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1. Introduction

Generally speaking, second quantization of string theory is string field theory [1,2]. In the
case of topological closed B string theory [3], however, its second quantization is known
to reduce to a six-dimensional field theory on a Calabi-Yau three-fold X [4], which is the
Kodaira-Spencer (KS) theory of gravity [5]. The configuration space of the KS gravity the-
ory B, which we will define in (2.2) below, has a structure of the differential Gerstenhaber-
Batalin-Vilkovisky (dGBV in short) algebra [6,7].

In this paper we study the algebraic structure of the configuration spaceBmore closely.
We show, in particular, that some operators such as the Hodge dual operator or the Lefshetz
operators, which are originally defined on the space of the differential forms A and are
transferred to B by the isomorphism between A and B as vector spaces, behave better in
B than in A in some sense. We also find another dGBV algebra structure in B. Then we
consider the problem of holomorphic deformation of the KS theory using the algebraic
tools developed above.

The organization of the present paper is as follows. In Section 2, the configuration space
B and the action of the KS gravity theory, as well as the space of the differential formsA,
are introduced. In Section 3, we describe the algebraic structure of the configuration space
B; we convert the various linear operators on A to B and express these as differential
operators of the sigma model variables; in particular we find that the Hodge dual operator
is super-algebra homomorphism modulo a phase factor, and the Lefshetz operators are
derivations on B. We give another dGBV algebra structure on B; two dGBV algebras are

1



November 12, 2016 10:35 WSPC/INSTRUCTION FILE kosp

2 Kenji Mohri

related to each other by the Hodge duality. In Section 4, we construct the solution of the
KS equation, which is the classical equation of the KS action, using the algebraic tools
developed above. Then we describe the deformation of the action and the supercharges
associated with the condensation of the solution. In Section 5, we identify the deformation
of the previous section as the holomorphic limit of the deformation of the complex structure
of the Calabi-Yau three-fold X by a direct computation. We also propose a deformation of
the states under the holomorphic deformation. In Section 6, we discuss rather briefly future
directions of the present paper.

2. Kodaira-Spencer Theory of Gravity

2.1. Calabi-Yau threefold

Let X be a Calabi-Yau threefold with a fixed complex structure. We also fix a holomorphic
three-form Ω = s(z) d z1 ∧ d z2 ∧ d z3, where zis are local holomorphic coordinates of X,
and a Kähler form ω = i

∑
gi j̄ d zi ∧ d z j̄. We do not assume that the Kähler metric gi j̄ is

Ricci-flat.
There are two volume forms: the one is d volω = ω3/3!, the other is d volΩ = iΩ ∧ Ω̄,

the ratio of which yields a scalar function σ on X:

exp(σ) = |s|2(det g)−1. (2.1)

Note that the Ricci tensor can be written as Ri j̄ = ∂i∂ j̄σ.

2.2. Configuration space of the Kodaira-Spencer theory

Two dimensional B-twisted topological sigma model with X as a target [3] coupled to
topological gravity defines a topological B-string theory [4,5].

The string field theory of the topological B-string is reduced to a six dimensional field
theory on X [4], known as the Kodaira-Spencer theory of gravity [5].

To explain the field content of the KS theory, we introduce the following space:

B =
3⊕

p,q=0

Bp,q, Bp,q = Γ(X,
∧pT X ⊗∧qT ∗X), (2.2)

where T X(T ∗X) is the (anti-)holomorphic (co)tangent bundle of X. Note that B is a sub-
space of the state space of the topological B-sigma model [3] which has X as the target
with all stringy excitations supressed [4].

It is convenient to use the sigma model variables θi = ∂/∂zi, η j̄ = d z j̄ so that an element
α of Bp,q is expressed as

α =
1

p!q!

∑
α

i1···ip

j̄1··· j̄q
(z, z̄) θi1 · · · θipη

j̄1 · · · η j̄q . (2.3)

For α ∈ Bp,q, |α| = p + q is called the ghost number of α.
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2.3. Space of the differential forms

We have also the space of differential forms on X:

A =
3⊕

p,q=0

Ap,q, Ap,q = Γ(X,
∧pT ∗X ⊗∧qT ∗X). (2.4)

We define the Hermite metric onA by the Hodge dual operator ∗ : Ap,q → A3−q,3−p as

(a|b) =
∫

X
a ∧ ∗b̄, a, b ∈ A. (2.5)

The exterior differential operators are given by ∂ =
∑

d zi ∧ ∂/∂zi, ∂̄ =
∑

d zī ∧ ∂/∂zī, and
their conjugates with respect to the metric (2.5) are ∂† = − ∗ ∂̄∗, ∂̄† = − ∗ ∂∗.

These four operators are all nilpotent and their anti-commutators all vanish except for
two pairs, both of which give the same Laplacian:

□ = ∂̄∂̄† + ∂̄†∂̄ = ∂∂† + ∂†∂. (2.6)

The harmonic states are its kernel: H = Ker□, the orthogonal complement of which with
respect to the metric (2.5) admits further orthogonal decompositions:

H⊥ = Im ∂̄ ⊕ Im ∂̄† = Im ∂ ⊕ Im ∂†. (2.7)

In particular the subspace Ker ∂ ⊂ A is decomposed as

Ker ∂ = H ⊕ Im(∂∂̄) ⊕ Im(∂∂̄†), (2.8)

where H is called the physical states, Im(∂∂̄) the trivial states, and Im(∂∂̄†) the unphysical
states in [2] in the context of closed string field theory.

The Green’s operator G is defined to be zero on H, and□−1 on H⊥ [8]. Let Π : A → H
be the orthogonal projection onto the harmonic forms, then

idA = Π +G□. (2.9)

Form the Lefshetz operators L = ω∧ : Ap,q → Ap+1,q+1, Λ = L† = ∗−1 ◦ L ◦ ∗, we can
form a SU(2) algebra which is self-adjoint with respect to the metric (2.5):

J1 =
1
2

(L + Λ), J2 =
1
2 i

(Λ − L), J3 =
1
2

(3 − P − Q), (2.10)

where (P,Q)|Ap,q = (p, q), and [Ja, Jb] = i
∑
ϵabcJc.

The commutation relations among the differential operators and the Lefshetz operators
above are known as the Hodge-Kähler identities [9]:

[L, ∂] = 0, [L, ∂̄] = 0, (2.11)

[Λ, ∂†] = 0, [Λ, ∂̄†] = 0, (2.12)

[L, ∂†] = i ∂̄, [L, ∂̄†] = − i ∂, (2.13)

[Λ, ∂] = i ∂̄†, [Λ, ∂̄] = − i ∂†. (2.14)
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Using the holomorphic three-form Ω, we can define an isomorphism ρ : B → A of
vector spaces [10]

ρ(1) = s d z1 ∧ d z2 ∧ d z3, (2.15)

ρ(θi) = 1
2 s

∑
jkϵijk d z j ∧ d zk, (2.16)

ρ(θiθ j) = −s
∑

kϵijk d zk, (2.17)

ρ(θ1θ2θ3) = −s, (2.18)

where ϵi jk is the Levi-Civita symbol. Note that ρ maps Bp,q to A3−p,q, so that it inverts the
Grassmann parity.

The significance of the isomorphism ρ is that we can convert each linear operator f on
A to that of B by f̂ := ρ−1 ◦ f ◦ρ. In particular, we give the special names for the operators
below

∆ = ∂̂ : Bp,q → Bp−1,q, (2.19)

S = ∂̂†: Bp,q → Bp+1,q, (2.20)

R = ̂̄∂†: Bp,q → Bp,q−1. (2.21)

In fact, B itself has a Hermite metric, ∂̄B, which is the BRST operator of the topological
string [3], and its conjugate ∂̄†B [8,9]. Note that here we are temporarily using subscripts in
order to distinguish ∂̄B from ∂̄A. Then we find that

∂̄B = −̂̄∂A, ∂̄†B = −eσ ◦ R ◦ e−σ, (2.22)

where σ is the scalar function defined in (2.1) [10].

2.4. Kodaira-Spencer gravity action

Let us define the trace map Tr : B → C (complex numbers) by

Tr(α) =
∫

X
ρ(α) ∧ Ω, α ∈ B. (2.23)

It is clear that Tr(α) , 0 only if α ∈ B3,3.

Lemma 2.1. Let α ∈ Bp,q, β ∈ B3−p,3−q, then ρ(α) ∧ ρ(β) = (−1)q+1ρ(α ∧ β) ∧ Ω.

Proof. We use ordered multi-indices to write the elements

α =

<∑
I,J

αI
J̄θIη

J̄ ∈ Bp,q, β =

<∑
K,L

βK
L̄ θKη

L̄ ∈ B3−p,3−q,

where each multi-index has the form I = (i1, . . . , ip), i1 < i2 < · · · < ip. For I = (i1, . . . , ip),
let I∗ = (i∗1, . . . , i

∗
3−p) be the complementary multi-index, i.e., {i1, · · · , ip, i∗1, . . . , i

∗
3−p} =

{1, 2, 3} as an unordered set. Then we have ρ(θI) = (−1)|I|(|I|−1)/2ϵI,I∗ sηI∗ , where ηi = d zi,
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Simple computation shows that

ρ(α) ∧ ρ(β) = (−1)pqs
<∑

I,J

ϵI,I∗ϵJ,J∗α
I
J̄ β

I∗
J̄∗η

1̄η2̄η3̄ ∧ Ω,

α ∧ β = (−1)q+pq
<∑

I,J

ϵI,I∗ϵJ,J∗α
I
J̄ β

I∗
J̄∗θ1θ2θ3η

1̄η2̄η3̄,

ρ(α ∧ β) = (−1)1+q+pqs
<∑

I,J

ϵI,I∗ϵJ,J∗α
I
J̄ β

I∗
J̄∗η

1̄η2̄η3̄.

An immediate corollary is the useful formula

Tr(α ∧ β) = (−1)q+1
∫

X
ρ(α) ∧ ρ(β), α ∈ Bp,q, β ∈ B3−p,3−q, (2.24)

from which we obtain the “integration by parts” formulas below:

Tr(∂̄α ∧ β) = (−1)|α|+1 Tr(α ∧ ∂̄β), (2.25)

Tr(∆α ∧ β) = (−1)|α| Tr(α ∧ ∆β), (2.26)

Tr(Sα ∧ β) = (−1)|α|+1 Tr(α ∧ S β), (2.27)

Tr(Rα ∧ β) = (−1)|α| Tr(α ∧ Rβ). (2.28)

Now we are in a position to write down the action of the KS gravity theory [5]. For
simplicity, we here restrict ourselves to the classical theory, which means that the “string
field” φ takes values in B1,1. It is known that in closed string field theory, to obtain a gauge
invariant action, we must put the subsidiary condition ∆φ = 0 on the state φ ∈ B, so that
the configuration space must be reduced to

B1,1 ∩ Ker∆ = ρ−1(H2,1) ⊕ Im∆ ∩ B1,1, (2.29)

where the first direct summand of the right hand side is called massless, while the second
massive [5]. According to (2.29), we decompose φ ∈ B1,1 ∩ Ker∆ as φ = φ1 ⊕ Φ, where
φ1 ∈ ρ−1(H2,1) and Φ ∈ Im∆. Then the action evaluated at φ is given by

S X[φ1|Φ] = Tr
(

1
6

(φ1 +Φ) ∧ (φ1 +Φ) ∧ (φ1 +Φ) − 1
2
∂̄∆−1Φ ∧Φ

)
. (2.30)

We note that ∂̄ above is the BRST operator of the string theory. From the Hodge decom-
position (2.7) and the partial integration (2.25), we can see that the value of (2.30) does
not depend on the choice of ∆−1Φ. Note that from (2.9) we can write φ1 = Π̂(φ) and
Φ = ∆S Ĝ(φ).

We note that in (2.30) the massless mode φ1 does not has a kinetic term so that it acts as
a background field [5]. LetM be the moduli space of the complex structures of Calabi-Yau
manifolds, and TM be its holomorphic tangent bundle. Then the complex structure of X
determines a point [X] ∈ M and φ1 an element of T[X]M. Thus the total background of the
action (2.30) can be regarded as the total space of TM [11]. It is also interesting to note
that integration of the holomorphic anomaly equation is performed by quantization of the
massless modes [5,12,13].
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The equation of motion, which is known as the Kodaira-Spencer equation, construction
of its solutions, and deformations of the action (2.30), we will discuss in later sections.

3. Algebraic Structure of B
3.1. Linear operators in sigma model variables

We have seen in the previous section that the space of differential formsA have a rich set of
linear operators on it, which we can transfer to those on B via the isomorphism ρ : B → A
(2.15–2.18). In this subsection, we describe these linear operators on B as those acting on
the bosonic variables zi, z j̄ as well as the fermionic ones θi, η

j̄.

3.1.1. The Hodge dual operator

The action of the Hodge dual operator ∗̂ : Bp,q → Bq,p clearly corresponds to the exchange
of θ and η. Form this observation, we find the following description.

First define a map κ between the sigma model variables by

κ(θi) = −
∑

gi j̄ η
j̄, κ(η j̄) =

∑
gi j̄θi. (3.1)

Then we extend κ to B as a super-algebra homomorphism. Finally the action of the trans-
ferred Hodge dual operator on a homogeneous element α ∈ B is given by

∗̂α = i e(|α|)κ(α), (3.2)

where e(n) is the “phenomenological” sign factor defined by e(n) = (−1)(n+1)(n+2)/2. We can
easily see that (3.2) satisfies ∗̂2α = (−1)|α|+1α.

The operator ∗̂ is well-defined for the wedge product of B. Indeed from the formula
e(n)e(m)e(n + m) = (−1)nm+1, we have

∗̂(α ∧ β) = i (−1)|α|·|β| ∗̂(α) ∧ ∗̂(β). (3.3)

3.1.2. Four differential operators

The exterior differentials and their Hermite conjugates viewed in B are given by

∂̄ =
∑
ηī ∂

∂zī
, (3.4)

∆ = s−1 ◦
∑ ∂

∂zi

∂

∂θi
◦ s (3.5)

S = −
∑

g j̄kθk

(
∂

∂z j̄
− Γī

j̄l̄ η
l̄ ∂

∂ηī

)
, (3.6)

R = e−σ ◦
∑

gī j
(
∂

∂z j + Γ
k
jl θk

∂

∂θl

)
∂

∂ηī
◦ eσ, (3.7)

where Γi
jk =

∑
l̄ gil̄∂ jgkl̄, ∂ j = ∂/∂z j, is the Christoffel symbol, and it is unavoidable to use

sometimes Einstein’s summation rule.
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3.1.3. Lefshetz operators

The Lefshetz operators, L̂ : Bp,q → Bp−1,q+1, Λ̂ : Bp,q → Bp+1,q−1, are given by the
following differential operators

L̂ = i
∑

gi j̄ η
j̄ ∂

∂θi
, (3.8)

Λ̂ = − i
∑

gi j̄θi
∂

∂η j̄
. (3.9)

Let us check the first formula (3.8). Pick up an element of Bp,q and differentiate it by θi

α =

<∑
I,J

αI
J̄ θIη

J̄ ∈ Bp,q,
∂

∂θi
α =

<∑
I,J:i∈I

αI
J̄ ϵ(Ii)θIiη

J̄ ,

where Ii = I\{i}, and ϵ(Ii) is a sign factor. Then we have∑
i, j

i gi j̄ η
j̄ ∂

∂θi
α = (−1)p−1

∑
i, j

<∑
I,J:i∈I, j<J

i gi j̄ α
I
J̄ ϵ(Ii)θIiη

j̄ηJ̄ . (3.10)

On the other hand, the action of L̂ is computed as

ρ(α) = (−1)p(p−1)/2
<∑

I,J

sαI
J̄ ϵI,I∗η

I∗ηJ̄ ,

ω ∧ ρ(α) = (−1)p(p−1)/2+3−p
∑
i, j

<∑
I,J:i∈I, j<J

i gi j̄ sαI
J̄ ϵI,I∗η

iηI∗η j̄ηJ̄ ,

ρ−1(ω ∧ ρ(α)) =
∑
i, j

<∑
I,J:i∈I, j<J

i gi j̄ α
I
J̄ ϵI,I∗ϵ

′(Ii)θIiη
j̄ηJ̄ , (3.11)

where ϵ′(Ii) is the sign factor which satisfies ρ(θIi ) = (−1)(p−1)(p−2)/2s ϵ′(Ii)ηiηI∗ .
If i ∈ I is the kth element, then the sign factors are ϵ(Ii) = (−1)k−1, ϵ′(Ii) = (−1)p−kϵI,I∗ ,

which shows that (3.10) and (3.11) coincide with each other.
Then the relation ∗̂ ◦ Λ̂ = L̂ ◦ ∗̂ yields the second formula (3.9). We can also verify the

Hodge-Kähler identities (2.11–2.14) among the converted operators L̂, Λ̂, and ∂̄,∆, S ,R.
The configuration space B of the KS gravity is a subspace of the state space of the

topological B sigma model with stringy excitations omitted, so that B has some rem-
nants of the N = 2 supersymmetry algebra, among which are the left/right U(1) charges
(1/2)(± i(L̂ − Λ̂) + PB + QB) [5], the sum of which yields the ghost number operator

PB + QB =
∑
θi
∂

∂θi
+

∑
η j̄ ∂

∂η j̄
. (3.12)

As Q̂A = QB, P̂A = 3 − PB, the generators of the SU(2) (2.10) become

Ĵ1 =
1
2

(Λ̂ + L̂), Ĵ2 =
1
2 i

(Λ̂ − L̂), Ĵ3 =
1
2

(PB − QB). (3.13)

Notice that these operators are of order one [14], which means that they act on B as deriva-
tions with respect to the wedge product. Therefore it can be said that the wedge product of
B conserves the SU(2) symmetry.
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3.1.4. Hodge duality, SU(2), and B1,1

Note that the Hodge dual operator ∗̂ maps each diagonal sector Bp,p to itself with the
eigenvalues ± i. It is easy to see that ∗̂ acts as − i on B0,0, and as + i on B3,3. As for the most
important sector B1,1, we find the following fact:

Lemma 3.1. For α ∈ B1,1, ∗̂α = + iα if and only if L̂α = 0.

Proof. Let us denote an element of B1,1 by α =
∑
αi

j̄
θiη

j̄. Then L̂α = i
∑

gik̄α
i
j̄
ηk̄η j̄, so

that L̂α = 0⇔ ∑
gik̄α

i
j̄
=

∑
gi j̄α

i
k̄
. On the other hand, from ∗̂α = i

∑
gik̄g j̄lαi

j̄
θlη

k̄, we see

that α̂ = + iα⇔ ∑
gik̄g j̄lαi

j̄
= αl

k̄
.

In other words, ∗̂α = + iα if α belongs to a trivial representation (singlet), and ∗̂α =
− iα if α belongs to an adjoint representation (triplet) of SU(2).

3.2. dGBV algebras on B
3.2.1. Algebra associated with the pair (∆, ∂̄)

We recall here the dGBV algebra on B discovered in [6]. A good reference of the subject
is [7]. Let us define the odd bracket on B by

[α • β] = (−1)|α|∆(α ∧ β) − (−1)|α|∆(α) ∧ β − α ∧ ∆(β), (3.14)

where the symbol • carries the ghost number minus one. It should be remarked here that if
α, β ∈ Ker∆, then [α • β] = (−1)|α|∆(α ∧ β) ∈ Im∆.

This bracket satisfies the following relations:

[β • α] = −(−1)(|α|+1)(|β|+1) [α • β], (3.15)

[α • [β • γ]] = [[α • β] • γ] + (−1)(|α|+1)(|β|+1) [β • [α • γ]], (3.16)

[α • (β ∧ γ)] = [α • β] ∧ γ + (−1)(|α|+1)|β| β ∧ [α • γ], (3.17)

∆[α • β] = [∆α • β] + (−1)|α|+1 [α • ∆β], (3.18)

∂̄[α • β] = [∂̄α • β] + (−1)|α|+1 [α • ∂̄β]. (3.19)

The first two relations define a structure of the odd Lie algebra on B, the third means that
[α• ] is a derivation with respect to the wedge product, while the last two show that both ∆
and ∂̄ are derivations with respect to the odd bracket.

A most useful presentation of the bracket (3.14) is given by the odd Poisson bracket

[α • β] =
∑α

←
∂

∂zi ∧
→
∂

∂θi
β − α

←
∂

∂θi
∧
→
∂

∂zi β

 . (3.20)

Note that the right hand side does not depend on the holomorphic three-form Ω.
Recall that B is a hybrid of polyvectors and differential forms (2.2), and polyvectors

close themselves under the Schouten-Neienhuis bracket [14,15]. This puts to B another
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product structure; it is essentially the same as the odd bracket (3.14). To see this, let us use
multi-indices to present two homogeneous elements of B

α =

<∑
|I|=p,|J|=q

αI
J̄ θIη

J̄ ∈ Bp,q, β =

<∑
|K|=r,|L|=s

βK
L̄ θKη

L̄ ∈ Br,s, (3.21)

Then the odd bracket can be written as

[α • β] = −(−1)q(r+1)
<∑

I,J,K,L

[[αI
J̄θI , β

K
L̄ θK]]sn η

J̄ηL̄, (3.22)

where [[ , ]]sn is the Schouten-Neienhuis bracket.The formula (3.22) is known as the gen-
eralized Tian’s Lemma. The original Tian’s Lemma refers to the case of p = r = 1 [16],
where the Schouten-Neienhuis bracket reduces to the Lie bracket of vector fields.

3.2.2. Algebra associated with the pair (R, S )

The dGVB algebra in the previous subsubsection has been constructed using the two oper-
ators: ∆ of ghost number minus one and of order two [14] and ∂̄ of ghost number one and
of order one, which satisfy ∆2 = 0, ∂̄2 = 0 and ∆∂̄ + ∂̄∆ = 0.

We have another pair (R, S ) which has the same properties as (∆, ∂̄), which leads us to
define the following odd bracket

[α ⋆ β] = (−1)|α|R(α ∧ β) − (−1)|α|R(α) ∧ β − α ∧ R(β). (3.23)

The two odd brackets are related by the Hodge dual operator as

[α ⋆ β] = i (−1)|α|·|β|+1 ∗̂[∗̂α • ∗̂β], (3.24)

from which we can show the dGBV algebra relations:

[β ⋆ α] = −(−1)(|α|+1)(|β|+1) [α ⋆ β], (3.25)

[α ⋆ [β ⋆ γ]] = [[α ⋆ β] ⋆ γ] + (−1)(|α|+1)(|β|+1) [β ⋆ [α ⋆ γ]], (3.26)

[α ⋆ (β ∧ γ)] = [α ⋆ β] ∧ γ + (−1)(|α|+1)|β| β ∧ [α ⋆ γ], (3.27)

R[α ⋆ β] = [Rα ⋆ β] + (−1)|α|+1 [α ⋆ Rβ], (3.28)

S [α ⋆ β] = [Sα ⋆ β] + (−1)|α|+1 [α ⋆ S β]. (3.29)

We have also obtained the following formulas

∆[α ⋆ β] − [∆α ⋆ β] + (−1)|α|[α ⋆ ∆β]

= −R[α • β] + [Rα • β] − (−1)|α|[α • Rβ], (3.30)

S [α • β] − [Sα • β] + (−1)|α|[α • S β]

= −∂̄[α ⋆ β] + [∂̄α ⋆ β] − (−1)|α|[α ⋆ ∂̄β]

= (−1)|α|
(
□̂(α ∧ β) − □̂α ∧ β − α ∧ □̂β

)
, (3.31)

where we recall that the Laplacian is given by □̂ = −∂̄R − R∂̄ = ∆S + S∆.
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The odd Poisson bracket form is given by

[α ⋆ β] =
∑

gī j

α

←
∂

∂z j +

←
∂

∂θl
θkΓ

k
jl

 ∧
→
∂

∂ηī
β − α

←
∂

∂ηī
∧


→
∂

∂z j + Γ
k
jlθk

→
∂

∂θl

 β
 , (3.32)

the right hand side of which is independent of the scalar field σ.
The dGBV algebras associated with the space of differential forms A, which are ex-

pected to be a mirror dual to those of B when the sigma model instanton effects are incor-
porated, have been studied in [17,18,19].

4. KS Action and its Deformation

The algebraic tools developed in the previous sector enables a systematic treatment of the
classical KS gravity action

S X[φ1|Φ] = Tr
(

1
6
φ ∧ φ ∧ φ − 1

2
∂̄∆−1Φ ∧Φ

)
, (4.1)

where we recall that φ = φ1+Φ is an element of B1,1∩Ker∆, the massless part φ1 = Π̂(φ) ∈
ρ−1(H2,1) is a background field, and the massive part Φ ∈ Im∆ ∩ B1,1 carries dynamical
degrees of freedom.

We obtain the equation of motion of φ from variation of the action (4.1)

∂̄φ +
1
2

[φ • φ] = 0. (4.2)

In components, φ =
∑
φi

j̄
θiη

j̄, it reads

∂ j̄φ
i
k̄ − ∂k̄φ

i
j̄ +

∑
l

(
φl

j̄∂lφ
i
k̄ − φ

l
k̄∂lφ

i
j̄

)
= 0. (4.3)

This is the famous Kodaira-Spencer equation [8], which describes deformation of complex
structures on X.

The action has the gauge symmetry; the infinitesimal form of it is

δΦ = ∂̄ξ + [φ • ξ], (4.4)

where ξ ∈ B1,0 ∩ Ker∆ is a gauge parameter.

4.1. Solution to KS equation

We construct a solution to the KS equation (4.2) following [16,20].
Let φ1 ∈ ρ−1(H2,1) a massless mode. Then we claim that there is a series of massive

modes φn ∈ ρ−1(Im(∂∂̄†))∩B1,1, n ≥ 2, such that φ =
∑

n≥1 φn solves the KS equation (4.2).
In fact, we can solve order by order the equation for φn:

∂̄ρ(φn) = ψn :=
1
2
ρ

 ∑
i+ j=n

[φi • φ j]

 . (4.5)

For n = 1, (4.5) is trivially satisfied by φ1.
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For n = 2, (4.5) becomes

∂̄ρ(φ2) = ψ2 = ρ([φ1 • φ1]). (4.6)

From the definition of the odd bracket (3.14) and the fact φ1 ∈ Ker∆, we see that ψ2 ∈ Im ∂.
The formula (3.19) shows that ψ2 ∈ Ker ∂̄ because φ1 ∈ Ker ∂̄. Then ∂∂̄-Lemma implies
that ψ2 ∈ Im(∂∂̄) ⊂ Im ∂̄, from which we see that (4.6) has solutions. In particular the
gauge condition ρ(φ2) ∈ Im ∂̄† picks up the unique one: ρ(φ2) = ∂̄†Gψ2 ∈ Im(∂∂̄†).

Suppose that we have solutions φk = ∂̄†Gψn ∈ ρ−1 Im(∂∂̄†) for 2 ≤ k ≤ n. Then we
see that ψn+1 ∈ Im ∂ because each term [φi • φ j] of ψn+1 belongs to Im∆ by the inductive
assumption. We can also show that ψn+1 ∈ Ker ∂̄ since

∂̄
1
2

∑
i+ j=n+1

[φi • φ j] =
∑

i+ j=n+1

[∂̄φi • φ j] = −
1
2

∑
i+ j=n+1

∑
k+l=i

[[φk • φl] • φ j], (4.7)

the right hand side of which vanishes due to the Jacobi identity of the odd bracket (3.16).
Therefore again from the ∂∂̄-Lemma, we see that ψn+1 ∈ Im(∂∂̄) ⊂ Im(∂̄), and we obtain
the n + 1st solution ρ(φn+1) = ∂̄†Gψn+1. Thus we have obtained a solution φ =

∑
n≥1 φn of

the KS equation (4.2). Note that φ satisfies ∆φ = 0, Rφ = 0 by construction. For the proof
of the convergence of the infinite sum

∑
n≥1 φn for sufficiently small φ1s, see [21].

Let us define the massive propagator [11] by

P = ρ−1 ◦ ∂̄†∂G ◦ ρ : Bp,q → Bp−1,q−1. (4.8)

Then we get the recursion formula for n ≥ 2:

φn =
1
2

n−1∑
i=1

P(φi ∧ φn−i). (4.9)

Proposition 4.1. The solution φ =
∑

n≥1 φn of (4.2) constructed above satisfies ∗̂φ = + iφ.

Proof. From the lemma 3.1, it suffices to show that L̂φ = 0. First note that L̂φ1 = 0
because L̂ maps ρ−1(H2,1) to ρ−1(H3,2) = {0}. Second, we observe that L̂ commutes with P
as [L,G] = 0 and [L, ∂̄†∂] = 0, so that L̂φ2 =

1
2 PL̂(φ1∧φ1) = 1

2 P(L̂φ1∧φ1+φ1∧ L̂φ1) = 0,
where we have used the fact that L̂ acts as a derivation with respect to the wedge product.
Finally, from the recursion relation (4.9), we see L̂φn = 0 for each n.

4.2. Condensation of string and deformation of supercharges

Let Φ[φ1] =
∑

n≥2 φn, where φ1 ∈ ρ−1(H2,1) and φn, n ≥ 2, is the solution of (4.5) con-
structed above. If we let Φ have vacuum expectation valueΦ[φ1] and expand the KS action
(4.1) with respect to the fluctuation Φ′ around it, we get [5]

S X
[
φ1|Φ[φ1] +Φ′

]
= S X

[
φ1|Φ[φ1]

]
+ S̃ [Φ′], (4.10)

S̃ [Φ′] = Tr
(

1
6
Φ′ ∧Φ′ ∧Φ′ + 1

2
∆−1(∂̄Φ′ + [φ •Φ′]) ∧Φ′

)
, (4.11)

where φ = φ1 +Φ[φ1] is the solution of the KS equation considered above.
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The first term of (4.10) is known as the prepotential of topological string and has a
following expansion [22]:

S X
[
φ1|Φ[φ1]

]
=

1
6

Tr(φ1 ∧ φ1 ∧ φ1) +
1
8

Tr(φ1 ∧ φ1 ∧ P(φ1 ∧ φ1))

+
1
8

Tr(φ1 ∧ φ1 ∧ P(φ1 ∧ P(φ1 ∧ φ1))) + · · · .
(4.12)

We note that in the kinetic term of S̃ [Φ′] (4.11) appearance of the new BRST operator
∂̄ + [φ• ], which is nilpotent if φ solves the KS equation, as is always the case for string
field theories [23]. The same deformation of the BRST operator ∂̄ has also been considered
in the first quantization approach to topological B sigma model [24].

In the reference [25], the authors have found that in addition to the BRST operator ∂̄,
S also deforms to S + [φ⋆ ] in our notation. Here we remark the identities [φ• ] = [∆, φ∧],
[φ⋆ ] = [R, φ∧]. They have also given the equation for this to be nilpotent:(

Diφ
j
k̄
+ φi

l̄D
l̄φ

j
k̄

)
θiθ jη

k̄ = 0, (4.13)

where Di =
∑

gi j̄D j̄ is the covariant derivative of the Levi-Civita connection. However we
can easily show that the left hand side of (4.13) can be written as

−
(
Sφ +

1
2

[φ ⋆ φ]
)
= − i ∗̂

(
∂̄φ +

1
2

[φ • φ]
)
, (4.14)

which shows that (4.13) does not put any constraint on φ other than the KS equation. The
remaining operators of order two ∆ and R are left unchanged under the deformation [25].
We note that from the relation between two odd brackets (3.24), it is easily seen that

S + [φ⋆ ] = ∗̂ ◦ (∂̄ + [φ• ]) ◦ ∗̂. (4.15)

The commutation relations between the Lefshetz operators and [φ• ], [φ⋆ ] are given by

[L̂, [φ• ]] = [L̂φ• ] = 0, [L̂, [φ⋆ ]] = − i[φ• ], (4.16)

[Λ̂, [φ⋆ ]] = [Λ̂φ⋆ ] = 0, [Λ̂, [φ• ]] = i[φ⋆ ], (4.17)

which shows that the Hodge-Kähler identities (2.11–2.14) are preserved under the defor-
mation ∂̄→ ∂̄ + [φ• ], S → S + [φ⋆ ].

We want to find a “Calabi-Yau manifold” X̃ which realizes the identity S̃ [Φ′] =
S X̃[0|Φ′]; it is clear that X̃ has a close relation to the deformation of the complex structure
of X induced by the solution of the KS equation φ. Therefore we describe the deformation
of complex structure below.

5. Deformation of Complex Structure

5.1. Classical deformation

Let φ1 ∈ ρ−1(H2,1) be a massless mode of the KS action, so small in magnitude that the
solution of the KS equation constructed above φ =

∑
n≥1 φn converges, and Xφ1 the Calabi-

Yau manifold with the complex structure defined by φ, that is, a local function f on Xφ1 is
holomorphic if (∂ī +

∑
φ

j
ī
∂ j) f = 0 for all ī.
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Local frames of (1, 0) and (0, 1) vector fields and 1-forms on Xφ1 are given by

ei =
∂

∂zi +
∑

φ̄
j̄
i
∂

∂z j̄
, e j̄ =

∂

∂z j̄
+

∑
φi

j̄

∂

∂zi , (5.1)

f i = d zi −
∑

φi
j̄ d z j̄, f j̄ = d z j̄ −

∑
φ̄

j̄
i d zi, (5.2)

where φ̄ j̄
i is the complex conjugate of φ j

ī
. Their pairing is ⟨ f i, e j⟩ = δi

j−
∑
φi

k̄
φ̄k̄

j = (I−φφ̄)i
j.

If we define the matrix N = (I − φφ̄)−1, then we have the identities
∑

N i
jφ

j
k̄
=

∑
φi

l̄
N̄ l̄

k̄
, and∑

gml̄Nm
k =

∑
gk j̄N̄

j̄
l̄
, where N̄ is the complex conjugate of N, and ∂/∂zi =

∑
N j

i (e j − φ̄k̄
jek̄),

d zl =
∑

N l
i ( f i + φi

k̄
f k̄).

We claim that a holomorphic three-form on Xφ1 is given by

Ωφ1 = s f 1 f 2 f 3 = ρ

(
1 − φ + 1

2!
φ ∧ φ − 1

3!
φ ∧ φ ∧ φ

)
. (5.3)

As Ωφ1 is a (3, 0)-form on Xφ1 , we have only to show that dΩφ1 = 0, which is equivalent to

(−∂̄ + ∆)
(
1 − φ + 1

2!
φ ∧ φ − 1

3!
φ ∧ φ ∧ φ

)
= 0. (5.4)

It is easy to check (5.4) by the KS equation and the dGBV algebra relations. We also note
the volume form that it defines is iΩφ1 ∧ Ωφ1 = det(I − φφ̄) iΩ ∧ Ω.

The Kähler form ω is still of the type (1, 1) under the new complex structure, and given
by ω = i

∑
gk j̄N̄

j̄
l̄

f k f l̄.
The configuration space Bφ1 for the KS gravity defined on Xφ1 can be written as

Bφ1 =
⊕

p,q

Bp,q
φ1 , Bp,q

φ1 =

{
β =

1
p!q!

∑
β

i1,...,ip

j̄1,..., j̄q
(z, z̄) ei1 · · · eip f j̄1 · · · f j̄q

}
. (5.5)

Note that {Bφ1 }φ1∈ρ−1(H2,1) defines a vector bundle, or a bundle of super-algebras on a neigh-
borhood of [X] in the moduli spaceM. It would be nice to know interesting connections
on this bundle [26].

It is also convenient to make a choice of local holomorphic coordinates wα of Xφ1

[27,28]. If we put the relations between local frames of T ∗Xφ1 and T Xφ1 by

f i =
∑
α

Ai
α d wα, (5.6)

ei =
∑
α

Bαi
∂

∂wα
, (5.7)

then we have the matrix relation AB = N−1 and

d wα = (A−1)αi d zi − (A−1φ)αj̄ d z j̄, (5.8)

d zi = (B−1)i
α d wα + (φB̄−1)i

β̄
d wβ̄. (5.9)

Among the consistency conditions derived from (5.8) are

∂i(A−1)αj − ∂ j(A−1)αi = 0, (5.10)∑
α

(A−1)αl e j̄A
i
α = ∂lφ

i
j̄, (5.11)
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where e j̄ = ∂ j̄ +
∑
φs

j̄
∂s is the differential operator corresponding to the vector field e j̄.

Similarly, from (5.9), we obtain the consistency condition∑
Bαi e j̄(B

−1)l
α =

∑
N l

k Mk
i j̄, Mk

i j̄ := eiφ
k
j̄ +

∑
φk

m̄e j̄ φ̄
m̄
i . (5.12)

The Kähler two-form ω is rewritten as ω = i g̃αβ̄ d wα ∧ d wβ̄, where

g̃αβ̄ =
∑

j,k

Ak
α(B̄−1) j̄

β̄
gk j̄, g̃αβ̄ =

∑
l,m

B̄β̄
l̄
(A−1)αm gl̄m, (5.13)

from which we can compute the Christoffel symbols Γ̃αβγ for the Kähler metric g̃αβ̄.

5.2. Differential operators in new complex structure

In this subsection, we compute the four differential operators introduced in 3.1.2 for the
KS gravity theory on the deformed Calabi-Yau manifold Xφ1 , which we denote by ∂̄φ1 ,
∆φ1 , S φ1 , and Rφ1 , and show that these are just reduced to ∂̄ + [φ• ], ∆, S + [φ⋆ ], and
R, respectively in the holomorphic limit where we make an analytic continuation of the
moduli parameters so that φ̄1 is set to zero while φ1 is kept fixed [5].

Let us explain the “analytic continuation” above more detail. LetM be the same man-
ifold as M with the opposite complex structure. Then we extend the moduli space to be
M×M [5,29,30] and the original moduli space is diagonally embedded asMdiag in Fig.
1. Let (ta) be local holomorphic coordinates ofM, and the point [X] ∈ M correspond to
t = t0. By the classical deformation described in the previous subsection, [X] ∈ M ×M,
with coordinates (t0, t̄0) in Fig. 1, moves along the diagonal line to the point corresponding
to Xφ1 ; then setting φ̄1 = 0 we arrive at a point on the horizontal line t̄ = t̄0. We call the
point Xhol

φ1
and the deformation from X to Xhol

φ1
the holomorphic deformation.

It is easy to give the differential operators on Xφ1 in terms of the local holomorphic
coordinates wα according to the formulas (3.4–3.7). To perform the holomorphic limit
above, however, it is necessary to change coordinates from (wα,wβ̄) to (zi, z j̄).

The four differential operators acting on Bφ1 of the form (5.5) are given by

∂̄φ1 = N̄ k̄
r̄ f r̄

(
∂

∂zk̄
+ φl

k̄

∂

∂zl − N p
s Ms

ik̄ep
∂

∂ei

)
, (5.14)

∆φ1 = (s det N−1)−1 ◦
(
∂

∂zi + φ̄
j̄
i
∂

∂z j̄

)
∂

∂ei
◦ (s det N−1) − f m̄∂m̄φ̄

j̄
i
∂

∂ei

∂

∂ f j̄
, (5.15)

S φ1 = gūlN̄ k̄
ūel

− ∂

∂zk̄
− φi

k̄

∂

∂zi + Nn
r Mr

ik̄en
∂

∂ei
+ gm̄ng j̄qN̄m̄

s̄ Mn
qk̄ f s̄ ∂

∂ f j̄


+ gūlN̄ k̄

ūel

(
Γ

j̄
k̄ s̄
+ gm j̄gs̄qΓ

q
mnφ

n
k̄

)
f s̄ ∂

∂ f j̄
, (5.16)

Rφ1 = e−σ̃ ◦ gk j̄
(
∂

∂zk + φ̄
l̄
k
∂

∂zl̄

)
∂

∂ f j̄
◦ eσ̃ + gt̄k∂t̄φ̄

j̄
k
∂

∂ f j̄
− g j̄k∂n̄φ̄

l̄
k f n̄ ∂

∂ f j̄

∂

∂ f l̄

+ Nm
p

(
g j̄kei(N−1)p

k + gl̄pM̄ j̄
l̄i
+ g j̄s(N−1)k

s(Γ
p
ik + gl̄pgkq̄Γ

q̄
n̄l̄
φ̄n̄

i )
)

em
∂

∂ei

∂

∂ f j̄
, (5.17)
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t̄0

M

M diag

t0 M

Fig. 1. Analytic continuation of the moduli space

where eσ̃ = det Neσ and use of the Einstein summation convention is unavoidable.
In the holomorphic limit φ̄→ 0, ei → θi, f j̄ → η j̄, N → I, Mk

i j̄
→ ∂iφ

k
j̄
.

Let us see the limit of each operators. The cases of ∂̄, ∆ and R are easy:

∂̄φ1 → ηk̄
(
∂

∂zk̄
+ φl

k̄

∂

∂zl − ∂iφ
p
k̄
θp

∂

∂θi

)
= ∂̄ + [φ• ], (5.18)

where we have used the formula (3.20) and

∆φ1 → s−1 ◦ ∂

∂zi

∂

∂θi
◦ s = ∆, (5.19)

Rφ1 → e−σ ◦ gk j̄ ∂

∂zk

∂

∂η j̄
◦ eσ + gk j̄Γm

ik θm
∂

∂θi

∂

∂η j̄
= R. (5.20)

For the case of S , we have

S φ1 → −gk̄lθl

(
∂

∂zk̄
− Γ j̄

s̄k̄
ηs̄ ∂

∂η j̄

)
− gk̄lθl

(
−φt

k̄

∂

∂zt + ∂iφ
n
k̄θn

∂

∂θi
+ gk̄ng j̄qDqφ

n
s̄η

s̄ ∂

∂η j̄

)
.

(5.21)

On the other hand we know from the formula (3.32)

[φ⋆ ] = −gābφi
āθi

(
∂

∂zb + Γ
c
bdθc

∂

∂θd

)
+ gābDbφ

c
j̄θcη

j̄ ∂

∂ηā , (5.22)

and the difference between the second term of the right hand side of (5.21) and (5.22)
Di(gk̄lφn

k̄
)θlθn∂/∂θi vanishes owing to Prop. 4.1. This shows that the holomorphic limit of

S φ1 is S + [φ⋆ ].
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In conclusion, we have identified the the deformation of the differential operators ob-
served in (4.11) with the one caused by the holomorphic limit of the deformation of the
complex structure, so that we can write S̃ [Φ′] = S Xhol

φ1
[0|Φ′].

At first sight, it may seem that for the KS action on Xhol
φ1

we must use the deformed
trace map

Trhol
φ1

(α) =
∫

X
ρhol
φ1

(α) ∧ Ωφ1 , (5.23)

where ρhol
φ1

(θI) = (−1)|I|(|I|−1)/2ϵI,I∗ s f I∗ . However Trhol
φ1

(α) = Tr(α) for any α ∈ B.

5.3. Deformation of states

Let us denote the deformed operators by (∂̄)hol
φ1
= ∂̄ + [φ• ], S hol

φ1
= S + [φ⋆ ]. Then it is

easy to see that

(∂̄)hol
φ1
◦ ∆ + ∆ ◦ (∂̄)hol

φ1
= 0, S hol

φ1
◦ R + R ◦ S hol

φ1
= 0. (5.24)

We can also show

(∂̄)hol
φ1
◦ S hol

φ1
+ S hol

φ1
◦ (∂̄)hol

φ1
= 0. (5.25)

To see this, we calculate the action of the left hand side of (5.25) on α ∈ B;

(∂̄)hol
φ1

S hol
φ1

(α) = ∂̄(Sα + [φ ⋆ α]) + [φ • (Sα + [φ ⋆ α])],

S hol
φ1

(∂̄)hol
φ1

(α) = S (∂̄α + [φ • α]) + [φ ⋆ (∂̄α + [φ • α])].

The sum of the two above becomes{
(∂̄)hol

φ1
, S hol

φ1

}
(α) = [Sφ • α] + [∂̄φ ⋆ α] + [φ ⋆ [φ • α]] + [φ • [φ ⋆ α]], (5.26)

where we have used the formula (3.31).
Using the KS equation of motion ∂̄φ = −(1/2)∆(φ ∧ φ) and its Hodge dual form Sφ =

−(1/2)R(φ ∧ φ), we can rewrite the first two terms of the right hand side of (5.26) as

− 1
2

[R(φ ∧ φ) • α] − 1
2

[∆(φ ∧ φ) ⋆ α]

=
1
2
∆(R(φ ∧ φ) ∧ α) +

1
2

R(∆(φ ∧ φ) ∧ α) +
1
2

R(φ ∧ φ) ∧ ∆α + 1
2
∆(φ ∧ φ) ∧ Rα,

while the last two terms of the right hand side of (5.26) are

[φ ⋆ [φ • α]] = R(φ ∧ ∆(φ ∧ α) − φ ∧ φ ∧ ∆α) − φ ∧ R∆(φ ∧ α) + φ ∧ R(φ ∧ ∆α),

[φ • [φ ⋆ α]] = ∆(φ ∧ R(φ ∧ α) − φ ∧ φ ∧ Rα) − φ ∧ ∆R(φ ∧ α) + φ ∧ ∆(φ ∧ Rα).
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At this point, we have{
(∂̄)hol

φ1
, S hol

φ1

}
(α)

=∆

(
1
2

R(φ ∧ φ) ∧ α + φ ∧ R(φ ∧ α) − φ ∧ φ ∧ Rα
)

+R
(

1
2
∆(φ ∧ φ) ∧ α + φ ∧ ∆(φ ∧ α) − φ ∧ φ ∧ ∆α

)
+

1
2

R(φ ∧ φ) ∧ ∆α + φ ∧ R(φ ∧ ∆α)

+
1
2
∆(φ ∧ φ) ∧ Rα + φ ∧ ∆(φ ∧ Rα). (5.27)

By the seven-term relation [14] which holds for operators of order two such as ∆ or R,
and is merely the expansion of the dGBV relation (3.17) or (3.27):

∆(α ∧ β ∧ γ) = ∆(α ∧ β) ∧ γ + (−1)|α|α ∧ ∆(β ∧ γ) + (−1)|β|·(|α|+1)β ∧ ∆(α ∧ γ)

− ∆(α) ∧ β ∧ γ − (−1)|α|α ∧ ∆(β) ∧ γ − (−1)|α|+|β|α ∧ β ∧ ∆(γ),
(5.28)

we have R(φ∧ φ∧ α) = R(φ∧ φ)∧ α+ 2φ∧ R(φ∧ α)− φ∧ φ∧ R(α); thus the first term of
the right hand side of (5.27) becomes

1
2
∆R(φ ∧ φ ∧ α) − 1

2
∆(φ ∧ φ ∧ Rα).

Similarly, the second term of the right hand side of (5.27) becomes

1
2

R∆(φ ∧ φ ∧ α) − 1
2

R(φ ∧ φ ∧ ∆α),

so that their sum is

−1
2
∆(φ ∧ φ ∧ Rα) − 1

2
R(φ ∧ φ ∧ ∆α). (5.29)

Then another use of the seven-term relation (5.28) shows that (5.29) cancels out the third
and the fourth terms of (5.27).

We can define the deformed Lapacian by

□̂hol
φ1
= −(∂̄)hol

φ1
◦ R − R ◦ (∂̄)hol

φ1
= S hol

φ1
◦ ∆ + ∆ ◦ S hol

φ1
. (5.30)

To see that the two operators above give the same □̂hol
φ1

, we have only to show

−[φ • Rα] − R[φ • α] = [φ ⋆ ∆α] + ∆[φ ⋆ α] (5.31)

for each α ∈ B. However this is the special case of the formula (3.30).
Let us define a linear map fφ1 : B → B labeled by an element φ1 ∈ ρ−1(H2,1) as follows.

First for α ∈ B, set α0 = α, and define αn, n ≥ 1, recursively by

αn =

n∑
k=1

P(φk ∧ αn−k), (5.32)



November 12, 2016 10:35 WSPC/INSTRUCTION FILE kosp

18 Kenji Mohri

where we recall that P is the massive propagator defined in (4.8), and φn is the solution of
(4.5) and given by the recursion relation (4.9). Then the map fφ1 is simply given by

fφ1 (α) =
∞∑

n=0

αn. (5.33)

Presumably, the infinite sum in (5.33) will converge for φ1 so small enough that the infinite
sum φ =

∑
n≥1 φn converges.

In fact, fφ1 has nice properties as a map on Ker∆:

Proposition 5.1. fφ1 maps Ker∆ ∩ Ker ∂̄ to Ker∆ ∩ Ker(∂̄)hol
φ1

.

Proof. We will show by mathematical induction

∂̄αn +

n∑
k=1

[φk • αn−k] = 0. (5.34)

By the induction hypothesis and the Jacobi identity (3.16), we have

∂̄

n∑
k=1

[φk • αn−k] =
n∑

k=1

(
[∂̄φk • αn−k] − [φk • ∂̄αn−k]

)
= −1

2

∑
a+b+c=n

[[φa • φb] • αc] +
∑

a+b+c=n

[φa • [φb • αc]]

= 0.

It is also easy to see that [φk • αn−k] ∈ Im∆ for each k in (5.34). Then the ∆∂̄-Lemma
implies that

n∑
k=1

[φk • αn−k] ∈ Im(∂̄∆) ⊂ Im(∂̄). (5.35)

Therefore

∂̄∂̄†Gρ
n∑

k=1

[φk • αn−k] = ρ
n∑

k=1

[φk • αn−k], (5.36)

which is equivalent to (5.34).

Proposition 5.2. fφ1 maps Ker∆ ∩ Im ∂̄ to Ker∆ ∩ Im(∂̄)hol
φ1

.

Proof. In this case, α0 ∈ Ker∆ ∩ Im ∂̄ = Im(∂̄∆). Thus we can set α0 = ∂̄β0, β0 ∈ Im(∆).
We should find a series β1, β2, β3, . . . , which satisfies the equation

fφ1 (α) =
∞∑

n=0

αn = ∂̄

∞∑
n=0

βn +

∞∑
m=1

∞∑
n=0

[φm • βn] = 0,

the nth order terms of which are

αn = ∂̄βn +

n∑
k=1

[φk • βn−k]. (5.37)
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However, it is easily verified that βns defined by the recursion relation

βn = P
n∑

k=1

(φk ∧ βn−k) (5.38)

solve the equation (5.37).

To sum up, the diagram below is commutative:

Ker∆
fφ1−−−−−−→ Ker∆

∂̄

y y(∂̄)hol
φ1

Ker∆
fφ1−−−−−−→ Ker∆.

(5.39)

We can also show that fφ1◦∗̂ = ∗̂◦ fφ1 from ∗̂◦P = −P◦∗̂, and that fφ1 maps ρ−1(H) = Ker □̂
to Ker∆ ∩ Ker(∂̄)hol

φ1
∩ Ker R ∩ Ker S hol

φ1
.

6. Outlook

In this paper we have analyzed the equation of motion and deformations of the classical
KS gravity theory using the algebraic structure of the configuration space B. Quantization
of the KS gravity can be performed by the Batalin-Vilkovisky formalism [31,1,32,2,5,11],
where we relax the condition on the ghost number of the field; in the action (2.30), the
field φ has a contribution from each sector Bp,q ∩ Ker∆, except for p , 3, where ∆−1

cannot be defined [5]. Then the massless part of the field φ necessarily induces a extended
deformation of the Calabi-Yau manifold [3,33,6]. It should be clear that the algebraic tools
developed in this paper are useful in the quantization problem of the KS gravity.

It would also be interesting to study the open-closed topological B-model [34] from
the point of view of the second quantization [4,35].
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