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AbstracB Camera calibration that estimates the projective
relationship between3D and 2D image spacis one of the most crucial
processesfor such 3D image processing as 3D reconstruction and 3D
tracking. A strong calibration method, which needs to place landmarks
with known 3D positions is a common techniqueHowever, as the target
space becomeslarge, landmark placement becomes more complicated
Although a weak-calibration method does not need known landmarks to
estimate a projective transformation matrix from the correspondence
information among multi -view images the estimation precision depends
on the accuracy of the correspondence. Whenmultiple cameras are
arranged sparsely detecing sufficient corresponding pointsis difficult. In
this research, we propose a calibration method that bridges sparse

subject using game imagssactive.Since the target space aotlarge
to install enough camerde guaranteeveakcalibratiors accuracy
strong calibrationis normally used. Howeversince estimaing such
2D-3D projective relatiorships as placing landmarks is time
consuming acquiring theobservedposition of thelandmarksin
capturedimages is often onerousProviding 3D position data to
athletes and coachs is also time-consuming Moreover, in official
international competition pladng landmarks in the target spaée
difficult.

In this researchywe combinethe advantages othe grong and

multiple cameras with mobile camera images. The mobile camera captures Weakcalibration methods by bridging them with mobile camera

video images while moving among sparse multiview cameras. The
captured video resembles dense multi -view imagesand includes sparse
multi -view imagesso that weak-calibration is effective We confirmed the
appropriate spacingbetween the imageshrough comparative experimens
of camera calibration accuracy by changing the number of bridging
images and applied our proposed method to multiple capturing
experiments in a largescale spacend verified its robustness.
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|l. INTRODUCTION

Such 3D image processingpproachesas 3D tracking and 3D
reconstructionare active researchtopics in computer vision. 3D
positioral estimationin largescale spaceis being scrutinizedfor
various scenes [1]For such processesthe projective relatiorship

must be obtainedetweenthe 3D space and the 2D image space,

given by the cameraparameters of the capturing camdrageneral
camera calibration processwe need to plackndmarks with known

3D positions in the spacad estinate the projective transformation

matrix from the correspondence relationshigtweenthe 3D points
and their observegositiors in a 2D image plan&his is calledstrong

images.A mobile camera captures video while moving among sparse
multi-view cameras(Fig. 1). The captured videsesemblesdense
multi-view imagesincluding sparse mulview images so thateak
calibrationeffectively works.

Using mobile camera

Fixed camera

calibration [2].However, when it is applied to a largeale space, the Fig. 1Dense imagesaptuedin ourproposed methodvobile camera

time and efrt of landmark installation becomes a problédm the
other handthe weakcalibrationmethod(or self calibration)[3] does

not require landmaskto be placedRelative position and orientation

information can be estimatedmong multiplecamerasas well ashe
intrinsic parametersf the capturing camerafsom the correspondence
information among multiple viewpoint imagesHowever, when the

capture target scenavhile movingamongsparely fixed multi-view
cameras.

Il. RELATED WORKS

Strongcalibration using known landmarks.§.,checkerboards) is
one common approadd, 5]. Davide et al proposeda flexible new

cameras arearranged sparsely, sufficient correspondence pointsechnique for single viewpoint omnidirectional camera calibration
cannot be obtaingdand the estimation precision of the projectiorusing checkerboasd that calibrated a panoramic camessith a

relatiorship falls. In suchlargescale spaces as gymnasiumor a
stadium whereve mustapply 3D image processingenselyarrangng
camerass usuallydifficult.

As an applicationtarget of 3D image processing we focus on
badminton gan®in a relatively largescale spacehereinstaling 3D
tracking equipmento captureplayers and shuttlecosks difficult. As
shown in Fig 1, whenwe captue badmintonmatchimagesthe entire
courtregion isusuallycapturedrom a distane In manyothersports
the entirecourt image is often captured and utilized fdrasegic

analysispurposesin sports analysighe 3D position of athletes and

balls is crucial as basic data for improving performanaad will
eventuallybe applied forthe automaticreferring and managemeat
gamesin the near future Research othe 3D position estimation of a

vertical field of view over 200°. Chen et al proposeda refractive
calibration method for an underwater stereo camera system where
both cameras are looking through multiple parallel flat refractive
interfaces. In research on improving calibration accuracy, the
estimation erromwas minimizedby calculaing the epipolar geometry
from dynamic silhouettes [6] and color codes [[He notion barcode

of Gil et al is a binary temporal sequence for linbst indicake the
existence of at least one foreground pixel on that line. The search for
corresponding epipolar lines was limited to limath similar barcodes.
Schillebeeckx et alintroduced a calibration object based on a flat
lenticular array that createscalor-coded light-field whose observed
color changes depeimd) on the angle from which it is viewe@ther
studies have alsaddressedenvironments where it is difficult to
calibrate camerassuch as underwater or medical endoscopes.



Nishimura et al [8] proposeda camera calibration algorithm for coordinate systerracquired by the methoith Section IIFA, is used
camera systems involving distortions by unknown refraction and
reflection processedMelo et al [9] proposed a complete software
based systerthat calibrates and correct radial distortion in clinical
endoscopy in realrhe.
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The projection relation issimilarly estimated in multiple viewpoint
images. The 3D coordinates are calculated from the observation
coordinates on the image by the stereo method using the estimated
Pprojective transformation matrix.

All of the aboveapproachesand methodgarget relatively small
spacesOn the other hand, in the largeale space targeted in this
researchsince we musplace landmarks to cover the entire space
much labor is requiredTo solve such problesy Workman et al
proposed [10h camera calibration methélat usedhe geometry of a
rainbow and descrilte the minimal sets of constraints that are
sufficient for estimating camera dalation and presented both semi
automatic and fully automatic methodsdalibrate a camer&lowever,
rainbows are relativelyrarg and appling themin a large indoor space
is difficult. Calibration method$iave been extensively studididat
utilize thecorresponding information between muliewpoint images
without the installation of landmarks [11, 12, 18y analyzing the
motion field of radially distorted images, Wet al [12] solved for
critical surface pairs that can lead to the same motion field under
different radial distortions and possibly different caanemotions.

Camera coordinate system

Weak calibration coordinate system

/ badminton courl _—
Cohen et aldescribed14] an example of robust calibration by Zy : e (R, t]

: 11 Lt
adding corresponding pointnd proposed a combinatorial approach X,  ocalepai cr
for solving this variant by automatically stitching multiple sides of a World coordinate svstem
building togetherHowever, when obtaing sufficient corresponding )
points is difficult and when the cameras are installed sparselg, thFig. 2 Geometric relationship of camera coordinate sSystemeak
estimation accuracgasilydecreasedn weakcalibration the relative calibrationcoordinate systenandworld coordinate system
position the orientation information and the camer& internal
parameters are estimatdbm the correspondence information of
multi-viewpoint imagesTherefore uncertaintyexists abouthe scale C. Transformation fromweakcalibration coordinate
in the relative positional relationshimmong cameras. As a  gystem to world coordinate system
countermeasuraye convert the coordinate system obtainednmak
calibrationto aworld coordinate systemsinginformationdefined by In a weakcalibrationcoordinate system, the coordinate system is
eachindividual sport (e.g.courtsize). based on the distribution tfie corresponding points to be observed.
Therefore, the origin and the direction of each axisdifferent for
each capturingrocessFor longterm 3D image processing unified
3D coordinate systens needed For that purpose, we set the world
coordinate gstem of the capturing space and transfednit from a
A. Acquisition of projective transformation matrix using we_ak—calibration coordinate systeninto a world coordinate system
weakcalibration (Fig. 2).

An arbitrary pointof the world coordinate system is defined as

& o o . The world coordinate systeim

transformation from a weakecalibration coordinate system is
expressed by transformation matrix using rotation matrlR and
translation vectot (Eq. (2):

Ill. MULTI -VIEW CAMERA CAL IBRATION METHOD

As shown in Figl, multiview images arephotographed by
sparsely installed fixed camerait the same timewe capturel video
while movinga mobile cameramongfixed cameragacing the same
direction as the fixed camexaThis meansthat a mobile camera
visually bridges sparsely arranged mwigwpoint camerasAs a
result we acquireda group of dense multview images that include

fixed camera By applyingweakcalibrationto the image groupsye i) YO o8 )
can estimatethe projective transformation matrbor all multi-view . ) )

images including sparse fixed cameragithout setting landmask Here, 3D transformation matrix D is

since detectingsufficient corresponding poinis necessary tomprove o Y o @)
the estimation accuracyVe assumehat enoughimage featuregan mop’

be observedo obtain corresponding poiniis the capteed images of
the target spacayhereat leastthe size ofoneobjectis known in the
capturedspaceo estimate thecaleparametes. 0 o 8 4)

Equation 4 is expressed using transformation matrix

B. Calculation of 3D coordinates In this paper, we define the origin of the world coordinate system
. . L L (Figs. 3(h) and(i)) to satis¥ the following two conditionsFirst, two
A 3D coordinateof an arbitrary point in_theveakcalibration  gyraight lines (edges) intersect vertically from the capturing scene of
coordinate system is defined s ®hdhdyhp . Whena the multiview video.Secondthere is arobjectwhosesizeis known
ohbhp is observedn the camera coordinate system, the projection
relation between theveakcalibration coordinate system and the
camera coordinate system is expresdsd Eq. (1). Projective
transformation matrixP of the camera in theweakcalibration



@ (b) ©)

(h) 0]

Figs. 3 (a-g): Resuls of estimatingcamera parameters usimpbile cameréamages shown inFig 1. Number ofbridgingimages: (a: 300, b: 150,
c: 75,d 40, e 20, f: 10,andg: 5). (h andi): World coordinate systefmcapturingimage environment

Vectort is the parallel translation amount from poiirt to origin  the distance ofi ° is 13.4 m(Figs. 3(h) and (i)). The zale
€ in theweakcalibrationcoordinate systerthatcorrespondto the parameters are estimatedsed ornhesedistances.
origin of the world coordinate systenin addition, the scale is
obtained from the ratio with the size in theeakcalibration
coordinate system using an object whose size is known in the w
coordinate systemAn orthonormal vector of theveakcalibration

coordinate system representediry 5 is calculatedy points'YHY, specificatiors. A bridgingimage is obtained by dividing the video into

and"Y in the weakcalibrationcoordinate systerthat correspondto  frames. In this experimentye movedthe mobile camerdFig. 1)
the points on theX-, Y-, and Zaxes of the world coordinate system.a|ong the gymnasiuéa layout

Rotation matrixR is obtained from the components of each veftor

Multi-videos were captured using digitaideo cameras (Sony
EDR AX-1,) with 3,840 x 2,160 pixel resolution at 30 framesisec

also captued video of the same spacby moving (bridging)
between two fixed camerasusing a camera with identical

To evaluate theelationship between thaccuracy of the camera

s calibrationand eacHramé&s intervals(i.e., bridging gap), wadjused

"Q oot 8 (5) the gapto 1.0, 1.5), 2.5), 6J, 12J, 21Jand 26J. As shown in Fig.
3(a)(g), weakecalibration processing is applied to the captured

bridging image. Using the estimated camera parametéersorigin:

Q

$ $

By the transformation froma weakcalibration to a world

coordinate systemwe calculatedthe subjecés 3D position in the € 0 @, and> & of the world coordinate systearecalculated
Sy ) P (Figs. 3(h) and (i)). We verified theestimation accuracy of the 3D
world coordinate system. -
position.
IV'. ACCURACY EVALUATION E  XPERIMENT OF MULTI -VIEW As shown in Fig 4, to evaluate the accuracy of the camera
CAMERA CALIBRATION METHOD calibration, strong calibration processimgs donewith the known

Next wecapturel badmintonscenesn agymnasiumWeinstalled  badmintoncourt coordinates.The courés line is definedbased on
two cameras so that tineoptical axis is orthogonal to the-Xand Y- badmintonregulatiors andshown in Fig 4. The court coordinates of
axes of the world coordinate syste(fig. 1). Figs. 3(h) and (i) show the world coordinate system and the pole tip positions(e8 in
images taken by each camerd@he origin is set at the comer of the Fig. 4) are calculated based on thegins position defined in Fig3.

court, and the Xand Y-axesare set along the court lingefinedby Similarly, we acquiredthe specified position coordinatexf each
standarcbadmintonregulatiors. The distance of © is 6.1 m,and image.Strongcalibrationwas doneusingthis information Thus,with



the calculated camera parameterghe origin of the world coordinate method usingthe 1.0J convergence angle between eadfidding

systemé ,0 ®,and> @, (Figs.3(h) and(i)) werecalculated
and the estimation accuracy of e positionwasverified.

A. Estimaton error vs.number obridgingimages
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Fig. 4 Court coordinates of world coordinate system and
position (Ncs. 1-18)
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Fig. 5 Calculation error of Euclidean distanagpper & and ground
truth, lower. @ and ground truth)

We compare the values defined in the world coordinate syster s

(™ origin: € ,0 @, and?> @) with thosedefined in badminton
regulatios (" © 6.1 m,n © 9 using 13.4 m)The calculation error
of the Euclidean distancé( and ground truth & and ground truth)
is shown in Fig 5. The average estimated error due to stron
calibration usingthe badminton court coordinates was 2.2 chhe
minimum average error value was 4.3 cm when ushey 1.0J
convergence angle between each bridginage The maximum
average error value was 229.5 cm when ushrgg12J convergence
angle between each bridginghage As a result,2.1 cmis the

pole tip

image and the average estimation error by strong calibrafidre
proposed methdd precision wasalmost the same athe strong
calibration.

In estimation processing using a small numbésrafgingimages,
the error in the world coordinate systam large. When the 1.0J,
1.5Jand2.5Jintervalsof eachframeare usedwe canestimae the 3D
positionwithin 10-cm estimation errarWhen thenumber ofintervak
of eachframeexceedd 2], the errorsharplyincreases.

Figure 5 showsa large difference in the average error between 40
bridging images and 2®ridgingimages.Whenwe use 40 bridging
images the convergence angfer each camera pais approximately
6J. Whenwe used 20 bridgingimagesit is about12J. As a result, the
complement imageshould be dividedo that the convergence angle
is less thar6Jto increaseur proposed methds effectiveness

In this experimental environment, the distance between the
cameras in Figl is approximately 40 m20 mlong 20 mwide). In
this case, if dridgingimageis capturedby walking at 1 m / seand
divided by one frame per seconkeconvergence angle is abou 6

B. 3D poseestimation using proposed method
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Fig. 7 3D poseestimatedby our proposed methodvith different
convergence angidetween each bridgingrage

difference between the average estimation error by the proposed
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Fig. 8Left: capturing environment and camera layout. Cengerdmark installation locatioWVorld coordinate system of capturing environment
(homeplatg. Right:landmarks with four reflectors (positions p, q, r, s) mounted emasduare cube.

Since the3D pose estimatiomf badmintonplayers isa promising
application of our method we examind how a subjeds pose
estimation accuracy changes with the proposed meffwdstimatea
subjects pose in the captured image, wappliedthe pose estimation
method of the Convolutional Neural Network (CNNj15]. Fig. 6
shows theesult of applying Convolutional Pose MachiijgS] to the
captured multiview image. The estimationresult of the 3D pose
position from the pose information detectadtwo viewpoints is
shown in Fig 6 on theright. In this case, the projective transfmtion
matrix for stereo processingas estimated bythe proposed method.
We confirmed that the 3D pose position is well estimated.

The result ofthe 3D pose position estimatiomvith strong
calibration is shown in Fig7. The resultusing a convergence angle
between each bridgingnageis shown in Fig 7, toa We mmparel
the 3D pose positioresultsestimatedby the 1.0J convergence angle

Thearrangemenof multiple camerass shownin Fig. 8 on theleft.
Set up the installed camera in the same way as in the IV setton.
evaluatetheir calibrationaccuracy we adjustedhe division interved
of the frame from the moving captured imageWe set0.8], 1.5],
3.5J, and4.5J convergence angiéetween each bridging imagéig.

9 shows arexample in which theveakcalibrationprocess is applied
to the capturedbridging image (70 bridging images convergence
angle 0.8J). The scale parametecan be estimatedbased onthe
regulationsize ofhomeplate With the estimated camera parameters,
we verified the estimation accuracy of the 3D position thé 56
positions of the reflection platéo(ir reflection plates of the landmark
x 14 landmark positions)Fig. 8, cente}j. Verification of this
estimation accuracy covers botteakcalibration by the proposed
method and strong calibration.

Figure 10 shows the estimation values of 56 locations in the world

between each bridgingmage and strong calibration (comparison of coordinate system (strong angeakcalibratiors by the proposed
positions under the neckind confirmed that the average error valuemethod) and the calculation error of the Euclidean distance of the 3D
was 2.2 cm.When theconvergence angle between each bridgingosition ofthe 56 place measured by the surveying instrumdrite
image exceeéd 12J, the errordrastically increasd. Thus, the average estimation error by strong calibration was 1.5aord the
proposed methdH accuracyis almostidenticalas strong calibration. average estimation error by the proposed method uan@.8J
Based onthis result, since the 3D position used during strong convergence angle between each bridginagewas 4.9 cm1.5J 5.1
calibration includesthe height of thenet we obtainedestimation c¢m, 3.5J: 5.3 cm, and 4.5J: 6.4 cm.In the proposed method, the
accuracythat wasequivalent to the proposed method by includingstimation error in the world coordinate system incrdaase the

height informationthat matched the heigbf the athletesTherefore,
when estimahg a positionthat exceeds the ristheight such as the
position of the badminton shuttieck the estimation error of the
strong calibration used in this experimenitl probably increase.n
the proposed method, we can estimate positwith high accuracy
even ina spacethat is higher than the ndby calibraing the whole
imaging space.

C. Applicationfor baseballpitching

We exparded the applicatiors of our proposed methodby also
experimening with abasebalscene

As in the aboveaccuracy evaluation experimente also used
badminton court coordinatefer strong calibration.However, in a
baseballcontext extracing similar information from the capting
environments difficult. Therefore as showron the rightin Fig. 8, we
usel a landmark with four reflectors mounted to -anlsquare cube.
The four positions(p, q, r, s)(Fig. 8, right) are measured blaser
surveying instrumen(Total Station) We alsomeasurd the distance
of homeplat&s apexAs shown in the center of Fig, its apex is the

origin, and theX and Y axes are defined. Furthermore, landmarks

wereplacedin the whole imaging spac@s shown in Fig8, center, a
1-m square cube with four reflectorgas moved 14 placesWe

measurd the position of each reflector with a surveying instrume

for strong calibration.

convergence angle between thédging imagesincreasd. However,

even if the convergenceangle increask from 0.8Jto 4.5J, the
estimation error rema@d at about 1.5 cmbecausethe distance
between the two cameras is small (about 5 ff)erefore, for
capturing environments where the distance between sparsely installed
cameraslike badminton courtis large, the proposed metlisd
effectiveness isconfirmed

Based on the above experiment results, the effectivenesarof
proposed method is shown in Table No laborintensive orlow
accuracymethodswere compared.However, labor is intensive and
accuracy is lowwhen no landmarkswere installed in the whole
capturing space during strong calibratidn. this experiment, when
both labor and estimation accura@re low, a strong calibration
methodjust usesthe badminton court coordinateshe 3D position for
strong calibration inclueks the courfs net height informationWe
obtained thesame estimation accuracy as the proposed metiaid
includesthe same height information #ee athletesWhen estimating
apositionthatis higher than the net, the estimation errothafstrong
calibration is largeWhenboth the labor and estimation accuraase
high, strong calibratioris applied tothe baseballsituation in this
experiment. We calibrated 56 measuring points in the world
coordinate systenwith a surveying instrumenand also manually
obtained56 positions on two observation images calculate the

mera parameter$his step was very timeonsuming On the other

and, the estimation accuracgveraged approximately 1.5 cm,
confirming highly accurate calibratiorkinally, we confirmedhatour
proposed methogrovides highestimation accuracy with less labor.



There is no need for strong calibration lgbas was applied to was effective. We conductedexperimers on camera calibration
baseballSince we only calculated thamera parameters by capturingaccuracyby changing the convergence argletween eachridging
the bridging image, thelabor is small. When applied to this image and verified our proposed methdd effectivenessWhen the
experimends badminton gamethe proposed methél estimation distance between the sparsely installed camessincreased the
accuracy nearly matched strong calibration.Therefore, when the  proposednethod worlkedwith high accuray andless labor.

distance between the sparsely installed canmémbadminton court

is large, the proposed method worvtish high accuray andless labor.
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