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Abstract

This note describes a simple method for computing the exact value of detection error probabilities

under log-consumption models with i.i.d. Gaussian errors. The method is applicable to a class

of models widely used in the literature, including the random walk, trend-stationary, long-run

risk, and idiosyncratic risk models. The advantage of the method is more evident in applications

where the overall detection error probability, defined as the average of two kinds of detection

error probabilities, is computed many times.
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1 Introduction

Hansen and Sargent (2008a) and Barillas et al. (2009) used detection error probabilities to

demonstrate that a moderate amount of concern about model misspecification under multiplier

preferences can substitute for an implausibly high level of risk aversion. The computation of

these detection error probabilities is under the assumption that the log consumption streams an

agent faces in an endowment economy follow a random walk or trend-stationary process with

i.i.d. Gaussian errors. The computational procedure relies entirely on simulation. In this note,

we show that it is possible to compute the detection error probabilities using the cumulative

distribution function under a class of models widely used in the literature, including the random

walk, trend-stationary, long-run risk, and idiosyncratic risk models.

Under the random walk and trend-stationary models, Djeutem (2014) was the first to show

that detection error probabilities can be calculated in a closed form. However, this note extends

these results and makes the following unique contributions. First, it demonstrates that there

are closed-form solutions for detection error probabilities if the value function is linear in i.i.d.

Gaussian shocks, which also holds for a particular class of long-run and idiosyncratic risk mod-

els.1 Thus, it provides a generalization of the formula in two directions.2 Second, it presents a

method for calculating standard errors for the overall detection error probability using the delta

method.

The advantages of our result described here are twofold. The first is that it more quickly

and easily provides the exact value of the detection error probabilities and enables us to test

for their statistical significance unlike the existing simulation-based method. The second is that

it enables us to reveal analytically their properties and therefore facilitates our interpretation.

Our method, being based on a closed-form solution, is also useful if the overall detection error

probability must be computed many times, which holds for the asset-pricing applications in

Hansen and Sargent (2008a) and Barillas et al. (2009).

1The intuition for this is given in footnote 3 using a simple static setting.
2Our proof differs from that of Djeutem (2014) in several respects and includes a correction of his proof.
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This note is organized as follows. Section 2 briefly reviews the framework and computation

procedure proposed by Hansen and Sargent (2008a) and Barillas et al. (2009). Section 3

explains our approach and shows how it is applicable to their asset-pricing applications. Section

4 discusses the extensions and some limitations of our formulas. All proofs are in the separate

appendix.

2 The Framework and Computation Procedure

Hansen and Sargent (2008a) and Barillas et al. (2009) used the finding that risk-sensitive pref-

erences and multiplier preferences are observationally equivalent to reinterpret the quantitative

finding of Tallarini (2000) concerning the risk aversion parameter. The risk-sensitive preferences

are a special case of the recursive preferences suggested by Epstein and Zin (1989) and Weil

(1990), in which the intertemporal elasticity of substitution is fixed at unity:

Ut = ct − βθ ln

(
Et

[
exp

(
−Ut+1

θ

)])
, (1)

where ct is log consumption and β ∈ (0, 1) is a discount factor. The parameter θ represents a

measure of risk aversion

θ = − 1

(1− β)(1− γ)
, (2)

where γ is a coefficient of relative risk aversion (RRA).

From the viewpoint of multiplier preferences, this parameter θ can be interpreted as the

degree of an agent’s concern about model misspecification. The detection error probabilities are

used to quantify the degree to which the agent fears model misspecification. To illustrate the

calibration method, let model A be an approximating model (a reference model), and let model

B be a worst-case model associated with θ−1 (an alternative model in proximity to model A). Let

pA denote the probability that a likelihood-ratio test selects model B when model A generates

the data. Define pB similarly as the probability that selects model A when model B generates

the data. Finally, define the overall detection error probability p(θ−1) by p(θ−1) ≡ 1
2(pA + pB).

In Hansen and Sargent (2008a) and Barillas et al. (2009), model A is assumed to be the
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following random walk and trend-stationary models

ct = µ+ ct−1 + σϵϵt, (3)

ct = ζ + µt+ zt, zt = ρzt−1 + σϵϵt, |ρ| < 1, (4)

where ϵt ∼ i.i.d.N(0, 1). The corresponding worst-case model (model B) is then given by

ct = µ+ σϵwRW + ct−1 + σϵϵt, wRW ≡ −σϵ/θ(1− β), (5)

ct = µ1 + µ2t+ σϵwTS + ρct−1 + σϵϵt, wTS ≡ −σϵ/θ(1− ρβ), (6)

where µ1 ≡ ζ(1− ρ) + ρµ and µ2 ≡ (1− ρ)µ. The procedure for calibrating the detection error

probabilities developed by Hansen and Sargent (2008a) and Barillas et al. (2009) (henceforth,

the BHS procedure) proceeds as follows.

1. Set the values of θ−1, β, ζ, µ, ρ, and σϵ. Simulate a path of length T for ct using model A.

Calculate the log-likelihood ratio, ln(LA/LB), to perform a test for distinguishing model A

from model B. The test selects model A if ln(LA/LB) > 0 and model B if ln(LA/LB) < 0.

Perform this test many times by simulating a large number of paths under model A, and

count the fraction of ln(LA/LB) < 0

pA ≡ Prob

(
ln

(
LA

LB

)
< 0

)
≈ #ln(LA/LB) < 0

#simulations
. (7)

2. Simulate a large number of paths of length T for ct using model B. Perform the log-

likelihood ratio test, and count the fraction of ln(LA/LB) > 0

pB ≡ Prob

(
ln

(
LA

LB

)
> 0

)
≈ #ln(LA/LB) > 0

#simulations
. (8)

3. Calculate the overall detection error probability p(θ−1).

4. Repeat steps 1–3 for different values of θ−1 to obtain a graph of the overall detection error

probability versus θ−1 (i.e., a detection error probability function).
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The number of simulations for each computation of pA and pB is 100,000 or 500,000 in the BHS

procedure (see Barillas et al. (2009, p. 2405) and Hansen and Sargent (2008a, p. 320)), so

that the total number of simulations required is 200,000 or 1,000,000 to obtain one value of the

overall detection error probability p(θ−1).

3 Simplification of the Procedure

Let Φ(·) be the standard normal cumulative distribution function. The following proposition

states that we can compute p(θ−1) without relying on simulation under the random walk and

trend-stationary models with i.i.d. Gaussian errors. To our knowledge, Djeutem (2014) has

already noted this claim, but in a different context and form.

Proposition 1.

(i) For the random walk drift model, the detection error probabilities pA and pB are given by

pA = Φ

(
−
√
T

2

σϵ
θ(1− β)

)
and pB = 1− Φ

(√
T

2

σϵ
θ(1− β)

)
. (9)

(ii) For the trend-stationary model, they are

pA = Φ

(
−
√
T

2

σϵ
θ(1− ρβ)

)
and pB = 1− Φ

(√
T

2

σϵ
θ(1− ρβ)

)
. (10)

The overall detection error probability p(θ−1) is equal to pA.

A proof for this proposition is in Appendix A. In the proof, the key is that if the value

function Ut is linear in random shocks ϵt, then a likelihood ratio g(ϵt+1) ≡ π̂(ϵt+1)/π(ϵt+1)

can be expressed as the exponential of a linear function of ϵt+1. Here, π(ϵt+1) is a conditional

density of a sequence of random shocks {ϵt+1}, and π̂(ϵt+1) is some other density in proximity

to π(ϵt+1) (i.e., a distorted density). By this result, the log-likelihood ratio ln(LA/LB) takes

the familiar form under the AR(1) structure. Using this and the normality assumption of the

shocks ϵt, it is shown that the detection error probability pA in the BHS procedure represents

the cumulative distribution function of a standard normal random variable (constructed from
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the i.i.d. Gaussian shocks ϵt).
3 Given this result, the representation for pB follows from the

symmetry of the standard normal distribution.

When θ−1 = 0 (i.e., model A and model B are identical), it is easy to confirm from the

formulas that p(θ−1) = 0.5 because of Φ(0) = 0.5. Also, our formulas establish that the overall

detection error probability is a decreasing function of θ−1, other things being equal. These are

consistent with both the claim and simulation-based finding in Hansen and Sargent (2008a) and

Barillas et al. (2009). In addition, our formulas reveal that the overall detection error probability

is a decreasing function of two variables. One is the sample size
√
T . This means that the agent

can distinguish between the approximating model and the worst-case model more easily given

more data (i.e., a longer history of the economy). The other is the volatility parameter σϵ of

the consumption processes. A higher volatility also makes it easier for the agent to distinguish

between the two models, so that the model detection errors become lower.

To illustrate the use of our result in the asset-pricing application, we apply estimates of

the random walk and trend-stationary models and the values of β and γ given in Barillas et

al. (2009). They estimated µ, σϵ, ρ, and ζ using maximum likelihood (ML) methods and

US quarterly consumption data from 1948:2 to 2006:4 (T = 235). Panels A and B of Table

1 summarize the ML estimates and parameter values.4 Their calibration results indicate that

overall detection error probabilities between 0.01 and 0.05 succeed in achieving the Hansen–

Jagannathan bounds. However, Barillas et al. (2009) do not reveal their exact value.

Panel C of Table 1 presents the calculation results of the overall detection error probability

3The intuition of the proof is the following. To see the idea clearly, consider a simplified static structure. Note
that the likelihood ratio g(ϵ) takes the form, g(ϵ) ≡ π̂(ϵ)/π(ϵ) = exp(−U/θ)/E[exp(−U/θ)]. Then the detection
error probability pA is pA = Prob(select model B|model A generated the data) = Prob(ln g∗(ϵ) < 0|π(ϵ)), where
g∗(ϵ) ≡ 1/g(ϵ). (This inversion is merely for maintaining consistency with LA/LB and is not essential.) If the
value function U is linear in ϵ, say, U = a0 + a1ϵ, then pA = Prob(ϵ < −(θ/a1) ln(E[exp(−(a1/θ)ϵ)])|π(ϵ)) =
Prob(ϵ < −a1/2θ|π(ϵ)), so that the distribution function Φ(·) can be used because of ϵ ∼ N(0, 1). Note that while
this static-case derivation conveys our idea, our proof is needed in the dynamic setting that we treated.

4While Hansen and Sargent (2008a, p. 321) reported that the value of γ that achieves the Hansen–Jagannathan
bounds is around 250 for the trend-stationary model, Barillas et al. (2009, p. 2406) pointed out that it is only
about 75, despite both using US data from almost the same period. This large difference in γ between the two
studies arises only for the case of the trend-stationary model. According to a preliminary investigation based on
our formulas, it seems difficult to corroborate the claim of Barillas et al. (2009) for γ = 75. Hence, we adopt
γ = 250 for the trend-stationary model.
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based on our formulas (9) and (10), where we employ the MATLAB function normcdf as the

cumulative distribution function Φ(·). The first step of our procedure is to find the value of θ−1

corresponding to the value of γ that attains the Hansen–Jagannathan bounds. This is θ−1 = (1−

0.995)(50−1) = 0.245 for γ = 50 in the random walk case and θ−1 = (1−0.995)(250−1) = 1.245

for γ = 250 in the trend-stationary case. The second step is to determine the overall detection

error probability for this γ by substituting the value of θ−1 obtained and the ML estimates into

our formulas. It is p(θ−1) = 0.0302 for the random walk model and p(θ−1) = 0.0277 for the

trend-stationary model.5 Of these, at least the former is significantly different from zero (see

Appendix D for the calculation of the standard errors).

4 Extensions

This section discusses what types of consumption processes have a closed-form solution for the

detection error probabilities. We focus here on two models. One is a simple version of the

long-run risk model of Bansal and Yaron (2004), which has been studied in Hansen (2007) and

Hansen and Sargent (2008b, 2010). The other is the model in which log individual consumption

has both aggregate and idiosyncratic risk components, which has been considered in De Santis

(2007) and Ellison and Sargent (2015).

4.1 Long-Run Risk

A simple version of the long-run risk models used in Hansen (2007, Example 2) and Hansen and

Sargent (2008b, 2010) is given by

ct+1 − ct = µ+ zt + σϵϵt+1,

zt+1 = ρzt + σzϵt+1, ϵt+1 ∼ i.i.d.N(0, 1).
(11)

As described in Appendix B, this long-run risk model can be expressed as an ARIMA(1,1,1) pro-

cess. The following proposition therefore states that we can derive a closed-form representation

of the detection error probabilities under the ARIMA(1,1,1) model for log consumption.

5To confirm the validity of our results, we plotted the overall detection error probabilities against various
values of θ−1 for the random walk and trend-stationary models using formulas (9) and (10) (see Appendix E).
This figure is consistent with Figure 2(a) in Barillas et al. (2009).
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Proposition 2.

For the long-run risk model, the detection error probabilities pA and pB are given by

pA = Φ

(
−
√
T − 1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
(12)

and

pB = 1− Φ

(√
T − 1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
. (13)

The overall detection error probability p(θ−1) is equal to pA.

A proof for this proposition is in Appendix B. Note that the simple long-run risk model

(11) is a special case of the multivariate state model of Hansen et al. (2008) where differences

in log consumption are a linear function of a state vector x that follows a first-order vector

autoregression: ct+1 − ct = µc + Ucxt + λ0wt+1, xt+1 = Gxt + Hwt+1, wt+1 ∼ i.i.d.N(0, I)

(here, the notation follows theirs). Our proof remains valid for a multivariate state case if all

elements of the row vector Uc are one and the matrix G is the diagonal one with the same

element, say, ρ (note that the model has the same structure as that of (11) in this case).

4.2 Idiosyncratic Risk

Following Ellison and Sargent (2015), we assume the following value function recursion:

Ut = cit − βθ ln

(
Et

[
exp

(
−Ut+1

θ

)])
. (14)

Here, log individual consumption cit has aggregate and idiosyncratic risk components that follow

random walk processes:
cit = ct + δit,

∆ct =
√
ϵw1t,

∆δit =
√
ϵw2t,

(15)

where [
w1t

w2t

]
∼ N

([
g − τ21 /2
−τ22 /2

]
,

[
τ21 0
0 τ22

])
.

A noteworthy point for our purpose is that this specification can be rewritten as a random

walk model for log individual consumption: cit+1 = cit +
√
ϵ(w1t+1 + w2t+1). Assuming that the
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aggregate and idiosyncratic shocks w1t and w2t are i.i.d. as in the previous cases, we can show

the following.

Proposition 3.

For the model with idiosyncratic risk, the detection error probabilities are given by

pA = Φ

−√
T

2

√
ϵ(τ21 + τ22 )

θ(1− β)

 and pB = 1− Φ

√
T

2

√
ϵ(τ21 + τ22 )

θ(1− β)

 . (16)

The overall detection error probability p(θ−1) is equal to pA.

A proof for this proposition is in Appendix C. This proposition can be regarded as a gen-

eralization of Proposition 1 because
√
ϵ(τ21 + τ22 ) corresponds to the square root of the variance

of the error term in the random walk model for log individual consumption.
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Table 1

A Computational Example of Detection Error Probabilities Based on an

Alternative Method

Model
Random walk Trend stationary

A. Barillas et al. (2009) ML estimates
µ 0.00495 0.00418

(0.0003) (0.0003)
σϵ 0.0050 0.0050

(0.0002) (0.0002)
ρ — 0.980

— (0.010)

B. Barillas et al. (2009) setting of parameters
T 235 235
β 0.995 0.995
γ 50 250

C. Detection error probability
θ−1 0.2450 1.2450
p(θ−1) 0.0302 0.0277

(0.0051) (0.0490)

Note: Standard errors in parentheses. The estimates and standard errors for µ, σϵ, and ρ in Panel

A are from Table 2 in Barillas et al. (2009). The values of T , β, and γ in Panel B are reported in

Barillas et al. (2009). See footnote 4 for the choice of γ. The value of θ−1 in Panel C is calculated

using θ−1 = (1 − β)(γ − 1) derived from equation (2). The overall detection error probability p(θ−1) is

calculated using formulas (9) and (10).

10



Appendix for “On the Computation of Detection Error Probabilities

under Normality Assumptions” ∗

Masakatsu Okubo †

University of Tsukuba

∗First draft, December 2014; Revised, September 2017.
†Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba,

Ibaraki 305-8573, Japan; Tel.: +81-29-853-5369; Fax: +81-29-853-5070; E-mail: okubo@sk.tsukuba.ac.jp



A. Proof of Proposition 1

The result (i) for the random walk model is a special case of (ii) for the trend-stationary

model. Therefore, we provide only the proof of (ii) below.1 Consider equation (4) reproduced

as

ct = ζ + µt+ zt, zt = ρzt−1 + σϵϵt, ϵt ∼ i.i.d.N(0, 1). (A1)

As zt has an AR(1) structure, the (average) log-likelihood function for a sample of t = 1, 2, . . . , T

takes the form

lnL =
1

T
ln f(c1) +

1

T

T∑
t=2

ln f(ct|ct−1). (A2)

The density f(c1) under model A is obtained by writing (A1) at t = 1 as c1 = ζ + µ + z1

and z1 = ρz0 + σϵϵ1. Assuming the initial condition z0 = 0, it follows that z1 = σϵϵ1, so that

c1 = ζ + µ+ σϵϵ1. Therefore, the logarithm of the density f(c1) is

ln f(c1) = −1

2
ln 2π − 1

2
lnσ2ϵ −

1

2σ2ϵ
(c1 − ζ − µ)2. (A3)

To obtain the conditional density f(ct|ct−1) under model A, rewrite (A1) by substituting out zt

as

ct = µ1 + µ2t+ ρct−1 + σϵϵt, (A4)

where µ1 ≡ ζ(1− ρ) + ρµ and µ2 ≡ (1− ρ)µ. Because of σϵϵt ∼ i.i.d.N(0, σ2ϵ ), the logarithm of

the conditional density f(ct|ct−1) is given by

ln f(ct|ct−1) = −1

2
ln 2π − 1

2
lnσ2ϵ −

1

2σ2ϵ
(ct − µ1 − µ2t− ρct−1)

2. (A5)

Substituting (A3) and (A5) into (A2), the log-likelihood function under model A is

lnLA = −1

2
ln 2π − 1

2
lnσ2ϵ −

1

T

1

2σ2ϵ
(c1 − ζ − µ)2 − 1

T

T∑
t=2

1

2σ2ϵ
(ct − µ1 − µ2t− ρct−1)

2. (A6)

1When ρ = 1, it is possible to simplify the proof by beginning with the first-differenced form of the model:
∆ct+1 = µ + σϵϵt+1. However, when ρ < 1, this approach is not valid. The proof based on the first-difference
form is described in Appendix C for a more general case that includes the random walk model (3) as a special
case.
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Noting that the difference between model A and model B is that the mean of ϵt shifts from 0 to

wTS , the log-likelihood function under model B is

lnLB = −1

2
ln 2π−1

2
lnσ2ϵ−

1

T

1

2σ2ϵ
(c1−ζ−µ−σϵwTS)

2− 1

T

T∑
t=2

1

2σ2ϵ
(ct−µ1−µ2t−ρct−1−σϵwTS)

2.

(A7)

Thus, the log-likelihood ratio for the trend-stationary model is

ln

(
LA

LB

)
= − 1

T

[
1

2σ2ϵ
(c1 − ζ − µ)2 +

T∑
t=2

1

2σ2ϵ
(ct − µ1 − µ2t− ρct−1)

2

]

+
1

T

[
1

2σ2ϵ
(c1 − ζ − µ− σϵwTS)

2 +
T∑
t=2

1

2σ2ϵ
(ct − µ1 − µ2t− ρct−1 − σϵwTS)

2

]
.

(A8)

The detection error probability when model A generates log consumption ct is obtained by

substituting c1 − ζ − µ = σϵϵ1 for t = 1 and ct − µ1 − µ2t− ρct−1 = σϵϵt for t = 2, . . . , T :

pA = Prob

(
ln

(
LA

LB

)
< 0

)
,

= Prob

(
− 1

T

T∑
t=1

1

2σ2ϵ
(σϵϵt)

2 +
1

T

T∑
t=1

1

2σ2ϵ
[σϵ(ϵt − wTS)]

2 < 0

)
,

= Prob

(
1

T

T∑
t=1

(−wTSϵt) +
1

2
w2
TS < 0

)
,

= Prob

(
1

T

T∑
t=1

ϵt < −1

2

σϵ
θ(1− ρβ)

)
,

= Prob

(
Z < −

√
T

2

σϵ
θ(1− ρβ)

)
,

(A9)

where Z ≡ (1/
√
T )
∑T

t=1 ϵt. On the other hand, the detection error probability when model B

generates log consumption ct is obtained by substituting c1 − ζ − µ = σϵwTS + σϵϵ1 for t = 1

and ct − µ1 − µ2t− ρct−1 = σϵwTS + σϵϵt for t = 2, . . . , T :

pB = Prob

(
ln

(
LA

LB

)
> 0

)
,

= Prob

(
− 1

T

T∑
t=1

1

2σ2ϵ
[σϵ(ϵt + wTS)]

2 +
1

T

T∑
t=1

1

2σ2ϵ
(σϵϵt)

2 > 0

)
,

= Prob

(
1

T

T∑
t=1

(−wTSϵt)−
1

2
w2
TS > 0

)
,

= Prob

(
1

T

T∑
t=1

ϵt >
1

2

σϵ
θ(1− ρβ)

)
,

= Prob

(
Z >

√
T

2

σϵ
θ(1− ρβ)

)
.

(A10)
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Because ϵt ∼ i.i.d.N(0, 1), (1/T )
∑T

t=1 ϵt ∼ N(0, 1/T ), so that Z ∼ N(0, 1). Thus, using the

standard normal cumulative distribution function Φ(·), (A9) and (A10) can be written as

pA = Φ

(
−
√
T

2

σϵ
θ(1− ρβ)

)
and pB = 1− Φ

(√
T

2

σϵ
θ(1− ρβ)

)
. (A11)

From the symmetry of the standard normal distribution, it follows that pA = pB, so that

p(θ−1) ≡ 1
2(pA + pB) = pA.

B. Proof of Proposition 2

To prove this proposition, we must specify the worst-case model (model B) for the long-run

risk model (model A). This requires two steps: first, the derivation of the value function, and

second, the derivation of the distorted density. Before proceeding, we need to introduce some

pieces of notation, following Hansen and Sargent (2008) and Barillas et al. (2009). Let π(ϵt) be

conditional densities of a sequence of random shocks {ϵt}, and let π̂(ϵt) be some other density

in proximity to π(ϵt), which we call the distorted density. Consider the following value function

recursion:

Ut = ct − βθ ln

(
Et

[
exp

(−Ut+1

θ

)])
. (B1)

The first step is to solve for Ut under the long-run risk model. Guess the value function to

be Ut = k0 + k1ct + k2zt. Using equation (11), the value function at t+ 1 is

Ut+1 = k0 + k1(µ+ ct) + (k1 + k2ρ)zt + (k1σϵ + k2σz)ϵt+1. (B2)

Substitute (B2) into Et[exp(−Ut+1/θ)] to obtain

Et

[
exp

(−Ut+1

θ

)]
= exp

(−{k0 + k1(µ+ ct) + (k1 + k2ρ)zt}
θ

)
×Et

[
exp

(−(k1σϵ + k2σz)

θ
ϵt+1

)]
.

(B3)

Then take logs of both sides of (B3):

ln

(
Et

[
exp

(−Ut+1

θ

)])
=

−{k0 + k1(µ+ ct) + (k1 + k2ρ)zt}
θ

+ ln

(
Et

[
exp

(−(k1σϵ + k2σz)

θ
ϵt+1

)])
.

(B4)
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Thus, recursion (B1) is

Ut = ct + β{k0 + k1(µ+ ct) + (k1 + k2ρ)zt} − βθ ln

(
Et

[
exp

(−(k1σϵ + k2σz)

θ
ϵt+1

)])
. (B5)

Using the properties of the lognormal distribution, (B5) can be further rewritten as

Ut = ct + β{k0 + k1(µ+ ct) + (k1 + k2ρ)zt} − βθ
(k1σϵ + k2σz)

2

2θ2
,

= β(k0 + k1µ)− β
(k1σϵ + k2σz)

2

2θ
+ (1 + βk1)ct + β(k1 + k2ρ)zt.

(B6)

Matching the coefficients in Ut = k0 + k1ct + k2zt, we obtain

k0 =
1

1− β

[
βµ

1− β
− β

2θ

(
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

)2
]
, k1 =

1

1− β
, k2 =

β

(1− βρ)(1− β)
.

(B7)

The second step is to derive the distorted density π̂(ϵt). To do this, we use the following

result, as shown by Hansen and Sargent (2008) and Barillas et al. (2009).

g(ϵt+1) ≡
exp

(
−Ut+1

θ

)
Et

[
exp

(
−Ut+1

θ

)] =
π̂(ϵt+1)

π(ϵt+1)
. (B8)

Using (B2) and (B3), g(ϵt+1) can be written as

g(ϵt+1) =
exp

(−(k1σϵ + k2σz)

θ
ϵt+1

)
Et

[
exp

(−(k1σϵ + k2σz)

θ
ϵt+1

)] . (B9)

Noting that the denominator of (B9) is equal to exp((k1σϵ + k2σz)
2/2θ2) by the properties of

the lognormal distribution, (B9) can be rewritten as

g(ϵt+1) = exp

(
−(k1σϵ + k2σz)

θ
ϵt+1 −

1

2

(k1σϵ + k2σz)
2

θ2

)
,

= exp

(
wLRϵt+1 −

1

2
w2
LR

)
,

(B10)

where wLR ≡ −(k1σϵ + k2σz)/θ. Because g(ϵt+1) = π̂(ϵt+1)/π(ϵt+1) and π(ϵt+1) denotes the

density of the standard normal random variable ϵt+1, the distorted density π̂(ϵt+1) is

π̂(ϵt+1) = π(ϵt+1) exp

(
wLRϵt+1 −

1

2
w2
LR

)
,

=
1√
2π

exp

(
−1

2
ϵ2t+1

)
exp

(
wLRϵt+1 −

1

2
w2
LR

)
,

=
1√
2π

exp

(
−1

2
(ϵt+1 − wLR)

2
)
,

(B11)
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which implies that ϵt+1 ∼ i.i.d.N(wLR, 1). Using (B7), the mean wLR is

wLR ≡ −(k1σϵ + k2σz)

θ
,

= −1

θ

(
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

)
.

(B12)

Now we turn to the proof of formulas (12) and (13) for the detection error probabilities.

Rewrite the long-run risk model (model A) in the following form by substituting the first equation

into the second equation in (11) and shifting time by one period:

∆ct+1 = µ∗ + ρ∆ct + ϵ∗t+1 + ψ∗ϵ∗t , (B13)

where µ∗ ≡ (1 − ρ)µ, ψ∗ ≡ σz/σϵ − ρ, and ϵ∗t ≡ σϵϵt ∼ i.i.d.N(0, σ2ϵ ). Then, the worst-case

model (model B) is given by

∆ct+1 = µ∗ + α∗wLR + ρ∆ct + ϵ∗t+1 + ψ∗ϵ∗t , (B14)

where α∗ ≡ σϵ(1 +ψ∗). This is because the constant term of model A shifts by α∗wLR with the

change of the mean of ϵt from 0 to wLR.
2 Given that model A and model B take the form of

an ARIMA(1,1,1) process, we can form the (conditional) likelihood function provided that ∆c1

and ϵ∗1 = 0 are taken as given (see Hamilton (1994, Ch. 5)).

Taking ∆c1 and ϵ
∗
1 = 0 as given, (B13) at t = 1 is ∆c2 = µ∗+ρ∆c1+ϵ

∗
2, so that ∆c2|(∆c1, ϵ∗1 =

0) ∼ N(µ∗ + ρ∆c1, σ
2
ϵ ). For t = 2, . . . , T − 1, it follows that ∆ct+1|(∆ct, . . . ,∆c1, ϵ∗1 = 0) ∼

N(µ∗ + ρ∆ct + ψ∗ϵ∗t , σ
2
ϵ ). Thus, the (conditional) likelihood function is given by

f(∆cT , . . . ,∆c2|∆c1, ϵ∗1 = 0)

= f(∆c2|∆c1, ϵ∗1 = 0)×
T−1∏
t=2

f(∆ct+1|∆ct, . . . ,∆c1, ϵ∗1 = 0)

=
1√
2πσ2ϵ

exp

[
− 1

2σ2ϵ
(∆c2 − µ∗ − ρ∆c1)

2
]

×
T−1∏
t=2

1√
2πσ2ϵ

exp

[
− 1

2σ2ϵ
(∆ct+1 − µ∗ − ρ∆ct − ψ∗ϵ∗t )

2
]
.

(B15)

2Consider ϵt + wLR, where ϵt ∼ i.i.d.N(0, 1). Replacing the error term ϵt of model A by this, we have

∆ct+1 = µ∗ + ρ∆ct + σϵ(ϵt+1 + wLR) + ψ∗σϵ(ϵt + wLR),
= µ∗ + σϵ(1 + ψ∗)wLR + ρ∆ct + σϵϵt+1 + ψ∗σϵϵt.

5



Define the (average) log-likelihood function as

lnL ≡ 1

T − 1
ln f(∆cT , . . . ,∆c2|∆c1, ϵ∗1 = 0),

=
1

T − 1
ln f(∆c2|∆c1, ϵ∗1 = 0) +

1

T − 1

T−1∑
t=2

ln f(∆ct+1|∆ct, . . . ,∆c1, ϵ∗1 = 0).
(B16)

Then the log-likelihood function under model A is

lnLA = −1

2
ln 2π − 1

2
lnσ2ϵ −

1

T − 1

1

2σ2ϵ
(∆c2 − µ∗ − ρ∆c1)

2

− 1

T − 1

T−1∑
t=2

1

2σ2ϵ
(∆ct+1 − µ∗ − ρ∆ct − ψ∗ϵ∗t )

2.
(B17)

Noting that the constant term shifts by α∗wLR as in equation (B14), the log-likelihood function

under model B is

lnLB = −1

2
ln 2π − 1

2
lnσ2ϵ −

1

T − 1

1

2σ2ϵ
(∆c2 − µ∗ − α∗wLR − ρ∆c1)

2

− 1

T − 1

T−1∑
t=2

1

2σ2ϵ
(∆ct+1 − µ∗ − α∗wLR − ρ∆ct − ψ∗ϵ∗t )

2.
(B18)

Thus, the log-likelihood ratio is given by

ln

(
LA

LB

)
= − 1

T − 1

[
1

2σ2ϵ
(∆c2 − µ∗ − ρ∆c1)

2 +
T−1∑
t=2

1

2σ2ϵ
(∆ct+1 − µ∗ − ρ∆ct − ψ∗ϵ∗t )

2

]

+
1

T − 1

[
1

2σ2ϵ
(∆c2 − µ∗ − α∗wLR − ρ∆c1)

2 +
T−1∑
t=2

1

2σ2ϵ
(∆ct+1 − µ∗ − α∗wLR − ρ∆ct − ψ∗ϵ∗t )

2

]
.

(B19)

Note that ϵ∗t+1 = σϵϵt+1 and α∗ = σϵ{σz/σϵ + (1 − ρ)}. Substituting ∆c2 − µ∗ − ρ∆c1 = ϵ∗2

and ∆ct+1 − µ∗ − ρ∆ct − ψ∗ϵ∗t = ϵ∗t+1 for t = 2, . . . , T − 1 into (B19), the log-likelihood ratio

under model A is

ln

(
LA

LB

)
= − 1

T − 1

T−1∑
t=1

1

2σ2ϵ
ϵ∗2t+1 +

1

T − 1

T−1∑
t=1

1

2σ2ϵ
(ϵ∗t+1 − α∗wLR)

2,

=
1

T − 1

T−1∑
t=1

[
− 1

σ2ϵ
α∗wLRϵ

∗
t+1 +

1

2σ2ϵ
α∗2w2

LR

]
,

=
1

T − 1

T−1∑
t=1

−
{
σz
σϵ

+ (1− ρ)

}
wLRϵt+1 +

1

2

{
σz
σϵ

+ (1− ρ)

}2

w2
LR.

(B20)

Alternatively, substituting ∆c2 − µ∗ − ρ∆c1 = ϵ∗2 + α∗wLR and ∆ct+1 − µ∗ − ρ∆ct − ψ∗ϵ∗t =

6



ϵ∗t+1 + α∗wLR for t = 2, . . . , T − 1 into (B19), the log-likelihood ratio under model B is

ln

(
LA

LB

)
= − 1

T − 1

T−1∑
t=1

1

2σ2ϵ
(ϵ∗t+1 + α∗wLR)

2 +
1

T − 1

T−1∑
t=1

1

2σ2ϵ
ϵ∗2t+1,

=
1

T − 1

T−1∑
t=1

[
− 1

σ2ϵ
α∗wLRϵ

∗
t+1 −

1

2σ2ϵ
α∗2w2

LR

]
,

=
1

T − 1

T−1∑
t=1

−
{
σz
σϵ

+ (1− ρ)

}
wLRϵt+1 −

1

2

{
σz
σϵ

+ (1− ρ)

}2

w2
LR.

(B21)

Using (B20) and (B21), the detection error probabilities under model A and model B are,

respectively,

pA = Prob

(
ln

(
LA

LB

)
< 0

)
,

= Prob

(
1

T − 1

T−1∑
t=1

(−wLRϵt+1) +
1

2

{
σz
σϵ

+ (1− ρ)

}
w2
LR < 0

)
,

= Prob

(
1

T − 1

T−1∑
t=1

ϵt+1 < −1

2

{
σz
σϵ

+ (1− ρ)

}
k1σϵ + k2σz

θ

)
,

= Prob

(
1

T − 1

T−1∑
t=1

ϵt+1 < −1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
,

= Prob

(
Z < −

√
T − 1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
,

(B22)

and

pB = Prob

(
ln

(
LA

LB

)
> 0

)
,

= Prob

(
1

T − 1

T−1∑
t=1

(−wLRϵt+1)−
1

2

{
σz
σϵ

+ (1− ρ)

}
w2
LR > 0

)
,

= Prob

(
1

T − 1

T−1∑
t=1

ϵt+1 >
1

2

{
σz
σϵ

+ (1− ρ)

}
k1σϵ + k2σz

θ

)
,

= Prob

(
1

T − 1

T−1∑
t=1

ϵt+1 >
1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
,

= Prob

(
Z >

√
T − 1

2

{
σz
σϵ

+ (1− ρ)

}
1

θ

{
1

1− β
σϵ +

β

(1− βρ)(1− β)
σz

})
,

(B23)

where Z ≡ (1/
√
T − 1)

∑T−1
t=1 ϵt+1 ∼ N(0, 1). These give equations (12) and (13).
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C. Proof of Proposition 3

To prove this proposition, we need to specify the worst-case model (model B). This requires

two steps, as in the proof of Proposition 2. Guess the value function to be Ut = k0 + k1c
i
t. Note

that equation (15) can be written as

cit+1 = cit +
√
ϵ(w1t+1 + w2t+1),

= cit + ϵt+1,
(C1)

where ϵt+1 ≡
√
ϵ(w1t+1 +w2t+1). Then Ut+1 = k0 + k1c

i
t + k1ϵt+1. Substitute this into equation

(14) to obtain

Ut = βk0 + (1 + βk1)c
i
t − βθ ln

(
Et

[
exp

(
−1

θ
k1ϵt+1

)])
. (C2)

Using the property of the lognormal distribution, it can be verified that

ln

(
Et

[
exp

(
−1

θ
k1ϵt+1

)])
= −k1

θ

√
ϵ

(
g − τ21 + τ22

2

)
+
k21
θ2
ϵ
τ21 + τ22

2
. (C3)

Matching the coefficients in Ut = k0 + k1c
i
t after substituting (C3) into (C2), we obtain

k0 =
β

(1− β)2

[
√
ϵ

(
g − τ21 + τ22

2

)
− 1

θ(1− β)

ϵ(τ21 + τ22 )

2

]
, k1 =

1

1− β
. (C4)

To derive the distorted density π̂(ϵt+1), we use (B8) again. Note that

exp

(
−Ut+1

θ

)
= exp

(
−1

θ
(k0 + k1c

i
t)

)
exp

(
−k1
θ
ϵt+1

)
. (C5)

Using (C5) and the property of the lognormal distribution, we have

g(ϵt+1) =
exp

(
−k1

θ ϵt+1

)
Et

[
exp

(
−k1

θ ϵt+1

)] = exp

(
wIRϵt+1 − wIRB − w2

IR

C

2

)
, (C6)

where

wIR ≡ −k1
θ
, B ≡

√
ϵ

(
g − τ21 + τ22

2

)
, C ≡ ϵ(τ21 + τ22 ). (C7)

Therefore, it follows from (B8) that the ratio of densities is

π̂(ϵt+1)

π(ϵt+1)
= exp

(
wIRϵt+1 − wIRB − w2

IR

C

2

)
. (C8)
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Here ϵt+1 ∼ i.i.d.N(B,C), so that the density π(ϵt+1) is

π(ϵt+1) =
1√
2πC

exp

[
− 1

2C
(ϵt+1 −B)2

]
. (C9)

Substituting (C9) into (C8) and rearranging terms, we obtain

π̂(ϵt+1) = π(ϵt+1) exp

(
wIRϵt+1 − wIRB − w2

IR

C

2

)
,

=
1√
2πC

exp

[
− 1

2C
(ϵt+1 − (B + wIRC))

2
]
.

(C10)

Thus, the approximating model (model A) is

cit+1 = cit + ϵt+1, ϵt+1 ∼ i.i.d.N(B,C). (C11)

The worst-case model (model B) is given by

cit+1 = cit + wIRC + ϵt+1, ϵt+1 ∼ i.i.d.N(B,C). (C12)

Now we turn to the derivation of the formulas for the detection error probabilities. From

E(∆cit+1) = B and Var(∆cit+1) = C under model A, it follows that the log-likelihood function

under model A is

lnLA = −1

2
ln 2π − 1

2
lnC − 1

T

T−1∑
t=0

1

2C
(∆cit+1 −B)2. (C13)

From E(∆cit+1) = wIRC + B and Var(∆cit+1) = C under model B, the log-likelihood function

under model B is

lnLB = −1

2
ln 2π − 1

2
lnC − 1

T

T−1∑
t=0

1

2C
(∆cit+1 − (B + wIRC))

2. (C14)

Thus, the log-likelihood ratio is

ln

(
LA

LB

)
=

1

T

T−1∑
t=0

[
− 1

2C
(∆cit+1 −B)2 +

1

2C
(∆cit+1 − (B + wIRC))

2
]
. (C15)

Substituting ∆cit+1 = ϵt+1 into (C15), we have

ln

(
LA

LB

)
=

1

T

T−1∑
t=0

[
− 1

2C
(ϵt+1 −B)2 +

1

2C
(ϵt+1 − (B + wIRC))

2
]
,

=
1

T

T−1∑
t=0

(−wIRϵt+1) + wIRB +
1

2
w2
IRC.

(C16)
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Therefore, the detection error probability under model A is

pA = Prob

(
ln

(
LA

LB

)
< 0

)
,

= Prob

(
1

T

T−1∑
t=0

ϵt+1 < B − k1
2θ
C

)
,

= Prob

(
Z < −

√
Tk1
2θ

√
C

)
,

= Prob

Z < −
√
T

2

√
ϵ(τ21 + τ22 )

θ(1− β)

 ,
(C17)

where Z ≡ ( 1
T

∑T−1
t=0 ϵt+1 −B)/

√
C/T ∼ N(0, 1).

Alternatively, substituting ∆cit+1 = wIRC + ϵt+1 into (C15), we have

ln

(
LA

LB

)
=

1

T

T−1∑
t=0

[
− 1

2C
(ϵt+1 − (B − wIRC))

2 +
1

2C
(ϵt+1 −B)2

]
,

=
1

T

T−1∑
t=0

(−wIRϵt+1) + wIRB − 1

2
w2
IRC.

(C18)

Therefore, the detection error probability under model B is

pB = Prob

(
ln

(
LA

LB

)
> 0

)
,

= Prob

(
1

T

T−1∑
t=0

ϵt+1 > B +
k1
2θ
C

)
,

= Prob

(
Z >

√
Tk1
2θ

√
C

)
,

= Prob

Z >

√
T

2

√
ϵ(τ21 + τ22 )

θ(1− β)

 .
(C19)

These give equation (16).

D. Calculation of Standard Errors

D.1 Random-Walk Case

The overall detection error probability p(θ−1) for the random-walk case can be written as a

function of σϵ:

g(σϵ) = Φ

(
−
√
T

2
(γ − 1)σϵ

)
. (D1)

Let σ̂ϵ be the maximum likelihood (ML) estimator of σϵ and let σϵ0 be its true value. Applying

the univariate delta method, we obtain

√
T (g(σ̂ϵ)− g(σϵ0)) →d N

(
0, {g′ (σϵ0)}2Var(σϵ0)

)
. (D2)
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The standard error for ̂p(θ−1) is therefore given by

se
( ̂p(θ−1)

)
= se (g(σ̂ϵ)) ,

=

√
1

T
{g′ (σ̂ϵ)}2Var(σ̂ϵ),

(D3)

where

g′(σ̂ϵ) = −
√
T

2
(γ − 1) · Φ′

(
−
√
T

2
(γ − 1)σ̂ϵ

)
. (D4)

D.2 Trend-Stationary Case

The overall detection error probability p(θ−1) for the trend-stationary case can be regarded

as a function of θ ≡ (ρ, σϵ)
′:

g (θ) = Φ

(
−
√
T

2
(1− β)(γ − 1)

σϵ
1− βρ

)
(D5)

Let θ̂ be the ML estimator of θ and let θ0 be its true value. Let G(θ) ≡ ∂g(θ)/∂θ′. Applying

the multivariate delta method, we obtain

√
T
(
g(θ̂)− g(θ0)

)
→d N

(
0, G(θ0)Ω0G(θ0)

′) , (D6)

where

Ω0 ≡
[
Var(ρ0) 0

0 Var(σϵ0)

]
. (D7)

The standard error for p(θ−1) is therefore given by

se
( ̂p(θ−1)

)
= se

(
g(θ̂)

)
,

=

√
1

T

(
ĝ21Var(ρ̂) + ĝ22Var(σ̂ϵ)

)
,

=
√
ĝ21 (se(ρ̂))

2 + ĝ22 (se(σ̂ϵ))
2,

(D8)

where

ĝ1 ≡
∂g(θ̂)

∂ρ
= −

√
T

2
(1− β)(γ − 1)

β

(1− βρ̂)2
σ̂ϵ · Φ′

(
−
√
T

2
(1− β)(γ − 1)

σ̂ϵ
1− βρ̂

)
, (D9)

ĝ2 ≡
∂g(θ̂)

∂σϵ
= −

√
T

2
(1− β)(γ − 1)

1

1− βρ̂
· Φ′

(
−
√
T

2
(1− β)(γ − 1)

σ̂ϵ
1− βρ̂

)
. (D10)
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E. Graphs of the Overall Detection Error Probability

Figure 1 plots the overall detection error probabilities against various values of θ−1 for the

random walk (solid line) and trend-stationary (dashed line) models using formulas (9) and (10),

in order to confirm the validity of our results based on the cumulative distribution function.

This figure is consistent with Figure 2(a) in Barillas et al. (2009, p. 2406).

Figure 1: Detection Error Probability versus the Inverse of the Penalty Parameter
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