# Erratum: Cubic-Rhombohedral Structural Phase Transition in $\mathrm{Na}_{1.32} \mathrm{Mn}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{0.83} \cdot 3.6 \mathrm{H}_{2} \mathrm{O}$ [J. Phys. Soc. Jpn. 80 (2011) 074608 ] 

Yutaka Moritomo ${ }^{1,2,3}$, Tomoyuki Matsuda ${ }^{1}$, Yutaro Kurihara ${ }^{1}$, and Jungeun Kim $^{3}$
${ }^{1}$ Graduate School of Pure and applied Science, University of Tsukuba, Tsukuba 305-8571, Japan
${ }^{2}$ Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba, Tsukuba 305-8571, Japan
${ }^{3}$ JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan (Received June 5, 2018)

KEYWORDS: Trigonal phase, Prussian blue analogue

We reported crystal structure of the trigonal $\mathrm{Na}_{1.32} \mathrm{Mn}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{0.83} \cdot 3.6 \mathrm{H}_{2} \mathrm{O}$ at 200 K with the hexagonal setting ( $R \overline{3} \mathrm{~m}$, Space group No. 166 and Setting No. 1). ${ }^{1)}$ In the analysis, however, we have chosen a wrong unit cell, i.e., $a_{H}=a_{C} \sqrt{2}$ and $c_{H}=c_{C} \sqrt{3}$ (subscript H and C represent hexagonal setting and pseudo-cubic setting, respectively). The unit cell is four times larger in volume than the appropriate unit cell, $a_{H}=a_{C} / \sqrt{2}$ and $c_{H}=c_{C} \sqrt{3}$.

We have re-analyzed the same X-ray power diffraction pattern with use of Rietan-FP program. ${ }^{2)}$ $\mathrm{Na}^{+}$is put between the Fe and Mn along $c$ axis $(6 c) . \mathrm{C}, \mathrm{N}$, and the ligand oxygens $\left(\mathrm{O}_{l}\right)$ are put on the edge (18h) on the nanocube. The zeolite oxygen $\left(\mathrm{O}_{z}\right)$ is put at the face centered position (9d

Table I. Occupancy ( $g$ ), atomic positions $(x, y, z)$, and isotropic atomic displacement parameter ( $B$ ) of $\mathrm{Na}_{1.32} \mathrm{Mn}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{0.83} \cdot 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in the rhombohedral phase ( $R \overline{3} m$ : hexagonal setting) at $200 \mathrm{~K} . \mathrm{O}_{l}$ and $\mathrm{O}_{z}$ are ligand oxygen and zeolite oxygen, respectively. For $\mathrm{C}, \mathrm{N}$, and $\mathrm{O}_{l}$, liner constraints between the atomic coordinates, i.e., $z$ $=\frac{x}{2}$, are adopted. $x$ and $B$ of $\mathrm{O}_{l}$ are fixed as the same as those of C. The cell parameters are $a_{H}=7.5156(5) \AA$ and $c_{H}=18.0323(13) . R_{\mathrm{wp}}, R_{\mathrm{I}}$, and $S$ are $10.51 \%, 9.52 \%$, and 2.39 , respectively.

| Atom | site | $g$ | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{Fe}^{2+}$ | $3 a$ | 0.83 | 0 | 0 | 0 | $0.3(2)$ |
| $\mathrm{Mn}^{2+}$ | $3 b$ | 1 | 0 | 0 | $1 / 2$ | $2.5(2)$ |
| C | $18 h$ | 0.83 | $0.213(1)$ | 0.787 | 0.106 | $5.7(7)$ |
| N | $18 h$ | 0.83 | $0.135(1)$ | 0.865 | 0.068 | $1.5(4)$ |
| $\mathrm{Na}^{+}$ | $6 c$ | 0.66 | 0 | 0 | $0.242(2)$ | $12.8(4)$ |
| $\mathrm{O}_{l}^{2-}$ | $18 h$ | $0.057(9)$ | 0.213 | 0.787 | 0.106 | 5.8 |
| $\mathrm{O}_{z}^{2-}$ | $9 d$ | 0.543 | $1 / 2$ | 0 | $1 / 2$ | $17.8(7)$ |
| $\mathrm{O}_{z}^{2-}$ | $9 e$ | 0.543 | $1 / 2$ | 0 | 0 | 17.7 |



Fig. 1. (Color online) Crystal structure of trigonal $\mathrm{Na}_{1.32} \mathrm{Mn}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{0.83} \cdot 3 \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Fe, Mn , and $\mathrm{O}_{l}$ are omitted for simplicity. Thick lines represent the nanocubes. $z$-coordinate of Na is exaggerated.
and $9 e$ ) of the nanocube. The occupancies $(g)$ for $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Na}, \mathrm{C}$ and N are fixed as the chemical composition. For oxygens, a liner constraint between gs, i.e., $g(9 d)=g(9 e)=0.6-g(18 h)$, is adopted, so that the oxygen content coincides the chemical composition. The obtained results are listed in Table I. Figure 1 shows crystal structure of the trigonal $\mathrm{Na}_{1.32} \mathrm{Mn}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{0.83} \cdot 3.6 \mathrm{H}_{2} \mathrm{O}$.

Let us compare the magnitude and direction of the Na displacements from the central position of the nanocube. In the previous analysis, ${ }^{1)}$ the Na displacement was $1.69(4) \AA$ and $0.22(4) \AA$ toward the Fe site for $6 c$ and $18 h$ sites, respectively. In the present analysis, the Na displacement $[=0.14(4)$ $\AA$ ] toward the same direction is confirmed. The different magnitude may be ascribed to the different structural model: $\mathrm{O}_{z}$ is put at the face centered position in the present model while their positions were adjusted in the previous model. Thus, the previous conclusion "cubic-trigonal phase transition is regarded as an order-disorder transition of the Na ions" is supported by the correct structural analysis.

## Acknowledgments

This work was supported by Grants-in-Aid (No. 21244052 and No. 22013003) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The synchrotron-radiation X-ray powder diffraction experiments were performed at the SPring8 BL02B2 beamline with the approval of the Japan Synchrotron Radiation Research Institute (JASRI)

## References

1) Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim: J. Phys. Soc. Jpn. 80 (2011) 074608.
2) F. Izumi and K. Momma: Solid State Phenom. 130 (2007) 15.
