Erratum: Cubic-Rhombohedral Structural Phase Transition in $Na_{1.32}Mn[Fe(CN)_6]_{0.83}$ ·3.6H₂O [J. Phys. Soc. Jpn. 80 (2011) 074608]

Yutaka MORITOMO^{1,2,3}, Tomoyuki MATSUDA¹, Yutaro KURIHARA¹, and Jungeun KIM³

¹Graduate School of Pure and applied Science, University of Tsukuba, Tsukuba 305-8571, Japan ²Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba, Tsukuba 305-8571, Japan

³JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Received June 5, 2018)

KEYWORDS: Trigonal phase, Prussian blue analogue

We reported crystal structure of the trigonal Na_{1.32}Mn[Fe(CN)₆]_{0.83}·3.6H₂O at 200 K with the hexagonal setting ($R\bar{3}m$, Space group No. 166 and Setting No. 1).¹⁾ In the analysis, however, we have chosen a wrong unit cell, *i.e.*, $a_H = a_C\sqrt{2}$ and $c_H = c_C\sqrt{3}$ (subscript H and C represent hexagonal setting and pseudo-cubic setting, respectively). The unit cell is four times larger in volume than the appropriate unit cell, $a_H = a_C/\sqrt{2}$ and $c_H = c_C\sqrt{3}$.

We have re-analyzed the same X-ray power diffraction pattern with use of Rietan-FP program.²⁾ Na⁺ is put between the Fe and Mn along c axis (6c). C, N, and the ligand oxygens (O_l) are put on the edge (18h) on the nanocube. The zeolite oxygen (O_z) is put at the face centered position (9d

Table I. Occupancy (g), atomic positions (x, y, z), and isotropic atomic displacement parameter (B) of Na_{1.32}Mn[Fe(CN)₆]_{0.83}·3.6H₂O in the rhombohedral phase ($R\overline{3}m$: hexagonal setting) at 200 K. O_l and O_z are ligand oxygen and zeolite oxygen, respectively. For C, N, and O_l, liner constraints between the atomic coordinates, *i.e.*, $z = \frac{x}{2}$, are adopted. x and B of O_l are fixed as the same as those of C. The cell parameters are $a_H = 7.5156(5)$ Å and $c_H = 18.0323(13)$. R_{wp} , R_I , and S are 10.51%, 9.52%, and 2.39, respectively.

Atom	site	g	x	y	z	B (Å ²)
Fe^{2+}	3a	0.83	0	0	0	0.3(2)
Mn^{2+}	3b	1	0	0	1/2	2.5(2)
\mathbf{C}	18h	0.83	0.213(1)	0.787	0.106	5.7(7)
Ν	18h	0.83	0.135(1)	0.865	0.068	1.5(4)
Na^+	6c	0.66	0	0	0.242(2)	12.8(4)
O_l^{2-}	18h	0.057(9)	0.213	0.787	0.106	5.8
\mathcal{O}_z^{2-}	9d	0.543	1/2	0	1/2	17.8(7)
O_{z}^{2-}	9e	0.543	1/2	0	0	17.7

Fig. 1. (Color online) Crystal structure of trigonal $Na_{1.32}Mn[Fe(CN)_6]_{0.83}$ ·3.6H₂O. Fe, Mn, and O_l are omitted for simplicity. Thick lines represent the nanocubes. *z*-coordinate of Na is exaggerated.

and 9e) of the nanocube. The occupancies (g) for Fe, Mn, Na, C and N are fixed as the chemical composition. For oxygens, a liner constraint between gs, *i.e.*, g(9d) = g(9e) = 0.6 - g(18h), is adopted, so that the oxygen content coincides the chemical composition. The obtained results are listed in Table I. Figure 1 shows crystal structure of the trigonal Na_{1.32}Mn[Fe(CN)₆]_{0.83}·3.6H₂O.

Let us compare the magnitude and direction of the Na displacements from the central position of the nanocube. In the previous analysis,¹⁾ the Na displacement was 1.69(4) Å and 0.22(4) Å toward the Fe site for 6c and 18h sites, respectively. In the present analysis, the Na displacement [= 0.14(4) Å] toward the same direction is confirmed. The different magnitude may be ascribed to the different structural model: O_z is put at the face centered position in the present model while their positions were adjusted in the previous model. Thus, the previous conclusion "cubic-trigonal phase transition is regarded as an order-disorder transition of the Na ions" is supported by the correct structural analysis.

Acknowledgments

This work was supported by Grants-in-Aid (No. 21244052 and No. 22013003) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The synchrotron-radiation X-ray powder diffraction experiments were performed at the SPring-8 BL02B2 beamline with the approval of the Japan Synchrotron Radiation Research Institute (JASRI)

References

- 1) Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim: J. Phys. Soc. Jpn. 80 (2011) 074608.
- 2) F. Izumi and K. Momma: Solid State Phenom. 130 (2007) 15.