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Abstractð Camera calibration that estimates the projective 

relationship between 3D and 2D image spaces is one of the most crucial 

processes for  such 3D image processing as 3D reconstruction and 3D 

tracking . A strong calibration method, which needs to place landmarks 

with known 3D positions, is a common technique. However, as the target 

space becomes large, landmark placement becomes more complicated. 

Although a weak-calibration method does not need known landmarks to 

estimate a projective transformation matrix from the correspondence 

information among multi -view images, the estimation precision depends 

on the accuracy of the correspondence. When multiple  cameras are 

arranged sparsely, detecting sufficient corresponding points is difficult . In 

this research, we propose a calibration method that bridges sparse 

multiple cameras with mobile camera images. The mobile camera captures 

video images while moving among sparse multi-view cameras. The 

captured video resembles dense multi -view images and includes sparse 

multi -view images so that weak-calibration is effective. We confirmed the 

appropriate spacing between the images through comparative experiments 

of camera calibration accuracy by changing the number of bridging 

images and applied our proposed method to multiple capturing 

experiments in a large-scale space and verified its robustness. 

Keywordsðcamera calibration, multi -view camera, bridging image, 

pose estimation, badminton image 

I.  I NTRODUCTION  

Such 3D image processing approaches as 3D tracking and 3D 

reconstruction are active research topics in computer vision. 3D 

positional estimation in large-scale spaces is being scrutinized for 

various scenes [1]. For such processes, the projective relationship 

must be obtained between the 3D space and the 2D image space, 

given by the camera parameters of the capturing camera. In general 

camera calibration processes, we need to place landmarks with known 

3D positions in the space and estimate the projective transformation 

matrix from the correspondence relationship between the 3D points 

and their observed positions in a 2D image plane. This is called strong 

calibration [2]. However, when it is applied to a large-scale space, the 

time and effort of landmark installation becomes a problem. On the 

other hand, the weak-calibration method (or self calibration) [3] does 

not require landmarks to be placed. Relative position and orientation 

information can be estimated among multiple cameras as well as the 

intrinsic parameters of the capturing cameras from the correspondence 

information among multiple viewpoint images. However, when the 

cameras are arranged sparsely, sufficient correspondence points 

cannot be obtained, and the estimation precision of the projection 

relationship falls. In such large-scale spaces as a gymnasium or a 

stadium where we must apply 3D image processing, densely arranging 
cameras is usually difficult.  

As an application target of 3D image processing, we focus on 

badminton games in a relatively large-scale space where installing 3D 

tracking equipment to capture players and shuttlecocks is difficult. As 

shown in Fig. 1, when we capture badminton match images, the entire 

court region is usually captured from a distance. In many other sports, 

the entire court image is often captured and utilized for strategic 

analysis purposes. In sports analysis, the 3D position of athletes and 

balls is crucial as basic data for improving performance and will 

eventually be applied for the automatic referring and management of 

games in the near future. Research on the 3D position estimation of a 

subject using game images is active. Since the target space is too large 

to install enough cameras to guarantee weak-calibrationôs accuracy, 

strong calibration is normally used. However, since estimating such 

2D-3D projective relationships as placing landmarks is time-

consuming, acquiring the observed position of the landmarks in 

captured images is often onerous. Providing 3D position data to 

athletes and coaches is also time-consuming. Moreover, in official 

international competition, placing landmarks in the target space is 
difficult . 

In this research, we combine the advantages of the strong and 

weak-calibration methods by bridging them with mobile camera 

images. A mobile camera captures video while moving among sparse 

multi-view cameras (Fig. 1). The captured video resembles dense 

multi-view images, including sparse multi-view images so that weak-
calibration effectively works. 

 

Fig. 1 Dense images captured in our proposed method. Mobile camera 

captures target scene while moving among sparsely fixed multi-view 

cameras.  

II. RELATED WORKS 

Strong calibration using known landmarks (e.g., checkerboards) is 

one common approach [4, 5]. Davide et al. proposed a flexible new 

technique for single viewpoint omnidirectional camera calibration 

using checkerboards that calibrated a panoramic camera with a 

vertical field of view over 200°. Chen et al. proposed a refractive 

calibration method for an underwater stereo camera system where 

both cameras are looking through multiple parallel flat refractive 

interfaces. In research on improving calibration accuracy, the 

estimation error was minimized by calculating the epipolar geometry 

from dynamic silhouettes [6] and color codes [7]. The motion barcode 

of Gil et al. is a binary temporal sequence for lines that indicate the 

existence of at least one foreground pixel on that line. The search for 

corresponding epipolar lines was limited to lines with similar barcodes. 

Schillebeeckx et al. introduced a calibration object based on a flat 

lenticular array that creates a color-coded light-field whose observed 

color changes depending on the angle from which it is viewed. Other 

studies have also addressed environments where it is difficult to 

calibrate cameras, such as underwater or medical endoscopes. 



Nishimura et al. [8] proposed a camera calibration algorithm for 

camera systems involving distortions by unknown refraction and 

reflection processes. Melo et al. [9] proposed a complete software-

based system that calibrates and corrects radial distortion in clinical 
endoscopy in real time.  

All of the above approaches and methods target relatively small 

spaces. On the other hand, in the large-scale space targeted in this 

research, since we must place landmarks to cover the entire space, 

much labor is required. To solve such problems, Workman et al. 

proposed [10] a camera calibration method that used the geometry of a 

rainbow and described the minimal sets of constraints that are 

sufficient for estimating camera calibration and presented both semi-

automatic and fully automatic methods to calibrate a camera. However, 

rainbows are relatively rare, and applying them in a large indoor space 

is difficult. Calibration methods have been extensively studied that 

utilize the corresponding information between multi-viewpoint images 

without the installation of landmarks [11, 12, 13]. By analyzing the 

motion field of radially distorted images, Wu et al. [12] solved for 

critical surface pairs that can lead to the same motion field under 

different radial distortions and possibly different camera motions.  

Cohen et al. described [14] an example of robust calibration by 

adding corresponding points and proposed a combinatorial approach 

for solving this variant by automatically stitching multiple sides of a 

building together. However, when obtaining sufficient corresponding 

points is difficult and when the cameras are installed sparsely, the 

estimation accuracy easily decreases. In weak-calibration, the relative 

position, the orientation information, and the cameraôs internal 

parameters are estimated from the correspondence information of 

multi-viewpoint images. Therefore, uncertainty exists about the scale 

in the relative positional relationship among cameras. As a 

countermeasure, we convert the coordinate system obtained by weak-

calibration to a world coordinate system using information defined by 
each individual sport (e.g., court size).  

 

III.  MULTI -VIEW CAMERA CAL IBRATION METHOD  

A. Acquisition of projective transformation matrix using 

weak-calibration 

As shown in Fig 1, multi-view images are photographed by 

sparsely installed fixed cameras. At the same time, we captured video 

while moving a mobile camera among fixed cameras facing the same 

direction as the fixed cameras. This means that a mobile camera 

visually bridges sparsely arranged multi-viewpoint cameras. As a 

result, we acquired a group of dense multi-view images that include 

fixed cameras. By applying weak-calibration to the image groups, we 

can estimate the projective transformation matrix for all multi-view 

images including sparse fixed cameras without setting landmarks, 

since detecting sufficient corresponding points is necessary to improve 

the estimation accuracy. We assume that enough image features can 

be observed to obtain corresponding points in the captured images of 

the target space, where at least the size of one object is known in the 
captured space to estimate the scale parameters. 

  

B. Calculation of 3D coordinates 

A 3D coordinate of an arbitrary point in the weak-calibration 

coordinate system is defined as ὓ ὢȟὣȟὤȟρ . When ά

όȟὺȟρ  is observed in the camera coordinate system, the projection 

relation between the weak-calibration coordinate system and the 

camera coordinate system is expressed by Eq. (1). Projective 

transformation matrix P of the camera in the weak-calibration 

coordinate system, acquired by the method in Section III-A, is used: 
 

‗άḗ╟ὓ .                   (1)  

 

The projection relation is similarly estimated in multiple viewpoint 

images. The 3D coordinates are calculated from the observation 

coordinates on the image by the stereo method using the estimated 
projective transformation matrix. 

 

Fig. 2 Geometric relationship of camera coordinate system, weak-
calibration coordinate system, and world coordinate system  

 

C. Transformation from weak-calibration coordinate 

system to world coordinate system 

In a weak-calibration coordinate system, the coordinate system is 

based on the distribution of the corresponding points to be observed. 

Therefore, the origin and the direction of each axis are different for 

each capturing process. For long-term 3D image processing, a unified 

3D coordinate system is needed. For that purpose, we set the world 

coordinate system of the capturing space and transformed it from a 

weak-calibration coordinate system into a world coordinate system 
(Fig. 2).  

An arbitrary point of the world coordinate system is defined as 

ὓ ὢȟὣȟὤ . The world coordinate systemôs 

transformation from a weak-calibration coordinate system is 

expressed by a transformation matrix using rotation matrix R and 
translation vector t (Eq. (2):  

 

ὓ Ὑὓ ὸȢ              (2)  

Here, 3D transformation matrix D is 

Ὀ
Ὑ ὸ
π ρ

.                 (3)  

Equation 4 is expressed using transformation matrix D: 

ὓ Ὀὓ Ȣ                 (4)  

 

In this paper, we define the origin of the world coordinate system 

(Figs. 3(h) and (i)) to satisfy the following two conditions. First, two 

straight lines (edges) intersect vertically from the capturing scene of 
the multi-view video. Second, there is an object whose size is known.  

 



 

(a)                                                       (b)                                                  (c) 

 

(d)                                                   (e)                                                  (f)                                                      (g) 

 

(h)                                                                                  (i) 

Figs. 3 (a-g): Results of estimating camera parameters using mobile camera images shown in Fig 1. Number of bridging images: (a: 300, b: 150, 
c: 75, d: 40, e: 20, f: 10, and g: 5). (h and i): World coordinate systemôs capturing-image environment. 

 

Vector t is the parallel translation amount from point Ὓ to origin 

έ  in the weak-calibration coordinate system that corresponds to the 

origin of the world coordinate system. In addition, the scale is 

obtained from the ratio with the size in the weak-calibration 

coordinate system using an object whose size is known in the world 

coordinate system. An orthonormal vector of the weak-calibration 

coordinate system represented by Eq. 5 is calculated by points ὛȟὛ, 

and Ὓ in the weak-calibration coordinate system that corresponds to 

the points on the X-, Y-, and Z-axes of the world coordinate system. 

Rotation matrix R is obtained from the components of each vector Ὡ: 

 

    Ὡ  
 

ȿ  ȿ
 Ὥ ὼȟώȟᾀȢ               (5)  

 

By the transformation from a weak-calibration to a world 

coordinate system, we calculated the subjectôs 3D position in the 
world coordinate system.  

IV . ACCURACY EVALUATION E XPERIMENT OF MULTI -VIEW 

CAMERA CALIBRATION METHOD  

Next we captured badminton scenes in a gymnasium. We installed 

two cameras so that their optical axis is orthogonal to the X- and Y-

axes of the world coordinate system (Fig. 1). Figs. 3(h) and (i) show 

images taken by each camera. The origin is set at the corner of the 

court, and the X- and Y-axes are set along the court line, defined by 

standard badminton regulations. The distance of ŋ  ᵒ is 6.1 m, and 

the distance of ŋ  ᵓ  is 13.4 m (Figs. 3(h) and (i)). The scale 

parameters are estimated based on these distances.  

Multi -videos were captured using digital video cameras (Sony 

FDR AX-1,) with 3,840 x 2,160 pixel resolution at 30 frames/second. 

We also captured video of the same space by moving (bridging) 

between two fixed cameras using a camera with identical 

specifications. A bridging image is obtained by dividing the video into 

frames. In this experiment, we moved the mobile camera (Fig. 1) 
along the gymnasiumôs layout. 

To evaluate the relationship between the accuracy of the camera 

calibration and each frameôs intervals (i.e., bridging gap), we adjusted 

the gap to 1.0Ј, 1.5Ј, 2.5Ј, 6Ј, 12Ј, 21Ј and 26Ј. As shown in Figs. 

3(a)-(g), weak-calibration processing is applied to the captured 

bridging image. Using the estimated camera parameters,ᵑorigin: 

έ , ᵒ ὢ, and ɔ ὣ of the world coordinate system are calculated 

(Figs. 3(h) and (i)). We verified the estimation accuracy of the 3D 

position.  

As shown in Fig. 4, to evaluate the accuracy of the camera 

calibration, strong calibration processing was done with the known 

badminton court coordinates. The courtôs line is defined based on 

badminton regulations and shown in Fig. 4. The court coordinates of 

the world coordinate system and the pole tip position (Nos. 1-18 in 

Fig. 4) are calculated based on the originôs position defined in Fig. 3. 

Similarly, we acquired the specified position coordinates of each 

image. Strong calibration was done using this information. Thus, with 



the calculated camera parameters, ᵑthe origin of the world coordinate 

system: έ , ᵒ ὢ, and ɔ  ὣ , (Figs. 3(h) and (i)) were calculated 

and the estimation accuracy of the 3D position was verified. 

 

A. Estimation error vs. number of bridging images 

 

Fig. 4 Court coordinates of world coordinate system and pole tip 
position (Nos. 1-18) 

 

Fig. 5 Calculation error of Euclidean distance (upper: ὢ and ground 

truth, lower: ὣ and ground truth) 

We compared the values defined in the world coordinate system 

(ᵑ origin: έ , ᵒὢ, and ɔ  ὣ) with those defined in badminton 

regulations (ᵑᵒ 6.1 m, ŋ  ᵒ ᵓ using 13.4 m). The calculation error 

of the Euclidean distance (ὢ and ground truth / ὣ and ground truth) 

is shown in Fig. 5. The average estimated error due to strong 

calibration using the badminton court coordinates was 2.2 cm. The 

minimum average error value was 4.3 cm when using the 1.0Ј 
convergence angle between each bridging image. The maximum 

average error value was 229.5 cm when using the 12Ј convergence 

angle between each bridging image. As a result, 2.1 cm is the 

difference between the average estimation error by the proposed 

method using the 1.0Ј convergence angle between each bridging 

image and the average estimation error by strong calibration. The 

proposed methodôs precision was almost the same as the strong 

calibration. 

In estimation processing using a small number of bridging images, 

the error in the world coordinate system is large. When the 1.0Ј, 
1.5Ј and 2.5Ј intervals of each frame are used, we can estimate the 3D 

position within 10-cm estimation error. When the number of intervals 

of each frame exceeds 12Ј, the error sharply increases. 

Figure 5 shows a large difference in the average error between 40 

bridging images and 20 bridging images. When we used 40 bridging 

images, the convergence angle for each camera pair is approximately 

6Ј. When we used 20 bridging images, it is about 12Ј. As a result, the 

complement images should be divided so that the convergence angle 

is less than 6Ј to increase our proposed methodôs effectiveness.  

In this experimental environment, the distance between the 

cameras in Fig. 1 is approximately 40 m (20 m long, 20 m wide). In 

this case, if a bridging image is captured by walking at 1 m / sec and 

divided by one frame per second, the convergence angle is about 6Ј. 

 

B. 3D pose estimation using proposed method 

 

Fig. 6 Detected 2D pose (right) and estimated 3D pose (left) 

 

Fig. 7 3D pose estimated by our proposed method with different 

convergence angles between each bridging image 

  



 

Fig. 8 Left: capturing environment and camera layout. Center: landmark installation location. World coordinate system of capturing environment 
(home plate). Right: landmarks with four reflectors (positions p, q, r, s) mounted on a 1-m square cube. 

 

Since the 3D pose estimation of badminton players is a promising 

application of our method, we examined how a subjectôs pose 

estimation accuracy changes with the proposed method. To estimate a 

subjectôs pose in the captured image, we applied the pose estimation 

method of the Convolutional Neural Network (CNN) [15]. Fig. 6 

shows the result of applying Convolutional Pose Machines [15] to the 

captured multi-view images. The estimation result of the 3D pose 

position from the pose information detected at two viewpoints is 

shown in Fig. 6 on the right. In this case, the projective transformation 

matrix for stereo processing was estimated by the proposed method. 
We confirmed that the 3D pose position is well estimated.  

The result of the 3D pose position estimation with strong 

calibration is shown in Fig. 7. The result using a convergence angle 

between each bridging image is shown in Fig. 7, too. We compared  

the 3D pose position results estimated by the 1.0Ј convergence angle 

between each bridging image and strong calibration (comparison of 

positions under the neck) and confirmed that the average error value 

was 2.2 cm. When the convergence angle between each bridging 

image exceeded 12Ј, the error drastically increased. Thus, the 

proposed methodôs accuracy is almost identical as strong calibration. 

Based on this result, since the 3D position used during strong 

calibration includes the height of the net, we obtained estimation 

accuracy that was equivalent to the proposed method by including 

height information that matched the height of the athletes. Therefore, 

when estimating a position that exceeds the netôs height, such as the 

position of the badminton shuttlecock, the estimation error of the 

strong calibration used in this experiment will probably increase. In 

the proposed method, we can estimate positions with high accuracy 

even in a space that is higher than the net by calibrating the whole 

imaging space. 

 

C. Application for baseball pitching   

We expanded the applications of our proposed method by also 
experimenting with a baseball scene. 

As in the above accuracy evaluation experiment, we also used 

badminton court coordinates for strong calibration. However, in a 

baseball context, extracting similar information from the capturing 

environment is difficult. Therefore, as shown on the right in Fig. 8, we 

used a landmark with four reflectors mounted to a 1-m square cube. 

The four positions (p, q, r, s) (Fig. 8, right) are measured by laser-

surveying instrument (Total Station). We also measured the distance 

of home plateôs apex. As shown in the center of Fig. 8, its apex is the 

origin, and the X and Y axes are defined. Furthermore, landmarks 

were placed in the whole imaging space. As shown in Fig. 8, center, a 

1-m square cube with four reflectors was moved 14 places. We 

measured the position of each reflector with a surveying instrument 

for strong calibration.  

The arrangement of multiple cameras is shown in Fig. 8 on the left. 

Set up the installed camera in the same way as in the IV section. To 

evaluate their calibration accuracy, we adjusted the division intervals 

of the frames from the moving captured images. We set 0.8Ј, 1.5Ј, 
3.5Ј, and 4.5Ј convergence angles between each bridging image. Fig. 

9 shows an example in which the weak-calibration process is applied 

to the captured bridging image (70 bridging images, convergence 

angle, 0.8Ј). The scale parameter can be estimated based on the 

regulation size of home plate. With the estimated camera parameters, 

we verified the estimation accuracy of the 3D position of the 56 

positions of the reflection plate (four reflection plates of the landmark 

x 14 landmark positions) (Fig. 8, center). Verification of this 

estimation accuracy covers both weak-calibration by the proposed 
method and strong calibration. 

Figure 10 shows the estimation values of 56 locations in the world 

coordinate system (strong and weak-calibrations by the proposed 

method) and the calculation error of the Euclidean distance of the 3D 

position of the 56 places measured by the surveying instrument. The 

average estimation error by strong calibration was 1.5 cm, and the 

average estimation error by the proposed method using an 0.8Ј 
convergence angle between each bridging image was 4.9 cm, 1.5Ј: 5.1 

cm, 3.5Ј: 5.3 cm, and 4.5Ј: 6.4 cm. In the proposed method, the 

estimation error in the world coordinate system increased as the 

convergence angle between the bridging images increased. However, 

even if the convergence angle increased from 0.8Ј to 4.5Ј, the 

estimation error remained at about 1.5 cm because the distance 

between the two cameras is small (about 5 m). Therefore, for 

capturing environments where the distance between sparsely installed 

cameras like badminton court is large, the proposed methodôs 
effectiveness is confirmed. 

Based on the above experiment results, the effectiveness of our 

proposed method is shown in Table 1. No labor-intensive or low 

accuracy methods were compared. However, labor is intensive and 

accuracy is low when no landmarks were installed in the whole 

capturing space during strong calibration. In this experiment, when 

both labor and estimation accuracy are low, a strong calibration 

method just uses the badminton court coordinates. The 3D position for 

strong calibration includes the courtôs net height information. We 

obtained the same estimation accuracy as the proposed method that 

includes the same height information as the athletes. When estimating 

a position that is higher than the net, the estimation error of the strong 

calibration is large. When both the labor and estimation accuracy are 

high, strong calibration is applied to the baseball situation in this 

experiment. We calibrated 56 measuring points in the world 

coordinate system with a surveying instrument and also manually 

obtained 56 positions on two observation images to calculate the 

camera parameters. This step was very time-consuming. On the other 

hand, the estimation accuracy averaged approximately 1.5 cm, 

confirming highly accurate calibration. Finally, we confirmed that our 

proposed method provides high estimation accuracy with less labor. 



There is no need for strong calibration labor, as was applied to 

baseball. Since we only calculated the camera parameters by capturing 

the bridging image, the labor is small. When applied to this 

experimentôs badminton game, the proposed methodôs estimation 

accuracy nearly matched strong calibration. Therefore, when the 

distance between the sparsely installed cameras like badminton court 

is large, the proposed method works with high accuracy and less labor. 

 

Fig. 9 Example where weak-calibration process is applied to captured 

bridging image (70 bridging images: convergence angle, 0.8Ј) 

 

Table 1 Accuracy and labor of each estimation method 

 Low accuracy High accuracy 

 

Low labor 

 

Strong calibration 

(using only badminton court 

coordinates) 

 

Proposed method 

 

 

High labor 

 

 

× 

 

Strong calibration 

 

 

Fig. 10 Estimation values of 56 locations in world coordinate system 

(both strong and weak-calibration by proposed method) and 

calculation error of Euclidean distance of 3D position of 56 places 

measured by surveying instrument 

 

V. CONCLUSION  

We introduced a method that achieves a calibration method with 

sparse multiple cameras by bridging them with mobile camera images. 

Mobile cameras captured video images while moving among sparse 

multi-view cameras. Such captured video resembles dense multi-view 

images, including sparse multi-view images so that weak-calibration 

was effective. We conducted experiments on camera calibration 

accuracy by changing the convergence angles between each bridging 

image and verified our proposed methodôs effectiveness. When the 

distance between the sparsely installed cameras was increased, the 
proposed method worked with high accuracy and less labor. 
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