly regulated by nitrogen 

(N)-availability. Under the N-limitation, most of the algae redirect the fixed carbon to 

TAG biosynthesis or carbohydrate biosynthesis. Therefore, I expected to observe; (i) a 

clear difference in C-allocation into various metabolites when cells are exposed to 

sudden changes in N-nutrition, namely from +N to –N, and (ii) to know the mechanism 

by which E. huxleyi switches the direction of C-flow into various macromolecular pools 

functioning as the significant carbon sinks. Moreover, no report was available on 

C-allocation profiles in alkenone-producing haptophytes when cells were exposed to 

N-limiting conditions (–N) from N-sufficient conditions (+N) by changing nitrate 

availability in the culture. Also, no studies were reported to interpret how 

photosynthetic carbon metabolism on C-allocation is changed, especially, in the 

accumulation into alkenones and C-distribution among various cell components in 

non-coccolith-bearing strain of E. huxleyi (CCMP 2090).  To understand the 

mechanism of energy storage, I analyzed the changes in C-allocation among various cell 

components like lipids, alkenones, proteins and polysaccharides between cells exposed 

to N-sufficient (+N) and N-limited conditions (–N) in E. huxleyi CCMP 2090. Finally, 

the alkenone was found to function as the main storage lipids and its accumulation was 

clearly increased by –N whereas triacylglycerols (TAGs) were barely detected under 
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any N-conditions. The mobilization of carbons into alkenones was stimulated by –N 

from 15% under +N to 27% under –N. However, photosynthetic C-allocation into other 

components was suppressed by –N, showing that percent C-allocation into fatty acids, 

proteins and polysaccharides were decreased from 9%, 46% and 6.8% under +N to 7%, 

25% and 4.5% under –N, respectively. Although the plastid-located fatty acids such as 

palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2) 

became dominant under –N, while octadecapentaenoic acid (18:5) became dominant 

under +N conditions, the contents of the major fatty acid in the non-plastid 

phospholipids, docosahexaenoic acid (DHA, 22:6), were not significantly altered. A 

large fraction of unallocated carbon “others” was also observed in this study. I 

hypothesize that this might be composed of LMCs which include mannitol.  To test 

this, I used Fourier Transformed Infrared Spectroscopy (FTIR) to observe the overall 

changes in macromolecular carbon pools. The results showed increase in carbohydrate 

related signals indicating accumulation of LMCs. This finding supports my hypothesis. 

From these analyses, I also observed that novel FTIR absorption at 1705.5 cm
-1

 

increases with alkenones accumulation especially under the –N conditions. Therefore, 

this peak can be used as a novel indicator of –N limitation in alkenone producers. 

Further, I am attempting to establish an FTIR method to estimate polysaccharides in E. 

huxleyi and semi quantification of major cellular components based on alkenone 

content.  

 

Part 2, Establishment of lipidomics methods and lipidomics of Emiliania huxleyi 

CCMP 2090  
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To explore the lipid metabolism in detail, I focused on developing methods to 

examine complete lipidome of this organism. For this, I developed a shotgun electron 

spray ionization mass spectrometry (ESI-MS) approach for detecting all lipid classes 

including E. huxleyi specific lipids. Later, I achieved major lipid class separation in a 

single 50-60 min run using a normal phase BETASIL DIOL column. I analyzed the 

lipidome of the logarithmic and stationary phase cultures of E. huxleyi CCMP 2090 was 

analyzed and identified nearly 600 lipid species under both conditions. Qualitative and 

quantitative analyses for the E.huxleyi lipidome was performed using in-house build 

PERL-based computational algorithms. From the lipidomic analysis of the log and 

stationary phase batch cultures I observed that TAGs are produced in this strain. 

However, the contents of TAGs were very low (2%mol of the total lipidome) under both 

conditions. Therefore, I assume that the TAG accumulation was highly suppressed in 

this organism under all conditions. On the other hand, phosphatidyl choline (PC) was 

the major lipid (65-70%mol) in both conditions. Whereas, regarding to glycolipids, 

monogalactosyl diacylglycerol (MGDG) was around 12-17%, digalactosyl 

diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) were 2-3% each. 

In addition, the composition of other particular lipids like 

phosphatidyldimethylpropanethiol (PDPT) and betaine lipids, 

(Diacylglyceryl-3-O-carboxyhydroxymethylcholine (DGCC), Diacylglyceryl 

trimethylhomoserine (DGTS) and betaine-like lipids (BLL)) were only 1-2% each in the 

total lipidome. I also found very long-chain fatty acids like tetracosatetraenoic acid 

(24:4), tetracosaopentaenoic acid (24:5) and tetracosahexaenoic acid (24:6), indicating 

presence of the mammalian-type DHA biosynthesis pathway in E. huxleyi. These results 

indicate that Emiliania is more dependent on the phopsholipids rather than glycolipids. 
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Therefore, the polar lipid metabolism might be highly influenced by the availability of 

phosphates rather than nitrates as nutrients. This result explains why the polar lipid 

fraction under the N-limited condition did not change so significantly. However, a 

detailed analysis of lipidomics is needed to examine the dynamic changes in the fatty 

acid composition under the N-stress. In summary, the established lipidomic technique 

may be useful for analyzing lipidic components of almost all major lipid classes 

produced by marine algae. Especially, this study could be beneficial for future 

investigations on the lipids and alkenone biosynthetic pathways and their regulation in 

the alkenone-producing marine haptophyte. 
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General Introduction 

Motivation 

Global climate change is a subject of considerable public and scientific interest 

today. It is now widely agreed that climate change is directly related to increased carbon 

emissions caused by burning fossil fuels for every increasing energy demand (Richard 

2012). Addressing climate change and transitioning into a more sustainable renewable 

fuel based economy are currently two major challenges facing humanity.  

Understanding paleo-climates is essential to address challenges posed by climate change.   

Photosynthetic marine microalgae play a role in studying paleo-climate as well as in 

bio-fuel research. They are major contributors in global biogeochemical cycles 

(Holligan et al 1993; Falkowski 1994). Algae utilize C from atmosphere and 

photosynthetically fix them in the form of various metabolites (Lloyd 1977; 

Blankenship and Hartman 1998; Bendall et al. 2008). Some of these algal products are 

used as biomarkers in biogeochemical and geophysical studies (Müller et al. 1998; Prahl 

and Wakeham 1987). Chemical signatures (isotope ratios, structure, and unsaturation 

etc.) of these molecules provide essential information on the type of environment in 

which the organism existed leading to understanding of paleo-climates. On the other 

hand, lipids produced by these organisms are applicable as alternatives to crude oils 

(Hannon et al. 2010). Therefore, the photosynthetic products from marine prokaryotic 

photoautotrophs such as cyanobacteria and eukaryotic algae are of high significance. 

Alkenones are one such compound produced by specific marine Haptophyta, useful as 

both biomarkers for climate studies as well as biofuels (Müller et al. 1998; Prahl and 

Wakeham 1987; Wu et al. 1999; O’Neil et al. 2015).    
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Alkenones and their distribution 

Alkenones are lipid like compounds comprising of very long carbon chain 

(mainly C37-C39) with a methyl or ethyl ketone group (Volkman et al. 1980a, b; 

Marlowe et al. 1984). A unique feature of these compounds is the presence of 2 to 4 

trans-type carbon-carbon double bonds (Fig. 1). Along with alkenones, similar types of 

such compounds such as alkenoates (ketone group of alkenones altered to methyl ester) 

were initially identified in marine sediments. All these compounds are known to be 

produced by only five genera (Emiliania, Gephyrocapsa, Isochrysis, Tisochrysis and 

Chrysotila) of marine haptophytes (Conte et al. 1994; Volkman et al. 1995; Sawada et al. 

1996; Rontani and Volkman 2004; Nakamura et al. 2014). Several types of these 

alkenones (Fig. 1) like C37 methyl ketones and C38-C39 ethyl ketones with two to three 

carbon double bonds were detected from algae such as Emiliania and Gephyrocapsa, 

waters and sediments in marine and lacustrine environments (Conte et al. 1994; 

Cranwell 1985; Marlowe et al. 1984; Sawada et al. 1996; Volkman et al. 1980a, b).  

Furthermore, the distribution of some alkenones was identified to be specific to 

certain settings, like C38:4 in cold water sediments (Marlowe et al. 1984), C37:4 in 

haptophyte alga Chrysotila, waters and sediments in sulfate-rich lakes (Nakamura et al. 

2014; Rontani and Volkman 2004; Theissen et al. 2005; Theroux et al. 2010; Toney et al. 

2010), C35-C36 in the Black Sea sediments (Xu et al. 2001), C40-C41 in hyper-saline 

environments (Zhao et al. 2014), etc. These evidences indicate that the composition, 

distribution and the un-saturation number of alkenones and alkenoates are varied 

depending on algal species, habitats, growth temperature and so on.  
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Importance of alkenones as biomarkers and biofuels 

Alkenones are found to be useful in two major research areas because of their 

unique features. Their application as biomarkers is due to their role in responding to 

temperature changes. A close correlation between the un-saturation degree of alkenones 

and sea surface temperatures was identified mainly in C37 alkenones (Brassell 1986; 

Müller et al. 1998; Prahl and Wakeham 1987). The changes in alkenone unsaturation are 

determined by unsaturation index. The C37 alkenone unsaturation indexes are defined by 

the equation given as U
K

37 = ([C37:2Me] – [C37:4Me]) / ([C37:2 Me] + [C37:3Me] + 

[C37:4Me]) and U
K'

37 = [C37:2Me] / ([C37:2Me] + [C37:3Me]). These ratios seem to vary 

linearly with sea surface temperatures. Not only U
K

37 but, various alternative 

unsaturation indexes were developed as the alkenone distribution in lakes differs from 

marine realm (Rontani and Volkman 2004; Theroux et al. 2010; Toney et al. 2010). The 

index has been used for estimating paleo-temperature when alkenone-producing 

haptophytes were distributed in geochemical studies (Brassell et al. 1993; Popp et al. 

1998). In addition, the 
13

C/
12

C-isotopic carbon partitioning value in alkenone molecules 

is found to be useful for estimating ancient CO2 concentrations (Freeman and Hayes 

1992; Jasper and Hayes 1990, Pagani et al. 2002; Riebesell et al. 2000). Alkenones have 

become the most important lipidic biomarkers in geochemical and geophysical 

researches. 

Besides being widely accepted as biomarkers, alkenones are also assumed to be 

potential biofuel precursors. Initially, it was observed that 10−20% of cell C during the 

stationary phase accumulates into alkenones and more abundant than TAGs in these 

organism (Eltgroth et al. 2005; Volkman et al. 1989). Further, alkenones are found to 
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comprise nearly 75% of lipids in cytoplasmic lipid bodies (Shi et al. 2015) indicating 

their role as fuel bodies of cells. Wu et al. (1999) showed that, when E. huxleyi and G. 

oceanica are subjected to pyrolysis at 100°C to 500°C n-alkanes and n-alkenes are 

produced. Therefore, alkenones are expected to be molecular sources for these liquid 

saturated hydrocarbons. It is also observed that alkenones can be converted to jet fuel 

range hydrocarbons (C10-C17) by techniques like butenolysis (O’Neil et al. 2015, 2016). 

Having less unsaturation number and absence of glycerol backbone is an advantage of 

these molecules. On the other hand, common biodiesel precursors like TAGs are 

polyunsaturated and require treating byproducts like glycerol during biofuel production. 

Therefore, use of alkenones as biofuels could be advantageous over TAGs. However, an 

industry level production is yet to be developed from the knowledge of biosynthesis 

mechanisms of these alkenones.  

Biological role and biosynthesis of alkenones 

Despite many studies on such features and applications of alkenones for 

paleotemperature reconstruction in organic geosciences, the biological function of 

alkenones in haptophytes is still unclear. The property of temperature dependent 

changes in the number of trans-type unsaturation of alkenones is similar to that of 

cis-type unsaturation of fatty acids (FAs) in membrane lipids. Therefore, Brassell et al. 

(1986) speculated that similar to membrane lipids, alkenones are used to maintain 

fluidity and rigidity of cellular membranes. Several other studies on the characteristics 

of alkenones speculate their biological role as buoyancy regulators or structural 

backbones (Prahl et al. 2003; Volkman et al. 1980b; Fernández et al. 1996; Sawada and 

Shiraiwa 2004). 
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However, recent studies suggest that alkenones can be considered as storage 

lipids. For example, alkenones are observed to be accumulated under nutrient-deficient 

stresses, to form lipid droplets in the cells, and to be depleted under dark conditions 

(Eltgroth et al. 2005; Epstein et al. 1998; Prahl et al. 2003; Shi et al. 2015; Tsuji et al. 

2015). Further, one of the haptophytes such as E. huxleyi contains more alkenones, but 

very low amount of TAGs which are known as storage lipids in many microalgae (Bell 

and Pond 1996; Hunter et al. 2015). Their role as storage lipids like triacylglycerol TAG 

is highly under debate and yet to be explored. 

On the other hand, the composition and distribution of alkenones are highly 

influenced by genetic background of strains, non-thermal factors (ex. CO2 concentration, 

nutrient limitation, light availability, salinity etc.) and physiological state of cells 

(Benthien et al. 2007; Conte et al. 1995; Conte et al. 1998; Epstein et al. 2001; Pan et al. 

2014; Popp et al 1998; Prahl et al. 2003; Sorrosa et al. 2003; Ono et al. 2012; Yamamoto 

et al. 2000). Therefore, due to the ambiguity in their possible biological roles and the 

influence of several non-thermal factors on alkenone production, physiological 

functions and metabolic profiles of alkenones are still unclear and need to be elucidated.  

Regulation of C-storage mechanism by nitrogen availability 

In the photosynthetic organisms, under the standard growth conditions (+N, 

nitrogen sufficient) the assimilated N from NO3
-
, is utilized by the glutamine synthetase 

(GS) and glutamate synthase (GOGAT) mechanism (Fernandez and Galvan 2007; 

Kaffes et al. 2010; Rokitta et al. 2014; Turpin 1991; Weger and Turpin 1989). This 

incorporates N into nitrogenous organic compounds. The synthesis of amino acids and 

proteins requires carbon skeleton, which is acquired by CO2 fixation (Johnson and Alric 
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2013; Weger and Turpin 1989). C fixed through photosynthesis is simultaneously used 

for carbohydrate, lipid synthesis and other metabolite synthesis. When there is sufficient 

N, more C is allocated into proteins and rest is distributed into lipids and carbohydrates 

(Johnson and Alric 2013; Kaffes et al. 2010) as shown in Fig. 2. 

Under –N, with no sufficient N to make new proteins, cells degrade unwanted 

proteins and reallocate N for necessary proteins (Alipanah et al. 2015; Bai et al. 2016). 

Many photosynthetic organisms cannot continue functioning in this condition and C 

fixation in photosynthetic apparatus declines to some extent. This is due to decrease of 

several proteins associated with the photosynthetic apparatus (PSII) by light energy 

(photo-inactivation) and PSII cannot be repaired due to insufficient N (–N, nitrogen 

limited). This results in decrease of total protein and decrease in C content of proteins. 

During this condition as cell experiences –N, the C:N balance is shifted towards 

accumulated C (Talmy et al. 2014; Kaffes et al. 2010; Palmucci et al. 2011). This forces 

the cell to direct the accumulating C from C-fixation and degraded proteins into storage 

components. As a result components like carbohydrates/storage polysaccharides and 

neutral lipids like TAGs that do not contain N (Fig. 2) accumulate under –N (Ball et al. 

1990; Benavente-Valdésa et al. 2016; Reitan et al. 1994).  

Despite, alkenones being assumed to be similar to TAGs, such C-allocation 

mechanism is not yet understood in alkenone-producing marine Haptophytes. Part-I of 

this Ph. D. thesis is the major section, which mainly focus on this issue. In this study I 

subjected one of the strains of E. huxleyi to –N and examined C-allocation patterns into 

various storage components. This study provided a detailed map of C-regulation under 

+N and –N conditions. Further, this study also provided information on the alkenone 
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accumulation patterns and how their characteristic features are influenced by –N.  

Methods for lipidomics and significance 

Part-II of this Ph. D. thesis is related to establishment of methods for lipidome 

analysis using sensitive mass spectrometric techniques. In relation to studies on unique 

lipids like alkenones, there is an urgent need to identify their biosynthetic pathways. To 

detect such mechanisms, it is necessary to understand lipid molecular compositions and 

their dynamics during cell growth. Lipidome of organisms is affected significantly 

under several stress conditions. Especially, major changes occur in the membrane and 

neutral lipids which are responsible for structural stability and energy storage in the 

cells. To clearly examine these changes, highly sensitive and robust methods are needed. 

Lipidomics mainly focus on development of multiple techniques to identify various 

lipids, their constituents and finally quantify them. This is a rapidly expanding research 

field. 

By recent advances in various mass spectrometric techniques lipid detection is 

made easy. Lipid detection is based on ionization of lipids, molecular ion generation 

and fragmentation. Hard ionization techniques which produce extensive lipid fragments 

were initially used for this purpose. However, this is a disadvantage while analyzing 

multi component lipid mixtures. Lipid detection through ionization techniques were 

greatly improved from hard ionization (chemical ionization, fast atom bombardment, 

Electron impact ionization etc.) to less fragment generating soft ionization techniques 

(electron spray ionization-ESI, Matrix assisted laser desorption-MALDI). ESI is an 

emerging and efficient technique mainly used for lipidomics (Han and Gross 2003, 

2005; Taguchi et al. 2005). The basic principle of this method lies in ionization of lipids 
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by charge desorption technique (Fenn et al. 1989, 1990). Here, liquid sample is sprayed 

into fine charged droplets using a charged nozzle. This enables subsequent desolvation 

of liquid surface to form charged lipid molecular ions. This is more advantageous lipid 

ionization method as it causes fewer fragmentations in the lipids. These are further 

detected by various mass analyzers.  

There are several types of detection methods for ionized lipids, popularly 

known as mass analyzers. MS analyzers such as ion trap (IT), quadrupole, time of flight 

(TOF), and Fourier transform ion cyclotron (FT-ICR) differ in their mass accuracy 

(Milne et al. 2006). Among the most widely used mass spectrometers, triple quadrupole 

(TQ) tandem-MS analyzers provide detection of both molecular and fragment ions 

(Brugger et al. 1997; Han and Gross 2003, 2005). The ionization and fragmentation of 

lipids using these techniques are extensively reported for major lipid classes (Brugger et 

al. 1997; Ejsing et al. 2006; Taguchi et al. 2005).   

Direct injection of lipid mixture might affect detection of less abundant lipids 

due to ion suppression and ion enhancement effects (Han et al. 2011). In order to 

prevent this, lipid separation methods like gas chromatography (GC), thin layer 

chromatography (TLC), liquid-chromatography (LC) etc. were applied prior to the MS 

analysis. Among which, LC techniques are latest in lipidomics and most frequently used 

in combination with MS (Cjaka and Fiehn 20014; Ikeda et al. 2011; Hummel et al. 

2011; Knittelfelder et al. 2014; Sturt et al. 2004). LC in combination with MS has 

allowed lipids to be studied with greater sensitivity and specificity. Several 

computations tools are also improved simultaneously to examine MS data. Softwares 

like LipidBlast, Lipid Data Analyzer, LipidXplorer, MZmine, SIM-Lipid, Lipidpro, 
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Lipidminer, LipidView etc. are most commonly used for this purpose (Kind et al. 2013; 

Hartler et al. 2011; Herzog et al. 2012; Pluskal et al. 2010; Premier Biosoft; Ahmed et al. 

2015; Meng et al 2014; AB SCIEX Co. ). All these tools mainly focus on annotation 

and support quantitative characterization of lipid species based on their MS information.  

Availability of several methods on lipid detection using ESI-MS, lipid 

separation using HPLC and data analysis tools make it difficult for a naive user to work 

on lipidomics. In addition, as technology is advancing many novel lipid classes are 

being discovered, the available methods should also be improved to separate and detect 

the lipid from complex lipid mixtures. At the downstream of lipidome data analysis, 

computational methods to process the detected lipids for various studies are not 

available. Therefore, as part-II of my Ph.D. thesis, I tried to address these challenges by 

improving methods to separate and detect most of the major lipid classes (including 

novel lipids in E.huxleyi) in a single run by using ESI-MS in combination with Normal 

phase HPLC techniques. Further, I also worked on designing some computational 

algorithms that can process the detected lipidome data for qualitative screening, 

calculation of unknown fatty acids and visualization.       
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Introduction  

The bloom-producing haptophyte alga E. huxleyi is known to be one of the 

dominant producers of alkenones and a cosmopolitan species widely distributed in the 

ocean (Conte et al. 1994; Volkman et al. 1995). According to whole genome analysis of 

various strains of E. huxleyi, such wide distribution among various stressful 

environments is due to the presence of pan genome present in nuclear genes (Read et al. 

2013). This is due to their evolution through secondary endo-symbiosis mechanism. E. 

huxleyi with such a complex genome exhibits a wide range of features. It is considered 

as the major producers of Alkenones among other Haptophytes in global Oceans. It can 

also exhibit certain physiological features like haplodiplod life cycle and formation of 

CaCO3 exoskeletons (coccoliths). These features are based on several physiological and 

transcriptomic differences between haploid (motile non-cocolith forming cells) and 

diploid (non-motile coccolith forming cells) phases (Dassow et al. 2009; Houdan et al. 

2005) 

In addition, as a photoautotrophic organism, E. huxleyi also produces various 

kinds of photosynthetic metabolites. Mainly it produces a water soluble 

neutral-polysaccharide (NP) composed of β-1, 3/1, 6-glucan which is a storage product 

in many microalgae (Varum et al. 1986) and acid-polysaccharides (AP) which are 

specially associated with coccolith morphogenesis in coccolithophores belonging to 

haptophytes (Fichtinger-Schepman et al. 1981). Studies have also demonstrated that E. 

huxleyi also consists low molecular weight compounds (LMCs) like mannitol. Having 

such diverse group of storage components limits the understanding on the role of 

alkenones as prime storage components.  
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Recent isotope studies have demonstrated that E. huxleyi distributes a major 

portion of carbon into low molecular weight compounds (LMCs, 35% Ca.) like 

mannitol,  membrane lipids (20% Ca.), neutral lipids such as alkenones (15% Ca.) and 

neutral and acid polysaccharides (NP and AP, respectively) (Epstein et al. 1998; 

Fernández et al. 1996a; Obata et al. 2013; Tsuji et al. 2015). Mainly, Fernández et al. 

(1994, 1996a), Tsuji et al. (2015) and Pan et al. (2017) observed active C-allocation into 

alkenones/lipids and alkenones functions as storage components in the cells. Fernández 

et al. (1994, 1996a) studied C-allocation in the photosynthetic carbon metabolism in E. 

huxleyi cells obtained in coastal mesocosm experiments. They found that the 

coccolithophore E. huxleyi has high capacity to uptake dissolved inorganic carbons from 

sea water based on nitrogen availability. This is due to the observed lower 

C-incorporation into proteins and high C-incorporation into lipids in comparison with 

other phytoplankton species. They also found that reallocation of C into proteins takes 

place in dark conditions and are related to cellular growth rate. Further they observed 

that the shifts in C incorporation into LMCs are related to species composition 

associated with halocline. Tsuji et al. (2015) found the significance of alkenones, but not 

β-glucan, as storage components. Pan et al. (2014, 2017) found that (i) the carbon 

isotopic composition changes (heterogeneous or homogenous) along with the lipid 

composition (membrane lipids or storage lipids) in the logarithmic or stationary growth 

phase, respectively and (ii) during the stationary growth phase, the lipid composition is 

of high poly-, mono-unsaturated FAs and alkenones and low saturated FAs, phytol and 

sterols than in the logarithmic growth phase. 

A strong association between genes involved in C and N metabolisms was 
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observed in many algae including E. huxleyi (Flynn et al. 1993a, b; McKew et al. 2013; 

Nunes-Nesi et al. 2010; Singh et al. 2008; Talmy et al. 2014). Nitrate (NO3
-
) availability 

was identified as the main factor to give a crucial impact on the amounts of alkenones as 

well as other C-storing compounds in E. huxleyi (Kafes et al. 2010). Despite such 

observations, very less information is available on the relationship of metabolic 

regulation between alkenones and other storage components (membrane lipids, 

polysaccharides, proteins, etc.). Moreover, no report is available on C-allocation profiles 

in alkenone-producing haptophytes when cells were exposed to N-limiting conditions 

(–N) from N-sufficient conditions (+N) by changing nitrate availability in the culture.  

In addition, strains with genotypic differences are already found in E. huxleyi 

CCMP 1516 and CCMP 2090 as coccolith and non-coccolith-bearing strains, 

respectively (Dassow et al. 2009; Houdan et al. 2005, Read et al. 2013). However, no 

studies are reported to interpret how photosynthetic carbon metabolism on C-allocation 

is changed especially in the accumulation into alkenones and C-distribution among 

various cell components in non-coccolith-bearing strain of E. huxleyi.  

 There are several unresolved issues in alkenone research like (i) biosynthesis 

mechanism, (ii) biological role and (iii) influence of non-thermal factors on alkenone 

unsaturation. These pose a major challenge for understanding their potential as biofuels 

and biomarkers. Current work aims at addressing some of these issues by looking at the 

C-regulation into alkenones and other metabolites in E. huxleyi. From this I expect to 

observe; (i) a clear difference in C-allocation into various metabolites when cells are 

exposed to sudden changes in N-nutrition, namely from +N to –N, and (ii) to know the 

mechanism by which E. huxleyi switches the direction of C-flow into various 
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macromolecular pools functioning as the significant carbon sinks (iii) effect of 

N-limitation on alkenone unsaturation.  

For this, I examined the effects of N-limitation on change in C-allocation into 

alkenones and other lipids such as membrane lipids, proteins, carbohydrates etc. in the 

alkenone-producing haptophyte E. huxleyi CCMP 2090. Finally, this study revealed that 

the alkenones (but not NP and membrane lipids) function mainly as storage components 

in the cells, indicating the presence of quite unique physiological profile of 

alkenone-producing Haptophytes in comparison with other non-alkenone-producing 

microalgae. Further, I presented a model of C allocation under +N and –N into various 

cellular components of E. huxleyi CCMP 2090. In addition, I also found that –N does 

not affect alkenone unsaturation in this stain. 
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Materials and Methods 

Organism and culture conditions 

The E. huxleyi CCMP 2090 was obtained from the National Centre for the 

Culture of Marine Phytoplankton (CCMP, Maine, USA). E. huxleyi CCMP 2090 cells 

were grown in artificial seawater Marine Art SF-1 (Osaka-Yakken, Osaka, Japan), 

enriched with Erd-Schreiber's seawater containing 10 nM sodium selenite instead of soil 

extracts contained as an original component (Danbara and Shiraiwa, 1999). The 

standard composition of nitrate and phosphate in control medium were 1.41 mM NaNO3 

and ca. 30 µM K2HPO4. The temperature, light intensity and air flow rate were 

maintained at 20°C, 100 µmol quanta m
-2

 s
-1

 (continuously illuminated by fluorescent 

lamps) and 75-80 mL min
-1

, respectively. 

For the experiment as shown in Fig. 3, the cell suspension was divided into two 

batches, namely batch-1 and batch-2 for N-sufficient (+N, which is standard medium) 

and N-limitation (N medium containing 0.05 mM NaNO3) conditions, respectively. 

For the analysis of cell components, algal cells were harvested at two stages namely, 

logarithmic (stage-I) and stationary growth phases (stage-II) in each batch. Totally, six 

of 1.5-L-flat oblong glass bottles were used to grow the cells under the +N conditions 

until the mid-log growth phase for 4 days.  

To obtain the stage-II cells, the stage-I cells were harvested once by 

centrifugation at 2,000 × g for 10 min and then the cell pellets were re-suspended into 

two kinds of fresh medium, namely either the +N or –N medium, in three 1.5-L-bottles 

each. The initial concentration of cells was adjusted to 0.2–0.3 (OD750). Cell number 
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and size were monitored daily by using a cell counter (Sysmex CDA-1000, Kobe, 

Japan). Cells were harvested every 24 h after starting the stage-II culture from day 4 to 

8 during 96-h cultivation. The harvested cell samples were analyzed for several 

components using various methods as described below and shown in Fig. 4.   

Analytical methods for quantification of cell components 

For the analysis of cell components such as chlorophylls, proteins, NP, AP, one 

mL of cell suspension was withdrawn from the culture and cell pellets were obtained by 

centrifugation at 2,300 × g for 5 min for each analysis. Chlorophylls were extracted 

from cell pellets with 90% acetone according to Jeffrey (1972) and quantified by a 

spectrophotometer (UV-1700, Shimadzu, Kyoto, Japan). For the protein assay, the cell 

pellet was resuspended into 200 μL of distilled water and then sonicated for destroying 

cells. After obtaining supernatant, total protein content was determined by the Bradford 

assay method (Bio-Rad, Hercules, CA) with a series of 0-40 μg mL
-1 

of bovine serum 

albumin as a standard. Polysaccharides were extracted with 300 μL of 5% (w:v) 

trichloroacetic acid from E. huxleyi cell pellet by sonication. After sonication, the 

extract was centrifuged for 5 min at 2,300 × g and then 200 μL of supernatant was used 

for the estimation of either NP or AP. NP was estimated using the phenol-H2SO4 assay 

(Hodge and Hofreiter 1962) calibrated with a series of 0–90 μg mL
−1

 glucose as a 

standard. AP was estimated using the carbazole-H2SO4 assay (Bitter and Muir 1962) and 

calibrated with a series of 0–90 μg mL
-1

 glucuronic acid (Chugai Pharmaceutical, Tokyo, 

Japan) as a standard. For the analysis of Pi in the medium, one mL of the resultant 

supernatant of cell suspension after centrifugation from above was used. Further, the 

analysis was done according to molybdenum blue method (Murphy and Riley 1962). 
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Extraction, separation and analysis of lipid fractions 

Lipid extraction was done according to Sawada and Shiraiwa (2004) with 

minor modifications. Lipids were separated into two fractions, namely neutral lipid 

fraction (NLF) and polar lipid fraction (PLF). NLF and PLF are generally composed of 

alkenones, alkenes and TAGs, and all membrane lipids, respectively. Whole lipids were 

extracted from E. huxleyi cell pellets with 4 mL of methanol by sonication.  

As internal standards (IST) for the quantification of alkenones and FAs, 20 μg 

of n-triacontane and heptadecanoic acid (50 μL each of 1 mg mL
-1

 solution) were spiked 

into 4-mL of crude extracts, respectively. Then, the extracts were fractionated with 4 mL 

of 1:1 methanol:dichloromethane and then 4 mL of dichloromethane. Thereafter, water 

(25 mL) and saturated NaCl solution (5 mL) were added and then mixed vigorously. 

After separation, the lower organic phase containing lipids was further dehydrated by 

passing it through a column containing anhydrous Na2SO4 and dried using an 

evaporator. The dried lipid fraction was dissolved in 2 mL of hexane and applied onto a 

silica gel column and eluted sequentially.  

At first, NLF was collected using hexane, hexane:ethyl acetate (95:5, v:v), 

hexane:ethyl acetate (9:1, v:v). All these eluates were combined, evaporated and 

re-dissolved in hexane for gas chromatography with flame ionization detection 

(GC-FID) analysis. At second, PLF were eluted with methanol:ethyl acetate (1:1, v:v). 

The PLF was further dried and re-dissolved in 0.5 M HCl in methanol and incubated at 

100°C for 90 min for methyl esterification. The FA methyl esters were extracted using 

hexane and used for GC-FID analysis. The GC-FID analysis of alkenones was done 

according to the method of Nakamura et al. (2014). The NLF and methyl esterified PLF 
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were detected by a GC-FID (GC-2014AFSC; Shimadzu) with a CP-SIL 5CB column 

(50 m, 0.32 mm id, 0.12 μm; Agilent, Santa Clara, CA). The carrier gas used was He 

with a flow rate of 2.08 mL min
-1

 in split-less mode. The column temperature was set to 

60°C for 1.5 min, heated at a speed of 20°C min
-1

 to 130°C, and then taken at 4°C min
−1

 

to 300°C, and holding at 300°C for 25 min.  

Detected peaks of NLF and PLF were quantified by normalizing with 

respective IST peak areas corresponding to the internal standards. The amount of 

individual FAs was summed up to calculate total FA (TFA) content which is regarded 

PLF content. The relative accumulation of individual FAs was also determined by 

taking the ratios of mol% of each component. 

For detecting TAG, NLF was used for analysis by gas-chromatograph, 

GC-2010, equipped with a mass spectrometer, QP-2010 (Shimadzu) by following above 

method in which analysis was performed at an increased temperature from 230°C to 

340°C. The sensitivity of GC-MS was determined by analyzing a series of standard 

mixtures of various concentrations of TAG 17:0/17:0/17:0 (TAG C17) (0-100 ng μL
-1

) 

and triacontane (100 ng μL
-1

). 

Total organic carbon (TOC) analysis 

Fifty mL of culture was harvested during mid-log phase (day 4) to a stationary 

growth phase (day 8). Half of the cell suspension (25 mL) was centrifuged (1,720 × g, 

for 5 min). The supernatant was filtered through a syringe driven Millex HA filter (pore 

size 0.45 μm, Merck Millipore, Darmstadt, Germany) to obtain a culture medium free of 

cells (culture medium fraction). TOC values of both cell suspension and culture media 
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fraction (25 mL each) were measured with a TOC-L analyzer (Shimadzu). C quota of 

cells (TOC of cells) was calculated by [(TOC in cell suspension (mg L
-1

)) – (TOC in the 

medium (mg L
-1

))]. Then, TOC in a cell (pg L
-1

) was calculated by [(TOC of cells)/(cell 

number (cells L
-1

) ].The relative value of total carbons of each metabolite such as 

proteins, lipids, alkenones, NP and AP (expressed as %TOC) was individually 

calculated as the ratio of TOC in each metabolite to total TOC in a cell. For the purpose, 

I did an approximate estimation of organic C for proteins, NP and AP. The calculation 

was done assuming that 53% of total weight of proteins is composed of carbon (Laws 

1991).  Similarly, %C of NP and AP were calculated by determining carbon content 

from β-1, 3- and -1,6-glucan (40%) and AP structure (39%) determined by 

Fichtinger-Schepman et al. (1981), respectively (Table. 1). Such estimates to calculate 

carbon equivalents for various metabolites were previously applied successfully to 

study patterns of C metabolism in E. huxleyi (Fernández et al. 1996b). 

Additionally, total nitrogen (TN) of cells was also calculated similar to TOC of 

cells, by the TOC-L analyzer (equipped with TN measuring unit). The measurement 

was based on the catalytic oxidation method and detected using an infrared gas analyzer. 

Here, TN is the sum of NO3-N, NO2-N, NH3-N and organically bonded nitrogen in the 

compounds. Using this, C:N ratio was calculated to observe the effect of  N on C 

allocation. 

Fourier Transformed Infrared (FTIR) Spectroscopy 

Twenty-five mL of cell culture was harvested from all conditions and dried on 

silicon windows. Spectral acquisition and band assignment was done as mentioned in 

Giordano et al. (2001), Pelusi et al. (2016) and Palmucci et al. (2011). Briefly, an 
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Affinity-1S IR (infrared) spectrometer (Shimadzu), with an excitation source fitted with 

He-Ne laser operating at wavelength of 632.8 nm was used. The FTIR spectrum for 

each sample was acquired over the wave number ranging from 4000 cm
-1

 to 500 cm
-1

. 

Resolution is maintained at 4 cm
-1

 with 32 averaged scans. FTIR spectral bands/peaks at 

962.5, 1057, 1655, and 1737 cm
− 1

 were selected for relative quantification of alkenones, 

carbohydrates, proteins (amide-I), and lipids (except alkenones), respectively as shown 

in Table. 2. LabSolutions IR software (Shimadzu) was used to achieve peak separation 

and deconvolution. The de-convoluted spectral band areas (i.e. content) of each 

macromolecular compounds were used for calculating a relative quantity of each 

compounds (% of the sum of organic matters determined), according to Dean et al. 

(2010). In this study, semi-quantification of each macromolecule was performed by 

FTIR analysis according to Palmucci et al. (2011).  

                                                                             

                                 

                          
                            

To observe the changes in LMCs alone using FTIR, fractionation of cellular 

components was done according to Fernandez et al. (1994) and Li. et al (1980). Based 

on this freeze dried cell pellet was subject to CHCl3:MeOH:DW (0.5:0.5:0.45) 

extraction. In this, LMCs were extracted into the top MeOH:Dw fraction (polar fraction, 

F1), middle insoluble pellet (F2) consisted polysaccharides, nucleic acids and proteins, 

and lipids were extracted into bottom CHCl3 (non-polar fraction, F3). 80μl of this F1 

fraction was dried on silicon windows and analyzed for LMCs.  
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Results 

Effect of –N on growth and cell property 

The coccolithophore E. huxleyi CCMP 2090 cells grown at 20°C in +N 

medium for 4 days (stage-I) were transferred to either the +N or –N conditions 

(stage-II) (Fig. 5). The cell growth was suppressed under the –N conditions whereas 

high growth rate was maintained at least 3 days under the +N conditions. Such effect of 

the –N was observed in change of Pi concentration in the medium (the initial 

concentration: 30 M) which was nearly depleted to 1.2 µM under the +N conditions of 

stage-I, and the depletion was little suppressed under the –N conditions (final [Pi]: 1.4 

and 4.4 µM under +N and –N conditions in stage-II), respectively.  

Effect of –N on cellular components such as chlorophylls, proteins, 

polysaccharides and lipids 

Effect of the –N on changes in cellular components was analyzed during 

stage-II (Fig. 6). The increase in cell number was greatly changed depending on 

N-conditions and the cell diameter of –N cells gradually increased about 20% for 4 days 

during stage-II whereas no obvious change was observed in the +N cells (Fig. 5 and Fig. 

6a, b). According to these results, the contents of cellular components were expressed 

on the basis of a cell in Fig. 6c-f. The chlorophyll and protein content (per cell) 

decreased rapidly irrespective of N-conditions, but the extent of decrease was more 

obvious under the –N conditions than +N conditions (Fig. 6c, d). For data expressed on 

the basis of culture, see Fig. 7a, b. Similarly, the contents of proteins, NP and AP 

gradually decreased irrespective of N-nutrition conditions during stage-II (Fig. 6e, f; for 
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data per culture, see Fig. 7c, d). 

Total lipid content is expressed as the sum of neutral lipids consisted of mainly 

alkenones and alkenes and polar lipids mainly composed of FAs. Percentage of each 

lipid fraction from total lipid content was measured as shown in Table. 3.  Among 

them, alkenones, alkenes and FAs occupied 57.8%, 4.6% and 37.5% of total lipids and 

77.3%, 5.9% and 16.8% of total lipids in cells grown under  the +N and –N conditions, 

respectively, and harvested on day 8.  

Effect of –N on NLF composed of alkenones and alkenes 

Neutral lipids detected in E. huxleyi CCMP 2090 were alkenes (C31, C33) and 

alkenones involving C37:2-3MK (methyl alkenones), C38:2-3EK (ethyl alkenones) and 

C38:2-3MK, C39:2-3EK; while alkenoates were not detected here. The contents of 

alkenones and alkenes were calculated as the sum of those individual molecular species 

(Fig. 8). The contents of both alkenone and alkenes showed similar trend of changes 

under the +N and –N conditions during stage-II. Namely, both contents greatly 

increased under the –N conditions for 4 days in stage-II whereas no obvious change was 

observed under the +N conditions (Fig. 8a, b). The ratio of alkenones/alkenes in 

contents was constant at 13±1.5, irrespective of the N-nutrition conditions (Fig. 8c). For 

data per culture, see Fig. 9a, b. 

Among various species of alkenones, molecules with two carbon double bonds 

such as C37:2MK and C38:2EK+MK were dominant (Fig. 10a). Furthermore, the ratio of 

C37:2/(C37:2 + C37:3) which is known as the C37 alkenone unsaturation index (U
K'

37) was 

constant under the +N and –N conditions during stage-II (Fig. 10b). This data was also 
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confirmed by that the ratios of C37:3/C37:2, which were nearly constant during culture in 

stage-II and same under the +N and –N conditions (Fig. 10c). In addition, the ratio of 

C37/C38 alkenones was not affected by N-nutrition conditions although the ratio 

gradually decreased during culture in stage-II (Fig. 10d).  

While alkenones were greatly accumulated under the –N conditions, no 

production of storage neutral lipids like TAGs was observed in this strain of E. huxleyi 

CCMP 2090 (Fig. 11a), indicating that storage lipids in this alga are alkenones. In 

another analysis, the sensitivity of GC-MS on TAG was confirmed to be at least below 

40 ng μL
-1

 (Fig. 11b). 

Effect of –N on PLF composed of FAs 

Changes in FA contents were examined after the transfer of 4-d-grown +N cells 

to either the +N or –N conditions in E. huxleyi CCMP 2090 (Fig. 12). No significant 

difference was observed in total contents of FAs as PLFs between the +N and –N cells 

in stage-II and the contents were constant at 0.5 to 0.4 ± 0.035 pg cell
-1 

(Fig. 12a). 

However, the compositions of individual FAs were quite different between +N and –N 

conditions (Fig. 12b-d). The C16-C18 medium chain saturated, mono- and di-unsaturated 

FAs (MCFAs) such as 16:0 (palmitic acid), 18:0 (stearic acid), 18:1n-9 (oleic acid) and 

18:2n-6 (α-linoleic acid) were accumulated under the –N conditions while C18-C22 

polyunsaturated FAs (PUFAs) such as 18:5n-3 (octadecatetraenoic acid) as the major 

C18 FAs, 20:4n-3 (eicosatetraenoic acid) and 20:5n-3 (eicosapentaenoic acid) 

accumulated more under the +N conditions. However, the contents of 22:5n-3 

(docosapentanoic acid) and 22:6n-3 (docosahexanoic acid, DHA) did not show a clear 

trend under any condition (Fig. 12d). 
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Effect of –N on C-allocation into macromolecular cell components 

The C-allocation into various macromolecular cell components such as proteins, 

alkenones, FAs, AP and NP were analyzed using TOC system (Fig. 13). The amount of 

total organic carbons fixed by cells (per culture), namely C allocated into all organic 

compounds, was higher under +N conditions than that under the –N conditions (Fig. 

13a). But, TOC per cell, namely C stored in a cell, was decreased under the +N 

conditions whereas the parameter was maintained constant under the –N conditions (Fig. 

13b). In addition, significant differences in TN were also identified. During stage-II, the 

values of TN reached to 13.1 mg L
-1

 and 7 mg L
-1

 in +N and –N respectively on day 8. 

This along with TOC, indicated a significant difference in C:N ratio of 11 and 7 in –N 

and +N cells, respectively. 

 The C-allocation among major cellular components was analyzed by the TOC 

system in cells grown under the +N and –N conditions (Fig. 13c,d). Those components 

are proteins (ca. 46% and 25%), alkenones (ca. 15% and 27%), alkenes (ca. 1% and 2%), 

FAs (ca. 9% and 7%), NP (ca. 3.4% and 1.3%) and AP (ca. 3.4% and 3%) and others 

including unidentified compounds individually (ca. 21% and 35%) (data in parenthesis 

represent % of TOC in cells grown under the +N and –N conditions, respectively, and 

harvested at day 8). The differences in accumulations between both conditions during 

stage II (day 4 to 8) was also shown in Fig. 13e. According to data, FAs, proteins and 

NP are positively produced under the +N conditions and vice versa under the –N 

conditions. Whereas alkenones, alkenes and AP are positively produced under the –N 

conditions and vice versa (Fig. 13e). This figure shows the production of alkenones and 

proteins are conversely regulated by change in N-nutrition conditions. In order to 
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examine the significance of the storage components in C-storage, C-allocation patterns 

during day 5, 6 and 8 were also represented clearly in Fig. 14.  

Changes in macromolecular carbon pools from FTIR spectra 

The FTIR spectra of +N and –N cultures showed a clear difference in the 

accumulation of carbon content into major macromolecules (Fig. 15). Increasing 

alkenone content under –N can be clearly seen from the increasing alkenone specific 

peak (at 962.5 cm
-1

) during day 6-8. Another peak at 1705.5 cm
-1

, also increased under 

–N specifically. Also, a large difference in carbohydrate specific peak (1057 cm
-1

) was 

observed between +N and –N conditions. From the semi quantification data, 

accumulation patterns of alkenones and lipids and carbohydrates were observed as 

shown in Fig. 16. This data also show similar trend in accumulation of alkenones and 

depletion of proteins under –N conditions in comparison to +N condition. However, the 

carbohydrate pool under –N condition (35 to 52 ± 3 μg mL
-1

) was higher than +N (22 to 

34 ± 3 μg mL
-1

) condition. The signal at 1057 cm
-1

 is assumed to be same for 

polysaccharides and other carbohydrates. It occupies nearly 35 to 45% of the total 

cellular contents besides proteins. It appears to be increasing over time in both 

conditions. Further analysis of FTIR spectra for LMC fraction (Fig. 17) showed an 

increase in specific peaks at 1057 cm
-1

 under both conditions. However, the LMC 

specific peaks were much big in spectra of –N day 7-8, indicating stimulated production 

of LMC like sugars under –N condition. 
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Discussion   

Changes in cell growth and carbon storage caused by –N 

The analyses of C-allocation into major cell metabolites such as proteins, 

carbohydrates, alkenones, FAs, AP and NP were performed in E. huxleyi CCMP 2090 

cells grown in a continuous light under the +N and –N conditions. It is very clear that 

the –N triggered suppression of algal growth and Pi-utilization together with the 

enlargement of cell volume (Figs. 5, 6). The suppression of Pi-utilization by the –N can 

be explained by suppression of photosynthesis and growth. In addition, the rapid 

decrease in Pi concentration in the medium also suppressed cell growth, but the effect of 

Pi-limitation seems not so serious since cell growth was not so greatly suppressed under 

the +N conditions (Fig. 5). 

Increase in cell volume was also observed in other microalgae and explained by 

the suppression of cell division, namely the suppression of increase in cell number per 

culture, as reported previously (Flynn et al. 1993a, b; Msanne et al. 2012; Parrish et al. 

1998).  

The total organic carbon was determined in E. huxleyi CCMP 2090 under the 

–N (6.7 ± 0.9 pg cell
-1

) and +N conditions (ca. 3.85± 0.3 pg cell
-1

) at the end of stage-II 

in this study (Fig. 13). The value under the –N conditions is similar to the value (7.8 pg 

cell
-1

) reported by Riegman et al. (2000) in E. huxleyi (strain L) grown in a continuous 

N-limited (0.025 mM NaNO3) culture. These data suggest that N-limitation did not so 

greatly influence cell metabolism and total carbon accumulation per culture even after 

4-day under the –N condition in this study (Figs. 6, 13a). Such results agree with 
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previous reports which showed E. huxleyi has an ability to continue photosynthesis at a 

low rate even under the –N conditions (Loebl et al. 2010; Raven et al. 2012; Rokitta et 

al. 2014). 

Effect of –N on lipids in composition and unsaturation degree 

When E. huxleyi CCMP 2090 cells were exposed to the –N conditions, 

photosynthetically fixed C was greatly allocated into alkenones (ca. 27% of TOC) as 

storage neutral lipids. The C contents of alkenones in E. huxleyi CCMP 2090 was 

1.5-fold higher than that of previous reports in several coccolith forming strains under 

N- or P-limitation (Bell and Pond, 1996; Epstein et al. 1998; Epstein et al., 2001; Prahl 

et al. 2003; Pan et al. 2014). This indicates that the non-coccolith producing strains of E. 

huxleyi are adequate for their utilization as good alkenone producers in future study for 

biofuel production. 

The relative amount of alkenones (neutral lipids) accumulated was 77% of total 

lipids in E. huxleyi CCMP 2090 cells when grown under the –N condition. This is 

similar to maximum accumulation of neutral lipids during stationary phase (73% of 

total lipids) in E. huxleyi CCMP 371 as reported by Pan et al. (2017). On the other hand, 

non alkenone producers like Chlamydomonas reinhardtii and Nannochloropsis gaditana 

were reported to accumulate high amount of neutral lipids like TAGs (38%-79% of total 

lipids) under –N conditions (Simionato et al. 2013; Fan et al. 2011; Msanne et al. 2012; 

Li et al. 2011). This is due to that most algae, when placed under –N conditions shifts 

their metabolic direction from carbohydrates to MCFAs and produce storage lipids like 

TAGs (Choi et al. 2011; Elton et al. 2016; Jia et al. 2015; Michel et al. 2010; Negi et al. 

2016).  
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The haptophyte E. huxleyi was found to produce only very little amounts of 

TAGs; despite accumulating MCFAs under –N or during stationary phase (Reitan et al. 

1994; Pan et al. 2017). Similarly, my results also showed increased MCFAs and absence 

of TAGs under the N-limitation. In addition, Garnier et al. (2016) showed that 28% of 

the total storage lipids in wild-type of Tisochrysis lutea (WTc1) consists alkenones, but 

their amount was decreased to <2% in TAG-accumulating mutant (2Xc1). These results 

suggest that the biosynthesis of alkenones and TAGs might be co-regulated in a 

competitive manner in the haptophyte alga. When E. huxleyi cells were kept under –N 

conditions, the tricarboxylate carriers were up-regulated to increase delivering of 

precursors from lipid producing organelles to cytoplasm (Rokitta et al. 2014).  

On the contrary, the high accumulation of TAGs under –N conditions was 

observed in some strains of E. huxleyi and other alkenone producing haptophyte 

Isochrysis galbana (Maltisky et al. 2016; Parrish et al. 1998). According to these 

evidences, I cannot completely rule out the possibility that alkenone-producing 

haptophytes still maintain the ability or potential to produce TAGs and the metabolic 

potential is expressed under some conditions. Further study is required to elucidate the 

complete mechanism of alkenones and TAGs metabolism in alkenone-producing algae 

or phylogenetically related haptophyte species.  

Recently, some attempts are being made to utilize alkenones as alternate 

precursors of hydrocarbons for jet fuels such as C11-C18 alkanes (O'Neil et al. 2016). For 

the purpose, the development of metabolic engineering approach to manipulate the 

chain length of alkenones and alkenes as well as removing keto-group from the 

molecules will be strongly required. The information on the complete metabolic process 
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and the regulatory mechanism of alkenones and alkenes production will become more 

important to realize such metabolic engineering procedures. 

The C37:2MK (C37:2), molecule was dominantly synthesized among alkenones 

(50-60% of total alkenones) while C37:3MK (C37:3) comprised only 8-7% in E. huxleyi 

CCMP 2090 grown at 20°C (Fig. 10a). The result is different from Pan et al. (2017) 

reporting that C37:3 was dominant species occupying 28% of neutral lipids, namely 

alkenones, in E. huxleyi CCMP 371 grown at 17°C, suggesting species-dependent 

variation in alkenone composition. 

In contrast to the effect of –N to increase the production/quantity of alkenones, 

the composition of alkenones was not affected by N-availability during culture under 

both the +N and –N conditions (Fig. 10a). Therefore, the U
K'

37 index was maintained 

constant (Fig. 10b). The result was also confirmed by showing no significant difference 

in the ratio of C37:3/C37:2 during culture under the +N and –N conditions (Fig. 10c). 

These results agree with results of Popp et al. (1998), showing no significant change in 

U
K'

37 under N-limited conditions. Whilst, Pan and Sun (2011) reported that U
K'

37 

decreased with the increase in C37:3 and decrease in C37:2 and related to growth phase of 

E. huxleyi CCMP 371 grown at 17°C. The existence of inverse relationship between 

U
K'

37 and some factors such as NOx status and cell division was reported by Epstein et al. 

(1998). Yamamoto et al. (2000) observed that the unsaturation degree of alkenones and 

FAs (mainly C18) changed proportionally depending on growth stage during culture 

even in isothermal cultures. The present study showed significant changes in FA 

composition between +N and –N conditions without change in U
K'

37 throughout stage-II 

in E. huxleyi CCMP 2090 (Fig. 12, 10b) and the data agree with that U
K'

37 value is well 
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known to respond stably to temperature only but not to N-limitation (Popp et al. 1998). 

At this moment, there is no information on molecular mechanism how and why the 

alkenone unsaturation degree is responding to temperature change. Therefore, effect of 

other factors except temperature on unsaturation degree of alkenones needs to be 

carefully analyzed for which steps or genes are regulated and respond to temperature 

change in future study. 

The present results show that the chain length of alkenones was maintained 

almost same but with slight increase in C38 alkenones, but without any effect of 

N-limitation in E. huxleyi CCMP 2090 (Fig. 10b, d). However, recent reports using E. 

huxleyi CCMP 371 showed the increase in the production of C38 and C39 alkenones (Pan 

et al. 2017) and the decrease in chain length ratio (C37/C38) depending on changes in 

respiration and vary in various growth phases at the stationary growth phase (Pan and 

Sun 2011). At this moment, there is no clear explanation of such difference in trend of 

change in alkenone composition. 

Concerning effects of –N on polar lipids, no significant change was observed in 

total amount of FAs per cell when E. huxleyi cells were transferred from the +N to the 

–N conditions (Fig. 12a). However, the transfer of cells from +N to the –N triggered a 

remarkable change in the composition of FAs from C18-C22 PUFAs to C16-C18 saturated, 

mono- and di-unsaturated FAs (Fig. 12b-d). Similar results were previously reported in 

green microalgae and alkenone-producing haptophytes (Dunstan et al. 1993; Msanne et 

al. 2012；Reitan et al. 1994). Despite such remodeling of FAs composition, total amount 

was not changed. A minor difference in %C of FAs might be due to slight decrease in 

contents of long chain (>C18) PUFAs under the –N. Such results indicate the presence of 
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strong regulatory mechanism of C-allocation in membrane lipids. The proportions of 

C18 PUFAs, mainly 18:5n-3 were high under the +N conditions and decreased under the 

–N conditions, indicating their significance in the +N conditions (Fig. 12b-d). The 

18:5n-3 was identified as the major constituent occupying 40-60% of glucolipids in E. 

huxleyi (Bell and Pond 1996) and plays important role in photosynthesis (Pond and 

Harris 1996; Kotajima et al 2015). The decrease in 18:5n-3 might be decreased 

accompanied with decrease in chlorophylls (Figs. 6c, 12c). From this point of view, the 

decrease in 18:5n-3 may trigger thylakoid membrane remodeling, as suggested by 

occurrence of remodeling of chloroplast membranes under the –N conditions in the 

literature (Goodson et al. 2011). The proportions of moderately accumulated 18:3 and 

18:4 and less accumulated 20:4n-3 and 20:5n-3 did not change significantly during 

culture, irrespective of N-conditions. This may be due to the fact that these PUFAs are 

involved in phospholipid biosynthesis (Pond and Harris 1996).  

The level of DHA was constant at 17% of TFA content during culture, 

irrespective of N-nutrition conditions (Fig. 12) and the result is similar to Pan et al. 

(2014) reporting 18-19% of TFA content. It was reported that DHA is the major 

component (>60%) of phosphatidylcholine among other components such as 14:0, 16:0 

and 18:1n-9 in E. huxleyi (Bell and Pond 1996). Recently, abundance of 

phosphatidylcholine in total lipids was reported to be nearly 30% in E. huxleyi CCMP 

2090 (Shemi et al. 2016). In addition, current work showed that amounts of 16:0, 18:0, 

18:1n-9 and 18:2n-6 FAs were synthesized more under the –N conditions than +N 

conditions (Fig. 12b-d). These results indicate that N-limitation promotes remodeling of 

membrane lipids to transfer FAs from chloroplast membranes such as thylakoids to 
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non-chloroplastic membranes.  

Generally, 18:1n-9 is assumed to be involved in TAGs as energy storage or in 

membranes for regulating membrane fluidity (Brown et al. 1996; Iwai et al. 2014; Allen 

et al. 2015; Pond and Harris 1996). However, the haptophyte E. huxleyi CCMP 2090 

produces alkenones as storage lipids, but no TAGs and therefore 18:1n-9 may play 

significant role as membrane lipids in the alga.  

A model of metabolic regulation of C-allocation among various cell 

components by N-availability  

When E. huxleyi CCMP 2090 cells grown under the +N conditions were 

transferred to the –N conditions, C-allocation into proteins was greatly diminished from 

51% to 25% (Fig. 13b) during day 4 to 8. This data shows that, C fixed is allocated into 

non-N compounds for storing C under N-limited conditions where cellular metabolisms 

are depressed, as described in the literatures (Ball et al. 1990; Benavente-Valdésa et al. 

2016; Klein 1987). An increase in C:N ratio also supports this phenomena (Reitan et 

al.1994). The data also agree with the evidence showing that cells reallocate N for 

necessary proteins by degrading unessential proteins under –N conditions in diatoms 

(Alipanah et al. 2015; Bai et al. 2016) as well as E. huxleyi 1516 (McKew et al. 2013).  

The haptophyte alga E. huxleyi produces two kind of macromolecular 

polysaccharides, namely NP and AP, and those metabolisms are regulated by Pi 

availability (Kayano and Shiraiwa 2009). In previous reports, Obata et al. (2013) and 

Tsuji et al. (2015) identified that LMCs were mainly accumulated as metabolic carbon 

pools occupying nearly 35% of whole cellular TOC and mannitol is found to be one of 
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major compound in LMCs. However, the content of NP like β-glucan is low and does 

not function as energy storage and alkenones is the major energy storage compound in E. 

huxleyi (Tsuji et al. 2015). The present study confirmed the very small content of NP, 

but also clearly found that NP production was stimulated under the +N conditions and 

decreased by 2.5% under the –N conditions (Fig. 13c-e), whilst AP content was also 

small at ~3% TOC but clearly increased under the –N conditions (Fig. 13e). However, 

the exact reason for the increase in AP production under the –N conditions is yet unclear 

(Fig. 6f, 13e). One possible explanation is due to the stimulation of AP production used 

as the matrix for coccolith production under –N conditions even in E. huxleyi CCMP 

2090, which genetically lost coccolith production ability. According to my data, strong 

stimulation of coccolith production can be observed under the –N in 

coccolith-producing E. huxleyi NIES-837 (data not shown). Also, in this work AP was 

surely confirmed to be produced (Fig. 13e) and therefore it is possible to consider that 

AP is still produced even in this strain. On the other hand FTIR data showed an increase 

in carbohydrate content from semi quantification of 1057 cm
-1

 peak despite lower 

contents of total polysaccharides in E.huxleyi.  

Generally, microalgae can shift their carbon storage compounds from NP like 

β-glucan to neutral lipids like TAG under stress conditions (Elton et al. 2016; Jia et al. 

2015). Also, in another haptophyte strain (Tisochrysis sp. CCAP 927⁄14) an increase in 

carbohydrates along with neutral lipids during –N was observed (Lacour et al. 2012). 

Although LMCs were not directly quantified, I observed an increase in other 

unidentified components under the –N conditions during culture (Fig. 13d). Further, 

similar trend was also observed under –N condition FTIR spectra of MeOH:Dw fraction 
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that consist LMCs (Fig. 17). Therefore, I assume that LMCs including mannitol may 

function as carbohydrate C pool under the –N condition also. In order to estimate the 

LMC fraction from FTIR, semi quantification of polysaccharides and other unknown 

components is needed. However, at present such methods are not available and I am 

working on this. Therefore LMC accumulation could only be speculated visually.    

 Using quantitative analytical methods of colorimetric spectrometry and 

GC-MS in combination with TOC system, changes in the contents of major cell 

components (pg cell
-1

) were examined in E. huxleyi CCMP 2029 cells grown under the 

+N and –N conditions (Figs. 6-12). Individual amounts of all components proteins, NP, 

AP, FAs, alkenones and alkenes (expressed as percent of total carbons) were calculated 

for this purpose. Out of which, %C of proteins, AP and NP were considered as 

approximate measurements due to no availability of accurate compositional information. 

However, these results provide a brief understanding on patterns of C flow into various 

metabolites in E. huxleyi CCMP 2029 (Fig. 13).     

Current results indicate that proteins are most major components (46% of total 

carbons in the cells), and then neutral lipids composed of alkenones and alkenes (16%), 

polar lipids composed of FAs (9%) and polysaccharides composed of NP and AP 

(6.8%) in +N cells (Fig. 13c). This indicates that carbons fixed were mainly used for 

protein synthesis in E. huxleyi CCMP 2090 cells grown under the +N conditions, as 

reported in other studies in E. huxleyi (Kaffes et al. 2010; Rokitta et al. 2014) and in 

green algae such as Chalydomonas and Selenastrum (Fernández and Galvan 2007; 

Johnson and Alric 2013; Turpin 1991; Weger and Turpin 1989).  

In summary, a model in Fig. 18 represents the direction of C-allocation into 
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various cell components under the +N and –N conditions in the alkenone-producing 

haptophyte E. huxleyi CCMP 2090 which genetically lost coccolith production ability. 

The E. huxleyi cells exhibit a dynamic carbon directing and redirection mechanism to 

store the energy by changing N-availability. Alkenones are the only neutral lipids which 

are accumulated and immediately used as C sinks to store energy in this haptophyte alga. 

It might be an energy efficient mechanism to readily use stored C from alkenones than 

polysaccharides such as glucan. In addition, significant changes in acyl-group 

composition of polar lipid fraction show that this alga can effectively remodel its 

membrane lipids in response to variations in N availability. The detailed pathways 

including various intermediates involved in the carbon allocation mechanisms is yet to 

be discerned. All these results could be beneficial for understanding biological role of 

alkenones in haptophytes and further application of alkenones to geo-physical and 

geoscientific studies involving the alkenone paleothermometers and algal biofuel 

production. In addition, from FTIR results, we propose that a peak at 1075.5 cm
-1

 an 

alkenone related peak (Pelusi et al. 2016) can be used as a marker for N limiting 

condition in alkenone producing haptophytes.   
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Introduction 

Lipids are a complex mixture of a variety of fatty acids and specific chemical 

structures known as head groups. Different head groups have unique physio-chemical 

characteristics by which the lipids are divided into various classes. Due to such varied 

properties lipids play important role in biological systems. For example, cellular 

membrane fluidity can be affected the degree of unsaturation of the acyl chains. 

Identification and quantification of all lipids from biological samples to understand lipid 

metabolism and lipid mediated cell signaling is lipidomics (Han and Gross 2003). This 

helps us to study biosynthesis of specific metabolites, storage of energy, cellular 

membrane dynamics, study of diseases such as obesity, diabetes, atherosclerosis and 

cancer (Wenk 2005; Watson 2006). As a consequence lipidomics is an emerging 

discipline in many fields of scientific research spanning from industry to medicine. 

Despite having such significant role, due to their large number and diversity, the 

detection and molecular characterization of lipids from biological samples has been 

difficult.  

In general lipid mass spectrometry (MS), most of the lipid head groups are 

detected by positive ionization method and fatty acids (FA) are detected by negative 

ionization method (Brugger et al. 1997). Previously, several methods are established to 

detect major membrane lipid classes based on their head group fragmentation. 

Phospholipid, glycolipid classes are detected in both negative and positive ionization 

modes (Brugger et al. 1997; Ejsing et al. 2006; Milne et al. 2006; Taguchi et al. 2005; 

Welti et al. 2002; Popendorf et al. 2013). From these reports (as discussed in general 

introduction), it is indicative that for every type of lipid class detection, a shift between 
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positive to negative ionization might be required every time. This is very tedious job 

and might result in loss of necessary information. Also, detection based on multiple 

precursor ion scan (MPIS) for neutral lipids like DAG, TAG and polar lipid fatty acids 

are previously suggested (Stahlman et al. 2009; Ejsing et al. (2006). However, MPIS 

might result in acquiring less MS information as multiple experiments reduce search 

space. Further, several new lipid classes like Betaine lipids (BLs), 

phosphatidyldimethylpropanethiol (PDPT), glycosphingo lipids (GSLs) etc. are recently 

identified in marine haptophytes (Armada et al. 2013; Roche and Leblond 2010; Van 

mooy et al. 2009; Popendorf et al. 2013). Currently, very few methods are available to 

identify these new lipids on ESI/MS system. Therefore, there is a need to optimize the 

available methods to detect most of the lipid classes either in positive or negative modes. 

Also, optimization is a necessary process as ionization parameters vary with each 

MS-equipment. 

Prior to lipid detection by MS, lipid separation is also necessary. With recent 

advances in lipid separation techniques like chromatography, several reports are 

available on high performance liquid chromatorgraphy (HPLC) separation techniques 

for lipidomics. Hummel et al. 2001 showed separation of plant membrane lipids in a 22 

min time scale. Polar glycerolipid separation was developed by Sturt et al. (2004). Ikeda 

et al. (2011) showed separation of lipids species within lipid class in 90 min duration. 

Popendorf et al. (2013) improved the method of Sturt et al. 2004, to separate membrane 

lipids including marine Haptophyte specific lipids in a single 45 min run. All these 

methods focused on membrane lipid separation only. Recently, Knittelfelder et al. 

(2014) showed that by using ultra performance liquid chromatography (UPLC) 
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separation of neutral lipids and glycerol phospholipids in a single 50 min run. However, 

in most of these methods the separation of many lipid classes within phospholipids, 

neutral and glycol lipids together is not achieved completely. Also, more research is yet 

to be done on detection and separation of unique lipids like BLs 

(diacylglyceryl-3-O-carboxyhydroxymethylcholine, DGCC, diacylglyceryl 

trimethylhomoserine, DGTS and betaine like lipids, BLL), PDPT and GSLs (host 

specific glycosphingo lipids, hGSL and salicylic glycol sphingo lipid, sGSL) using 

LC-ESI/MS techniques.    

Besides lipid detection, qualitative analysis by computations approaches is 

another challenge. Qualitative analysis requires comparison of hundreds of lipid classes 

between positive and negative methods. This helps to confirm the presence of each lipid 

and its fatty acyl groups (Lipid class (FA1/FA2)). However, this is not a simple task due 

to large data. There are no available tools to do this kind of data processing. Most 

researchers’ use Excel based manual analysis, which is time taking and error prone. 

Also, as several lipid species are detected, representing those using simple bar graphs is 

also difficult. For a quick analysis of lipid classes and their relation with fatty acyl 

group’s, network based visualization is a good way. Network visualization of biological 

data can be done by using well known software’s like Cytoscape and BioLayout 

(Shannon et al. 2003, Theocharidis et al. 2009). These are most commonly used in 

genomic and proteomic analysis. But, they can also be used for lipidomics (Yetkuri et al. 

2007). However, preparing the data for this kind of tools is difficult for a naïve biologist. 

Therefore, there is a need for development of computational methods for lipidomic data 

processing. 
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Thus, the main objectives of this work are (i) to setup an efficient lipidomics 

platform for the analysis of cellular lipids and (ii) to implement lipidomic method for E. 

huxleyi lipidome analysis. Currently, there is no single method that can detect all lipid 

classes (including haptophyte specific lipids) in one ionization mode. In addition, lipid 

separation methods using LC techniques are also highly diverse. Therefore, it is difficult 

to use a single approach to separate all lipid classes and study the lipidome in a single 

experiment. In this work I address these two issues by using the knowledge of lipid 

fragmentation and separation methods from previous reports and optimizing them to fit 

into a single experiment. I also developed computational methods for qualitative 

analysis of lipidome data. All these could be helpful in studying the lipid metabolism of 

biological samples easily in less time. 
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Materials and Methods 

Internal standards (ISTs)  

13 ISTs related to major lipid class were purchased from Avanti Polar Lipids, 

Inc. (Alabaster, AL), Matreya LLC (Pleasant Gap, PA) and Sigma-Aldrich (St. Louis, 

MO). Stock solutions of all these ISTs were prepared by dissolving in respective 

solvents separately as shown in detail in Table. 4. From the stock solutions, samples of 

ISTs were made ranging from 100 ng to 1 ng concentration by dissolving into 

300:665:35 chloroform (CHCl3):methano(MeOH):[Ammonium acetate(NH4Ac)-300 

μM + Sodium acetate(NaAc)-50 μM ] according to Welti et al. (2002). NH4 and Na salts 

were used to induce adduct formation and therefore increase ionization efficiency. 

Thirteen samples with 100 ng concentration of each internal standard and a 

sample-mixture of all 13 internal standards (each at 100 ng) were used for optimization 

of lipid detection and LC separation parameters. 

Culture, sample collection and lipid extraction 

E. huxleyi CCMP 2090 was obtained from the National Centre for the Culture 

of Marine Phytoplankton (CCMP, Maine, USA). E. huxleyi CCMP 2090 cells were 

grown in artificial seawater Marine Art SF-1 (Osaka-Yakken, Osaka, Japan), enriched 

with Erd-Schreiber's seawater containing 10 nM sodium selenite instead of soil extracts 

contained as an original component (Danbara and Shiraiwa, 1999). The temperature, 

light intensity and air flow rate were maintained at 20°C, 100 µmol quanta m
-2

 s
-1

 

(continuously illuminated by fluorescent lamps) and aerated with ambient air at 75-80 

mL min
-1

/XX L culture, respectively. For the experiment a triplicate of E. huxleyi cells 
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were grown in flat oblong 1.5 L culture bottles and grown till stationary phase. 

For lipidome analysis, sampling was done during mid logarithmic phase and 

stationary phases. Fifty mL of culture was used to collect cell pellet. The pellet was 

freeze dried in 2 mL centrifuge tubes and store at -80˚C until lipid extraction. Lipid 

extraction was performed according to Popendorf et al. (2013). According to this, total 

lipids were extracted from each filter using a modified Bligh and Dyer method (Blight 

and Dyer. 1959) by adding 0.5:0.5:0.45 (v:v) MeOH:dichloromethane 

(CH2Cl2):phosphate buffered saline, PBS (137 mmol sodium chloride, 2.7 mmol 

potassium chloride, 11.9 mmol phosphate, pH = 7.4). Initially 0.5 mL of MeOH and a 

20 µL (100 ng µL
-1

) of the internal recovery standard (DNPPE) were added to the cell 

pellet and subjected to sonication to disrupt the cells. Later, 0.5 mL and 0.45 mL of 

CH2Cl2 and PBS were added, respectively. The solvent mixture was vortexed 

thoroughly for solvent fractionation. The samples were then centrifuged for 5 min at 

2,300 × g. The lower organic phase was transferred into pre combusted 2 mL glass vials 

by filtering them through a hand driven 0.20 μM organic filters (Millex-FG). The lipid 

fraction was further dried under N2 gas, resuspended into 200 µL of 9:1 CH2Cl2:MeOH. 

This final lipid sample was transferred to a 350 µL inserts in a 2-mL screw cap 

borosilicate glass vials (Agilent) and used for analysis. The transfer of organic solvents 

at all steps was done using combusted glass pipettes. Highly concentrated lipid crude 

extracts were also prepared similarly and used for optimizing MS-methods to detect E. 

huxleyi specific lipids.  

Lipid detection using QTRAP ESI-MS 

According to the principle of ESI/MS, a strong electric field in the capillary 
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induces formation of positive or negatively ionized lipids. Later by using tandem mass 

spectrometry, detection of both molecular and fragment ions was done (Brugger et al. 

1997; Han and Gross 2003, 2005). Here the first mass analyzer (quadrapole, Q1) is used 

for selection of molecular ion of interest, collision cell (Q2) is used for fragmentation 

and second mass analyzer (Q3) is used for selection of fragments of interest (Fig. 19). 

Based on the characteristic mass of detected product ion, it is considered as precursor 

ion scan (PIS) or neutral loss scan (NL). Q3 scan is referred as PIS when the mass of 

head group/FA of interest is equal to the mass detect at Q3 (product ion mass). On the 

contrary, if the difference between mass of molecular ion (at Q1) and product ion is 

equal to mass of head group/FA of interest, it is considered as NL (Fig. 19). An MPIS 

scan is also employed either in positive or negative ion mode. This is needed when 

several PIS scans for detecting a certain type lipid class is needed (TAG and DAG in 

positive mode; Fatty acids in negative mode).  

Lipid ISTs samples at 100 ng concentration were introduced by syringe (direct 

injection) into the ESI source on a triple quadrupole MS/MS (QTRAP 5500, ABSciex, 

Framingham, MA, USA). But, by combining data from both methods provides details 

on lipid type and its fatty acyl composition as shown in Fig. 20. This approach will 

provide highly reliable qualitative lipidome data.  

The lipid fragmentation was initially done using an automated optimization 

method by operating in both positive and negative ionization method. This resulted in 

certain electric potentials that are needed for lipid class selection (at Q1) and 

fragmentation (at Q2, Q3). These voltages for de-clustering potential (DP), collision 

energy (CE) and collision exit potential (CXP) were recorded, respectively. These 



49 

 

voltages were further fine-tuned by manual optimization. Here each of these parameters 

was manually changed until a large signal for lipid specific fragments was obtained. 

Except DP, CE and CXP, other parameters of the mass spectrometer were not changed. 

This was because of their minimal influence on lipid fragmentation. Thus, the entrance 

potentials at 10 V and -10 V, electron spray capillary voltage at 5500 V and -4500 V, 

source temperature (TEM) at 0˚C and ion source gases GS1 at 15 and 14, GS2 at 0, 

curtain gas (CUR) at 20 (arbitrary units) were fixed in both positive and negative 

ionization methods respectively.  

In addition, special lipid classes like BLs (DGCC, DGTS and BLL), PDPT and 

GSLs (hGSL and sGSL) were detected in E. huxleyi according to Maltisky et al. (2016) 

and Fulton et al. (2014). However, except for DGTS, internal standards for these lipid 

classes were commercially not available. Therefore, to setup detection methods for 

these lipids, fragmentation-optimization was done using a highly concentrated crude 

lipid extract of E. huxleyi CCMP 2090. During this process, based on the lipidome data 

from Malitsky et al. (2016), mass of the most abundant lipid species of above lipid 

classes was taken as reference.      

All the optimized parameters for fragmentation (DP, CE and CXP) and 

detection (NL and PIS) were used to make a method for lipidome analysis. Triplicates of 

E. huxleyi CCMP 2090 lipid samples were analyzed using this method. Data collection 

was done using Analyst 1.5 software, and data analysis was done using updated 

LipidView 1.1 (Zhou et al., 2011) software (ABSciex, Framingham, MA, USA).  

Lipid class separation using normal phase HPLC system 
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Here, I attempted to separate lipids based on their head group polarity. For this 

separation of lipids prior to ESI-MS analysis, I used a normal phase HPLC column (150 

x 2.1 mm 5 µm BETASIL Diol). Chromatographic separation was performed on an 

Agilent 1200 HPLC system (Agilent Technologies) consisting of a binary pump, auto 

sampler (with sample tray cooled to 4°C). The HPLC eluents and gradient flow was 

adopted from Popendorf et al. 2013 and further optimized in several attempts to achieve 

lipid class separation. Eluants were as follows (by volume): eluent A= 600:400:1.0:0.4 

n-hexane:isopropanol:formic acid: 25 % aqueous NH4; eluent B= 880:120:1.0:0.4 

isopropanol:water:formic acid: 25 % aqueous NH4. For the separation of lipids, the 

gradient was performed as follows: 100 % A to 31.5 % B in 8 min, then increased to 

51.5% B in 7 min, followed by increase in B up to 71.5% within 12 min, hold for 5 min, 

then recover to 100% A in 3 min and hold for 15 min. The flow rate was started from 0 

to 0.1 mL min
-1

 within 8 min and hold at 0.1 mL min
-1

 till the end. The gradient flow 

and solvent parameters were provided in Table. 7 and Fig. 21. In case of E. huxleyi 

lipidome, PDPT lipids were observed to elute beyond 50 min, so the last step of 

gradient elution was extended to 60 min. 

Computational methods for qualitative analysis and quantification 

PERL programming based algorithms were developed for qualitative data 

analysis. The results from the PERL scripts confirm the presence of each lipid species 

and also calculate unknown fatty acyl groups. This flow chart for data processing is 

shown in Fig. 22. The PERL algorithm (Lipid-compare.pl) identifies a common lipid 

species in both ionization methods based on the head group name. The head group name 

(ex. PC 38:3) generally consist name of lipid class [PC], total carbons [38] and total 
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double bonds [3]. The lipid class in negative mode consists a fatty acyl group also (ex. 

PC 38:3 (-FA 24:3)). Once common lipid species are detected, other unknown FA of the 

lipid are calculated. For this, the fatty acyl group detected in negative mode is 

considered as FA1 (ex: FA 24:3) and the algorithm calculates other fatty acid of the lipid 

as FA2 (ex. FA 14:0). This is a simple subtraction where carbons and double bonds of 

FA1 are subtracted from total carbons and double bonds of head group to obtain FA2. 

Positive mode lipid species whose negative counterpart is not detected are not 

considered in this analysis. Similarly, the negative mode data without positive counter 

parts was also not considered in this analysis. The list of lipids with both FA1 and FA2 

is considered as the reliable qualitative data, lipid-list-1. The intensities (from positive 

mode) of these lipids in lipid-list-1 were used for quantitative analysis. For 

quantification, the lipid MS-intensities were normalized by DNPPE and concentration 

was calculated. This list consist lipid class name, total number of carbons, double bonds, 

fatty acyl groups and their quantities (mol%). Once this is done, final qualitative check 

is done by selecting the lipids that are detected in more than half of the replicates in 

either of the methods. The final lipid-list-2 is generated, this list have most reliable and 

highly confirmed lipid species in lipidome.  

For visualization of lipidome data, Biolayout 3D V 3.0 software was used 

(Theocharidis et al. 2009). This needs a specific input file format with interacting 

partners (ex. A interact with B is given as A-B) and parameters to represent them (like 

shape, size etc.). The interacting partners were considered as nodes (shown as a sphere, 

square etc.). The interaction is nothing but a relationship between two components. In 

networks this relation is represented as an edge (a line connecting two components). 
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The interaction list of all components is known as edge list. For all detected lipid 

species, we considered the lipid class, their FAs and carbon number as components 

(nodes) which are interacting with each other. Using this information I generated an 

edge list of E. huxleyi CCMP 2090 lipidome. The size of the node was based on the 

carbon number and total number of interactions with other nodes. As several lipid 

species are detected, making such input file for BioLayout is difficult. For this I 

developed PERL scripts (Pre-BioLayout.pl, BioLayout-Lipid-FA.pl and 

BioLayout-CC.pl). The output of these scripts is directly used as input for BioLayout 

tool which immediately shows a network of lipidome. Working protocols of all PERL 

scripts were included in Appendix for PERL scripts. Original PERL programs were 

attach at the end of this thesis.  

  



53 

 

Results 

Lipid class ionization and fragmentation  

Lipid class specific fragments were successfully obtained and parameters like 

DP, CE and CXP were optimized (Table. 5, 6). These were classified into neutral loss 

(NL) scans or precursor ion scans (PIS). This classification is based on the m/z of 

molecular ion detected at Q1 and product ion detected at quadrapole Q3 as shown in Fig. 

19. A multiple precursor ion scan (MPIS) was used to detect fatty acyl groups of polar 

lipids in negative ion mode as [M-H]
-
 ion. Head groups in positive ionization method 

were analyzed as [M+H]
 +

 and [M+NH4]
+
. While neutral lipids like TAG and DAGs 

were only detected in positive ion mode. The NL and PIS scans of TAG and DAG were 

obtained from ammonium adducts of FA group [FA+NH4]
+
 and FA-glycerol 

[FA+C3H6O+NH4]
+
 groups respectively (Table 5, 6). Among 13 lipid classes, 12 of 

them (phosphatidicacid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), phosphatidylserine (PS), triacylglycerol (TAG), 

diacylglycerol (DAG), monogalactosyldiglyceride (MGDG), digalactosylglyceride 

(DGDG) and sulfoquinovosyl diacylglycerols (SQDG)) were detected in positive 

ionization method as shown in Table. 5. The fragments of these lipid classes were 

PA-115 m/z, PC-184 m/z, PE-141 m/z, PG-189 m/z, PS-185 m/z, MGDG-359 m/z and 

DGDG-197 m/z respectively. While phosphatidylionositol (PI – 241 m/z) and fatty 

acids (FA) of polar lipid classes were detected in negative ionization method (Table. 5). 

The mass spectra of 12 internal standards, detected in positive ionization mode are 

shown in Fig. 23. E. huxleyi specific lipids were also detected in positive mode through 

head group fragmentation and formation of [M+H]
 +

 molecular ions. The head group 
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fragments of these lipids are as follows, PDPT (201.2 m/z), DGCC (104.1 m/z), DGTS 

(236 m/z), BLL (190.1 m/z), hGSL (180.4 m/z) and sGSL (268.07 m/z). The details of E. 

huxleyi specific lipid fragmentation based on reference lipids were provided in Table. 6. 

Neutral lipid, glycolipid and phospholipid class separation 

Using the normal phase HPLC chromatography (Fig. 21), I successfully 

separated all major lipid classes within 50 min (60 min for E. huxleyi) in a single run. 

As shown in Fig. 24, neutral lipids like TAG and DAG were separated from the 13-lipid 

IST mixture within 9 min. Glycolipids like MGDG, DGDG, SGDG were separated 

within 23 min. The unique internal standard DNPPE which is used for quantification of 

crude extracts was detected at 23 min along with PG. Other phospholipids like PE, PI, 

PA, PS and PC were separated in a sequential order from 25 min to 40 min as show in 

Fig. 24. Further separation of E. huxleyi specific lipids from crude extract was also 

achieved. Among which, hGSL, sGSL, DGTS, BLL, DGCC and PDPT were separated 

nicely at 13, 26, 32, 37, 38 and 46 min respectively. Fig. 25 represents the extracted ion 

chromatogram of all major lipid classes detected in E. huxleyi and their retention times.       

Cell growth, inorganic phosphate and chlorophyll 

E. huxleyi CCMP 2090 cells grown at 20°C in +N batch culture were normal. 

The cell growth followed a general trend from logarithmic to stationary phase (Fig. 26a). 

The inorganic phosphate concentration (Pi) in the medium (the initial concentration: 30 

M) was nearly depleted to 1.4 µM under the by day 4 (Fig. 26b). The chlorophyll 

content appeared to be increasing in all replicates (Fig 26. C) during logarithmic to 

stationary phase.  
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Lipidome of E. huxleyi CCMP 2090 

Lipdome analysis of E. huxleyi CCMP 2090 resulted in detection of nearly 600 

lipid species in each positive and negative ion mode. PERL algorithm based selection of 

common lipids from positive and negative ionization resulted in identification of 365 

lipid species (Table. 8). This data is lipid-list-1. From the quantification of these lipid 

species, no significant difference was observed in the accumulation of lipids during 

logarithmic and stationary phases (Fig. 27). Due to database technical issues, some lipid 

classes were not properly annotated. Phospholipids (PC and PC/SM) were detected as 

the major lipid class comprising of 73.5% of total lipidome in logarithmic phase and 

decreased to 65% during stationary phase. Whereas, glycolipids like MGDG were 

increased from 12% to 17%, DGDG and SQDG were nearly 2% to 3% during 

logarithmic phase to stationary phase. On the other hand, E. huxleyi specific lipids like 

sGSL and hGSL were not detected by the database, as no information was available in 

the database. Only manual observation indicated the presence of these lipids. I also 

attempted to add the lipid information for PDPT, DGTS, DGCC and BLL to the 

LipidView database. After addition, the composition of each of these lipid classes was 

detected to be less than 2% in the total lipidome. Further, I detected TAGs that are 

composed of FA 18:1 in the lipidome of E. huxleyi. However, the compositions of TAGs 

was very low (2% mol of total lipidome) under both conditions.  

From the lipid-list-1, very long chain fatty acids (VLCFAs) like 

tetracosatetraenoic acid (24:4), tetracosaopentaenoic acid (24:5) and tetracosahexaenoic 

acid (24:6) in PDPT and DGTS like lipid species were also detected (Fig. 28). The 

amount of these lipids was also observed to be increased during stationary phase. In 
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addition, odd chain fatty acid FA 15:0 was also detected from this analysis (Fig. 28c).  

However, their content appears to be very less, as most of them are not detected in 

lipid-list-2. Nearly 80 lipid species were identified in lipid-list-2. These were assumed 

to be highly reliable lipids (Table. 9). Total lipidome processing resulted in detection of 

many fatty acids. Nearly 42 types of fatty acyl groups were identified as shown in Table. 

10. Fatty acyl groups in lipid-list 1 and 2 are mainly composed of FA 14:0. From the 

qualitative analysis using PERL scripts network models for lipidome of E. huxleyi were 

successfully generated. Fig. 29 and Fig. 30 represent the network models based on the 

lipidome data from lipid-list-1.  
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Discussion 

The main objective of this study was to establish methods for lipidomic 

profiling using MS. I identified the lipid classes based on the PIS, NL and MPIS 

techniques available in MS. These techniques were used for the comprehensive analysis 

of metabolites categorized by structural similarities of specific fragments (Han and 

Gross 2003 and 2005, Taguchi et al. 2005 and Ejsing et al. 2006). To improve the purity 

and detection sensitivity of the sample by ESI-MS, I also focused on establishing lipid 

separation technique using HPLC column.  

Improved detection methods  

I successfully optimized the fragmentation and detection parameters for major 

lipid classes using QTRAP ESI-MS machine. All the 13 lipid standards were 

successfully fragmented (Table. 4). 12 lipid classes were detected in positive ionization 

mode and only PI in negative mode as shown in Tables. 5, 6. Current method 

successfully achieved fragmentation of all most all lipid classes in a single mode. This 

could be an easy way for naïve users to perform lipidome analysis. To detect the acyl 

groups of lipids (especially polar lipids) it is necessary to use negative ionization mode 

(Ejsing et al. 2006). The intensities of detected lipid ISTs in positive mode were 

observed to be different even at same concentration (Fig. 21). This indicates that the 

sensitivity of fragmentation of each lipid class varies. Therefore it should be noted that, 

peak height does not mean actual concentration of the lipid.  

Using highly concentrated E. huxleyi lipid extract was found to be helpful in 

optimizing parameters for lipids like GSLs, BLs and PDPT (Table. 6). Interest in 
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studying these specific lipid classes of marine Haptophyta is increasing recently 

(Armada et al. 2013, Van Mooy et al. 2009). Among which BLs play a key role under 

nutrient limitation (Van Mooy et al. 2009), sGSL and hGSL play a significant role in 

viral infection (Shemi et al. 2015; Rosenwasser et al. 2014; Malitsky et al. 2016; Vardi 

et al. 2009) and PDPT are major constituents in lipid body formation (Fulton et al. 

2014; Harwood and Jones 1989; Hunter at al. 2015). Separation and detection of these 

lipid classes using QTRAP ESI/MS has not been previously reported. Therefore, current 

report could be helpful for future research on these lipids.  

Lipid separation was achieved by modifying the method of Popendorf et al. 

(2013) using a normal phase BETASIL DIOL column (Table. 7 and Fig. 21). This 

resulted in separation of neutral lipids (nonpolar lipids), phospholipids, glycolipids and 

E. huxleyi/Haptophyte specific lipids in a single run (Fig. 24, 25). Previously available 

methods can separate various membrane lipid (polar lipids) classes within 30-45 min 

range (Hunter et al. 2015; Strut et al. 2004; Popendorf et al. 2013). However, in many 

cases fractionation of crude extracts into polar and non polar lipids is needed to detect 

all lipid classes. While, this improved method can separate almost all lipid classes 

including neutral lipids without any prior fractionation. Though this method consumes 

slightly more time for lipid separation (50-60 min), it could be advantageous over 

others.     

Changes in lipidome of E. huxleyi and scope for new findings 

From the lipidome analysis of E. huxleyi CCMP 2090, phospholipids, 

especially PC lipid class were observed to be dominant. The lipid composition remained 

similar throughout the experiment (Fig. 27). This indicates no significant influence of 
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growth stage of the cell on its lipidome. Higher content of PC was also observed in 

some coccolith forming strains (Pond and Harris 1996). Decrease in PC (8.5% mol) and 

an increase in MGDG (4% mol) was observed as the cell underwent changes from 

logarithmic to stationary phase. These slight changes might be due to nutrient 

concentration. During the stationary phase (day 6 to 12 in Fig. 26a), phosphate 

depletion can be observed in the medium (Fig. 26b). On the other hand, nitrogen 

limitation was not observed here as the chlorophyll content appears to be increasing 

during stationary phase (Fig. 26c). In a separate experiment on N-limitation, I observed 

that N-limitation occured after 12 days in a batch culture. Therefore the nutrient 

limitation is surely due to phosphate limitation. Because of this slight decrease in 

phospholipids might have occurred and chloroplast membrane lipids might be still 

accumulating. Studies by Malitsky et al. (2016) show that the lipidome of E. huxleyi 

CCMP 2090 is mainly composed of MGDG during logarithmic phase. This is quite 

opposite to my current finding. Therefore, the differences might be due to differences in 

culture conditions or lipidome analysis platforms. Moreover, the techniques used to 

analyze lipidome and database reliability, plays a key role in this kind of analysis. 

Therefore, validation of differences in mass spectrometric platforms should be made in 

future. Also, as the sensitivity of fragmentation varies between lipid classes, using an 

internal standard more similar to phospholipid might be the reason for such results. In 

order to reduce such effects during quantification, it is suggestible to use standards for 

each lipid class. In the current method, I tried quantification using DNPPE only, based 

on previous studies. Further optimization can be done to improve quantification of 

lipidome.   
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Qualitative lipidomics and computational methods 

Detection of a lipid class and all its constituents (head group and acyl groups) 

is a crucial step in lipidomics. Till date, it was difficult to compare and combine large 

amount of lipidome data. So, previous reports were able to provide the lipidome data 

either from negative or positive ion mode only (Hunter et al. 2015; Malitsky et al. 2016; 

Milne et al. 2006; Taguchi et al. 2005). Recent advances in computational techniques 

provide us the opportunity to handle biological data effectively (Yetkuri et al. 2007). 

Using PERL programming language, I was able to develop simple computational 

algorithms for this purpose (Fig. 22). By combining the data from both ionization 

methods, I successfully identified lipid head groups and their fatty acyl tails (Fig. 20, 22 

and Table. 8, 9). Out of 600 lipid species, 365 lipid species were detected in both 

methods and 80 lipid species were highly identified in more than half of the replicates. 

These 80 lipids must be consistently produced by E. huxleyi despite changes in the 

growth phase.  

Current lipidome results of E. huxleyi indicate presence of VLCFAs and odd 

chain fatty acid like FA 15:0 in this strain (Fig. 27). Though they appear in a very low 

concentration, it is clear that these fatty acids are produced by this strain. These were 

not previously reported in this strain due to lack of such sensitive equipment. VLCFAs 

like FA 24:4, FA 24:5 and FA 24:6 were detected mainly in PDPT and DGTS. These 

FAs were intermediates of mammalian type of DHA biosynthesis “Sprecher” pathway 

(Sprecher et. al 1992, 1995, 2000). DHA is an essential fatty acid useful as nutrient 

source in food and industry. It is the most abundant fatty acid in E. huxleyi (Bell and 

Pond 1996). Therefore the accumulation of DHA is speculated to be in multiple ways. 
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However, general GC-MS techniques did not indicate presence of any intermediates. 

Previously, the presence of intermediate fatty acids and coenzymes for DHA 

biosynthesis in E. huxleyi from the calculated fatty ESI-MS approach was speculated 

(Ohi and Shiraiwa 2015). Here, I improved the detection methods and were able to 

clearly identify the presence of these intermediate fatty acids. Further, from the network 

view of 365 lipid species, the relation between lipid class and acyl group compositions 

can be clearly understood (Fig. 29, 30). From Fig. 29, large size of lipid class nodes 

(spheres) indicate the large number of specific lipid classes. Larger FA 14:0 node 

indicates that it is present in most of the lipid classes. Such nodes are considered as hub 

nodes as they have many links with other nodes. In general, these hub nodes are 

considered as key/central regulators of any pathway. Therefore, one can understand that 

by targeting such central nodes we can alter any pathway (especially here lipid 

biosynthesis). Similarly from Fig. 30, we can identify which lipid classes share similar 

carbon content and how significant the carbon composition for each lipid class. 

Therefore, these techniques could be effectively useful for understanding lipid 

metabolism and fatty acid exchange/transport mechanisms across lipid membranes.   

In summary, this study successfully optimized detection of almost all major 

lipid classes in positive ionization mode. On the other hand, the developed LC method 

provided better separation of all described lipid classes based on their head group 

polarity. Using the optimized methods, I was able to identify several lipid species in E. 

huxleyi CCMP 2090. The combination of positive and negative ion mode data using 

computational methods resulted in successful detection of lipids and their acyl 

components.  
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General discussion 

In part I, carbon allocation mechanism into various photosynthetic products of 

E. huxleyi CCMP 2090 was examined. I mainly focused on production of unique lipids 

like alkenones (Fig. 8 - 10) and their relation to N-availability and carbon storage 

mechanism (Fig. 13, 14). Lipidome results from my study indicated that alkenone 

accumulation was triggered under –N condition. Nearly 4 fold accumulation in alkenone 

content was observed, while no significant increase in other lipid content (neutral lipids 

like TAGs and membrane lipids) was detected (Fig. 11, 12). This assures the role of 

alkenones as storage lipids instead of TAGs. This could be very useful for biofuel 

research (Wu et al. 1999; O’Neil et al. 2015, 2016). Further, same levels of total fatty 

acids content in polar lipid fraction under +N and –N suggest that alkenone biosynthesis 

might not be strongly dependent on membrane lipid biosynthesis. However, the role of 

FA biosynthesis in alkenone accumulation and TAG accumulation cannot be ruled out 

completely (Rotnani et al. 2006). A future sensitive lipidome analysis might be needed. 

Also, by inducing alkenone production using such –N conditions, I might be able to 

identify genome, proteome or metabolite precursors involved in alkenone biosynthesis. 

This might lead to development of advanced methods for industrial level alkenone 

production for biofuel synthesis. On the other hand, geophysical studies that use 

alkenones as paleothermometers could also benefit from the current work (Brassell 

1986; Müller et al. 1998; Prahl and Wakeham 1987). My results showed that the U
K'

37 

index and accumulation of different types of unsaturated alkenones were not affected by 

N-limitation (Fig. 12, 10b). Therefore, alkenone unsaturation can be used as a 

temperature calibration tool even for samples collected from low nitrogen environments. 
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The unsaturation responses to nutrient limitation are more similar to some of the 

noncoccolith strains Popp et al. (1998) and opposite to coccolith forming strains (Pan 

and Sun (2011). The reason for these differences could be genetic; however there is no 

information on the actual molecular mechanism.  

Further, a dynamic carbon directing and redirection mechanism was also 

identified in E. huxleyi CCMP 2090 in my study (Fig. 14, 18). Accumulation of more 

carbon into alkenones under –N conditions shows that alkenones are the immediate C 

sinks. These results provide a clear evidence for the role of alkenones as storage 

components (Eltgroth et al. 2005; Epstein et al. 1998; Prahl et al. 2003). Marine 

phytoplankton like E. huxleyi is responsible for driving global carbon cycle through 

photosynthetic C fixation into various components (Field et al. 1998). On the other hand, 

this is also linked with E. huxleyi primary production which is regulated by nutrient 

availability through ocean upwelling processes (Behrenfeld et al. 2006). Despite 

depletion of nitrogen by diatom blooms in the oceans, E. huxleyi continues to bloom 

(Holligan et al., 1993). This is due to presence of N-scavenging mechanisms (Rokitta et 

al 2014) which are simultaneously activated with carbon metabolism. Current results 

provide significant information on the C allocation in non coccolith strains of E. huxleyi 

and their survival under N-limitation conditions. Most of the carbon accumulated in the 

form of protein is re-allocated into alkenones (27% Ca.). In natural conditions, during 

algal blooms cells are exposed to high light and nutrient depletion (Iglesias-Rodriguez 

et al. 2002). During this condition storage of carbon in the form of TAGs might be 

subjected to photo oxidation. Whereas in alkenones, their trans-double bond geometry 

provides a more photostable form of energy storage (Eltgroth et al. 2005). Therefore, 
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accumulation of alkenones can be speculated as an obvious phenomina to store energy 

for growth and survival even in natural N-limited conditions. In addition to C storage 

into alkenones, I also speculate that LMCs (like mannitol) are accumulated (Fig. 17). 

This could be a secondary storage pool besides alkenones, as they can accommodate 

nearly 35% Ca. in several strains of E. huxleyi (Obate et al. 2015; Tsuji et al. 2015). All 

my findings suggest that, alkenones play a key role under N-limitation. This also builds 

hopes for future research on alkenone based climatic studies and development of 

alternate energy systems.    

In Part II, I focused on developing methods for lipidomics. Here, I succeeded in 

improving LC separation and ESI/MS based lipid profiling methods. The optimized 

detection of almost all major lipid classes in positive ionization mode is beneficial for 

quick lipid analysis (Table. 5). This provides a good alternative for many MS lipid 

detection methods which require frequent transition from positive ionization to negative 

ionization modes (Brugger et al. 1997; Ejsing et al. 2006; Taguchi et al. 2005). 

Successful optimization of novel lipid fragmentation and detection from concentrated 

crude extracts was achieved in this study (Table. 6). These simple strategies could be 

beneficial for detecting lipids that do not have commercial standards. From these, 

previously described E. huxleyi specific lipids like hGSL and sGSL were detected along 

with some PDPT and beatine lipids (Shemi et al. 2015; Rosenwasser et al. 2014). On the 

other hand, the developed LC method provided better separation of all described lipid 

classes based on their head group polarity (Table. 7, Fig. 21, 24). This is an 

improvement of normal phase chromatographic technique and useful for most kinds of 

biological samples. However, due to limited database sources for Haptophyte specific 
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lipids and no MS-data processing tools several challenges are yet to be addressed. My 

work is the first attempt in my research group to establish advanced and sensitive mass 

spectrometry analysis methods. Despite hurdles in setting up from scratch, the 

developed lipid profiling methods show promising sensitivity than available GC/MS 

methods. Using the optimized methods, I am able to identify nearly 600 lipid species E. 

huxleyi CCMP 2090. Further, the developed computational algorithms generated 

qualitative data of 80-365 most reliable lipid species (Table. 8, 9). Unknown 

mechanisms like mammalian type DHA biosynthesis pathway in E. huxleyi were also 

speculated in this study (Fig. 28). Further, I also developed a platform to use network 

models to study lipid metabolism (Fig. 29, 30). From the improved lipid detection, 

separation and computational methods, I showed that a comprehensive lipid profiling 

can be made. This could therefore be helpful towards exploring alkenone and lipid 

biosynthesis mechanisms in future. 
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Tables and Figures 

 

 

 

 

Table. 1. Carbon content of E. huxleyi cellular components from chemical 

structure 

Cellular components  Composition  Carbon content 

Neutral polysaccharides  Glucose  0.40 (β-glucan structure)  

Acid polysaccharides  Galactouronic acid, mannose, 

Rhamminose, xylose, 

Ribose/arabinose  

0.39 (Fichtinger-Schepman et 

al. 1981)  

Proteins  Amino acids  0.53 (Laws , 1991)  

Alkenones  C37- C39,  0.84  

Alkenes  C31 and C33  0.86  

Polar Lipids  All fatty acids detected  0.78  
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Table. 2. FTIR spectral band assignment with reference to Fig.15. Under lined 

wave numbers used for semi quantification of relate macromolecules 

Label Band assignment 

(wave number Cm
-1

) 

Functional groups 

≈ wavelength region  

Macromolecule class  

A 1732, 1734, 1737 Symmetric strech(v)  C=O 

≈ 1745 

Ester of lipids and fatty acids 

- LIPIDS  

* 1705.5 (v)C=O ≈ 1705-1706 Ketone (alkenone related) 

B 1655, 1651 (v) C=O≈ 1655 PROTEINS (Amide I) 

C 1057, 1060, 1163, 1165 (v) C-O-C ≈  1200–980 CARBOHYDRATES  

D ~962.5 Trans C=C ≈ 960-965 ALKENONES  
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Table. 3. Percentage of lipids measured from total lipid content 

Time(d

) 

Lipids 

4 5 6 7 8 

 
%lipids ± SD %lipids ± SD %lipids ± SD %lipids ± SD %lipids ± SD 

N-sufficient condition 

Alkenones 59.6  ± 5.3  61.8  ± 2.4  56.6  ± 3.4  55.3  ± 3.1  57.8  ± 5.7  

Alkenes 3.8  ± 0.4  5.1  ± 1.1  4.1  ± 0.3  4.1  ± 0.2  4.6  ± 0.5  

Fatty 

acids 
36.9  ± 5.6  33.1  ± 2.0  39.3  ± 3.7  40.6  ± 3.2  37.5  ± 6.2  

N-limitation condition 

Alkenones 43.3  ± 4.1  66.1  ± 1.5  68.8  ± 2.4  74.9  ± 2.2  77.3  ± 3.7  

Alkenes 4.1  ± 0.8  5.2  ± 0.3  6.1  ± 0.8  5.9  ± 0.4  5.9  ± 0.1  

Fatty 

acids 
52.6  ± 5.2  28.7  ± 1.8  25.1  ± 2.3  19.1  ± 2.0  16.8  ± 3.8  
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Table .4. Lipid internal standards (ISTs) information 

 

S.No IST  Full Name  Solvent (stocks ) 

1 PA(17:0/17:0)  
1,2-diheptadecanoyl- 

sn-glycero-3-phosphate  

CHCl3/MeOH/H2O 

(65:35:8)  

2 PC(17:0/17:0)  
1,2-diheptadecanoyl- 

sn-glycero-3-phosphocholine  
MeOH:CHCl3 (2:1) 

3 PE(17:0/17:0)  
1,2-diheptadecanoyl- 

sn-glycero-3-phosphoethanolamine  
CHCl3/MeOH/H2O(4:1:0.1) 

4 PG(17:0/17:0)  
1,2-diheptadecanoyl- 

sn-glycero-3-phospho-(1'-rac-glycerol)  
CHCl3/MeOH/H2O  

5 PI(18:1(9Z)/18:1(9Z))  
1,2-dioleoyl- 

sn-glycero-3-phospho-(1'-myo-inositol)  
MeOH:CHCl3 

6 PS(17:0/17:0)  
1,2-diheptadecanoyl- 

sn-glycero-3-phospho-L-serine  
CHCl3/MeOH/H2O  

7 DGTS (d9)  

1,2-dipalmitoyl- 

sn-glycero-3-O-4'-N,N,N- 

trimethyl(d9)]-homoserine 

MeOH:CHCl3 

8 
DG d5- 

(17:0/0:0/17:0)  
1,3(d5)-diheptadecanoyl-glycerol  MeOH:CHCl3 

9 
TGd5- 

(17:0/17:1(10Z)/17:0)  

1,3(d5)-diheptadecanoyl- 

2-(10Z-heptadecenoyl)-glycerol  
CHCl3  

10 MGDG  Monogalactosyldiacylglycerol  CHCl3/MeOH/H2O  

11 DGDG  Digalactosyldiacylglycerol   CHCl3/MeOH/H2O  

12 SQDG(18:3/16:0)  Sulfoquinovosyldiacylglycerol  CHCl3  

13 16:0 DNP PE  

1,2-dihexadecanoyl- 

sn-glycero-3-phosphoethanolamine- 

N-(2,4-dinitrophenyl)  

CHCl3  
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Table. 5. Lipid ISTs ESI/MS fragmentation parameters 

S.No  

Lipid 

class  

molecular 

ion  

Scan 

Type  Q3-m/z  kind of fragment  DP  CE  CXP  

Positive ionization method  

1  PA  [M+NH4]+  NL 115  PA[PA+NH4]  126  23  36  

2  PC  [M+H]+  PIS 184  LPC/PC+H  286  41  10  

3  PE  [M+H]+  NL 141  PE[PE/LysoPE]  71  30  36  

4  PG  
[M+NH4]+  

NL 
189  

PG 

[phosphorylglycerol+NH4]  136  28  36  

5  PS  [M+H]+  NL 185  PS(headgroup)  116  21  36  

6  DAG  [M+NH4]+  PIS 332  HEAD-dg-d5  101  35  32  

7  DNP-PE  [M+NH4]+  NL 324  DNP-FA16  86  35  33  

8  
DGTS  

[M+H]+  PIS 245  
DGTS-D9 

(head group)  46  63  14  

 

DGTS  [M+Na]+  NL 96  N+(CH3)3  101  46  39  

9  DGDG  [M+NH4]+  NL 359  Diglycosyl  141  39  36  

10  MGDG  [M+NH4]+  NL 197  Monoglycosyl  151  36  33  

11  SQDG  [M+NH4]+  NL 261  SQDG[SQDG+NH4]  106  25  34  

12  TAG  [M+NH4]+  NL 287  TAG  111  36  35  

Negative ionization method  

13  PI  [M-H]
-
  PIS  241  Inositol phosphate-H2O  -210  -52  -15  

14  FA of lipid  [M-H]
-
  MPIS  m/z of FA  FA-[H]

- 
 -100  -50  -15  
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Table. 6. E. huxleyi specific lipids and their fragmentation parameters.  

S.No  

m/z of 

lipids  

Scan 

Type  

PIS/NL Fragment type  Formula  

Lipid 

class  

DP  EP  CE  CXP  Reference 

1 710.6 PIS  236 
DGTS  

[headgroup + H
+
]  

C10H22O5N  DGTS 150 10 55 22 1 

2 856.4  PIS 190.1 
BLL  

[headgroup + H
+
]  

C7H12O5 BLL 55 10 40 10 1,2 

3 872  PIS 104.1 
DGCC  

[headgroup + H
+
]  

C5H14ON DGCC 226 10 120 12.5 1,2 

4 849.5  PIS 201.2 
PDPT  

[headgroup + H
+
]  

C5H14O4PS PDPT 200 10 42 10.8 1,2 

5 870.4  NL  268.07 
sGSL  

[headgroup + H
+
]  

C9H14O8+H

2O 
sGSL  200 10 

33.

2 
38.19 1,2 

6 806 NL 180.4 
hGSL  

[headgroup + H
+
]  

C6H12O6 hGSL  200 10 20 35 3 

7 - PIS  264.27 
Ceramide 

backbone 
d18:1  Cer  140 10 32 15 4,5,6 

9 - PIS 369.3 sterol head C27H45 Chol  210 10 25 10 6 

References: 1.Maltisky et al., 2016, 2. Fulton et al., 2014,3. Vardi et al., 2012, 4. Rebecca L.Shanner, 

2009, 5. Hsu and Turk, 2000, 6. Hunter et al., 2015;  Lipid abbreviation are as follows: 

phosphatidyldimethylpropanethiol(PDPT),Diacylglyceryl-3-O-carboxyhydroxymethylcholine 

(DGCC), Diacylglyceryl trimethylhomoserine (DGTS), betaine like lipids (BLL), host specific glyco 

sphingo lipids (hGSL) and salicylic glycol sphingo lipid  (sGSL), Cerramide (cer), Cholesterol (Chol) 
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Table. 7. HPLC gradient elution parameters. Table is provided with reference to 

Fig. 20. A and B represent elution buffers used in chromatography.  A= 

600:400:1.0:0.4          n-hexane:isopropanol:formic acid: 25 % aqueous NH4; 

eluent B= 880:120:1.0:0.4          isopropanol:water:formic acid: 25 % 

aqueous NH4.   

S.No Time (min) Flow rate (μl min
-1

) %A %B 

0 0 0 100 0 

1 8 100 68.5 31.5 

2 15 100 48.5 51.5 

3 27 100 28.5 71.5 

4 32 100 28.5 71.5 

5 35 100 100 0 

6 50.2 100 100 0 
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Table. 8. Lipidome data of E. huxleyi CCMP 2090. Table representing lipid class 

and fatty acyl groups (FA1/FA2) detected by combination of negative and positive 

ionization method  

S.No Lipid Fatty acyl groups mass (m/z) Log-mol% Sta-mol% 

1 BLL(24:0) (FA 14:0/FA 10:0) 628 0.00  0.00  

2 BLL(36:3) (FA 18:1/FA 18:2) 791 0.07  0.01  

3 BLL(36:6) (FA 18:1/FA 18:5) 786.5 0.33  1.15  

4 BLL(38:2) (FA 14:1/FA 24:1) 820.5 0.00  0.00  

5 BLL(38:3) (FA 14:0/FA 24:3) 819 0.00  0.00  

6 BLL(38:5) (FA 18:1/FA 20:4) 816.5 0.02  0.07  

7 BLL(38:6) (FA 18:1/FA 20:5) 814.5 0.02  0.19  

8 BLL(40:0) (FA 14:0/FA 26:0) 853 0.00  0.00  

9 BLL(40:2) (FA 14:0/FA 26:2) 848.5 0.00  0.00  

10 BLL(40:3) (FA 18:1/FA 22:2) 848.5 0.10  0.12  

11 BLL(40:5) (FA 18:1/FA 22:4) 845 0.11  0.00  

12 BLL(40:6) (FA 18:1/FA 22:5) 843 0.02  0.00  

13 BLL(42:4) (FA 18:1/FA 24:3) 874.5 0.00  0.01  

14 BLL(42:7) (FA 18:5/FA 24:2) 866.5 0.00  0.00  

15 BLL(44:3) (FA 18:1/FA 26:2) 904.5 0.01  0.07  

16 BLL(44:6) (FA 18:1/FA 26:5) 898.5 0.25  0.19  

17 BLL(48:6) (FA 22:6/FA 26:0) 952.5 0.00  0.00  

18 BLL(48:8) (FA 22:6/FA 26:2) 948.5 0.00  0.00  

19 DAG(26:0) (FA 14:0/FA 12:0) 483.5 0.00  0.00  

20 DAG(28:0) (FA 16:0/FA 12:0) 511.5 0.00  0.00  

21 DAG(30:0) (FA 16:0/FA 14:0) 539 0.03  0.00  

22 DAG(30:4) (FA 14:0/FA 16:4) 531 0.00  0.00  

23 DAG(32:1) (FA 16:0/FA 16:1) 565 0.00  0.00  

24 DAG(32:1) (FA 18:1/FA 14:0) 584 0.01  0.01  

25 DAG(32:2) (FA 18:1/FA 14:1) 582.5 0.05  0.14  

26 DAG(32:4) (FA 16:0/FA 16:4) 559 0.00  0.00  

27 DAG(34:2) (FA 20:2/FA 14:0) 591.5 0.00  0.00  

28 DAG(36:4) (FA 22:4/FA 14:0) 615.5 0.00  0.00  

29 DAG(36:5) (FA 22:5/FA 14:0) 614 0.00  0.00  

30 DAG(36:6) (FA 22:6/FA 14:0) 612 0.03  0.00  
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31 DAG(36:9) (FA 22:6/FA 14:3) 605.5 0.00  0.00  

32 DAG(40:0) (FA 16:0/FA 24:0) 680 0.00  0.00  

33 DAG(40:1) (FA 14:0/FA 26:1) 677.5 0.00  0.00  

34 DAG(40:4) (FA 14:0/FA 26:4) 672 0.00  0.00  

35 DAG(40:5) (FA 14:0/FA 26:5) 670 0.00  0.00  

36 DAG(42:4) (FA 16:0/FA 26:4) 700 0.00  0.00  

37 DAG(46:4) (FA 20:0/FA 26:4) 775 0.00  0.00  

38 DGCC(30:0) (FA 14:0/FA 16:0) 625.5 0.00  0.00  

39 DGCC(36:2) (FA 14:0/FA 22:2) 705.5 0.02  0.00  

40 DGCC(40:1) (FA 20:0/FA 20:1) 765.5 0.00  0.14  

41 DGCC(42:1) (FA 20:0/FA 22:1) 793.5 0.01  0.00  

42 DGCC(44:1) (FA 18:1/FA 26:0) 844 0.15  0.00  

43 DGDG(30:0) (FA 14:0/FA 16:0) 863.5 0.00  0.00  

44 DGDG(32:0) (FA 16:0/FA 16:0) 951 0.00  0.00  

45 DGDG(32:1) (FA 14:0/FA 18:1) 949.5 0.04  0.00  

46 DGDG(32:1) (FA 18:1/FA 14:0) 949 0.00  0.35  

47 DGDG(32:4) (FA 14:0/FA 18:4) 944.5 0.01  0.00  

48 DGDG(32:5) (FA 14:1/FA 18:4) 882 0.01  0.00  

49 DGDG(34:0) (FA 14:0/FA 20:0) 980 0.00  0.00  

50 DGDG(34:1) (FA 14:0/FA 20:1) 978.5 0.01  0.00  

51 DGDG(34:2) (FA 14:0/FA 20:2) 975 0.01  0.00  

52 DGDG(34:3) (FA 14:0/FA 20:3) 913.5 0.00  0.00  

53 DGDG(34:3) (FA 16:0/FA 18:3) 932 0.17  0.00  

54 DGDG(34:5) (FA 14:0/FA 20:5) 969 0.01  0.01  

55 DGDG(34:6) (FA 14:0/FA 20:6) 926 0.00  0.00  

56 DGDG(36:1) (FA 14:0/FA 22:1) 945.5 0.01  0.01  

57 DGDG(36:3) (FA 14:0/FA 22:3) 941 0.00  0.00  

58 DGDG(36:7) (FA 14:1/FA 22:6) 933.5 0.10  0.00  

59 DGDG(36:8) (FA 18:3/FA 18:5) 991 0.00  0.00  

60 DGDG(38:0) (FA 14:0/FA 24:0) 975.5 0.01  0.00  

61 DGDG(38:2) (FA 14:1/FA 24:1) 971 0.00  0.02  

62 DGDG(38:3) (FA 14:0/FA 24:3) 988.5 0.06  0.00  

63 DGDG(38:4) (FA 14:0/FA 24:4) 967 0.00  0.00  

64 DGDG(38:4) (FA 16:0/FA 22:4) 968 0.00  0.00  

65 DGDG(38:5) (FA 14:0/FA 24:5) 966 0.01  0.00  

66 DGDG(40:11) (FA 18:5/FA 22:6) 981 0.00  0.00  
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67 DGDG(40:2) (FA 14:0/FA 26:2) 999.5 0.00  0.00  

68 DGDG(40:3) (FA 14:0/FA 26:3) 998 0.00  0.00  

69 DGDG(40:4) (FA 18:0/FA 22:4) 995.5 0.00  0.00  

70 DGDG(40:5) (FA 16:0/FA 24:5) 993 0.00  0.00  

71 DGDG(40:6) (FA 16:0/FA 24:6) 992 0.00  0.00  

72 DGDG(40:7) (FA 18:5/FA 22:2) 989.5 0.08  0.00  

73 DGDG(40:8) (FA 18:3/FA 22:5) 987.5 0.00  0.00  

74 DGTS(26:1) (FA 14:0/FA 12:1) 724 0.28  0.00  

75 DGTS(28:0) (FA 14:0/FA 14:0) 732 0.96  0.00  

76 DGTS(28:1) (FA 18:1/FA 10:0) 730.5 0.07  0.01  

77 DGTS(38:1) (FA 14:0/FA 24:1) 868.5 0.15  0.01  

78 DGTS(38:3) (FA 14:0/FA 24:3) 865 0.00  0.04  

79 DGTS(38:5) (FA 14:0/FA 24:5) 860.5 0.00  1.51  

80 DGTS(40:0) (FA 14:0/FA 26:0) 899 0.00  0.01  

81 DGTS(40:1) (FA 14:0/FA 26:1) 896.5 0.01  0.01  

82 DGTS(40:1) (FA 20:0/FA 20:1) 916 0.00  0.00  

83 DGTS(40:3) (FA 14:0/FA 26:3) 892.5 0.00  0.00  

84 DGTS(40:5) (FA 14:0/FA 26:5) 888.5 0.11  0.00  

85 DGTS(40:6) (FA 16:3/FA 24:3) 886.5 0.00  0.00  

86 DGTS(42:1) (FA 16:0/FA 26:1) 925 0.00  0.00  

87 DGTS(42:4) (FA 16:0/FA 26:4) 919 0.00  0.00  

88 DGTS(42:5) (FA 16:0/FA 26:5) 916.5 0.00  0.02  

89 DGTS(42:6) (FA 18:1/FA 24:5) 915 0.00  0.00  

90 DGTS(44:11) (FA 22:6/FA 22:5) 933 0.00  0.00  

91 DGTS(44:4) (FA 18:2/FA 26:2) 946.5 0.00  0.00  

92 DGTS(44:7) (FA 18:1/FA 26:6) 960 0.09  0.00  

93 DGTS(44:7) (FA 18:5/FA 26:2) 940.5 0.00  0.00  

94 DGTS(44:9) (FA 18:3/FA 26:6) 936.5 0.01  0.00  

95 DGTS(46:10) (FA 22:6/FA 24:4) 963 0.00  0.00  

96 DGTS(46:5) (FA 22:1/FA 24:4) 972.5 0.01  0.05  

97 DGTS(46:8) (FA 22:6/FA 24:2) 966.5 0.00  0.00  

98 DGTS(46:9) (FA 20:3/FA 26:6) 965 0.00  0.00  

99 DGTS(48:10) (FA 22:6/FA 26:4) 990.5 0.00  0.00  

100 DGTS(48:11) (FA 22:6/FA 26:5) 988.5 0.00  0.00  

101 LPI(30:0) (FA 15:0/FA 15:0) 767 0.12  0.00  

102 LPI(30:1) (FA 15:0/FA 15:1) 765.5 0.06  0.00  
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103 MGDG(24:0) (FA 14:0/FA 10:0) 636 0.02  0.00  

104 MGDG(26:0) (FA 14:0/FA 12:0) 664 0.08  0.00  

105 MGDG(28:0) (FA 14:0/FA 14:0) 692 0.78  0.01  

106 MGDG(32:1) (FA 14:0/FA 18:1) 787.5 0.10  0.01  

107 MGDG(34:1) (FA 14:0/FA 20:1) 816 0.53  0.21  

108 MGDG(36:0) (FA 14:0/FA 22:0) 785.5 0.12  0.19  

109 MGDG(36:1) (FA 14:0/FA 22:1) 844 0.21  0.66  

110 MGDG(36:8) (FA 18:4/FA 18:4) 788 0.07  0.03  

111 MGDG(38:1) (FA 14:0/FA 24:1) 811.5 0.10  0.03  

112 MGDG(38:2) (FA 14:0/FA 24:2) 870.5 0.92  0.01  

113 MGDG(38:3) (FA 14:0/FA 24:3) 867 0.01  0.01  

114 MGDG(38:6) (FA 16:0/FA 22:6) 820 0.21  0.01  

115 MGDG(40:1) (FA 14:1/FA 26:0) 840 0.03  0.01  

116 MGDG(40:1) (FA 16:0/FA 24:1) 900.5 0.00  0.00  

117 MGDG(40:2) (FA 14:1/FA 26:1) 838 0.02  0.06  

118 MGDG(40:2) (FA 16:0/FA 24:2) 898 0.00  0.02  

119 MGDG(40:3) (FA 14:0/FA 26:3) 895 0.00  0.21  

120 MGDG(40:6) (FA 14:0/FA 26:6) 890.5 0.01  0.00  

121 MGDG(44:0) (FA 18:0/FA 26:0) 958 0.00  0.00  

122 MGDG(46:6) (FA 22:6/FA 24:0) 974.5 0.00  0.00  

123 PA(30:0) (FA 16:0/FA 14:0) 619.5 0.01  0.00  

124 PA(30:4) (FA 14:0/FA 16:4) 611 0.01  0.00  

125 PA(32:1) (FA 14:0/FA 18:1) 646 0.00  0.00  

126 PA(34:1) (FA 14:0/FA 20:1) 674 0.00  0.00  

127 PA(34:2) (FA 14:0/FA 20:2) 671.5 0.00  0.00  

128 PA(34:5) (FA 14:0/FA 20:5) 666 0.00  0.00  

129 PA(36:0) (FA 14:0/FA 22:0) 703 0.00  0.00  

130 PA(36:1) (FA 14:0/FA 22:1) 701 0.00  0.00  

131 PA(36:1) (FA 18:0/FA 18:1) 701.5 0.00  0.00  

132 PA(36:2) (FA 14:0/FA 22:2) 699.5 0.00  0.00  

133 PA(36:6) (FA 14:0/FA 22:6) 692 0.00  0.00  

134 PA(38:1) (FA 14:0/FA 24:1) 730 0.07  0.00  

135 PA(38:2) (FA 14:0/FA 24:2) 727 0.01  0.00  

136 PA(40:9) (FA 24:4/FA 16:5) 741.5 0.00  0.00  

137 PA(46:1) (FA 22:0/FA 24:1) 841.5 0.00  0.00  

138 PC(28:3) (FA 14:0/FA 14:3) 672.5 0.03  0.00  
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139 PC(30:0) (FA 14:0/FA 16:0) 704 0.00  0.00  

140 PC(30:1) (FA 16:0/FA 14:1) 705 0.00  0.00  

141 PC(30:3) (FA 14:0/FA 16:3) 698.5 0.00  0.00  

142 PC(30:4) (FA 14:0/FA 16:4) 697 0.00  0.00  

143 PC(32:1) (FA 14:0/FA 18:1) 730.5 0.01  0.00  

144 PC(32:2) (FA 14:0/FA 18:2) 728.5 0.03  0.00  

145 PC(32:3) (FA 14:0/FA 18:3) 726.5 0.00  0.00  

146 PC(34:0) (FA 14:0/FA 20:0) 760 0.00  0.00  

147 PC(34:1) (FA 14:0/FA 20:1) 758.5 0.01  0.00  

148 PC(34:2) (FA 14:0/FA 20:2) 756.5 0.02  0.00  

149 PC(34:3) (FA 14:0/FA 20:3) 754 0.00  0.00  

150 PC(34:3) (FA 18:1/FA 16:2) 755 0.01  0.00  

151 PC(34:4) (FA 16:0/FA 18:4) 752.5 0.00  0.00  

152 PC(34:5) (FA 14:1/FA 20:4) 750.5 0.02  0.00  

153 PC(36:2) (FA 16:0/FA 20:2) 784 0.03  0.00  

154 PC(36:3) (FA 14:0/FA 22:3) 783 0.01  0.00  

155 PC(36:4) (FA 14:0/FA 22:4) 780.5 0.00  0.00  

156 PC(36:5) (FA 18:0/FA 18:5) 778.5 0.00  0.00  

157 PC(36:6) (FA 22:6/FA 14:0) 776.5 0.01  0.00  

158 PC(38:1) (FA 14:1/FA 24:0) 814 0.01  0.00  

159 PC(38:2) (FA 14:0/FA 24:2) 812.5 0.05  0.01  

160 PC(38:3) (FA 14:1/FA 24:2) 810.5 0.07  0.00  

161 PC(38:4) (FA 14:1/FA 24:3) 810 0.01  0.00  

162 PC(38:4) (FA 14:1/FA 24:3) 808 0.00  0.02  

163 PC(38:4) (FA 18:1/FA 20:3) 809 0.06  0.01  

164 PC(38:7) (FA 14:1/FA 24:6) 803 0.00  0.04  

165 PC(40:1) (FA 16:0/FA 24:1) 842.5 0.01  0.00  

166 PC(40:1) (FA 18:1/FA 22:0) 843 0.00  0.00  

167 PC(40:2) (FA 14:0/FA 26:2) 841 0.03  0.01  

168 PC(40:5) (FA 14:0/FA 26:5) 834.5 0.17  0.00  

169 PC(42:0) (FA 16:0/FA 26:0) 873 0.00  0.00  

170 PC(42:0) (FA 18:0/FA 24:0) 872.5 0.00  0.00  

171 PC(42:2) (FA 16:0/FA 26:2) 869 0.01  0.00  

172 PC(42:7) (FA 22:6/FA 20:1) 861 0.00  0.04  

173 PC(42:9) (FA 20:4/FA 22:5) 855 0.00  0.00  

174 PC(44:8) (FA 22:6/FA 22:2) 887 0.08  0.00  
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175 PC(46:11) (FA 22:6/FA 24:5) 906.5 0.00  0.02  

176 PC(46:11) (FA 22:6/FA 24:5) 929 0.00  0.00  

177 PC(46:3) (FA 20:1/FA 26:2) 922.5 0.00  0.00  

178 PC(46:4) (FA 20:2/FA 26:2) 921 0.00  0.00  

179 PC(46:8) (FA 22:6/FA 24:2) 912.5 0.00  0.00  

180 PC(46:8) (FA 22:6/FA 24:2) 915 0.00  0.00  

181 PC(48:11) (FA 22:6/FA 26:5) 934.5 0.00  0.00  

182 PC(48:7) (FA 22:6/FA 26:1) 942.5 0.01  0.01  

183 PC(48:9) (FA 22:6/FA 26:3) 939 0.01  0.00  

184 PDPT(28:0) (FA 16:0/FA 12:0) 695.5 0.00  0.00  

185 PDPT(30:0) (FA 14:0/FA 16:0) 724 0.00  0.00  

186 PDPT(30:0) (FA 16:0/FA 14:0) 723.5 0.00  0.01  

187 PDPT(30:1) (FA 14:0/FA 16:1) 722 0.00  0.00  

188 PDPT(30:1) (FA 15:0/FA 15:1) 721.5 0.00  0.00  

189 PDPT(30:2) (FA 14:0/FA 16:2) 719.5 0.00  0.06  

190 PDPT(30:3) (FA 14:0/FA 16:3) 717 0.14  0.00  

191 PDPT(30:4) (FA 14:0/FA 16:4) 716 0.62  0.00  

192 PDPT(32:2) (FA 14:0/FA 18:2) 748 0.00  0.00  

193 PDPT(32:3) (FA 18:0/FA 14:3) 746 0.00  0.02  

194 PDPT(32:4) (FA 14:0/FA 18:4) 744 0.37  0.00  

195 PDPT(32:5) (FA 14:0/FA 18:5) 742 0.01  0.00  

196 PDPT(34:1) (FA 14:0/FA 20:1) 777.5 0.00  0.01  

197 PDPT(34:2) (FA 14:0/FA 20:2) 776 0.00  0.00  

198 PDPT(34:3) (FA 14:0/FA 20:3) 773.5 0.00  0.00  

199 PDPT(34:4) (FA 14:0/FA 20:4) 771.5 0.09  0.01  

200 PDPT(34:5) (FA 14:0/FA 20:5) 770 0.03  0.00  

201 PDPT(34:6) (FA 14:0/FA 20:6) 767.5 0.00  0.00  

202 PDPT(36:1) (FA 16:0/FA 20:1) 806 0.00  0.00  

203 PDPT(36:2) (FA 14:0/FA 22:2) 804 0.01  0.00  

204 PDPT(36:2) (FA 14:0/FA 22:2) 803.5 0.01  0.00  

205 PDPT(36:3) (FA 20:2/FA 16:1) 802 0.00  0.00  

206 PDPT(36:4) (FA 14:0/FA 22:4) 800 0.01  0.00  

207 PDPT(36:4) (FA 16:0/FA 20:4) 799.5 0.00  0.00  

208 PDPT(36:5) (FA 16:0/FA 20:5) 797.5 0.01  0.00  

209 PDPT(36:6) (FA 14:0/FA 22:6) 797.5 0.00  0.00  

210 PDPT(38:2) (FA 16:0/FA 22:2) 831.5 0.00  0.00  
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211 PDPT(38:3) (FA 14:0/FA 24:3) 830 0.04  0.00  

212 PDPT(38:3) (FA 18:0/FA 20:3) 829.5 0.03  0.00  

213 PDPT(38:4) (FA 16:0/FA 22:4) 828 0.04  0.00  

214 PDPT(38:5) (FA 14:0/FA 24:5) 826 0.00  0.00  

215 PDPT(38:6) (FA 16:0/FA 22:6) 824 0.00  0.00  

216 PDPT(40:0) (FA 14:0/FA 26:0) 864 0.00  0.00  

217 PDPT(40:1) (FA 14:0/FA 26:1) 862 0.02  0.00  

218 PDPT(40:2) (FA 14:0/FA 26:2) 860 0.00  0.00  

219 PDPT(40:3) (FA 14:0/FA 26:3) 858.5 0.00  0.00  

220 PDPT(40:3) (FA 22:0/FA 18:3) 857.5 0.00  0.00  

221 PDPT(40:4) (FA 16:0/FA 24:4) 855.5 0.05  0.00  

222 PDPT(40:5) (FA 14:0/FA 26:5) 854 0.01  0.01  

223 PDPT(40:5) (FA 18:5/FA 22:0) 853.5 0.00  0.00  

224 PDPT(40:6) (FA 14:0/FA 26:6) 852 0.02  0.00  

225 PDPT(42:11) (FA 22:6/FA 20:5) 869.5 0.00  0.00  

226 PDPT(42:2) (FA 16:0/FA 26:2) 888 0.00  0.00  

227 PDPT(42:6) (FA 22:6/FA 20:0) 880 0.00  0.00  

228 PDPT(42:8) (FA 22:6/FA 20:2) 876 0.03  0.00  

229 PDPT(44:1) (FA 18:1/FA 26:0) 917.5 0.00  0.01  

230 PDPT(44:10) (FA 22:6/FA 22:4) 899.5 0.00  0.00  

231 PDPT(44:12) (FA 24:6/FA 20:6) 895.5 0.00  0.00  

232 PDPT(44:3) (FA 18:3/FA 26:0) 914 0.00  0.00  

233 PDPT(44:5) (FA 18:3/FA 26:2) 910.5 0.01  0.00  

234 PDPT(46:6) (FA 22:6/FA 24:0) 936 0.01  0.00  

235 PDPT(46:8) (FA 22:6/FA 24:2) 931.5 0.12  0.00  

236 PDPT(48:11) (FA 22:6/FA 26:5) 954 0.00  0.00  

237 PDPT(48:12) (FA 26:6/FA 22:6) 951.5 0.00  0.00  

238 PDPT(48:2) (FA 24:1/FA 24:1) 972 0.00  0.00  

239 PDPT(48:6) (FA 22:6/FA 26:0) 963.5 0.17  0.00  

240 PDPT(48:6) (FA 22:6/FA 26:0) 964 0.00  0.00  

241 PDPT(48:7) (FA 22:6/FA 26:1) 961.5 0.03  0.01  

242 PDPT(48:8) (FA 22:6/FA 26:2) 960 0.00  0.00  

243 PE(26:0) (FA 14:0/FA 12:0) 606.5 0.01  0.00  

244 PE(28:0) (FA 14:0/FA 14:0) 634.5 0.00  0.00  

245 PE(30:0) (FA 14:0/FA 16:0) 662 0.00  0.00  

246 PE(30:0) (FA 16:0/FA 14:0) 663 0.00  0.00  
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247 PE(30:2) (FA 14:0/FA 16:2) 659 0.00  0.00  

248 PE(30:2) (FA 16:0/FA 14:2) 658 0.00  0.00  

249 PE(30:3) (FA 14:0/FA 16:3) 656 0.08  0.00  

250 PE(32:0) (FA 14:0/FA 18:0) 690.5 0.00  0.00  

251 PE(32:2) (FA 14:0/FA 18:2) 686.5 0.00  0.00  

252 PE(32:3) (FA 14:0/FA 18:3) 684.5 0.01  0.00  

253 PE(32:4) (FA 14:0/FA 18:4) 682.5 0.00  0.00  

254 PE(32:5) (FA 14:0/FA 18:5) 681 0.00  0.00  

255 PE(34:0) (FA 16:0/FA 18:0) 718.5 0.02  0.00  

256 PE(34:2) (FA 14:0/FA 20:2) 714 0.00  0.00  

257 PE(34:3) (FA 16:0/FA 18:3) 712 0.00  0.00  

258 PE(34:4) (FA 14:0/FA 20:4) 711 0.00  0.00  

259 PE(34:4) (FA 16:0/FA 18:4) 710 0.00  0.00  

260 PE(34:5) (FA 14:1/FA 20:4) 708.5 0.00  0.00  

261 PE(36:3) (FA 18:1/FA 18:2) 741 1.01  0.13  

262 PE(36:4) (FA 16:0/FA 20:4) 738.5 0.00  0.00  

263 PE(36:5) (FA 14:1/FA 22:4) 737 0.75  0.11  

264 PE(36:5) (FA 16:3/FA 20:2) 736.5 0.00  0.00  

265 PE(38:1) (FA 14:0/FA 24:1) 772.5 0.12  0.00  

266 PE(38:3) (FA 18:1/FA 20:2) 768.5 0.07  0.00  

267 PE(38:4) (FA 16:1/FA 22:3) 766 0.01  0.00  

268 PE(38:5) (FA 18:3/FA 20:2) 764.5 0.08  0.01  

269 PE(38:6) (FA 14:0/FA 24:6) 762.5 0.16  0.02  

270 PE(40:1) (FA 14:1/FA 26:0) 801 0.00  0.00  

271 PE(40:6) (FA 14:0/FA 26:6) 790.5 0.02  0.01  

272 PE(40:8) (FA 22:6/FA 18:2) 786.5 0.05  0.00  

273 PE(42:2) (FA 16:0/FA 26:2) 826.5 0.01  0.00  

274 PE(42:3) (FA 16:1/FA 26:2) 824.5 0.00  0.00  

275 PE(42:4) (FA 20:1/FA 22:3) 822.5 0.00  0.00  

276 PE(44:7) (FA 22:2/FA 22:5) 844.5 0.00  0.00  

277 PE(46:5) (FA 24:1/FA 22:4) 877 0.00  0.00  

278 PE(48:10) (FA 22:6/FA 26:4) 894 0.00  0.00  

279 PE(48:3) (FA 22:3/FA 26:0) 908.5 0.00  0.00  

280 PE(48:5) (FA 22:5/FA 26:0) 904.5 0.00  0.00  

281 PE(48:6) (FA 22:3/FA 26:3) 902.5 0.00  0.00  

282 PG(30:0) (FA 15:0/FA 15:0) 693.5 0.00  0.00  
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283 PG(30:2) (FA 14:0/FA 16:2) 689.5 0.00  0.00  

284 PG(30:3) (FA 14:0/FA 16:3) 688 0.04  0.00  

285 PG(30:5) (FA 14:0/FA 16:5) 683.5 0.02  0.00  

286 PG(32:2) (FA 16:0/FA 16:2) 718 0.00  0.00  

287 PG(32:4) (FA 16:0/FA 16:4) 713.5 0.00  0.00  

288 PG(34:5) (FA 14:0/FA 20:5) 740 0.00  0.00  

289 PG(36:4) (FA 16:0/FA 20:4) 769 0.59  0.03  

290 PG(38:5) (FA 14:1/FA 24:4) 795 0.00  0.00  

291 PG(38:6) (FA 16:0/FA 22:6) 793.5 0.00  0.00  

292 PG(38:7) (FA 18:2/FA 20:5) 792 0.00  0.00  

293 PG(42:0) (FA 16:0/FA 26:0) 861.5 0.00  0.00  

294 PG(42:3) (FA 16:0/FA 26:3) 858 0.12  2.46  

295 PG(44:12) (FA 22:6/FA 22:6) 868 0.00  0.02  

296 PG(48:8) (FA 22:6/FA 26:2) 929 0.01  0.00  

297 PI(30:0) (FA 15:0/FA 15:0) 781.5 0.00  0.00  

298 PI(36:0) (FA 14:0/FA 22:0) 865.5 0.00  0.00  

299 PI(36:7) (FA 14:1/FA 22:6) 851 0.01  0.00  

300 PI(38:1) (FA 20:1/FA 18:0) 892 0.00  0.00  

301 PI(38:2) (FA 14:0/FA 24:2) 889.5 0.01  0.00  

302 PI(38:3) (FA 14:0/FA 24:3) 887 0.01  0.00  

303 PI(38:4) (FA 14:0/FA 24:4) 885.5 0.01  0.00  

304 PI(38:5) (FA 14:0/FA 24:5) 884 0.02  0.00  

305 PI(38:5) (FA 14:0/FA 24:5) 883 0.00  0.01  

306 PI(38:6) (FA 14:0/FA 24:6) 881.5 0.07  0.00  

307 PI(40:1) (FA 14:0/FA 26:1) 920 0.00  0.00  

308 PI(40:2) (FA 14:0/FA 26:2) 918 0.01  0.00  

309 PI(40:5) (FA 14:0/FA 26:5) 912 0.01  0.00  

310 PI(40:5) (FA 16:0/FA 24:5) 911 0.00  0.00  

311 PI(40:6) (FA 14:0/FA 26:6) 909.5 0.00  0.00  

312 PI(42:0) (FA 16:0/FA 26:0) 950 0.00  0.00  

313 PI(42:1) (FA 16:0/FA 26:1) 947.5 0.01  0.00  

314 PI(42:6) (FA 16:0/FA 26:6) 938 0.01  0.00  

315 PI(42:6) (FA 22:6/FA 20:0) 937 0.00  0.01  

316 PI(44:0) (FA 18:0/FA 26:0) 977.5 0.04  0.00  

317 PI(44:10) (FA 18:4/FA 26:6) 957 0.03  0.00  

318 PI(44:11) (FA 22:6/FA 22:5) 955 0.00  0.00  
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319 PI(46:10) (FA 22:5/FA 24:5) 986 0.00  0.02  

320 PI(46:10) (FA 22:6/FA 24:4) 985 0.20  0.00  

321 PI(46:11) (FA 22:6/FA 24:5) 983.5 0.01  0.00  

322 PI(46:6) (FA 24:1/FA 22:5) 994 0.00  0.00  

323 PI(46:9) (FA 22:5/FA 24:4) 988 0.00  0.00  

324 PS(26:0) (FA 14:0/FA 12:0) 650 0.00  0.01  

325 PS(28:0) (FA 14:0/FA 14:0) 680 0.00  0.00  

326 PS(30:0) (FA 14:0/FA 16:0) 706.5 0.00  0.00  

327 PS(32:0) (FA 16:0/FA 16:0) 734.5 0.00  0.00  

328 PS(36:10) (FA 22:6/FA 14:4) 770.5 0.12  0.00  

329 PS(40:0) (FA 14:0/FA 26:0) 846 0.00  0.00  

330 SQDG(26:0) (FA 14:0/FA 12:0) 709.5 0.01  0.00  

331 SQDG(26:1) (FA 14:1/FA 12:0) 708 0.00  0.01  

332 SQDG(30:1) (FA 14:0/FA 16:1) 763.5 0.00  0.01  

333 SQDG(30:2) (FA 14:0/FA 16:2) 762 0.01  0.00  

334 SQDG(32:2) (FA 14:0/FA 18:2) 789.5 0.02  0.00  

335 SQDG(34:2) (FA 14:1/FA 20:1) 818 0.01  0.00  

336 SQDG(34:2) (FA 16:0/FA 18:2) 817.5 0.00  0.00  

337 SQDG(34:2) (FA 18:1/FA 16:1) 836.5 0.03  0.00  

338 SQDG(34:3) (FA 14:1/FA 20:2) 834 0.02  0.00  

339 SQDG(36:0) (FA 14:0/FA 22:0) 849 0.00  0.03  

340 SQDG(36:0) (FA 16:0/FA 20:0) 850 0.14  0.41  

341 SQDG(36:2) (FA 18:1/FA 18:1) 864 0.27  0.00  

342 SQDG(38:0) (FA 14:0/FA 24:0) 878 0.00  0.00  

343 SQDG(38:1) (FA 14:0/FA 24:1) 875.5 0.00  0.00  

344 SQDG(38:2) (FA 14:0/FA 24:2) 873.5 0.00  0.00  

345 SQDG(38:5) (FA 14:0/FA 24:5) 867.5 0.24  0.00  

346 SQDG(40:0) (FA 14:0/FA 26:0) 905.5 0.00  0.00  

347 SQDG(40:1) (FA 14:0/FA 26:1) 903 0.00  0.00  

348 SQDG(40:2) (FA 14:0/FA 26:2) 901.5 0.00  0.00  

349 SQDG(40:4) (FA 14:0/FA 26:4) 897.5 0.00  0.00  

350 SQDG(40:5) (FA 20:0/FA 20:5) 914 0.00  0.00  

351 SQDG(42:2) (FA 16:1/FA 26:1) 930 0.00  0.00  

352 SQDG(42:3) (FA 20:3/FA 22:0) 928 0.00  0.00  

353 SQDG(44:1) (FA 24:1/FA 20:0) 959.5 0.03  0.00  

354 SQDG(44:3) (FA 24:1/FA 20:2) 955.5 0.01  0.00  
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355 SQDG(44:4) (FA 18:1/FA 26:3) 953.5 0.00  0.02  

356 TAG(48:4) (FA 18:1/FA 14:0/FA 16:3) 821.5 0.03  0.00  

357 TAG(50:4) (FA 18:1/FA 14:0/FA 18:3) 849.5 0.00  0.00  

358 TAG(50:5) (FA 18:1/FA 14:0/FA 18:4) 847.5 0.06 2.07 

359 TAG(52:7) (FA 18:1/FA 14:2/FA 16:1) 866.5 1.75  0.00  

360 TAG(54:10) (FA 18:1/FA 14:3/FA 22:6) 888.5 0.00  0.01  

361 TAG(58:1) (FA 18:1/FA 16:0/FA 24:0) 962.5 0.03  0.01  

362 TAG(58:10) (FA 18:1/FA 16:4/FA 24:5) 945 0.00  0.00  

363 TAG(58:11) (FA 18:1/FA 16:4/FA 24:6) 943 0.00  0.00  

364 TAG(58:8) (FA 18:1/FA 16:3/FA 24:4) 948.5 0.07  0.00  

365 TAG(58:9) (FA 18:1/FA 16:4/FA 24:4) 946.5 0.07  0.00  
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Table. 9. Lipidome of E. huxleyi CCMP 2090.Table representing most common 

lipid species detected (in half or more than half of the replicates) in both stationary 

and logarithmic phases  

 

S.No Lipid FA1 FA2 Mol-wt 

1 DAG(32:1) FA 16:0 FA 16:1 565 

2 DAG(36:4) FA 22:4 FA 14:0 615.5 

3 BLL(38:3) FA 14:0 FA 24:3 819 

4 DGCC(36:2) FA 14:0 FA 22:2 705.5 

5 DGTS(40:1) FA 14:0 FA 26:1 896.5 

6 DGTS(42:5) FA 16:0 FA 26:5 916.5 

7 DGTS(44:7) FA 18:5 FA 26:2 940.5 

8 DGDG(30:0) FA 14:0 FA 16:0 863.5 

9 DGDG(32:1) FA 18:1 FA 14:0 949 

10 DGDG(32:4) FA 14:0 FA 18:4 944.5 

11 DGDG(32:5) FA 14:1 FA 18:4 882 

12 DGDG(34:0) FA 14:0 FA 20:0 980 

13 DGDG(34:1) FA 14:0 FA 20:1 978.5 

14 DGDG(34:2) FA 14:0 FA 20:2 975 

15 DGDG(34:3) FA 14:0 FA 20:3 913.5 

17 DGDG(34:5) FA 14:0 FA 20:5 969 

18 DGDG(34:6) FA 14:0 FA 20:6 907.5 

19 DGDG(36:1) FA 14:0 FA 22:1 945.5 

22 DGDG(36:3) FA 14:0 FA 22:3 942 

23 DGDG(36:7) FA 14:1 FA 22:6 933.5 

24 DGDG(36:8) FA 18:3 FA 18:5 991 

25 DGDG(38:0) FA 14:0 FA 24:0 975.5 

26 DGDG(38:3) FA 14:0 FA 24:3 969.5 

27 DGDG(38:4) FA 14:0 FA 24:4 967 

28 DGDG(38:4) FA 16:0 FA 22:4 968 

29 DGDG(38:5) FA 14:0 FA 24:5 966 

30 DGDG(40:12) FA 22:6 FA 18:6 979.5 

31 MGDG(26:0) FA 14:0 FA 12:0 705 

32 MGDG(28:0) FA 14:0 FA 14:0 733 
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33 MGDG(32:1) FA 14:0 FA 18:1 787.5 

34 MGDG(34:1) FA 14:0 FA 20:1 816 

35 MGDG(38:1) FA 14:0 FA 24:1 811.5 

37 MGDG(38:2) FA 14:0 FA 24:2 870.5 

38 PC(26:1) FA 14:0 FA 12:1 646.5 

39 PC(28:4) FA 14:0 FA 14:4 668 

40 PC(30:0) FA 14:0 FA 16:0 704 

41 PC(30:1) FA 16:0 FA 14:1 702.5 

42 PC(30:3) FA 14:0 FA 16:3 698.5 

43 PC(30:4) FA 14:0 FA 16:4 697 

44 PC(30:5) FA 14:0 FA 16:5 694 

45 PC(32:6) FA 14:0 FA 18:6 720.5 

46 PC(34:1) FA 14:0 FA 20:1 758.5 

47 PC(34:2) FA 14:0 FA 20:2 756.5 

48 PC(34:3) FA 18:1 FA 16:2 755 

49 PC(34:3) FA 14:0 FA 20:3 754 

50 PC(34:4) FA 16:0 FA 18:4 752.5 

51 PC(34:5) FA 14:1 FA 20:4 750.5 

52 PC(36:5) FA 18:0 FA 18:5 778.5 

53 PC(38:1) FA 14:1 FA 24:0 814 

55 PC(38:4) FA 14:1 FA 24:3 808 

56 PC(38:4) FA 18:1 FA 20:3 809 

57 PC(38:5) FA 18:0 FA 20:5 806.5 

58 PC(38:7) FA 14:1 FA 24:6 803 

59 PC(40:5) FA 14:0 FA 26:5 834.5 

60 PC(40:6) FA 14:0 FA 26:6 832.5 

61 PC(42:7) FA 22:6 FA 20:1 859 

62 PC(42:9) FA 20:4 FA 22:5 855 

63 PC(44:8) FA 22:6 FA 22:2 884.5 

64 PC(46:8) FA 22:6 FA 24:2 912.5 

65 PDPT(34:2) FA 14:0 FA 20:2 776 

66 PDPT(36:6) FA 14:0 FA 22:6 796 

67 PDPT(40:2) FA 14:0 FA 26:2 860 

68 PDPT(40:6) FA 14:0 FA 26:6 852 

69 PDPT(48:11) FA 22:6 FA 26:5 954 

70 PDPT(48:2) FA 24:1 FA 24:1 972 
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71 PDPT(48:8) FA 22:6 FA 26:2 960 

72 PE(38:6) FA 14:0 FA 24:6 762.5 

73 PS(28:0) FA 16:0 FA 12:0 678.5 

74 PS(28:0) FA 14:0 FA 14:0 679 

75 SQDG(30:1) FA 14:0 FA 16:1 763.5 

76 SQDG(34:2) FA 16:0 FA 18:2 817.5 

77 SQDG(34:2) FA 14:1 FA 20:1 818 

78 SQDG(38:1) FA 14:0 FA 24:1 875.5 

79 SQDG(38:5) FA 14:0 FA 24:5 867.5 
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Table. 10. Total fatty acyl groups detected directly by negative ionization mode and 

calculation of counter parts in lipidome of E. huxleyi CCMP 2090. Fatty acids with 

“ * ”(asterick) are those which are present in mammalian type DHA biosynthesis 

pathway as shown in Fig. 26b 

 

S.No Fatty acid S.No Fatty acid 

1 FA 12:0 22 FA 20:3* 

2 FA 12:1 23 FA 20:4* 

3 FA 14:0 24 FA 20:5* 

4 FA 14:1 25 FA 20:6 

5 FA 14:4 26 FA 22:1 

6 FA 16:0 27 FA 22:2 

7 FA 16:1 28 FA 22:3 

8 FA 16:2 29 FA 22:4* 

9 FA 16:3 30 FA 22:5* 

10 FA 16:4 31 FA 22:6* 

11 FA 16:5 32 FA 24:0 

12 FA 18:0 33 FA 24:1 

13 FA 18:1* 34 FA 24:2 

14 FA 18:2* 35 FA 24:3 

15 FA 18:3* 36 FA 24:4 

16 FA 18:4 37 FA 24:5* 

17 FA 18:5 38 FA 24:6* 

18 FA 18:6 39 FA 26:1 

19 FA 20:0 40 FA 26:2 

20 FA 20:1 41 FA 26:5 

21 FA 20:2 42 FA 26:6 
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Fig. 1. Molecular structures of alkenone species. Image credits: Laboratory of plant 

physiology and metabolism. Purple spots indicate methyl and ethyl groups. Yellow 

spots trans indicated unsaturation. 
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Fig. 2. General C-allocation mechanism under normal N-sufficient (+N) and 

N-limitation (–N) conditions. Arrows indicate direction of carbon flow in +N (black 

arrows) and –N (red arrows). Model credits Gonclaves et al. 2016.   
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Fig. 3. Culture conditions and experimental procedure to study carbon allocation 

mechanism under N-sufficent (+N) and N-limitation (-N) conditions. 
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Fig.4. An overview of sample analysis procedure. Samples from day 4 to 8 are used to 

anlyze polysaccharides, lipids, total organic carbon and macromolecular carbon 

absorption spectra(FTIR). Here NP is neutral polysaccharides, AP is acid 

polysaccharides, FAMES is fatty acid methyl esters, GC-FID/MS is gas 

chromatography- flame ionization detection/ Mass spectrometry, TOC is total organic 

carbon and FTIR is fourrier transformed infrared spectroscopy.   
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Fig. 5. Changes in growth and inorganic phosphate (Pi) concentration in the medium 

during the culture of the alkenone-producing haptophyte E. huxleyi CCMP2090 under 

nitrogen- sufficient (+N) and -limiting (–N) conditions. The cells were grown under +N 

conditions for first 4 days (stage-I), and then cells harvested by centrifugation were 

transferred to either +N or –N medium (stage-II), as described in Materials and Methods. 

a, growth curve with logarithmic scale on the y-axis. b, growth curve with linear scale 

on the y-axis and Pi concentration in the medium expressed as a relative value (% Pi). 

Open and closed symbols, data from experiments performed under +N and –N 

conditions, respectively. The initial Pi concentration (100% Pi) was 30 M. Open 

arrows, the time when cells were transferred to either +N or –N conditions. Error bars 

indicate standard deviations from triplicate experiments (n=3). 
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Fig. 6. Changes in the parameters of cell growth and the contents of cellular 

components  (pg cell
-1

) after the transfer of 4-d-grown +N cells to either +N (open 

circles) or –N conditions (closed circles) in E. huxleyi CCMP2090. a, cell number. b, 

cell size. c-f, the contents (pg cell
-1

) of cellular components such as chlorophylls (c), 

proteins (d), neutral polysaccharides (NP) (e) and acid polysaccharides (AP) (f). Refer 

Fig. 5 for symbols, error bars and the whole experiments during 8 days.  
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Fig. 7. Changes in the amounts of cellular components (g (mL culture)
-1

) after the 

transfer of 4-d-grown +N cells to either +N (open circles) or –N conditions (closed 

circles) in E. huxleyi CCMP2090. a, chlorophylls. b, proteins. c, neutral polysaccharides 

(NP). d, acid polysaccharides (AP). Refer Fig. 5 for symbols, error bars and the whole 

experiments during 8 days.  

 

 

 

 



95 

 

 

 

Fig. 8. Changes in neutral lipid contents after the transfer of 4-d-grown +N cells to 

either +N (open circles) or –N conditions (closed circles) in E. huxleyi CCMP2090. a 

and b, the contents of alkenones and alkenes, respectively. c, the relative accumulation 

patterns between alkenones and alkenes. Refer Fig. 5 for symbols, error bars and the 

whole experiments during 8 days.  
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Fig. 9. Changes in the amounts of a, alkenones and b, alkenes (g (mL culture)
-1

) after 

the transfer of 4-d-grown +N cells to either +N (open circles) or –N conditions (closed 

circles) in E. huxleyi CCMP2090. Refer Fig. 5 for symbols, error bars and the whole 

experiments during 8 days. 
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Fig. 10. Changes in alkenone components with unsaturation degree and carbon chain 

length during culture of E. huxleyi under +N (open squares) and –N conditions (closed 

squares). a, the compositions of various alkenone molecules expressed as % of total 

alkenone contents. b, the alkenone unsaturation index (U
K'

37) as a parameter of 

unsaturation degree. c, the alkenone unsaturation degree expressed as the ratio of 

C37:3/C37:2 alkenones. d, the carbon chain length expressed as the ratio of C37/C38 

alkenones. Red and blue bars indicate +N and –N conditions, respectively, in Fig. 10a. 

Refer Fig. 5 for symbols, error bars and the whole experiments during 8 days. 
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Fig. 11. Analysis for presence of TAGs in neutral lipid fractions. a, GC-MS analysis 

profiles of neutral lipid fractions from cells on various days. b, Calibration of TAG 

detection by GC-MS which was performed to confirm the sensitivity of GC-MS to TAG. 

Internal standards were a series of various concentrations of TAG C17 ranging from 20 

ng μL
-1 

to 100 ng μL
-1

 and triacontane at 100 ng μL
-1

.   
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Fig. 12. Changes in FA contents after the transfer of 4-d-grown +N cells to either +N 

(open circles) or –N conditions (closed circles) in E. huxleyi CCMP2090. a, TFA 

contents in the cells. b and c, FA profiles of polar lipid fraction (PLF) in +N and –N 

cells, respectively. d, the ratios of mol% of FAs between +N cells and –N cells. Upper 
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(red) and lower (blue) columns, FAs which are dominant in +N cells and –N cells, 

respectively. Refer Fig. 5 for symbols, error bars and the whole experiments during 8 

days. 
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Fig. 13. Changes in the carbon allocation into various cellular components after the 

transfer of 4-d-grown +N cells to either +N (open symbols) or –N conditions (closed 

symbols) in E. huxleyi CCMP2090. a and b, TOC in +N and –N cells expressed per mL 

culture and cell, respectively. c and d, Carbon allocation into various components (%) in 

+N and –N cells, respectively. Symbols; cell components such as proteins (circles), 

alkenones (diamonds), FAs as PLF (squares), acid polysaccharides (triangles with 

dashed line), neutral polysaccharides (diamonds with dotted line) and others including 

unidentified low molecular compounds (triangles). e, the ratios of carbons allocated into 

various components between +N cells and –N cells. Upper (red) and lower (blue) 
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columns, the ratio of C-allocation in various compounds in which are dominant in +N 

cells and –N cells, respectively. Refer Fig. 1 for open arrow, error bars and the whole 

experiments during 8 days. 
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Fig. 14. Model of carbon distribution into various molecular pools during day 5, day 6 

and day 8 of E. huxleyi CCMP 2090 grown under +N (dark colored bars) and –N (light 

colored bars). Each color is specific for each metabolite. Arrows represent pattern of 

carbon flow under +N and –N condition. Colored arrows represent direction of carbon 

flow for that specific component relative to the adjacent colored bars.  
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Fig. 15. Carbon bond excitation absorption spectra obtained using Fourier transformed 

infra red spectroscopy (FTIR). Data showing FTIR spectra of samples from day 6, 7, 8 

of N-sufficient (+N) and N-limitation (–N) conditions. Spectra is average of triplicate 

data.  
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Fig. 16. Changes in major macro molecules from FTIR semi-quantification data. a, 

N-sufficient (open symbols, +N) and b, N-limitation (closed symbols, -N) conditions. 

Here Circles, triangles, diamonds and squares indicate Protein, other unknown 

compounds including carbohydrates, Alkenone, and Fatty acid (PLF), respectively.  

Refer Fig. 5 for open arrow, error bars and the whole experiments during 8 days. 
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Fig. 17. FTIR spectra of MeOH-Dw fraction of samples from day(d) 6, 7, 8 of 

N-sufficient (+N) and N-limitation (–N) conditions. Peak under wave number 1057cm
-1 

represent absorption of infra red spectra by C-C, C-O-C bond vibrations of LMCs like 

mannitol and other sugars.  
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Fig. 18. A model representing the direction of C-allocation into various cell components 

in E. huxleyi CCMP 2090 under +N and –N conditions. The direction of C flow is 

represented by arrows. Metabolic processes and metabolites in black, red and blue 

represent reactions which are neutral, suppressive (stimulatory) and stimulatory 

(suppressive) under –N (+N) conditions, respectively. The thickness of arrow represents 

strength of the reaction. Metabolites in italics represent components quantified 

experimentally in this study. Metabolites in green represent no regulation by 

N-availability. Cross mark represents inhibitory.  Symbols: AP, acid polysaccharides; 

PUFA, polyunsaturated FAs. 

 

 

 



108 

 

 

 

Fig. 19. Schematic cartoon of liquid chromatography-electronspray ionization mass 

spectrometer (LC-ESI/MS) setting for lipidomic analysis. First indicate indicates lipid 

separation (colored dots) using a HPLC column based on gradient elution methods. 

Second box indicate formation fine droplets from liquid sample (principle of ESI) at the 

capillary ending of sample injector. Third box indicate the quadrapole (Q) chamber 

(tandem masspectrometer, QTRAP) through which the ionized molecular ion passes and 

undergoes fragmentation at various points. Q1 is quadrapole 1 where molecular ions are 

selected; Q2 is collision chamber where fragmentation of molecular ion occurs and at 

Q3 selection of specific lipid fragments occurs. Here DP, EP, CE, CEP, CXP and CEM 

are various electric potentials. DP (declustering potential), CE (collision energy) and 

CXP (collision exit potential) are optimized for method establishment according to 

ABSciex QTRAP 5500 procedure.     
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Fig. 20. Flow for lipid detection and qualitative analysis based on head group and fatty 

acyl fragmentation in positive and negative ion mode. +NH4, H+ and H- are adductions 

formed during ionization of a lipid molecule. Q1 and Q2 are quadruples at which 

molecular ion and fragment ions and their masses (m/z) are detected.   
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Fig. 21. High performance liquid chromatography (HPLC) gradient elution graph. A 

and B represent HPLC elution buffers. The graph represents combination of elution 

buffers at different time points to enable lipid class separation. A= 600:400:1.0:0.4          

n-hexane:isopropanol:formic acid: 25 % aqueous NH4; eluent B= 880:120:1.0:0.4          

isopropanol:water:formic acid: 25 % aqueous NH4.   
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Fig. 22. Flow chart of lipidome data processing using computational methods.  
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Fig. 23. Mass spectra of 13-IST mixture, showing 12 ISTs detected in positive 

ionization mode. Refer table 4 and table 6 for lipid abbreviations. 
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Fig. 24. Extracted ion spectra (XIC) of 13-IST mixture in positive ionization mode. 

Each IST is at 100ng concentration. Spectra represent retention time at which each lipid 

class specific IST is detected. PI is detected in negative ion mode and its retention time 

is mapped on this spectra. Differences in peak heights indicate difference in sensitivity 

of detection for each lipid class. Refer table 4 and table 6 for lipid abbreviations. 

 

 

 



114 

 

 

 

 

 

 

 

Fig. 25. Extracted ion chromatogram (XIC) of E. huxleyi CCMP 2090 lipidome.  XIC 

of each lipid class show in separate panes to clearly represent the separation various 

lipid classes present in sample. Refer table 4 and table 6 for lipid abbreviations. 
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Fig. 26. Changes in growth and cellular components of E. huxleyi CCMP 2090 during 

logarithmic and stationary phase. a, Cell growth. b, Inorganic  phosphate concentration. 

c, Chlorophyll concentration. Squares, diamonds and triangles indicate replicate 

experiments A, B and C. Dark filled symbols indicate point at which sampling was 

donne for lipidome analysis.  
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Fig. 27. Lipidome composition of E. huxleyi CCMP 2090 during logarithmic and 

stationary phases. Errora bars indicate standard deviation of triplicate experiments. 

PC/SM or PC represent phosphatidyl choline (PC) and sphingomylein (SM). Refer table 

4 and table 6 for lipid class abbreviations. 
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Fig. 28. Additional fatty acid pathways detected from lipidome of E. huxleyi CCMP 

2090 during log and stationary growth phase. a, very long chain fatty acids detected in 

various lipid species. b, possible mammalian type DHA biosynthesis pathway in E. 

huxleyi. c, odd chain fatty acid 15:0 detected in various lipid species.   
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Fig. 29. Network view of lipids from E. huxleyi CCMP 2090. Data represent the 365 

lipid species that were sorted using computational methods. Image generated using 

Biolayout 3D V 3.0 software. Here the colored spheres (nodes) represent different lipid 

classes. Grey spheres represent fatty acyl groups (FA). The lines (edges) connecting a 

lipid class and a FA group indicate lipid species have that FA. FA with more edges 

indicates its distribution in different lipid classes. This distribution is also represented by 

increased size of nodes (nodes with more edges have larger size).  
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Fig. 30. Network view of lipids from E. huxleyi CCMP 2090. Data represent the 365 

lipid species that were sorted using computational methods. Image generated using 

Biolayout 3D V 3.0 software. Here the colored spheres (nodes) represent different lipid 

classes and light green spheres (CC) represent total carbon number and double bonds 

associated to each lipid class. The lines (edges) connecting a lipid class and the carbons 

(CC) indicate detected lipid species with that carbon composition. CC with more edges 

indicates different lipid classes with similar CC composition. This distribution is also 

represented by increased size of lipid class nodes (nodes with more edges have larger 

size). 
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Appendix for PERL scripts 

Lipid-compare.pl 

 This program compares two lipidome data files (output tables from lipid 

view software 

 Files can be positive (POS) or negative (NEG), this coded can compare 

POS-POS or NEG-NEG or NEG-POS data.                               

 This code generates 3 output files, 1. Unique lipids in each data file; 2. 

common lipids between two data files 

 The FA list file should have fatty acid names in this way "10:0" just 

carbon-number: double-bonds (no need to say FA)    

 From the COMMON data output-file select lipid names column for 

EXCEL processing  "ex. PC 26:1 (FA 14:0/12:1)” 

 In EXCEL make lipid with one FA like " PC 26:1 (FA 14:0) and PC 26:1 

(FA 14:0) in each line. Save in text file, for Pre-BioLayout.pl 

Pre-BioLayout.pl 

 This program is pre processing script for Biolayout-input-file program                                                             

 The input file for this program consist lipid names in this way " PC 26:1 

(FA 14:0) " in each line  

 The input fatty acid list file should be consist fatty acid names in this way " 

FA(10:0) " in each line  
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 The output data files LC-INP and LF-INP are input files for two kinds of 

Biolayout-input-file programs   

 LC-INP consist lipid class name, total carbons and total double bonds. This 

is input for BioLayout-CC.pl   

 LF-INP consist Lipid class name, Fatty acid. This is input for 

BioLayout-Lipid-FA                                                        

 Redundant data is automatically removed, manual check can be done again                                                            

BioLayout-Lipid-FA.pl 

 This program generates input file for BioLayout tool                                                                                

 Here EDGE list for network is created using the lipid class names and fatty 

acids                                                  

 In the network view spheres (known as NODES) represent lipid class 

name and also fatty acids   

 Using this, I can see how many lipid classes share similar fatty acids in the 

lipidome. This also help to quickly review whole lipidome  

 Size of spheres increase with 1. Number of lipid species for each lipid 

class and also 2. number of Fatty acids shared by each lipid class 

  Rename the output file with ".layout" extension   

 Once the network is generated in BioLayout software. You can give colors 

to nodes 
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BioLayout-CC.pl 

 This program generates input file for BioLayout tool                                                                                

 Here EDGE list for network is created using the lipid class names and 

carbon number       

 In the network view spheres (known as NODES) represent lipid class 

name and also Carbon number (along with double bonds)    

 Using this, I can see how many lipid classes share similar carbon number 

in the lipidome                                

 Size of spheres increase with 1. Number of lipid species for each lipid 

class and also 2. number of classes that share same carbon number # 

 Rename the output file with ".layout" extension   

 Once the network is generated in BioLayout software. You can give colors 

to nodes 

All PERL codes are attached at the end of this thesis. 
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E:\PhD-application\Thesis\Untitled Folder\Lipid-compare.pl Friday, July 14, 2017 6:26 PM

###########################################
#              Lipid-compare.pl           #
###########################################

use List::MoreUtils qw(uniq);
$list="list"; #input file name here. File consist list of files to be compared; names of two 
files written in one line separated by a tab
open(LIST,$list);@Ls=<LIST>;$i=0; $len=@Ls;

$tf=~s/:/Y/g;my $FAT;
$falist="FA-list";open(FC,$falist);#File name. This file consist all fatty acids that are 
expected to present in lipidome.
@FAS=<FC>;$LF=@FAS;open OUTFA,"+>","FATAble";
my @Fci;my @Fbi; my @Fcj; my @Fbj;
my @FAtable;$Fci[0][0]=0;$Fbi[0][0]=0;
$Fcj[0][0]=0;$Fbj[0][0]=0;$FAtable[0][0]=0;
for($fi=0;$fi<$LF;$fi++)
{ chomp $FAS[$fi];

@FI= split /\:/,$FAS[$fi];#print "$LF; $FI[0]:$FI[1]\n";
$Fci[0][$fi]=$FI[0];$Fbi[0][$fi]=$FI[1];
$Fcj[$fi][0]=$FI[0];$Fbj[$fi][0]=$FI[1];
$FAtable[$fi][0]="$FAS[0]";$FAtable[0][$fi]="$FAS[0]";

}
for($fi2=1;$fi2<$LF;$fi2++)
{

for($fi3=1;$fi3<$LF;$fi3++)
{
$aa=$Fci[0][$fi2]+$Fcj[$fi3][0];$bb=$Fbi[0][$fi2]+$Fbj[$fi3][0];
$FAtable[$fi2][$fi3]="$aa:$bb";#$FAtable[$fi2][$fi3]=~s/:/y/g;

#print OUTFA "FA: $FAtable[$fi2][$fi3]\t";
}#print OUTFA "\n";

}

my @load;
foreach $line(@Ls)
{

chomp $line;
@load= split /\t+/,$line;#Loads names of files in array elements #better two file names per line
$fnum=@load;@name1= split /\./,$load[0];@name2= split
/\./,$load[1];$outflDIR="$name1[0]-$name2[0]";
mkdir "$outflDIR";
#open OUT1a,"+>","$name1[0]-common.txt";
#open OUT1b,"+>","$name2[0]-common.txt";
@Filenm= split /\-/,$outflDIR;
my @ARY12;$x=0;my @Len;undef @FFAA1;undef @Flen;

for ($i=0;$i<$fnum;$i++)
{$F1="$load[$i]";my @F1array;
chomp $F1;
unless (open(F1,$F1)){print "Error-1:Cannot open file-1 $F1";};@F1=<F1>;$Len[$x]=@F1;$ij=0;
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foreach $fl1(@F1)
{

chomp $fl1;$fl11= rearrange($fl1);#print "ONE:$fl1\nTWO:$fl11\n";#can remove 
underscore in experiment details from raw file
my @F1line; @F1line= split /\t+/,$fl11;$len=@F1line;#print "Length1:$len\n";
$new=$F1line[0];$mass=$F1line[1];$pis=$F1line[2];
#$compute=replace($new);
#splitting each line of file 1 with SPACE/TAB as delimmiter and saving in an 
array

push (@F1array, \@F1line);$FFAA1[$i][$ij]=$fl11;$Flen[$i][$ij]="$len";
# Saving the array elements of a line in another array.. technically making 
multi dimensional array

$ij++;
}

push (@ARY12, \@F1array);#stores in another array a[][][]
$x++;

}
for($j=0;$j<$fnum;$j++)
{

#print "Loop1:$j";
$LL=$Len[$j];

for($j2=0;$j2<$fnum;$j2++)
{

$LL2=$Len[$j2]-1;
if($j2 ne $j)

{ undef @head1; undef @head2;
open OUT2,"+>","$outflDIR/$Filenm[$j]-UNIQUE.txt";
#output file consist lipids that are unique betwween files 
compared (positive/negative). This data can be discarded

if($j==0){open OUT1,"+>","$outflDIR/$Filenm[$j]-common.txt";}
#output file with common lipids in files compared. This data is important.

if($j==0){open OUT3,"+>","$outflDIR/$Filenm[$j]-common-UNN.txt";}
open OUT4,"+>","$outflDIR/$Filenm[$j]-UNIQUE-UNN.txt";
#UNN is unknown data. this have fatty acids which are not listed 
in FA-list. This data can be discarded.

for ($k=0;$k<$LL;$k++)
{ $C=0;$U=0;undef @CTOT; undef @UTOT;#print"$j,$j2, $k, 
$ARY12[$j][$k][0]\n";

$LP1=$ARY12[$j][$k][0];$mz1=$ARY12[$j][$k][1];$LP1=~
s/\r|\n//g;$mz1=~ s/\r|\n//g;
$pis1=$ARY12[$j][$k][2];$cnt1=$ARY12[$j][$k][3];#print 
"$ARY12[$j][$k][3]\n";
$new=$LP1; $Lp1= replace($new);@head1= split
/\s/,$Lp1;$am=$head1[0];$Q1=replace2($am);
$HUNT=0;#print "Q1:$am\n";

for ($k2=0;$k2<=$LL2;$k2++)
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{
$LP2=$ARY12[$j2][$k2][0];$mz2=$ARY12[$j2][$k2][1];

$LP2=~ s/\r|\n//g;$mz2=~ s/\r|\n//g;

$pis2=$ARY12[$j2][$k2][2];$cnt2=$ARY12[$j2][$k2
][3];

$new=$LP2;$Lp2= replace($new);@head2= split
/\s/,$Lp2;$am=$head2[0];$Q2=replace2($am);
#print "subject: $Q1 and $Q2 \n\n";
if ($Q2=~m/$Q1/)

{$Real=0;#print "subject: $Lp1 and $Lp2 : $ARY12[$j][$k][3] and 
$ARY12[$j2][$k2][3] \n\n";

if("Negative"=~m/$ARY12[$j][$k][3]/ ||
$len<3)

{$new1=$ARY12[$j2][$k2][0];$N1=0;}else{$N1=
1;}
if("Negative"=~m/$ARY12[$j2][$k2][3]/ ||
$len<3)

{$new2=$ARY12[$j][$k][0];$N2=0;}else{$N2=1;
}
#print 
"Neg:$ARY12[$j2][$k2][0]\n";#cannot 
transfer values of array elements to 
variables
if($N1==$N2 && $N1==0)

{$N=$N1;$new=$ARY12[$j][$k][0];}
elsif($N1==$N2 &&
$N1==1){$N=$N1;$new=$ARY12[$j][$k][0];}
elsif($N1!=$N2)

{

if($N1==0){$N=$N1;$new=$ARY12[$j][$k][
0];}

if($N2==0){$N=$N2;$new=$ARY12[$j2][$k2
][0];}

}#print "$N and $new\n";
if($len<3)

{if($FFAA1[$j][$k]=~m/FA/){$new=$ARY12[$j][$
k][0]}

elsif($FFAA1[$j2][$k2]=~m/FA/){$new=$ARY12[$
j2][$k2][0]}}

$lpp=replace($new,$N);$lpp=~ s/\r|\n//g;if($N eq
0){$lipid_fa=findFA($lpp);}

@tot= split /\t/,$FFAA1[$j][$k];
@tote=split
/[\s]/,$lpp;$tot[0]="$tote[0]\t($lipid_fa)"
;
$ctot1= join("\t",@tot);#print"$ctot1\n";

-3-



E:\PhD-application\Thesis\Untitled Folder\Lipid-compare.pl Friday, July 14, 2017 6:26 PM

@tot2= split /\t/,$FFAA1[$j2][$k2];splice @tot2,0,1;
$ctot2 = join("\t",@tot2);

$ctot1=~ s/\r|\n//g;$ctot2=~ s/\r|\n//g;
$CTOT[$C]= "$ctot1\t$ctot2";#print 
"$CTOT[$C]\n";

$value="$tot[0]\t$tot[1]";$Real=SearchFA($value,$N);
#print"Value:$value: $Real\n\n";
if($Real>1 && $j==0){print
OUT1"$CTOT[$C]\n";}elsif($Real<=1){print
OUT3"$CTOT[$C]\n";}
$C++;#print OUT1"$CTOT[$C]\n";

#print OUT1b "$FFAA1[$j2][$k2]\n";
$HUNT=1;goto nl1;

}
}nl1:
if($HUNT<1)

{$N=0;$Real=0;

if("Positive"=~m/$ARY12[$j][$k][3]/ ||
$len<3){$N=1;$new=$ARY12[$j][$k][0];}
if("Negative"=~m/$ARY12[$j][$k][3]/ ||
$len<3){$N=0;$new=$ARY12[$j][$k][0];}
#if($len<3){$new=$ARY12[$j][$k][0];$N=0;}

$lpp=replace($new,$N);if($N eq
0){$lipid_fa=findFA($lpp);}

@tot= split /\t/,$FFAA1[$j][$k];
@tote=split
/[\s]/,$lpp;$tot[0]="$tote[0]\t($lipid_fa)"
;$utot1= join("\t",@tot);

#@tot2= split /\t/,$FFAA1[$j2][$k2];splice @tot2,0,2;$utot2 = 
join("\t",@tot2);
$utot1=~ s/\r|\n//g;

$UTOT[$U]=
"$utot1";$value="$tot[0]\t$tot[1]";#print 
"$tot[0]\t$tot[1]\n";

if($N==0){$Real=SearchFA($value);}else{$Real=10;}
if($Real>1 && $j==0){print
OUT2"$UTOT[$U]\n";}elsif($Real<=1){print
OUT4"$UTOT[$U]\n";}

$U++;
#just a print statement and subroutee GET
}

}
#next line of first file
}

}
}

}
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sub rearrange
{

#subprogram that is used for comparinf lipids 
my $Exd; my @exdline; my $rearrange; my @F0line; @F0line= split /\t+/,$fl1;
@exdline= split /[\_|\:]/,$F0line[1];$Exd= join("\t",@exdline);
$F0line[1]=$Exd;#print "$Exd\n";
$F0line[1]=~ s/\r|\n//g;
$rearrange= join("\t",@F0line);
#print "$rearrange\n";
return($rearrange);

}

sub replace
{
#subprogram to for data processing
#print "$new, $mass / pis:$pis\n";
undef @space1;my $char; my $LPn; undef @Exact; my $lpa;
#$adduct="";
@space1= split /[\+|\s+|\-|\(|\)|\/|\:|\t+]/,$new;$lnt=@space1;
#print "Value for neg: $N\n";

$lpa="$space1[0]($space1[1]:$space1[2])";
if($N==1){goto s1;}
else
{ $fa=0;my $a1;$c=0;

for ($ln1=0;$ln1<=$lnt;$ln1++)
{
if ($space1[$ln1]=~m/FA/){$a1.="FA $space1[$ln1+1]:$space1[$ln1+2]/";$c=1}

}
if($c>0)

{
$lpa.=" ($a1)";#print "neg: $lpa\n";
}

}s1:
#print "$N and $lpa\n";
return($lpa);

}
sub replace2
{
#subprogramming for data processing
my @space;my @brks;my @pls;my @sls;my @col;
my @brke;my @hyp;my $lp1a;my $lp2a;my $lp3a;
my $lp4a;my $lp5a; my $lp6a;my $lp7a;
@space= split /\s+/,$am;$lp1a=join('x',@space);@col= split /\:/,$lp1a;$lp2a=join('y',@col);
@brks= split /\(/,$lp2a;$lp3a=join('z',@brks);@brke= split /\)/,$lp3a;$lp4a=join('q',@brke);
@pls= split /\+/,$lp4a;$lp5a=join('w',@pls);@hyp= split /\-/,$lp5a;$lp6a=join('v',@hyp);
@sls= split /\//,$lp6a;$lp7a=join('h',@sls);
return($lp7a);

}
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sub findFA
{

#subprogram  that calculates other fatty acid using total carbons (CC) and double 
bonds(DB) of lipid and Cc,Db of FAs detected 

my @space1;my $char;my $faa;my$FA;my @IDs;my $AL;my $Lipid;
@IDs= split /[\(|\:|\)|\s+|\/]/,$lpp;$AL=@IDs;my $FFA=$FA;
$Lipid=$IDs[0];$CC=$IDs[1];$DB=$IDs[2];my @Cc;my @Db;my $jj=-1;

#print "$lpp and $AL and $CC\n";
for($i=0;$i<=$AL;$i++)

{$sick=$IDs[$i];#print"Yes:$lpp,$AL and $sick\n";
if ($sick=~m/FA/)

{$jj=$jj+1;$Cc[$jj]=$IDs[$i+1];$Db[$jj]=$IDs[$i+2];}
}

for($kk=0;$kk<=$jj;$kk++)
{
$c=$Cc[$kk];$b=$Db[$kk];
if($c<$CC && $b<=$DB)

{$FFA="FA $c:$b";
$Cr=$CC-$c;$Br=$DB-$b;
if($Lipid=~m/TAG/)
{$tf="$Cr:$Br";$tag=tagFA($tf);}

else {$tag="FA $Cr:$Br";}
$FFA.="/$tag";

}
}#print"this :   $FFA";

#$ret="$FFA\t$mz1\t$pis1\t$cnt1\n";
return($FFA);

} #next line of second file

sub tagFA

{
# this sub program is used to calculate fatty acids of TAGs
# this is complex way, many FAs can be detected , therefore manually sort the data
#need to improve further  

for($fi4=1;$fi4<$LF;$fi4++)
{

for($fi5=1;$fi5<$LF;$fi5++)
{

$db=$FAtable[$fi4][$fi5];
if($tf=~m/$db/)
{

#print "$db and $tf\n";
$FAT.="FA $Fci[0][$fi5]:$Fbi[0][$fi5]/FA $Fcj[$fi4][0]:$Fbj[$fi4][0];";}

}
}

return($FAT);
}

sub SearchFA
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{
#subprogram that search for fatty acids in FA-list files 
my $RT=0;my $prt=0;$fabs=0;
#print"NXT\n ";

$fal="FA-list";open(FAL,$fal);@Fal=<FAL>;my @fasp;my $c1,my $c2;my $b1;my $b2;my @fasp2;
@lipid= split /[\(|\/|\)]/,$value;#print"search2:$CTOT[$C]\n";

foreach $_(@lipid)
{#print"$_\n";
chomp $_; if($_=~m/FA/){@fasp=split
/[\:|\s]/,$_;$fa=$fasp[0];$c1=$fasp[1];$b1=$fasp[2];$fabs=1;}

foreach $faa(@Fal)
{chomp $faa;
@fasp2=split /\:/,$faa;$c2=$fasp2[0];$b2=$fasp2[1];#print "$fa\n";
#print "$faa :: $rem\n";   

if( $fa=~m/FA/ && $c2==$c1 && $b2==$b1)
{#print "yes\n";
$RT++;$prt=$RT;

}
}

}
if($fabs eq 0){$RT=10;}#print " RT:$RT\n";
return($RT);
}
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###########################################
#              Pre-BioLayout.pl           #
###########################################

#!/usr/bin/perl
use List::MoreUtils qw/ uniq /;

$infile="sta-lipids.txt";#input the name of file that consist lipid names (output from 
Lipid-compare.pl))
open(FILE,$infile);
@INF=<FILE>;shift @INF;$i=0;
open OUT1,"+>","LF-INP";
#open OUT3,"+>","Calculate-FA";
#use this to calculate other fatty acid; the symbol "#" at the begining of line should be 
removed to get output

open OUT2,"+>","LC-INP";
#open OUT3,"+>","Intlst";
#print OUT1 "LIPID\tIden-F\tUnIden-F\n";

$ln=@INF;$mn=0;
for($in=0;$in<$ln;$in++)
{
chomp $INF[$in];$linen=$INF[$in];$jn=0;
@colsn=split /[\(|\)]/,$linen;$lipidNMn="$colsn[0]";$f1=$colsn[1];$sn=0;
@fasp=split /[\-|\/|\+]/,$f1;$s=0;my $F1;
foreach $fa(@fasp){if($fa=~m/FA/){$s++;if($s>1){$F1.="/";}$F1.=$fa;}}

if($colsn[0]=~m/\+/){@lmm=split /\+/,$colsn[0];$lipidNMn="$lmm[0]";}#."$lmm[1]";}
if($F1=~m/FA/)
{

foreach $line2n(@INF)
{

chomp $line2n;
@cols2n=split /[\(|\)|]/,$line2n;$lipidNM2n="$cols2n[0]";$f2=$cols2n[1];

@fasp2=split /[\-|\/|\+]/,$f2;$s2=0;my $F2;
if($cols2n[0]=~m/\+/){@lmm2=split /\+/,$cols2n[0];$lipidNM2n="$lmm2[0]";}#."$lmm2[1]";}
if($f2=~m/FA/)
{#print "$lipidNM and $lipidNM2\n";

if($lipidNM2n=~m/$lipidNMn/)
{
foreach $fa2(@fasp2)
{
if($fa2=~m/FA/)

{$s2++;
if($s2>1){$F2.="/";}
$F2.=$fa2;

}
}

$Lip[$mn]=$lipidNMn;
if($sn>=1){$fac[$mn].="/";}
$fac[$mn].="$F2";$sn++;$in=$jn;$Exp[$mn]="$Lip[$mn]>$fac[$mn]";

}
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}$jn++;
}

$mn++;}

}
for($wwn=0;$wwn<$mn;$wwn++)
{
#print  "$Lip[$wwn] ($fac[$wwn])\n";
@LPD=split /[\s+|\:]/,$Lip[$wwn];
$LCT=$LPD[1];$LBT=$LPD[2];
@SPF=split /\//,$fac[$wwn];
my @unique = uniq @SPF;$sb=0;my $FAT;my $FcT;my $FbT;

foreach $fat(@unique)
{#print "$fat\t";
@Cb=split
/[\s+|\:]/,$fat;$FAC[$wwn][$sb]=$Cb[1];$FAB[$wwn][$sb]=$Cb[2];#$FTT="FA($Cb[1]:$Cb[2])";
#print OUT1 "$Lip[$wwn] ($fat) , $FAC[$wwn][$sb],$FAB[$wwn][$sb]\n";
$FcT+=$Cb[1];$FbT+=$Cb[2];$FAA[$wwn].="$fat/";
$sb++;
}$T=$FAA[$wwn];#print "$FAT,$FcT,$FbT\n";

#print "\n";
if($LCT>=$FcT)

{
if($LCT==$FcT)
{
if($LBT==$FbT){$Carry=$T;goto Next;}#print "LCT & LBT equal for $Lip[$wwn]\n";
if($LBT>$FbT || $LBT<$FbT){$Carry=SPLIT($LBT,$LCT,$T);goto Next;}#print "Wrong FAs 
checking individual $Lip[$wwn]\t";
}
if($LCT>$FcT)
{

if($LBT==$FbT){$RC=$LCT-$FcT;$RB=0;}#print "Double bonds equal but carbons more for 
$Lip[$wwn]\t";
if($LBT>$FbT){$RC=$LCT-$FcT;$RB=$LBT-$FbT;}#print "Double bonds and carbons more 
for $Lip[$wwn]\t";
if($LBT<$FbT){$Carry=SPLIT($LBT,$LCT,$T);goto Next;}#print "Wrong FAs checking 
individual $Lip[$wwn]\t";
$R="FA($RC:$RB)";
$searche=SEARCH($R);
if($searche!=1)
{$Carry=SPLIT($LBT,$LCT,$T);}#print "Wrong FAs calculated checking individual 
$Lip[$wwn]\t";
else{$Carry="$T FA $RC:$RB";}#print "Finally go it $Carry\n";

}
}
if($FcT>$LCT){$Carry=SPLIT($LBT,$LCT,$T);goto Next;}#print "Wrong FAs checking individual 
$Lip[$wwn]\t";

Next:

@FINALFAA = split /\//,$Carry;$Fl=0;#print "$Lip[$wwn]>$Carry\n";
my @uniq = uniq @FINALFAA;
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foreach $e(@uniq)
{print OUT1"$Lip[$wwn]\t$e\n";print OUT2"$Lip[$wwn]\n";#print OUT3"$Lip[$wwn]/";

$FATS[$wwn][$Fl]=$uniq[$Fl];
$Fl++;

}if($Lip[$wwn]!~m/$Lip[$wwn+1]/){if($Carry=~m/[A-Z]/){$tot[$wwn]="$Lip[$wwn]\t$Carry";print
OUT3"$tot[$wwn]\n";}}

}

sub SPLIT
{
#subprogram for data processing
my $Remb;my $Remb1;my @cc ; my @bb;my @SPLT;
@Faty=split /\//,$T;$x=0;
foreach $Fy(@Faty)
{#print ">$Fy\n";
@SPLT=split /[\s+|\:]/,$Fy;
$cc[$x]=$SPLT[1];$bb[$x]=$SPLT[2];
$x++;
}#print "nof:$x\n";
for($y=0;$y<=$x;$y++)
{my $Rmc;my $Rmb;my $Remb1=$Faty[$y];
$Rmc=$LCT-$cc[$y];$Rmb=$LBT-$bb[$y];
$R="FA($Rmc:$Rmb)";$R1="FA $Rmc:$Rmb";#print "calcul:$R\nsearch\n";
if($Rmc=~m/0/ && $Rmb=~m/0/)
{$Remb.="$Remb1/";goto n2;}#print "equal:$Remb";

$searche=SEARCH($R);
if($searche!=1)
{if($x<=1)

{@si=split /\s+/,$Remb1;$R="$si[0]($si[1])";$searche=SEARCH($R);#print"$R\n";
if($searche!=1){undef $Remb1;}
else{$Remb.="$Remb1/";undef $R1;}

}
else {undef $Remb1;}

}#print "IN SUBSTR :Wrong FA detected Discard\t";
else{$Remb1.="/$R1";$Remb.="$Remb1/";}#print "GOT\n";

n2:

}
#print "OUT:$Remb\n";
return ($Remb);
}
sub SEARCH
{#sub program to search for fatty acids in fatty acid list file
my $RT=0;
#print"NXT\n ";
$fal="falist";open(FAL,$fal);@Fal=<FAL>;my @fasp;my $c1,my $c2;my $b1;my $b2;my @fasp2;
@fasp=split /[\(|\:|\)]/,$R;$c1=$fasp[1];$b1=$fasp[2];
foreach $faa(@Fal)
{chomp $faa;
@fasp2=split /[\(|\:|\)]/,$faa;$c2=$fasp2[1];$b2=$fasp2[2];#print "$c1:$b1,$c2:$b2\n";
#print "$faa :: $rem\n";
if($c2==$c1 && $b2==$b1)

{#print "yes\n";
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$RT=1;goto l;
}

}l:
#print "RT:$RT\n";
return($RT);

}
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###########################################
#           BioLayout-Lipid-FA.pl         #
###########################################

#!/usr/bin/perl
use List::Util qw/max/;
use List::MoreUtils qw/ uniq /;

print "Input your file name \n";
$inp="Log-LF-INP";#<STDIN>;
chomp $inp;$infile="$inp";#print "$infile\n";
open(SIF,$infile);@SIF=<SIF>;
open OUT1,"+>","LAYFA";
open OUT2,"+>","Log-LAYOUT";
print OUT2"//BioLayout Express 3D Version 2.0 Layout File\n";
my $i=0;my $k=0;$h=0;
foreach $line(@SIF)
{chomp $line;
@temp=split /\s+/,$line;$ID[$i]="$temp[0]";$i++;$ID[$i]="$temp[2] $temp[3]";
print OUT2"$temp[0]\t$temp[2] $temp[3]\n";
print OUT1"$temp[2] $temp[3]\n";
$Fatl[$i]="$temp[2] $temp[3]";
$i++;
}
close OUT1;
#my @unique1 = uniq @Fatl;
my %uniq1;
map { $uniq1{$_}=1} @Fatl;
@unique1 = keys %uniq1;
my %uniq;
map { $uniq{$_}=1} @ID;
@unique = keys %uniq;
$a=0;
open(LAY,"LAYFA");@Lay=<LAY>;$FK=0;my @SIZ;my @FLS;

foreach $la(@unique1)
{chomp $la;$in=0;@v1=split /[\(|\:|\)|\s]/,$la;

if($la=~m/FA/)
{
foreach $li(@Lay)
{chomp $li;@v2=split /[\(|\:|\)|\s]/,$li;if($v1[1]==$v2[1] &&
$v1[2]==$v2[2]){$in++;}#print">>LA:$v2[1],$v1[2]\n";
}}

if($la=~m/FA/){$FLS[$FK]="$la,$in";$SIZ[$FK]=$in;}#print "$la,$in>>\n";
$FK++;
}

$ma= max @SIZ;
foreach $lipid(@unique)
{
@class=split /[\(|\)|\s]/,$lipid;$CLS=$class[0];#print "$CLS\n";
@noofcarbons=split /\:/,$class[1];$Size=$noofcarbons[0];$dbz=$noofcarbons[1];
chomp $lipid;#print "$lipid\n";

if($CLS=~m/FA/)
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{#print"yesssssssssssss:$CLS.$Size.$dbz\n";
foreach $ss(@FLS)
{chomp $ss;@z=split /[\:|\s|\,]/,$ss;$SZ=$z[3];#print"<$ss>??$Size:$dbz :: 
$z[1]:$z[3] \n";

if($Size=~m/$z[1]/ && $dbz=~m/$z[2]/)
{#print"$ss:$SZ:$ma\n";
$Size=(($SZ/$ma)*30);#print"renew:$Size\n";

if($Size<=10){$Size=10;}
print OUT2"//NODECLASS\t$lipid\t$CLS-FA\n";
print OUT2"//NODESIZE\t$lipid\t$Size\n";
print OUT2"//NODESHAPE\t$lipid\t0\t0\n";
print OUT2"//NODEALPHA\t$lipid\t1\n";
}

}goto n;
}
else
{$HASH[$h]=$lipid;$SS=0;$KA=0;

foreach $_(@SIF)
{chomp $_;@temp=split /\s+/,$_;
if($lipid=~m/$temp[0]/)

{$HBIN[$h].="$temp[2] $temp[3],";$KA++;}
}

@LTT=split /\,/,$HBIN[$h]; my %uniq2;map { $uniq2{$_}=1} @LTT;@unique2 = keys
%uniq2;$Size=@unique2;print "$lipid($KA,$Size) =$HBIN[$h]\n\n";
if($Size<=10){$Size=12;}
print OUT2"//NODECLASS\t$lipid\t$CLS-LIPID\n";
print OUT2"//NODESIZE\t$lipid\t$Size\n";
print OUT2"//NODESHAPE\t$lipid\t0\t0\n";
print OUT2"//NODEALPHA\t$lipid\t1\n";$h++;
}

#$px=int($Size/$ma)*10;#print "$Size\n";
#if($Size>10 && $Size<=20){$Size=5;}elsif($Size<=10){$Size=3;}
#if($Size>20 && $Size<=30){$Size=6;}
#if($Size>30 && $Size<=40){$Size=7;}
#if($Size>40 && $Size<=50){$Size=8;}
#if($Size>50){$Size=9;}

n:
}
print OUT2"//CURRENTCLASSSET\tLIPID\n";
print OUT2"//EDGESIZE\t0.4\n";
print OUT2"//EDGECOLOR\t#999999\n";
#print OUT"//NODECLASSCOLOR\tNo Class\t#000090\n";
print OUT2"//NODECLASSCOLOR\tDAG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tDGDG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tTAG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tLPG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tLPI-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tSQDG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tPS-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tPI-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tPG-LIPID\t#ffff33\n";
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print OUT2"//NODECLASSCOLOR\tPE-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tPC-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tMGDG-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tFA-LIPID\t#ffff00\n";
print OUT2"//DEFAULTSEARCH\tgoogle";
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#################################################################################################
############################################
#                                                      
BioLayout-CC.pl                                                                      # 
#################################################################################################
############################################

#!/usr/bin/perl
use List::Util qw/max/;
use List::MoreUtils qw/ uniq /;

$inp="LC-INP";#<STDIN>;
chomp $inp;$infile="$inp";print "$infile\n";
open(SIF,$infile);@SIF=<SIF>;
#open OUT1,"+>","LAY1";
open OUT2,"+>","Log-CC-LAYOUT";
print OUT2"//BioLayout Express 3D Version 2.0 Layout File\n";
my $i=0;my $k=0;
foreach $line(@SIF)
{chomp $line;
@temp=split /\s+/,$line;$ID[$i]="$temp[0]";$IA[$i]="$temp[0]";$i++;$ID[$i]="$temp[1]";
print OUT2"$temp[0]\t$temp[1]\n";
#print OUT1"$temp[0]($temp[1])\n";
$Fatl[$i]="$temp[0]($temp[1])";
$i++;
}

#my @unique1 = uniq @Fatl;
my %uniq1;
map { $uniq1{$_}=1} @Fatl;
@unique1 = keys %uniq1;
close OUT1;
my %uniq2;
map { $uniq2{$_}=1} @ID;
@unique2 = keys %uniq2;
close OUT1;
my %uniq;
map { $uniq{$_}=1} @IA;
@unique = keys %uniq;
$a=0;
#open(LAY,"LAY1");@Lay=<LAY>;$FK=0;my @SIZ;my @FLS;
foreach $li(@unique)
{chomp $li;$in=0; #print"lip:$li\t";

foreach $la(@unique1)
{chomp $la;@v1=split /[\(|\:|\)]/,$la;#print "$la\n";

if($v1[0]=~m/$li/){$in++;}#print">>LA:$la/LI:$li,$in\n";
}
if($li=~m/[A-Z]/){$FLS[$FK]="$li,$in";$SIZ[$FK]=$in;print"$li,$in\n";}
$FK++;

}
$ma= max @SIZ;
foreach $lipid(@unique2)
{chomp $lipid;#print "1>$lipid\n";
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#@class=split /[\(|\)]/,$lipid;$CLS=$class[0];$CLS=$class[1];#print "$CLS\n";
@noofcarbons=split /\:/,$lipid;$Size=$noofcarbons[0];$dbz=$noofcarbons[1];
chomp $lipid;#print "$lipid\n";

if($lipid=~m/[A-Z]/)
{#print "2>$lipid\n";
foreach $ss(@FLS)
{chomp $ss;@z=split /\,/,$ss;$SZ=$z[1];#print"??$Size:$dbz :: $z[1]:$z[2] \n";

if($z[0]=~m/$lipid/)
{#print"$SZ/$ma\n";
$Size=(($SZ/$ma)*20);#print"adjussiz:$Size\n";

if($Size<=10){$Size=10;}
print OUT2"//NODECLASS\t$lipid\t$lipid-LIPID\n";
print OUT2"//NODESIZE\t$lipid\t$Size\n";
print OUT2"//NODESHAPE\t$lipid\t0\t0\n";
print OUT2"//NODEALPHA\t$lipid\t1\n";
}

}goto n;
}

#$px=int($Size/$ma)*10;#print "$Size\n";
if($Size>10 && $Size<=20){$Size=5;}elsif($Size<=10){$Size=3;}
if($Size>20 && $Size<=30){$Size=6;}
if($Size>30 && $Size<=40){$Size=7;}
if($Size>40 && $Size<=50){$Size=8;}
if($Size>50){$Size=9;}
print OUT2"//NODECLASS\t$lipid\t-CC\n";
print OUT2"//NODESIZE\t$lipid\t$Size\n";
print OUT2"//NODESHAPE\t$lipid\t0\t0\n";
print OUT2"//NODEALPHA\t$lipid\t1\n";
n:
}
print OUT2"//CURRENTCLASSSET\tLIPID\n";
print OUT2"//EDGESIZE\t0.4\n";
print OUT2"//EDGECOLOR\t#999999\n";
#print OUT"//NODECLASSCOLOR\tNo Class\t#000090\n";
print OUT2"//NODECLASSCOLOR\tDGDG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tTAG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tLPG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tLPI-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tSQDG-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tPS-LIPID\t#ff3333\n";
print OUT2"//NODECLASSCOLOR\tPI-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tPG-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tPE-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tPC-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tMGDG-LIPID\t#ffff33\n";
print OUT2"//NODECLASSCOLOR\tFA-LIPID\t#ffff00\n";
print OUT2"//DEFAULTSEARCH\tgoogle";
#################################################################################################
############################################
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