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I. Introduction 
1. Renalase 

1) Structure of renalase 

Renalase is a recently discovered flavin adenine dinucleotide (FAD)-dependent soluble 

monoamine oxidase (Xu et al, 2005). 

 

Gene. 

The human renalase gene, located on chromosome 10 at q23.33, encompasses 309469 

base pairs (bp), and has 11 exons (Xu et al, 2005; Desir et al, 2009; Desir et al, 2012; 

Wang et al, 2014). 

 

Protein. 

There is evidence regarding the existence of at least four alternatively spliced isoforms. 

The most highly expressed isoform (renalase1) is 342 aa long, and is encoded by exons 

1–4, 6–7, 8, 9, and 10. The structure of renalase consists of three domains, a single peptide 

moiety, a bindeadenine dinucleotide binding moiety, and an amine oxidase moiety. The 

human renalase protein (hRenalase) has been detected in plasma, kidney, heart, skeletal 

muscle, and liver (Xu et al, 2005; Desir et al, 2009; Desir et al, 2012; Wang et al, 2014). 

 
  



2 
 

2) Function of renalase 

There are two main functions of renalase. 

One function is to metabolize circulating catecholamines (Xu et al, 2005; Desir et al, 

2009; Desir et al, 2012; Wang et al, 2014). Because catecholamines are not metabolized 

when the renalase level decreases, it is thought that blood pressure increases as the level 

of catecholamines increases. Therefore, it is reported that the role of renalase is to regulate 

cardiac function and blood pressure (Desir et al, 2009). Human diseases in which the 

tissue and blood levels of renalase are decreased include essential hypertension, chronic 

kidney disease, and preeclampsia (Desir et al, 2009; Desir et al, 2012; Zbroch et al, 2012; 

Yılmaz et al, 2016). In addition, the renalase level decreases even when salt intake is high 

or there is a lack of potassium intake (Wang et al, 2014). The abovementioned diseases 

or lifestyle habits have hypertensive symptoms that are one of the clinical symptoms or 

health risks. In a study related to the regulation of renalase by via blood pressure levels, 

the subcutaneous administration of renalase in hypertensive model rats was performed. 

The administration of renalase resulted in a decrease in circulating catecholamines and a 

decrease in blood pressure of about 15% (Wang et al, 2014; Baraka et al, 2012). 

Another function of renalase, unlike enzymes, is to function as a survival and growth 

factor. Therefore, it has the function of protecting cells. It reportedly protects against both 

heart and kidney injury (Lee et al, 2013; Wang et al, 2014, 2015, 2016; Du et al, 2015; 
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Guo et al, 2014). One study showed that renalase expression was elevated and that it 

attenuated cardiac injury in mice challenged with cardiac ischemia/reperfusion injury. A 

similar study was done in the kidney (Wang et al, 2016). 

 

3) Preceding studies 

There was merely one study that examined the relationship between renalase and exercise. There 

was no significant difference in the serum renalase concentrations during both acute exercise and 

endurance training, but renalase mRNA expression in the kidneys of rats at rest after being 

subjected to 6 weeks of endurance training was significantly increased, as compared to that in rats 

that were not subjected to training (Czarkowska-Paczek et al, 2013). This study suggested the 

possibility that exercise and renalase levels might be related.  
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II.  The study purpose and design 

Renalase regulates blood pressure and reportedly protects cells from oxidative stress. However, 

there has been no report investigating the association between exercise and renalase in humans. 

Therefore, in this study, we focused on the dynamics of renalase during exercise and hypothesized 

about the involvement of organs and skeletal muscles. 

There is no report about the dynamics of renalase at the time of exercise; it seems that research 

on this topic would be useful not only in the exercise field, but also in the medical field, because 

there are many reports even with regard to pathological conditions. 

 
●Research task 1: Human subject research 

“Transient changes in the serum renalase concentration during long-distance 

running.” 

There was only one report regarding the relationship between renalase and exercise, in which 

there was no significant difference in the blood renalase concentration. In addition, because 

research on human subjects has not been conducted, it cannot be concluded that the matter has 

been sufficiently examined. Therefore, in research task 1, it was hypothesized that the 

concentration of renalase in the blood fluctuated because of exercise, and this was investigated 

experimentally. 
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●Research task 2: Animal model research 

“Changes in renalase levels observed using a rat moderate treadmill running 

model.” 

In research task 1, the concentration of renalase in the blood was increased because of 

exercise. The main organ in which renalase is expressed is the kidney. However, in 

research task 1, there was a negative correlation between renalase concentration in the 

blood and renal function. Therefore, in research task 2, it was hypothesized that the 

increased concentration of renalase in the blood during exercise might occur owing to 

the expression of the renalase gene or protein in the skeletal muscle. 

 

●Research task 3: Cell culture experiment 

“Epinephrine upregulates renalase expression in cultured C2C12 muscle cells.” 

In research task 2, a significant increase was observed in both mRNA expression and 

protein expression in skeletal muscles. 

Therefore, in research topic 3, it was hypothesized that catecholamines were involved in 

the induction of increased expression of the renalase gene in skeletal muscles because of 

exercise. 
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●Research task 4: Expression factor of renalase 

“Expression factor of catecholamine-induced renalase secretion in skeletal muscle 

tissues of the animal model of transient medium intensity exercise.” 

In research task 3, it was shown that the addition of catecholamines significantly 

increased renalase expression in skeletal muscle cells. Therefore, in research task 4, it 

was hypothesized that an increase in the STAT 3, Sp 1, and ZBP 89 (factor regulating 

catecholamines) levels were related to the expression of the renalase gene in skeletal 

muscles. 
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III.  Research task 1: Human subject research 

 “Transient changes in the serum renalase concentration during long-distance 

running.” 

 

1) Aim 

Only one study conducted by Czarkowska-Paczek et al in 2013 has investigated the 

relationship between renalase levels and exercise in rats. Though there were no significant 

differences in the serum renalase concentrations during both acute exercise and endurance 

training, the level of renalase mRNA expression in the kidneys of mice at rest after 6 

weeks of endurance training was significantly increased, as compared with that in rats 

that did not undergo training (Czarkowska-Paczek et al, 2013). This study suggested the 

possibility that exercise and renalase levels might be related. However, the association 

between exercise and renalase levels in humans has not been investigated yet.  

The present study is the first to investigate the relationship between exercise and renalase 

levels in amateur runners undergoing continuous training. To measure the serum renalase 

concentration, a marker indicating the general condition of the body, continual exercise 

for more than 60 minutes was required, and measurements were performed during and 

after exercise; the protocol for measuring the renalase level was not reported by 

Czarkowska-Paczek et al. We also examined the association between renalase levels and 
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kidney function, as renalase is mainly expressed in the kidney, and also investigated its 

relationship with oxidative stress. 

 

2) Materials and Methods 

Subjects  

Eleven young men who were continuously training and running about 10 to 20 km per 

week were recruited. One of them ceased exercise because he experienced cramping in 

the lower extremity at the 20 km end; hence, he was excluded from the analysis (n = 10). 

The characteristics of the subjects are detailed in Table 1. Before starting the experiment, 

we explained the background, purpose, and hazards of the study to all subjects, and 

obtained written consent. This study was conducted with the approval of the sports ethics 

committee of the Graduate School of Comprehensive Human Sciences, University of 

Tsukuba (Approval number: 27–149).  

T   
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Table 1. Characteristics of study participants 
 AVG  SD 
Age (year) 22.4 ± 4.0 
Height (cm) 170.8 ± 5.9 
Weight (kg) 60.1 ± 6.4 
VO2max (ml/kg/min) 61.7 ± 6.6 
BMI (Kg/m2) 20.6 ± 1.3 

 
AVG; average 
SD; standard deviation 
BMI; body mass index 
VO2max; maximal oxygen intake 
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Procedures  

We set up a 5-km course at the University of Tsukuba for conducting this study. The 

total distance covered after 6 round trips was 30 km. Measurements were performed 

before running, and at distances of 10 km, 20 km, and 30 km. The conditions under which 

measurements before running were taken were the same as those on the day of study. The 

measurements before running were performed on the day before, as it otherwise becomes 

a physical burden to the subject. We performed a cardiopulmonary exercise test in 

advance using a treadmill, calculated the ventilatory threshold (VT), and set 90% VT as 

the running speed. The total time taken for subjects to complete 5 km laps is shown in 

Table 2. They ate a 400 kcal breakfast (protein: 8 g, lipid: 21.9 g, carbohydrate: 41.7 g) 

comprised of solid nutritional supplements, which would prevent hypoglycemic 

symptoms and enable the maintenance of a constant running pace, 1 hour before the test 

(Fuminori et al, 2014; Nagai et al, 2005; Sengoku et al, 2008; Kong et al, 2008). They then 

ate jelly, which provided 180 kcal (carbohydrate 45.2 g) at the 15-km point, to prevent 

hypoglycemic disorder and to minimize digestive activity during running from a 

nutritional point of view. They had free access to a sports drink every 5 km for staying 

hydrated, the sodium and potassium content in the drink was 0.54 / l g and 0.2 / l g, 

respectively. The amount of sports drinks that subjects drank are shown in Table 3, and 

the hematocrit values of the subjects are shown in Table 4. 

T   
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Table 2. The lap time and the total time of each subject  
  Subject 5 km 10 km 15 km 20 km 25 km 30 km Total AVG SE   
 A 25:00 25:00 29:31 25:14 30:05 25:13 2:40:03 26:41 01:00  
 B 23:00 24:31 23:29 23:00 24:00 31:47 2:29:47 24:58 01:23  
 C 27:29 25:53 31:17 28:40 38:22 37:19 3:09:00 31:30 02:08  
 D 29:04 28:57 31:39 28:48 32:30 28:30 2:59:28 29:55 00:42  
 E 26:14 26:40 30:44 26:35 30:42 26:41 2:47:36 27:56 00:53  
 F 30:47 30:37 34:45 31:02 36:21 35:18 3:18:50 33:08 01:04  
 G 29:55 30:29 33:29 30:07 33:46 31:16 3:09:02 31:30 00:42  
 H 22:46 23:01 27:11 23:05 26:37 22:49 2:25:29 24:15 00:51  
 I 32:30 33:26 37:55 33:01 37:15 32:38 3:26:45 34:27 01:00  
 J 23:41 23:24 23:55 26:56 20:24 30:59 2:29:19 24:53 01:29  

 AVG 27:03 27:12 30:24 27:39 31:00 30:15 2:53:32      

  SE 01:05 01:06 01:27 01:03 01:52 01:25 0:07:00       

AVG; average. SE; Standard Error. Unit; [minute: second] or [hour: minute: second]. 
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Table 3. The amount of sports drink taken by each subject 
  Subject 5 km 10 km 15 km 20 km 25 km 30 km Total AVG SE   
 A 20.7  19.9  24.6  73.1  75.5  57.1  270.9  45.2  10.8   
 B 35.3  48.1  98.5  26.8  82.4  34.6  325.6  54.3  11.9   
 C 13.3  57.1  54.0  37.8  56.0  107.0  325.3  54.2  12.6   
 D 27.5  25.0  32.6  46.9  63.7  70.3  266.0  44.3  7.9   
 E 36.6  40.2  44.9  32.7  32.4  29.3  216.0  36.0  2.4   
 F 118.3  92.0  107.9  230.7  146.8  137.4  833.1  138.8  20.1   
 G 55.7  76.8  74.7  49.1  65.2  34.7  356.2  59.4  6.6   
 H 8.1  14.0  13.1  20.5  17.5  14.9  88.2  14.7  1.7   
 I 35.7  33.4  44.4  63.8  54.5  102.0  333.8  55.6  10.4   
 J 14.8  24.0  35.2  15.7  51.2  53.5  194.3  32.4  7.0   

 AVG 36.6  43.0  53.0  59.7  64.5  64.1  320.9  - -  

  SE 10.1  8.1  9.9  19.9  11.0  12.6  62.4  - -   

AVG; average. SE; Standard Error. Unit; [ml] 
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Table 4. The hematocrit value of each subject 
  Subject 0 km 10 km 20 km 30 km AVG SE   
 A 46.2  48.6  47.6  48.3  47.7  0.5   
 B 42.5  45.8  46.3  47.3  45.5  1.0   
 C 45.2  48.8  47.4  46.4  47.0  0.8   
 D 39.2  39.2  41.2  40.6  40.1  0.5   
 E 45.7  48.0  47.5  47.4  47.2  0.5   
 F 44.6  47.8  48.4  48.5  47.3  0.9   
 G 44.2  49.4  49.7  49.9  48.3  1.4   
 H 46.0  48.6  49.4  49.1  48.3  0.8   
 I 45.9  47.7  48.0  48.2  47.5  0.5   
 J 50.6  49.0  48.3  49.1  49.3  0.5   

 AVG 45.0  47.3  47.4  47.5  - -  

  SE 0.9  1.0  0.8  0.8  - -   

AVG; average. SE; Standard Error. Unit; [%] 
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Data analysis  

A fingertip puncture was performed and the whole blood sample was immediately 

analyzed using a point-of-care test (LUCOCARD MyDIA, ARKRAY, Inc., Kyoto, Japan) 

for measuring the blood glucose level (GLU). For all other measurements, the antecubital 

vein was punctured at the measurement point without using an indwelling needle, and 

sampling was performed. To perform measurements before running, blood was collected 

after the subject had been sitting for more than 30 min, after resting for 1 h after breakfast. 

Blood was collected within 1 min after the subjects had covered distances of 10, 20, and 

30 km. The collected blood was allowed to stand at room temperature for 30 min, after 

which it was centrifuged at 3000 rpm for 10 min to obtain serum. It was stored at -80 °C 

until measurement. The serum was used for measuring the concentrations of creatine 

kinase (CPK), urea nitrogen (BUN), creatinine (CRE), cystatin C (CysC), 2-thiobarbituric 

acid reactive substances (TBARS), and renalase. Measurements were performed at the 

Tsukuba i-Laboratory Limited Liability Partnership (Ibaraki, Japan) using the Japan 

Society of Clinical Chemistry (JSCC) standardization corresponding method for CPK, 

urease ultraviolet Method for BUN, and enzymatic method for CRE. The CysC level was 

measured by using the human cystatin C enzyme linked immunosorbent assay (ELISA) 

(BioVendor Laboratory Medicine, Inc., Brno, Czech Republic). The TBARS level was 
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measured using the thiobarbituric acid method. The renalase level was measured using 

the FAD-Dependent Amine Oxidase ELISA Kit (Cloud-Clone Corp, Houston, USA). In 

addition, the estimated glomerular filtrating ratio (eGFR) was calculated using the renal 

function presumption formula and serum CRE and serum CysC concentrations to 

evaluate kidney function while running. The eGFR was calculated from serum CRE 

concentrations using the modification of diet in renal disorder (MDRD) equation for 

Japanese individuals. 

eGFR (ml/min/1.73 m2) = 194 × [Concentration of serum CRE (mg/dl)]-1.094 × [Age]-0.287 

The body surface area (BSA) was calculated using the formula put forward by Du Bois 

as follows: 

BSA (m2) = body weight (kg)0.425 × height (cm)0.725 × 0.007184 

eGFR was calculated from the serum CysC concentration using the equation for Japanese 

individuals, as shown in the CKD clinical practice guidelines (Japanese Society of 

Nephrology, CKD clinical practice guide 2012). The eGFR was similarly calculated using 

the following formula: 

eGFR (ml/min/1.73 m2) = (104 × [Concentration of serum CysC (mg/dl)]-1.019 × 

0.996(Age)-8 
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Statistical analysis  

Statistical analysis was performed using SPSS software (IBM SPSS Statistics Version 22, 

SPSS, Tokyo, Japan). The Kolmogorov–Smirnov normality test was used to compare the 

values before and after running. One-way repeated-measures analysis of variance and the 

post hoc test were used if values had a normal distribution, and the Kruskal–Wallis test 

was used when values did not have a normal distribution. Furthermore, after verifying the 

significance of the correlation analysis, in order to clarify the correlation between the 

running distance and serum renalase concentration, the Pearson product-moment 

correlation coefficient or Spearman's rank correlation coefficient was calculated. Values 

were considered to be statistically significant if P < 0.05. 

 
3) Results 

Physiological response during running  

The rate of increase in serum CPK concentration is shown in Figure 1. The one-way 

repeated-measures analysis of variance (P < 0.01) showed a significant difference in 

values. The glomerular filtration value was estimated (eGFR-CysC) using the 

concentration of serum CysC, which showed normality (P > 0.05); therefore, one-way 

analysis of variance was performed by taking repeated measurements; it revealed a 

significant difference in the values (P < 0.001, Figure 2). Figure 3 shows the comparison 

between GFR-CRE and eGFR-CysC, based on the running distance. Though both 
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parameters evaluate kidney function, they showed different trends. The rate of increase 

of TBARS levels is shown in Figure 4. Because the rate of increase of TBARS levels did 

not show a normality of distribution (P < 0.0001), the Kruskal–Wallis test was used for 

analysis, which revealed a significant difference in values (P < 0.01). Because the rate of 

increase of GLU did not show a normal distribution (P = 0.031), the Kruskal–Wallis test 

was used for analysis, which revealed that there were no significant differences (P = 

0.051). 
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Figure 1. Rate of increase in serum CPK concentration 
The rate of increase in serum creatine kinase (CPK) concentration. The one-way 
repeated-measures analysis of variance method is used for analysis. *P < 0.01 
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Figure 2. Changes in eGFR-CysC 
eGFR-CysC; the estimated glomerular filtrating ratio (eGFR), determined using the 
serum cystatin C (CysC) concentration. The one-way analysis of variance method is 
used for analysis. *P < 0.001 
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Figure 3. Comparison of eGFR-CRE and eGFR-CysC 
Comparison between the estimated glomerular filtrating ratio determined using the 
serum cystatin C (eGFR-CysC) concentration and the estimated glomerular filtration 
ratio determined using the serum creatinine (eGFR-CRE) concentration. 
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Figure 4. Rate of increase of TBARS 
The rate of increase of 2-thiobarbituric acid reactive substances (TBARS). 
The Kruskal-Wallis test is used for analysis. *P < 0.01 

http://www.clg.niigata-u.ac.jp/%7Etsai/home-page/lecture/K-W_test.pdf
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Change in serum renalase concentration.  

Changes in serum renalase levels with different running distances are shown in Figure 5. 

Because the serum renalase concentration showed normality of distribution (P > 0.05), 

one-way analysis of variance was performed using repeated measurements, which 

showed a significant difference in values (P < 0.01). In addition, the post hoc test revealed 

a significant increase in renalase levels at 10 km and 20 km compared with that before 

exercise (P < 0.01 and P < 0.01, respectively). 
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Figure 5. Concentration of serum renalase 
Changes in serum renalase concentrations according to different running 
distances. The one-way repeated-measures analysis of variance (*P < 0.01) 
and post hoc test are used for analysis. (†P < 0.05) 
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Relationship between serum renalase level, renal function, and oxidative stress.  

We examined the correlation between the serum renalase concentration, eGFR-CRE, and 

eGFR-CysC. A significant correlation was seen only with eGFR-CysC (Figure 6) (P 

>0.05 and P >0.01, r = −0.479, respectively). To determine the association between serum 

renalase concentration and oxidative stress, the correlation between the serum renalase 

concentration and rate of increase of the TBARS level was analyzed. There was no 

correlation between the results before running and after running 30 km, but a significant 

positive correlation was observed between the results obtained during the period before 

the subjects ran the 10-km run to that after running, and the period before the subjects ran 

the 20-km run to that after running (Table 5).  

 

  

F   



25 
 

         

 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         

 

 
  

y = -0.95x + 152.41

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

eG
FR

-C
ys

C
 (m

L
/m

in
/m

2 )

serum renalase (μg/ml)

Figure 6. Correlation between renalase and eGFR-CysC 
Correlation between serum renalase concentration and the estimated 
glomerular filtrating ratio using the concentration of serum cystatin C 
(eGFR-CysC). The Spearman’s rank correlation coefficient was used for 
analysis. P (probability) < 0.01, r (correlation coefficient) = -0.479. There 
was a significant negative correlation between serum renalase concentration 
and eGFR-CysC. 
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Table 5. Correlation between renalase and TBARS levels 
 (Spearman’s rank correlation coefficient)  
 

  0 - 10 km 0 - 20 km 0 - 30 km 

significance probability (two - sided test) 0.003* 0.009* 0.081 
correlation coefficient 0.621 0.468 - 

 
 
 
  

Correlation between serum renalase and 2-thiobarbituric acid reactive substances 
(TBARS) levels based on the running distance. The Spearman’s rank correlation 
coefficient is used for analysis. *P < 0.01 
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4) Discussion 

The present study is the first to investigate the change in serum renalase concentration 

during exercise in humans. In a previous study conducted using rats (Czarkowska-Paczek 

et al, 2013), exercise was performed at a speed of 28 m/min for 60 min; no significant 

change was observed in the serum renalase concentration. On the other hand, in this study, 

the serum renalase concentration increased significantly while running long distances of 

10 km and 20 km, with the exercise intensity set to 90% VT. Distance running for a long 

period of time might have caused the serum renalase concentration to significantly 

increase in in this study, which could not be demonstrated in the study by Czarkowska-

Paczek et al (Czarkowska-Paczek et al, 2013). In other words, unless the exercise involves 

a certain amount of physical burden, changes in serum renalase concentration might not 

be observed because of homeostasis.  

In the in vitro study performed by Wang et al, the addition of catecholamines to renal 

cells increased renalase secretion and mRNA expression (Wang et al, 2014). In addition, 

in the in vivo studies conducted by Li G, the parenteral administration of catecholamines 

to chronic kidney disease model rats significantly increased renalase activity and blood 

renalase levels (Li G et al, 2008). In these previous studies, the increase in catecholamine 

levels increased blood renalase levels because of a physiological response. In the present 

study, it was presumed that the catecholamine level increased due to exercise, which 



28 
 

suggests that the serum renalase concentration increased. In addition, catecholamine 

levels might contribute to the lack of a significant difference in the serum renalase 

concentration after 30 km relative to that prior to exercising. At around 20 km, the 

catecholamine level might not increase; it might have stabilized at a certain level, or 

declined with exercise. Catecholamines might have been mobilized to degrade liver 

glycogen. Renalase plays a role in the metabolism of catecholamines as monoamine 

oxidase; on the other hand, the expression and secretion of renalase is promoted by 

catecholamines. Although the mechanism of action is still unknown, renalase and 

catecholamine levels are controlled and they appear to regulate homeostasis. Therefore, 

if renalase is deficient in a subject, catecholamines are not metabolized, and their levels 

become excessive, which is thought to raise the blood pressure (Desir et al, 2012). 

However, the increase in blood pressure is not only due to the excessive level of 

catecholamines that were not degraded. If an increase in catecholamine levels does not 

induce renalase expression or secretion, it might result in a problem. Alternatively, a 

substance might inhibit the expression and secretion of renalase, as reported by Li G. It 

was not possible to measure the parameters related to the plasma catecholamine 

concentration and blood pressure; hence, the relationship between renalase and 

catecholamines during exercise is unclear. We need to clarify this point in research 
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conducted in the future. The serum CPK concentration, which is an indicator of tissue 

damage after exercise, was significantly increased with an increase in the running distance. 

Similarly, the serum CRE concentration also increased significantly with an increase in 

the running distance. However, serum CRE and CysC concentrations, which are 

indicators of renal function, did not show a similar trend. CRE is synthesized from the 

metabolism of creatine, which is the energy source for muscles; therefore, its level 

increases with exercise in a manner similar to that of the serum CPK concentration. 

Although the serum CRE concentration indicates the kidney function when the subject is 

at rest, it cannot be said that the process of CRE production indicates the kidney function 

at the time of exercise. Conversely, CysC is a serum protein that is produced and secreted 

by somatic cells, and the amount produced is constant. In addition, it is less susceptible 

to extracellular influences such as inflammation because it encodes a house-keeping gene. 

Because CysC secreted extracellularly is reabsorbed only in the proximal renal tubules of 

the kidney, the concentration of CysC in the blood depends on the glomerular filtration 

value (Freije et al, 1991). Therefore, it is a measurable parameter that is suitable for 

evaluating kidney function during exercise. A similar opinion was also expressed in a 

previous study that evaluated kidney function during exercise (Shlipak et al, 2005; Coll 

et al, 2000; Pucci et al, 2007). In this study, a significant negative correlation was 
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observed between the serum renalase concentration and eGFR-CysC, i.e., as the serum 

renalase concentration increased, the eGFR-CysC value, which is an indicator of kidney 

function, decreased. A significant positive correlation was found between the rate of 

increase in TBARS level and serum renalase concentration in the period before the 

subjects ran the 10-km run to that after running, and the period before the subjects ran the 

20-km run to that after running. Though the TBARS level increased at a certain rate and 

serum renalase level decreased, no correlation was found in the period after the subjects 

ran the 20-km run to that after they ran the 30-km run. Although the effect of antioxidants 

could not be measured in this study, it could be a possible cause of the decrease in the 

TBARS level (Kayatekin et al, 2002; Tong et al, 2016). Li et al showed that there was a 

significant increase in renalase expression with the increase in oxidative stress in a mice 

model of ischemia–reperfusion injury, and that it was suppressed by antioxidants (Li et al, 

2016). In addition, it has been reported that the renalase level increases during ischemia–

reperfusion and has a protective effect on organs (Lee et al, 2016; Yin et al, 2016; Wu et 

al, 2011). There was also a significant increase in oxidative stress in this study, which is 

presumed to be because of ischemia of an organ or organ damage due to exercise (Niemelä 

et al, 2016). Therefore, it is speculated that an increase in the serum renalase concentration 

due to exercise might also contribute to protection against organ damage due to exercise. 
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IV.  Research task 2: Animal model research  

 “Changes in renalase levels observed using a rat moderate treadmill running 

model.” 

 
1) Aim 

The results of research task 1 show that the running exercise load significantly 

increases the concentration of renalase in the blood. Therefore, animal model studies were 

conducted with the purpose of clarifying the mechanism by which the renalase level 

fluctuates from the perspective of genetic expression.  

Wistar male rats were used as animal models, because they could withstand the 

running exercise load. Then, the running exercise load was set to medium strength, and it 

was equivalent to that used for human subject research in research task 1. 

The kidney is the main expression organ of renalase (Xu J et al, 2005). However, in research 

task 1, the exercise load caused deterioration in kidney function, and there was a negative 

correlation between renalase concentration in the blood and renal function. 

Therefore, in research task 2, the following hypothesis was formulated: The expression of the 

renalase gene, which causes the renalase concentration in the blood to increase because of the 

exercise load, occurs not only in the main expression organ, the kidney, but also in the skeletal 

muscles. 
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2) Materials and Methods 
Animals 

 Male Wistar rats (Japan SLC, Inc, Shizuoka, Japan) were used for the experiments. 

The rats were brought in at a weight of 166 – 187 g (8 weeks). On arrival, rats were 

housed in a room at 20 – 26 °C, 40 – 60% humidity, and a 12 h:12 h light-dark cycle. 

Animals were fed a normal chow diet (MF 12 mm φ pellet, Oriental Yeast Co, Tokyo, 

Japan), and given water ad libitum. The Animal Ethics Committee of The University of 

Tsukuba approved all experimental protocols in accordance with the principles and 

guidelines on animal care put forward by the Physiological Society of Japan. 

 

Moderate Exercise 

 All rats were familiarized with a motor-driven horizontal treadmill for 30 min 

(FVRO.4E9S-6, Fuji Medical Science Co., Ltd, Chiba). By giving mild electric shocks 

(0.8 mA) to the rats at the rear end of the treadmill, they were made to complete a 6-day 

long program (Table 6). The rats were distributed into two groups, i.e., the control (COT, 

n = 6) and moderate-intensity exercise (MEX, n = 6) groups, 48 h after the exercise 

practice was completed. There was no significant weight difference between the two 

groups of rats (Table 7). The rats were fasted 2 hours before exercise, and rested on a 

treadmill for 15 minutes. The COT rats were killed under the influence of anesthesia 

(cervical dislocation after isoflurane aspiration). The MEX rats were subjected to an acute 
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bout of exercise consisting of a 60-min run on the treadmill at a rate of 20 m/min. 

Immediately after the rats were killed, samples from the muscle, kidney, heart, liver, lung, 

and plasma were collected, added to EDTA, and stored at -80 °C for subsequent analyses. 
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Table 6. The plan for practicing rats to run 

 

 
 
 
  

Day Speed and Time 

Day 1 rest 10 minutes, 5 m/min 10 minutes, and 10 m/min 10 minutes 

Day 2 rest 5 minutes, 5 m/min 10 minutes, 10 m/min 10 minutes, and 15 m/min 10 minutes 

Day 3 rest 

Day 4 rest 5 minutes, 10 m/min 10 minutes, 15 m/min 10 minutes, and 20 m/min 10 minutes 

Day 5 rest 5 minutes, 15 m/min 10 minutes, 20 m/min 10 minutes, and 25 m/min 10 minutes 

Day 6 rest 5 minutes, 15 m/min 10 minutes, 20 m/min 10 minutes, and 25 m/min 10 minutes 
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Table 7. The weight of the rats at the time of experiment 

  

                                                        

     1 2 3 4 5 6 AVG SE P 

COT 257 253 244 236 266 257 252.2 4.3 0.59 

MEX 261 234 270 239 253 230 247.8 6.5   
          

AVG; average value, SE; standard error, P; probability value, Unit; g  
COT; control group, MEX; Moderate - intensity exercise group 
There was no significant difference in body weight between control group (COT) and  
Moderate - intensity exercise group (MEX). 
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Blood concentration of Renalase  

The concentration of renalase in the blood was measured using plasma samples. The 

FAD-Dependent Amine Oxidase ELISA Kit (Cloud-Clone Corp, Houston, USA) was 

used for measurement. 

 

Real-time PCR 

The mRNA was isolated using the following method. The skeletal muscle, kidney, 

heart, liver, and lung tissues were homogenized in a Tissue Lyser bead mixer (Qiagen, 

Germany) at a frequency of 25 Hz for 2 – 5 min. Total mRNA isolation was performed 

using the Sepasol-RNA I Super G solution (Nacalai, Kyoto, Japan), according to the 

manufacturer’s instructions. Total RNA concentrations were measured at 260 nm, using 

the ND-1000 Spectrophotometer (NanoDrop Thermo Fisher Scientific Inc., 

Massachusetts, USA). Samples were then frozen and stored at -80 °C for further analyses. 

Reverse transcription was performed using the following method. Total RNA was 

reverse transcribed into cDNA using PrimeScript RT Master Mix (Perfect Real Time; 

TAKARA BIO INC., Siga, Japan). To quantify gene expression levels, PCR was carried 

out using a KAPA SYBR FAST qPCR kit (Kapa Biosystems, Wilmington, USA) and the 

Applied Biosystems 7500/7500 Fast Real-Time PCR System (Thermo Fisher Scientific, 

Waltham, USA), according to the manufacturer’s instructions. The designed primer 
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sequences have been shown below.  

 

Gene (rat) renalase 

Forward:  5'-TGCCAACAGTCCTCATAATCC -3'  

Reverse:  5'-TCCTTCCTTCACTTCCATTCC-3' 

Gene (rat) GAPDH 

Forward:  5'-GGAAACCCATCACCATCTTC-3'  

Reverse:  5'-GTGGTTCACACCCATCACAA -3' 

 

The cycling program involved preliminary denaturation at 95 °C for 20 seconds, 

followed by 40 cycles of denaturation at 95 °C for 3 seconds, and annealing and 

elongation at 60 °C for 3 seconds. Then, it was confirmed by melting curve analysis that 

non-specific by-products were not contained in the PCR product. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as the internal normalizer control for 

mRNA. The measured values were analyzed by using the calibration curve method. 

 

Western Blotting 

 The BCA assay kit (TAKARA BIO INC., Japan) was used for the quantitation of the 

protein content. Ten microliters of the sample (skeletal muscle samples were diluted 30 – 
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50 times and kidney samples were diluted 50 times) diluted in RIPA lysis buffer, and 100 

μl of working solution containing reagent A: reagent B mixed in the 50: 1 ratio were 

added to each well of the microplate. Absorbances were measured at 562 nm after 

incubation for 10 min at 37 °C using a microplate reader (Varioskan LUX, Thermo Fisher 

Scientific, Japan). Proteins were separated by using SDS- PAGE, and transferred to a 

polyvinylidene fluoride membrane (GE Healthcare Life science, Germany). The 

membranes were blocked with 5% skim milk in TBS-T (0.1% Tween 20) added to 5% 

Blocking One (Nacalai Tesque, Japan) solution for ~30 – 180 min, and were incubated 

with some primary antibodies overnight at 4 °C while shaking. The membranes were 

washed for 5 min thrice in TBS-T, and incubated with HRP-conjugated secondary 

antibodies at room temperature (25 °C) for 60 min. The membranes were washed for 5 

min thrice in TBS-T, treated with chemiluminescent reagent (PerkinElmer, 

NEL103001EA), and before the analytes were detected using ImageQuant LAS-4000 

(GE Healthcare Life science, Japan). The signals were analyzed using JustTLC (Sweday). 

All primary and secondary antibodies were diluted 1: 1000 and 1: 10000 times, 

respectively, using TBS-T added to 5% Blocking One. Renalase (Abcum, ab178700; 

Cloud-Clone Corp., LAC845Hu71) and GAPDH (SANTA CRUZ, sc-365062) levels 

were measured. GAPDH was used as an internal standardization control and analyzed. 
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Statistical analysis 

Statistical analysis was conducted using SPSS statistical software (version 24.0; SPSS 

Inc., Chicago, Illinois, USA). The data were subjected to the t-test for comparing the two 

groups. P values below 0.05 were considered to be significant. 

 
3) Results 

Change in plasma renalase concentration 

The concentration of renalase in the plasma collected from rats was measured. The 

results are shown in Figure 7. The control (COT group) and the medium intensity exercise 

(MEX group) groups were compared using the t-test. The results showed a significant 

increase in the renalase concentration in the MEX group, as compared to that in the COT 

group (P = 0.047). 
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  Figure 7. Renalase concentration in plasma 

Comparison of renalase concentrations in plasma obtained from moderate-intensity 
exercise (MEX) and control (COT) groups. The t-test is used for analysis. There was 
a significant difference in the values (P = 0.047). 
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Expression of renalase mRNA 

Initially, the levels of renalase mRNA expressed in the kidney, heart, liver, lung, 

adrenal gland, and skeletal muscle were examined in COT group rats using real-time PCR. 

Real-time PCR is a type of quantitative RT-PCR, and the analysis was performed by using 

the calibration curve method. The results showed that mRNA expression levels of the 

renalase gene differed in each organ and skeletal muscle (Figure 8). 

Next, the change in the mRNA expression of the renalase gene, owing to the exercise 

load, was investigated. The levels of the COT and MEX groups were compared in the 

kidney, heart, liver, lung, adrenal gland, and skeletal muscle. The results showed that there 

were no significant differences in the heart (Figure 9), liver (Figure 10), lung (Figure 11), 

adrenal glands (Figure 12), and visceral organs. However, in the kidney, there was a 

significant decrease in the mRNA expression level in the MEX group, as compared to the 

COT group (Figure 13). With regard to the skeletal muscles, there were no significant 

differences observed in the soleus (Figure 14) and plantaris muscles (Figure 15). However, 

there was a significant increase in the renalase mRNA level in the extensor digitorum 

longus muscle in the MEX group, as compared to that in the COT group (Figure 16). 
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Figure 8. Renalase mRNA expressed by each organ and skeletal muscle 
Differences in renalase mRNA expression were compared between organs and 
skeletal muscles, and the differences were confirmed.  
S muscle: Soleus muscle, P muscle: Plantaris muscle, E muscle: Extensor digitorum 
longus muscle. 
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Figure 9. Renalase mRNA expression in the heart 
Comparison of the renalase mRNA expression level in the hearts of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences are observed (P = 0.092). 
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  Figure 10. Renalase mRNA expression in the liver 

Comparison of renalase mRNA expression in the liver of rats in the moderate-
intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) is used 
for analysis. No significant differences are observed (P = 0.434). 
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Figure 11. Renalase mRNA expression in the lung 
Comparison of renalase mRNA expression in the s of rats in the moderate-intensity 
exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) is used for 
analysis. No significant differences are observed (P = 0.368). 
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Figure 12. Renalase mRNA expression in the adrenal glands 
Comparison of renalase mRNA expression in the adrenal glands of rats from the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences are observed (P = 0.656). 
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Figure 13. Renalase mRNA expression in the kidney 
Comparison of renalase mRNA expression in the kidneys of rats of the moderate-
intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) is used 
for analysis. There was a significant difference in the values (P = 0.032). 
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Figure 14. Renalase mRNA expression in the soleus muscle 
Comparison of renalase mRNA expression in the soleus muscle of rats of the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed (P = 0.683). 



49 
 

  

Figure 15. Renalase mRNA expression in the plantaris muscle 
Comparison of renalase mRNA expression in the plantaris muscle of rats of the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed (P = 0.782). 
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Figure 16. Renalase mRNA expression in the extensor digitorum longus muscle 

Comparison of renalase mRNA expression in the extensor digitorum longus muscles 
of rats from the moderate-intensity exercise (MEX) and control (COT) groups. 
 The t-test (*P < 0.05) is used for analysis. There was a significant difference in the 
values (P = 0.041). 
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Expression of renalase protein 

The expression of renalase protein was investigated in and skeletal muscles that had 

showed fluctuations in the level of renalase mRNA expressed for the running exercise 

load. The results showed that in the kidneys of rats in the MEX group, the renalase level 

decreased significantly, as compared to that in the COT group (Figure 17). With regard to 

the skeletal muscles, there was no significant difference in the renalase levels in the soleus 

(Figure 18) and extensor digitorum longus muscles (Figure 19). However, the renalase 

level was more significantly increased in the plantaris muscles of rats from the MEX 

group, as compared with those of the COT group (Figure 20). 
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Figure 17. Renalase protein expression in the kidney 

Comparisons of renalase protein expression in the kidneys of rats from the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. There was significant difference in values (P = 0.012). 
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Figure 18. Renalase protein expression in the soleus muscle 

Comparison of renalase protein expression in the soleus muscles of rats from the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed (P = 0.095). 
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Figure 19. Renalase protein expression in the extensor digitorum longus muscle 

Comparisons of renalase protein expression in the extensor digitorum longus muscle 
between moderate-intensity exercise (MEX) and control (COT). The analysis is t-test 
(*P < 0.05). No significant differences were observed (P = 0.552). 
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Figure 20. Renalase protein expression in the plantaris muscle 
Comparison of renalase protein expression in the plantaris muscles of rats from the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. There was a significant difference in the values (P = 0.014). 
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4) Discussion 

In this study, the exercise-induced expression of renalase in a rat model, using an 

exercise load equivalent to that used in a human subject experiment, was investigated. In 

the study using rat models, as in human subject experiments, the concentration of renalase 

in the blood was significantly increased by exercise. The purpose of this study is to 

investigate exogenous renalase expression in visceral and skeletal muscle.  

The results showed that the levels of renalase in the blood also increased significantly 

in the animal models used in this study, which was similar to that observed during human 

subject research. 

In this study, the differences in mRNA expression levels of the renalase gene in 

visceral and skeletal muscles were investigated. It was confirmed that renalase gene 

expression was the most abundant in the kidney (Xu J et al, 2005). It is reported that 

skeletal muscles exhibit renalase gene expression. However, the expression of the renalase 

gene in each skeletal muscle type has not been reported. Renalase gene expression in each type of 

skeletal muscle in the soleus, plantaris, and extensor digitorum longus muscles was investigated for 

the first time in the present study. The results elucidated that renalase gene expression in the 

soleus muscle, which predominantly consisted of red muscle, was approximately 10 times 

higher than that in the extensor digitorum longus muscle, which predominantly consisted 

of white muscle. 
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Next, the exercise-induced variability of renalase gene expression in visceral and 

skeletal muscles was examined. The results showed that there was no significant 

difference in the renalase mRNA expression due to exercise in the heart, liver, lung, and 

adrenal glands. However, in the kidneys of rats from the MEX group, the renalase level 

was significantly decreased as compared with that in the COT group. With regard to 

skeletal muscle, there was no significant difference because of exercise induction in the 

plantaris and extensor digitorum longus muscles; however, the renalase level was 

significantly higher in the soleus muscle of rats in the MEX group than that in CON group. 

In addition, the expression of renalase protein was examined in the kidney and skeletal 

muscles of rats in which the renalase mRNA expression was altered. The results showed 

that the renalase level in the kidney was significantly reduced in the MEX group as 

compared to that in the COT group, as observed for mRNA expression levels. With regard 

to skeletal muscles, there was no significant difference in the soleus and extensor 

digitorum longus muscles of rats in the MEX group, as compared to those in the COT 

group; however, a significant increase in renalase levels was observed in the plantaris 

muscle. 

The expression of the renalase gene because of exercise was shown to be decreased in 

the kidney and increased in skeletal muscles. However, the expression in skeletal muscles 
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differed, depending on the type of muscles. The decrease in expression of the renalase 

gene in the kidney of rats, observed in this study, is consistent with the reduction in renal 

function observed in research task 1. These results also support those of a previous study 

(Zbroch et al, 2012), in which it was revealed that the renalase level decreases with a 

decrease in renal function, which is similar to the decrease in renalase level observed in 

renal disease patients with renal impairment. In kidney disease, the concentration of 

renalase in the blood decreases when renal function decreases. In the present study, the 

renalase gene expression in the kidney decreased because of exercise. However, the 

concentration of renalase in the blood increased significantly, which is presumably 

because of the increased renalase expression in the skeletal muscle. The reasons for this 

are as follows. In the in vitro study performed by Wang et al, the addition of 

catecholamines to renal cells caused renalase secretion and mRNA expression to increase 

(Wang F et al, 2014). In addition, in the in vivo studies conducted by Li et al, the 

parenteral administration of catecholamines to chronic kidney disease model rats caused 

the renalase activity and blood renalase levels to increase significantly. In these previous 

studies, a rise in catecholamine levels increased blood renalase levels because of some 

physiological effects. In addition, blood flow possibly decreases in visceral organs during 

exercise and increases in skeletal muscles (Standard physiology, 2000). 
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 Research task 3: Cell culture experiment  
“Epinephrine upregulates renalase expression in cultured C2C12 muscle cells.” 
 

1) Aim 

Research tasks 1 and 2 showed that renalase concentration in the blood increased 

because of exercise. In research task 2, the expression of the renalase gene in was 

examined in the tissue of an animal model. The results showed a significant decrease in 

the level of both renalase mRNA and protein expressed in the kidney. In skeletal muscle, 

there was a significant increase in the levels of renalase mRNA and protein expressed. 

There are two possible causes for the increase in the renalase level.  

One is to provide enhanced protection to cells. More than 30 reports, including the 

report by Du et al, have reported about the protective effect of renalase on cells (Du et al, 

2014, Wang et al, 2015 etc). In research task 1, the oxidative stress increased significantly, 

and showed a significant positive correlation with the renalase concentration in the blood. 

In this study, an increase in the level of renalase is presumed to protect viscera and skeletal 

muscle cells from exercise-induced oxidative stress.  

Another cause pertains to the functioning of renalase as an enzyme. More than 50 papers 

have reported that renalase might regulate cardiac function and systemic blood pressure 

by metabolizing catecholamines, which causes the decomposition of catecholamines such 

as epinephrine and norepinephrine (Desir., 2007, Desir., 2009, etc). In the in vitro study 
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performed by Wang et al., the addition of catecholamines to renal cells increased the level 

of renalase secretion and mRNA expression (Wang F et al, 2014). In addition, in the in 

vivo studies conducted by Li G et al, the parenteral administration of catecholamines to 

chronic kidney disease model rats significantly increased the activity and levels of 

renalase I the blood (Li et al, 2008). In these previous studies, a rise in catecholamine 

levels increased blood renalase levels because of some physiological effects. 

Therefore, in this study, the influence of catecholamines is investigated. In research 

topic 3, it was hypothesized and experimentally proven that catecholamines were 

involved in increasing the level of expression of the renalase gene in skeletal muscles 

because of exercise. 

 

2) Materials and methods 
Cell culture 

Mouse muscle myoblasts were used for the culture of C2C12 cells (RIKEN 

BioResource Center, Tsukuba, Japan). The cells were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM; Wako Pure Chemical Industries, Ltd., Osaka, Japan) containing 

10% fetal bovine serum, and maintained at 37 °C under a continuous stream of 5% CO2 

in 6-well plates. After the cultures reached confluence, the medium was replaced with 

DMEM containing 2% horse serum (differentiation medium) and incubated further for 7 
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days to stimulate myotube formation (Figure 21).  

Figure 21. C2C12 cells 

A  Myoblasts      B  Myotube cell 
 

 
40× magnification      40× magnification 

  

100 μm 100 μm 

Figure 21. C2C12 cells 
C2C12 cells of mouse skeletal muscle cells, were cultured (A: Myoblasts), and the 

cultured C2C12 cells were differentiated (B: Myotube cell). 
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Addition of epinephrine 

The myotubes formed in the serum-free medium were incubated with epinephrine 

(Sigma-Aldrich Co., St. Louis, MO, USA). In the first study, the epinephrine 

concentrations were 10-6 g/L, 10-5 g/L, and 10-4 g/L, and the incubation time was 30 min. 

In the next study, the epinephrine concentration was 10-5 g/L and the incubation times 

were 15 min, 30 min, and 45 min. 

 

Quantitative real-time PCR 

Renalase gene expression was measured in C2C12 cells using real-time reverse 

transcription–polymerase chain reaction (RT–PCR). Total RNA was extracted from 

samples using Sepasol-RNA I Super G (Nacalai, Kyoto, Japan), according to the 

manufacturer’s instructions. Total RNA was reverse transcribed into cDNA using the 

PrimeScript RT Master Mix (Perfect Real Time; TAKARA BIO INC., Siga, Japan). To 

quantify gene expression levels, PCR was carried out using a KAPA SYBR FAST qPCR 

kit (Kapa Biosystems, Wilmington, USA) and the Applied Biosystems 7500/7500 Fast 

Real-Time PCR System (Thermo Fisher Scientific, Waltham,USA), according to the 

manufacturer’s instructions. The designed primers are shown below. 
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Gene (mouse) renalase 

Forward:  5'-GGGTGGGGATATAGGGGGAAG-3'  

Reverse:  5'-GCTGTGCATCGGGGATTATG-3' 

Gene (mouse) GAPDH 

Forward:  5'- AGGTCGGTGTGAACGGATTTG -3'  

Reverse:  5'- TGTAGACCATGTAGTTGAGGTCA -3' 

 

The cycling program involved preliminary denaturation at 95 °C for 20 seconds, 

followed by 40 cycles of denaturation at 95 °C for 3 seconds, and annealing and 

elongation at 60 °C for 3 seconds. Then, it was confirmed by melting curve analysis that 

non-specific by-products were not contained in the PCR product. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as the internal normalizer control for 

mRNA. The measured values were analyzed by a comparative CT method (ΔΔCT 

method). 

 

Statistical analysis 

Statistical analysis was conducted using SPSS statistical software (version 24.0; SPSS 

Inc., Chicago, Illinois, USA). The data were subjected to one-way analysis of variance 

(ANOVA) and subsequent post-hoc test analyses for comparison between the four groups, 
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and t-test for the comparison between the two groups. P values that were below 0.05 were 

considered significant. 

3) Results 
Epinephrine-induced renalase expression by comparing concentrations.  

C2C12 cells were cultured with three different concentrations of epinephrine for 30 min. 

Only cells incubated with epinephrine at a concentration of 10-5 g/L showed a significant 

increase in renalase mRNA levels (P < 0.05, Figure 22), as compared to controls. 

 

Epinephrine-induced renalase expression by time comparison.  

C2C12 cells were cultured with epinephrine at a concentration of 10-5 g/L over three 

different time periods. Only cells incubated for 30 min showed a significant increase in 

the renalase mRNA levels (P < 0.05, Figure 23), as compared to controls. 

 

As a result, these experiments demonstrate a significant increase in the epinephrine-

stimulated renalase expression in C2C12 cells, when cells were cultured at an epinephrine 

concentration of 10-5 g/L for 30 min. 
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Figure 22. Renalase mRNA expression (Concentration of epinephrine) 
C2C12 cells were cultured with three different concentrations of epinephrine for 30 

min. Only cells incubated with epinephrine at a concentration of 10-5 g/L showed a 
significant increase in the renalase mRNA levels, as compared to controls. 
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Figure 23. Renalase mRNA expression (Culture time) 
C2C12 cells were cultured with three different concentrations of epinephrine for 30 

min. Only cells incubated with epinephrine at a concentration of 10-5 g/L showed a 
significant increase in renalase mRNA levels, as compared to controls. 
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Discussion 

This study showed that epinephrine induced renalase expression in differentiated 

myocytes. This finding has not been previously reported in skeletal muscle cells, and 

might enable the elucidation of the mechanism of renalase secretion owing to exercise.  

This result was also consistent with reports regarding renalase expression in renal cells 

in vivo and in vitro (Wang et al, 2014; Yin et al, 2016). However, here we noted that there 

were some differences between the results obtained with kidney cells and myocytes, in 

terms of the time periods during which epinephrine addition caused a significant increase 

in the expression of the renalase gene. In addition, there was a difference in the 

significantly increased epinephrine concentrations. Renalase expression was significantly 

increased in cultured renal cells 6–24 h after the addition of epinephrine. However, when 

experiments involving long-term epinephrine addition were conducted, no significant 

differences in renalase levels were observed in muscle cells. The time required for 

epinephrine to upregulate renalase expression might be shorter in muscle cells than in 

renal cells. Further, the concentrations of epinephrine were significantly increased in the 

renal cells at doses of 10-6, 10-7, and 10-8 g / L; however, these concentrations were 

insignificant in muscle cells. During vigorous exercise, the rate of blood flow to skeletal 

muscles is 80% that of the total cardiac output; on the contrary, the rate of blood flow to 

the kidney and internal organs is greatly reduced (Standard physiology, 2000). The muscle 
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cells are thought to change in response to a high concentration of epinephrine in a short 

time, to cope with such a drastic change.  

The muscle and renal cell types differ with regard to the adrenergic receptors involved 

in renalase expression. A previous paper has shown that the adrenaline α1 receptor is 

involved in renal cell functioning, while it is possible that adrenergic β2 receptors are 

involved in myocyte functioning; however, this has not yet been investigated and needs 

to be studied further. Furthermore, the pathways mediating renalase expression in each 

cell type are still unknown (Wang et al, 2014). 

Renalase is a monoamine oxidase that decomposes catecholamines, and is involved in 

the regulation of blood pressure (Zbroch et al, 2012; Wang et al, 2014; Yin et al, 2016; 

Malyszko et al, 2013; Fedchenko et al, 2013). In recent years, the association between 

renalase and various diseases has also been studied (Ficek et al, 2015; Elcioglu et al, 2015; 

Wang et al, 2014; Malyszko et al, 2012 a; Malyszko et al, 2012 b; Desir et al, 2012); 

however there is almost no report regarding its relationship with skeletal muscles.  
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 Research task 4: Expression factor of renalase 
“Expression factor of catecholamine-induced renalase secretion in skeletal muscle 
tissue in an animal model of transient medium intensity exercise.” 
 

1) Aim 

Research tasks 1 and 2 showed that the renalase concentration in the blood increased 

with exercise. In research task 2, the expression of the renalase gene in the tissue was 

examined in an animal model. The results showed that in skeletal muscle, a significant 

increase in both renalase mRNA and protein expression was observed. Therefore, it was 

hypothesized that catecholamines might be involved, as indicated by Wang et al (2014) 

in kidney cells. Research task 3 was to conduct experiments with skeletal muscle cells. 

The results showed that the addition of epinephrine, a catecholamine, significantly 

increased renalase expression in skeletal muscle cells. Therefore, it was speculated that 

catecholamines might have been involved in increasing the renalase expression level in 

skeletal muscles of the animal model in research task 2. SP1 (specificity protein 1), 

STAT3 (signal transducer and activator of transcription 3), and ZBP89 (zinc binding 

protein 89) might be involved in the increase of renalase expression by catecholamines. 

In addition, these proteins are crucial transcription factors required for renalase gene 

expression (Sonawane et al, 2014; Shih JC et al, 2011; He G et al, 2011; Merchant JL et 

al, 2003).  

Therefore, in research task 4, it was hypothesized that STAT 3, Sp 1, and ZBP 89 



71 
 

increased the renalase gene expression levels in skeletal muscle; experiments were 

conducted to investigate this hypothesis. 

 

2) Materials and methods 
Animals 

The animals used were the same as those used in research task 2. 

Moderate Exercise 
The moderate exercises were the same as those for research task 2. 

 
Real-time PCR 

Isolation of mRNA was carried out using the following method. The skeletal muscle 

tissues were homogenized in a Tissue Lyser bead mixer (Qiagen, Germany) at a 

frequency of 25 Hz for 2 – 5 min. Total mRNA isolation was performed using a Sepasol-

RNA ISuper G (Nacalai, Kyoto, Japan), according to the manufacturer’s instructions. 

Total RNA concentrations were measured at 260 nm using the ND-1000 

Spectrophotometer (NanoDrop Thermo Fisher Scientific Inc., Massachusetts, USA). 

Samples were then frozen and stored at -80 °C for further analyses. 

Reverse transcription was performed using the following method. Total RNA was 

reverse transcribed into cDNA using PrimeScript RT Master Mix (Perfect Real Time; 

TAKARA BIO INC., Siga, Japan). To quantify gene expression levels, PCR was carried 

out using a KAPA SYBR FAST qPCR kit (Kapa Biosystems, Wilmington, USA) and the 
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Applied Biosystems 7500/7500 Fast Real-Time PCR System (Thermo Fisher Scientific, 

Waltham, USA), according to the manufacturer’s instructions. The designed primers are 

shown in Table 8. The cycling program involved preliminary denaturation at 95 °C for 20 

seconds, followed by 40 cycles of denaturation at 95 °C for 3 seconds, and annealing and 

elongation at 60 °C for 3 seconds. Then, it was confirmed by melting curve analysis that 

non-specific by-products were not contained in the PCR product. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was used as the internal normalizer control for 

mRNA. The measured values were analyzed by a comparative CT method (ΔΔCT 

method). 
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Table 8. Primer sequences for each gene used in real-time quantitative PCR 

 

 

  

Gene (rat) STAT3 Forward:  5'-CCTTGGATTGAGAGCCAAGAT-3'  

 Reverse: 5'-ACCAGAGTGGCGTGTGACT -3'  

Gene (rat) Sp1 Forward:  5'-GCTATAGCAAACACCCCAGGT-3'  

 Reverse: 5'-CAGGGCTGTTCTCTCCTTCTT-3'  

Gene (rat) Zep89 Forward:  5'-GGGTGGGGATATAGGGGGAAG-3'  

 Reverse: 5'-GGGTGGGGATATAGGGGGAAG-3'  

Gene (rat) GAPDH Forward:  5'-GGAAACCCATCACCATCTTC-3'  

 Reverse: 5'-GTGGTTCACACCCATCACAA -3'  
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Statistical analysis  

Statistical analysis was conducted using SPSS statistical software (version 24.0; SPSS 

Inc., Chicago, Illinois, USA). The data were subjected to the t-test for comparison 

between the two groups. P values that were below 0.05 were considered to be statistically 

significant. 

 

3) Results 
STAT3  

STAT3 mRNA expression in the skeletal, soleus, plantaris, and extensor digitorum 

longus muscles of rats in the control group (COT group) and the medium intensity 

exercise group (MEX group) were compared. The results showed that STAT3 mRNA 

expression increased significantly only in the soleus muscle (P < 0.05, Figure 24, 25, 26). 
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Figure 24. STAT3 mRNA expression in the soleus muscle 

Comparison of renalase mRNA expression in the soleus muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. There was a significant difference in the values (P = 0.034). 
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Figure 25. STAT3 mRNA expression in the plantaris muscle 

Comparison of renalase mRNA expression in the plantaris muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed. 
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Figure 26. STAT3 mRNA expression in the extensor digitorum longus muscle 

Comparison of renalase mRNA expression in the extensor digitorum longus muscles 
of rats in the moderate-intensity exercise (MEX) and control (COT) groups. The t-
test (*P < 0.05) is used for analysis. No significant differences were observed. 
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Sp1  

Sp1 mRNA expression in the skeletal, soleus, plantaris, and extensor digitorum longus 

muscles of the COT and MEX groups were compared. The results showed that Sp1 

expression increased significantly only in soleus muscles (P < 0.05, Figure 27, 28, 29). 
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Figure 27. Sp1 mRNA expression in the soleus muscle 

Comparison of renalase mRNA expression in the soleus muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. There was a significant difference in values (P = 0.049). 
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Figure 28. Sp1 mRNA expression in the plantar muscle 

Comparisons of renalase mRNA expression in the plantar muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed. 
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Figure 29. Sp1 mRNA expression in the extensor digitorum longus muscle 

Comparison of renalase mRNA expression in extensor digitorum longus muscles of rats 
in the moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 
0.05) is used for analysis. No significant differences were observed. 
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ZBP89  

ZBP89 mRNA expression in the skeletal, soleus, plantaris, and extensor digitorum 

longus muscles of rats in the COT and MEX groups was compared. The results showed 

that ZBP89 mRNA expression levels increased significantly (P < 0.05, Figure 30, 31, 32) 

only in the soleus muscle. 

 

  



83 
 

 
 
 
  

Figure 30. ZBP89 mRNA expression in the soleus muscle 

Comparison of renalase mRNA expression in the soleus muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. There was a significant difference (P = 0.040) in the values. 
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  Figure 31. ZBP89 mRNA expression in the plantar muscle 

Comparisons of renalase mRNA expression in the plantar muscles of rats in the 
moderate-intensity exercise (MEX) and control (COT) groups. The t-test (*P < 0.05) 
is used for analysis. No significant differences were observed. 
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Figure 32. ZBP89 mRNA expression in the extensor digitorum longus muscle 

Comparison of renalase mRNA expression in the extensor digitorum longus muscles 
of rats in the moderate-intensity exercise (MEX) and control (COT) groups. The t-
test (*P < 0.05) is used for analysis. No significant differences were observed. 
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Discussion 

Research tasks 1 and 2 showed that exercise causes the renalase concentration in the 

blood to increase. Research task 2 showed that the skeletal muscle expresses renalase, 

and is thus involved in causing the increase in renalase levels in the blood. Research task 

3 showed that catecholamines increased renalase gene expression in cultured skeletal 

muscle cells. In research task 4, experiments were conducted to show that catecholamines 

were involved in exercise-induced renalase gene expression in skeletal muscle. 

 

 The skeletal muscle tissues used in research task 2 were used in this study. Then, the 

genetic expression of STAT 3, Sp 1, and ZBP 89 were measured. These transcription 

factors, which are very important for renalase gene expression, might be catecholamine 

regulators (Sonawane et al, 2014). The results showed that levels of STAT 3, Sp 1, and 

ZBP 89 were significantly increased in the soleus muscle of the skeletal muscle. However, 

similarly measured levels of transcription factors in the plantaris and extensor digitorum 

longus muscles did not change significantly. The exercise-induced expression of the 

renalase gene in skeletal muscle varied, depending on the type of skeletal muscle. In 

research task 2, the extensor digitorum longus muscle, which was predominantly 

composed of white muscle, showed a significantly increased level of mRNA expression 

and plantaris muscle showed a significantly increased level of protein expression. 
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However, in this study, the gene expression of the catecholamine regulators STAT 3, Sp 

1, and ZBP 89 were significantly increased in the soleus muscle, in which red muscles 

are dominant. In a study regarding acute exercise that was conducted by Czarkowska-

Paczek et al, the renalase mRNA expression was measured. The Gastrocnemius muscle 

was divided into white and red muscles and measured. The results showed that the the 

renalase levels in white muscles significantly increased immediately after exercise, as 

compared with that at rest, but the levels in red muscles were not significantly different 

(Czarkowska-Paczek et al, 2013). These results are consistent with those of research task 

2. In research task 4, it was observed that levels of important expression factors for the 

renalase gene increased significantly only in red muscles. The expression of renalase gene 

is different in the muscles in which the white and red muscles are dominant. However, it 

became clear that both white muscle and red muscle showed exercise-induced renalase 

expression. The difference between the red muscle and the white streak is the difference 

in the expression level of the renalase gene inducer. There are two functions of renalase. 

One is to metabolize catecholamines as an enzyme. The other one is to have a protective 

effect on cells as a growth factor. In this study, the factor for catecholamine regulation 

was significantly increased in the soleus muscle, which is predominantly composed of 

red muscles, i.e., it the red muscle is considered to have induced the expression of the 
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renalase gene via the catecholamines. In addition, in the previous paper, the β-adrenergic 

receptor density of the red muscle is more than twice that of the white muscle (Wade H 

et al, 1989, Alex J et al, 2017). Thus, the red muscle is considered to have induced the 

expression of the renalase gene via catecholamines. On the other hand, the white muscle 

is presumed to be caused because of oxidative stress and similar factors, such as the cell 

protective function. 
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 Conclusions 

The function of renalase is to regulate blood pressure by metabolizing catecholamines. 

Another function is to protect cells from damage. Although the renalase protein was 

discovered in 2005, there was no report of an investigation into the relationship between 

renalase and exercise in human subjects.  

Therefore, in this study, I focused on the fluctuation in renalase levels during exercise, 

and examined the organs and skeletal muscle. 

 

●Research task 1: Human subject research 

The results of research task 1 showed that the running exercise load significantly 

increased the concentration of renalase in the blood.  

 In the in vitro study performed by Wang et al., the addition of catecholamines to renal 

cells increased renalase secretion and mRNA expression (Wang et al, 2014). In addition, 

in the in vivo studies conducted by Li G, the parenteral administration of catecholamines 

to chronic kidney disease model rats significantly increased the renalase activity and 

blood renalase levels (Li G et al, 2008). In the present study, it was presumed that the 

catecholamine level increased due to exercise, from which it was inferred that the serum 

renalase concentration was increased. 

 In this study, the levels of serum renalase and eGFR-CysC showed a significant 
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negative correlation, i.e., as the serum renalase concentration increased, the concentration 

of eGFR-CysC, which is an indicator of kidney function, decreased.  

 A significant positive correlation was found between the rate of increase of TBARS 

and serum renalase concentration in the period before running 10 km, after running, and 

the period before running 20 km, and the period after running this distance.  

Although the antioxidant effect could not be measured in this study, it could be a possible 

cause of the decrease in the TBARS level (Kayatekin et al, 2002; Tong et al, 2016). The 

study by Li et al showed a significant increase in renalase expression with increasing 

oxidative stress in a mice model of ischemia–reperfusion injury; renalase expression was 

suppressed by antioxidants (Li et al, 2016). In addition, it has been reported that the 

renalase level increases during ischemia–reperfusion, and has a protective effect on 

organs (Lee et al, 2016; Yin et al, 2016; Wu et al, 2011). There was also a significant 

increase in oxidative stress in this study, which is presumed to be because of ischemia of 

an organ or organ damage due to exercise (Niemelä et al, 2016). Therefore, it is speculated 

that an increase in serum renalase concentration due to exercise might also contribute to 

protection from organ damage due to exercise. 

●Research task 2: Animal model research 

The results of research task 2 showed that the levels of renalase in the blood increased 
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significantly in the animal models, which was similar to that observed during human 

subject research. In this study, the differences in mRNA expression levels of the renalase 

gene in visceral and skeletal muscles were investigated. Renalase gene expression in each 

type of skeletal muscle in the soleus, plantaris, and extensor digitorum longus muscles 

was investigated for the first time in the present study. The results elucidated that renalase 

gene expression in the soleus muscle, which predominantly consisted of red muscle, was 

approximately 10 times higher than that in the extensor digitorum longus muscle, which 

predominantly consisted of white muscle. 

Next, the exercise-induced variability of renalase gene expression in visceral and 

skeletal muscles was examined.The results showed that there was no significant 

difference in the renalase mRNA expression due to exercise in the heart, liver, lung, and 

adrenal glands. However, in the kidneys of rats from the MEX group, the renalase level 

was significantly decreased as compared with that in the COT group. With regard to 

skeletal muscle, the renalase level was significantly higher in the soleus muscle of rats in 

the MEX group than that in COT group. 

In addition, the expression of renalase protein was examined.The results showed that the 

renalase level in the kidney was significantly reduced in the MEX group as compared to 

that in the COT group. With regard to skeletal muscles, there was a significant increase 
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in renalase levels was observed in the plantaris muscle. 

The expression of the renalase gene because of exercise was shown to be decreased in 

the kidney and increased in skeletal muscles. However, the expression in skeletal muscles 

differed, depending on the type of muscles. 

●Research task 3: Cell culture experiment 

The results of research task 3 showed that epinephrine induced renalase expression in 

differentiated myocytes. This finding has not been previously reported in skeletal muscle 

cells, and might enable the elucidation of the mechanism of renalase secretion owing to 

exercise.  

 This result was also consistent with reports regarding renalase expression in renal cells 

in vivo and in vitro (Wang et al, 2014; Yin et al, 2016). However, here we noted that there 

were some differences between the results obtained with kidney cells and myocytes, in 

terms of the time periods during which epinephrine addition caused a significant increase 

in the expression of the renalase gene. 

The muscle and renal cell types differ with regard to the adrenergic receptors involved 

in renalase expression. A previous paper has shown that the adrenaline α1 receptor is 

involved in renal cell functioning, while it is possible that adrenergic β2 receptors are 

involved in myocyte functioning; however, this has not yet been investigated and needs 
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to be studied further. Furthermore, the pathways mediating renalase expression in each 

cell type are still unknown (Wang et al, 2014). 

●Research task 4: Expression factor of renalase 

The results of research task 4 showed catecholamines were involved in exercise-induced 

renalase gene expression in skeletal muscle. 

The skeletal muscle tissues used in research task 2 were used in this study. Then, the 

genetic expression of STAT 3, Sp 1, and ZBP 89 were measured. These transcription 

factors, which are very important for renalase gene expression, might be catecholamine 

regulators (Sonawane et al, 2014). The results showed that levels of STAT 3, Sp 1, and 

ZBP 89 were significantly increased in the soleus muscle of the skeletal muscle. 

There are two functions of renalase. One is to metabolize catecholamines as an enzyme. 

The other one is to have a protective effect on cells as a growth factor. In this study, the 

factor for catecholamine regulation was significantly increased in the soleus muscle, 

which is predominantly composed of red muscles, i.e., it the red muscle is considered to 

have induced the expression of the renalase gene via the catecholamines. In addition, in 

the previous paper, the β-adrenergic receptor density of the red muscle is more than twice 

that of the white muscle (Wade H et al, 1989, Alex J et al, 2017). Thus, the red muscle is 

considered to have induced the expression of the renalase gene via catecholamines. On 
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the other hand, the white muscle is presumed to be caused because of oxidative stress and 

similar factors, such as the cell protective function. 
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