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Abstract

While planning clinical trials, when simple formulae are unavailable to calculate
sample size, statistical simulations are used instead. However, one has to spend much
computation time obtaining adequately precise and accurate simulated sample size
estimates, especially when there are many scenarios for the planning and/or the spec-
ified statistical method is complicated. In this paper, we summarize the theoretical
aspect of statistical simulation-based sample size calculation. Then, we propose a
new simulation procedure for sample size calculation by fitting the probit model to
simulation result data. From the theoretical and simulation-based evaluations, it is
suggested that the proposed simulation procedure provide more efficient and accurate
sample size estimates than ordinary algorithm-based simulation procedure especially
when estimated sample sizes are moderate to large, therefore it would help to dramat-
ically reduce the computational time required to conduct clinical trial simulations.

Keywords: clinical trial design; finite sample bias; probit model
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1 Introduction

Sample size calculation plays an important role in estimating the costs and the success

probability (e.g., power for statistical tests) of clinical trials. When the design of a planned

trial is simple and the targeted endpoint is assumed to follow an ordinary theoretical

distribution (e.g., normal, binomial, or exponential), the sample size is usually calculated

using a formula (e.g., see Julious (2004); Julious and Campbell (2012); Schoenfeld (1983)).

Additionally sample size formulae for complicated distributions and/or designs have been

developed recently (e.g., see Zhang and Pulkstenis (2016); Zhu (2017)), such formulae are

not always available. For example, adaptive designs such as sample size re-estimation

(Cui et al., 1999; Chen et al., 2004) and seamless phase II/III design (Bretz et al., 2006;

Maca et al., 2006) have been implemented in the drug development process. Also, Bayesian

analyses with Markov chain Monte Carlo methods are sometimes conducted as the primary

analysis of a clinical trial, especially in the early phase of a drug development process (Thall

et al., 2003; Tighiouart et al., 2005). More recently, statistical tests for treatment effects

based on the multiple imputation methods (Rubin, 1987) for missing values have been often

applied as primary statistical analyses. In these complicated cases, sample size formulae are

usually unavailable and, therefore, the sample sizes need to be calculated using statistical

simulations (e.g., see Chow and Chang (2011)).

The following simple simulation procedure is commonly used to calculate sample sizes.

Let the simulated power for a specified sample size and specified settings (e.g., statistical

method, success criteria, effect size, etc.) be the success proportion in the number of

simulations for the binary simulation result data (success, failure). The calculation of the

simulated power for a specified setting starts from a sufficiently small sample size, which is

then gradually increased until the simulated power exceeds a specified level, for instance,

0.8 or 0.9. This is an ordinary approach to estimate the sample size using statistical

simulations. The estimated required sample size is the sample size at the end of the

simulations. In order to ensure the precision of the estimated sample sizes using this

process, many simulations need to be conducted. In addition, multiple simulation factors

(mean difference, SD, baseline hazard, etc.) with multiple levels are usually considered

in clinical trial simulations. Thus, a statistical simulation-based sample size calculation
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may be a time-consuming process and, therefore, it accounts for a considerable part of

the cost of the design process of a clinical trial. Furthermore, although some researchers

have focused on the general theory of a statistical simulation in medical research (e.g., see

Burton et al. (2006)), no studies have focused on the theoretical aspect of using statistical

simulations to calculate a sample size.

In this paper, we provide the inference theory for a estimated sample size for a clinical

trial based on the ordinary statistical simulation procedure. Then we propose a procedure

that applies the probit regression model to the binary simulation result data. We show

that the accuracy and precision of the estimated sample size improve by estimating sample

sizes with the statistical model instead of the ordinary algorithm-based method. We also

demonstrate that the proposed simulation procedure reduces the computational time of

clinical trial simulations dramatically. In Section 2, we present the theoretical aspect

of a sample size estimation based on the ordinary statistical simulation procedure, and

then provide a new viewpoint that the probit model is applicable to statistical simulation

results. In Section 3, we describe the effect of a model misspecification in the probit model

and provide a new simulation procedure. Then, in Section 4, we compare the estimation

performances between the ordinary and the proposed procedures, both theoretically and

through simulations. We summarize our results in Section 5.

2 Simulation-based sample size calculation: theoreti-

cal aspect

In this section, we consider a simulation approach in which a sample size is calculated based

on statistical simulations, such that some successful probability for the specified statistical

decision tool (e.g., power for a two-sample t-test) achieves a specified level, p (e.g., 0.8 or

0.9). For a given sample size, n, and a given number of simulations, m, the number of

successes, Xn, follows a binomial distribution, Bin(m,πn), where πn is the true success

probability for n. The targeted sample size, np, is defined as the smallest sample size

such that πn exceeds p. In the following discussion, statistical hypotheses and confidence

intervals are both-tailed.
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2.1 Ordinary simulation procedure

In this section, we provide the theoretical results of a commonly used simulation procedure

for sample size estimation. The maximum likelihood estimator (MLE) for the binomial

proportion πn and the variance of the MLE are given as π̂n(m) = xn/m and V ar(π̂n(m)) =

πn(1−πn)/m, respectively. Let statistical simulations start from a sufficiently small sample

size, which is then successively increased by one. For each sample size, π̂n(m) is calculated.

When m is sufficiently large, Pr(π̂n(m) < p) can be approximated by

Pr(π̂n(m) < p) ≃ Φ

{ √
m(p− πn)√
πn(1− πn)

}
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. The

estimator of the sample size, n̂p(m), is usually defined as the smallest sample size such that

π̂n(m) exceeds p in the simulations. Thus, the probability function of n̂p(m) is given by

fp(m)(n) = Pr(n̂p(m) = n) =
n−1∏
i=1

Pr(π̂i(m) < p){1− Pr(π̂n(m) < p)}.

The expectation and variance of n̂p(m) are given by

E(n̂p(m)) =
∞∑
n=1

nfp(m)(n) and V ar(n̂p(m)) =
∞∑
n=1

n2fp(m)(n)− E(n̂p(m))
2, (1)

respectively. In practice, the sum is calculated to a sufficiently large number. In this paper,

for the above moments, we calculate the sum to 4np because, in general, π4np is very close

to 1 for p ≥ 0.8. Unless m is considerably large, n̂p(m) has the bias, E(n̂p(m))− np, because

of the simulation procedure used to select the smallest sample size. In the following, we

refer to this procedure as the ordinary procedure.

If πnp = p exactly, we have limm→∞E(n̂p(m)) = np+1/2 and limm→∞ V ar(n̂p(m)) = 1/4

because limm→∞ Pr(n̂p(m) = np) = limm→∞ Pr(n̂p(m) = np+1) = 1/2. In practice, however,

πnp is larger than p (e.g., πnp = 0.802 for p = 0.8), and we have limm→∞E(n̂p(m)) = np and

limm→∞ V ar(n̂p(m)) = 0.
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2.2 Applying a probit model to simulation result data

Usually, sample size formulae for statistical tests based on the normal distribution or the

normal approximation are described as

np =
⌈
δ−2

{
z1−α/2 + zp

}2
⌉
, (2)

where δ is equal to the product of a constant and the so-called “effect size,” zp = Φ−1(p)

is the 100p percentile of the standard normal distribution, z1−α/2 is the critical value of

the statistical test at a significance level of α, and ⌈·⌉ is a ceiling function. For example,

δ ={mean difference between two groups}/[
√
2{SD for each group}] for a two-sample t-

test, and δ =log{hazard ratio}/2 for a log rank test (Schoenfeld, 1983). However, as

mentioned earlier, more complicated settings appear in practical clinical trials where sample

size formulae are not, in general, available.

In this study, we focus on situations in which no sample size formula is available and δ

is unknown, and then develop the simulation method using a probit function to estimate

the sample size. Here, we consider situations where equation (2) holds for unknown δ.

When equation (2) holds approximately, πn can be described as the following probit model

structure by solving the equation, n = δ−2
{
z1−α/2 + Φ−1(πn)

}2
, for πn:

πn = Φ(β0 + β1

√
n), (3)

where β0 = −z1−α/2, and β1 = δ. Let Yn(j) be the Bernoulli random variable, Ber(πn),

which denotes the jth simulation result for the given sample size, n (j = 1, . . . ,m, Xn =∑m
j=1 Yn(j)). Thus, equation (3) is also denoted by πn = Pr(Yn(j) = 1|n) = Φ(β0 + β1

√
n).

Let Γ be a set of sample sizes in the simulations. For example, Γ = {10, 15, 20, 25,

30, 35, 40, 45} for np = 28. Thus, while np does not have to be a member of Γ, it must

fall within the range of Γ. In this study, we apply model (3) to the simulation results,

{
√
n, yn(j)} (n ∈ Γ, j = 1, . . . ,m). Let β̂ denote the MLE of the probit model parameter

vector, β = (β0, β1)
T. The log likelihood, ℓm(β), and the expected information matrix,

I(β), are given by

ℓm(β) =
∑
n∈Γ

[
logmCXn +Xn log{Φ(β0 + β1

√
n)}+ (m−Xn) log{1− Φ(β0 + β1

√
n)}

]
(4)
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and

I(β) = m
∑
n∈Γ

{ϕ(β0 + β1

√
n)}2

Φ(β0 + β1

√
n) {1− Φ(β0 + β1

√
n)}

 1
√
n

√
n n

 ,

respectively, where mCXn denotes the number ofXn combinations fromm elements, and ϕ(·)

is the probability density function of the standard normal distribution (see, e.g., Demidenko

(2001)). Thus, the estimator of np based on the probit model is given by

np(β̂) =
⌈
νp(β̂)

⌉
,

where νp(β̂) = (zp − β̂0)
2/β̂2

1 . Under the assumption that νp(β̂) follows a normal distribu-

tion, the approximate variance estimator of νp(β̂) is given by V ar{νp(β̂)} ≃ ∆TI(β̂)−1∆,

where

∆ =
∂

∂β
νp(β)|β=β̂ =

 −2(zp − β̂0)/β̂
2
1

−2(zp − β̂0)
2/β̂3

1

 .

Then, for a finite m, the approximate variance estimator of np(β̂) is given by

V ar{np(β̂)} =
∞∑
n=1

n2Pr
{
np(β̂) = n

}
−

[
∞∑
n=1

nPr
{
np(β̂) = n

}]2

,

where

Pr
{
np(β̂) = n

}
= Pr

{
n− 1 < νp(β̂) ≤ n

}
≃ Φ

 n− νp(β)√
V ar{νp(β̂)}

−Φ

 n− 1− νp(β)√
V ar{νp(β̂)}

 .

In practice, it is sufficient to calculate the sum for the range of np(β) ± np(β)/5. Fur-

thermore, the ceiling function would not have a significant effect on the results; that is

V ar{np(β̂)} ≃ V ar{νp(β̂)}, unless np is small.

If equation (3) holds, the estimated sample size has consistency unless πnp = p, similarly

to the ordinary procedure. In addition, the finite sample bias for the estimated sample size

is smaller than 0.5 under the assumption that equation (3) holds and ν(β̂) follows a normal

distribution. When the value of ν(β) is close to an integer (e.g., ν(β) = 49.9 or 49.1), the

integer part of ν(β) is variable and, therefore, the convergence speed decreases considerably.

The same is true for the ordinary procedure.
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3 Effect of a model misspecification

Obviously, there exist situations where model (3) is not the true relationship between the

sample size and the success probability. In this section, we investigate the effect of a model

misspecification. Now, we assume that πn is controlled by a parametric model with a

parameter vector, γ: Xn ∼ Bin(m,πn(γ)). Under this assumption, we set the misspecified

model, Bin(m,Φ(β0+β1

√
n)), which is described in Section 2. If we assume that for given

γ, β̂ converges in probability as m → ∞ to a limit βγ = (βγ0, βγ1)
T, then βγ is obtained

by solving the equation Eγ{∂ℓm(β)/∂β} = 0, where Eγ denotes the expectation under

the true model (Cox, 1961). More specifically, βγ is obtained by solving the simultaneous

equations ∑
n∈Γ

ϕ(β0 + β1

√
n)

{
πn(γ)

Φ(β0 + β1

√
n)

+
1− πn(γ)

1− Φ(β0 + β1

√
n)

}
= 0,

∑
n∈Γ

√
nϕ(β0 + β1

√
n)

{
πn(γ)

Φ(β0 + β1

√
n)

+
1− πn(γ)

1− Φ(β0 + β1

√
n)

}
= 0,

for β0 and β1. Since these equations cannot be solved explicitly, we solve them using

the nleqslv function in R software. For given βγ , the success probability based on the

misspecified model is given by π∗
n(βγ) = Φ(βγ0 + βγ1

√
n). Two examples for πn(γ) follow.

We do not consider the ceiling function in this section.

3.1 Case 1: Futility stopping design

The first example is a two-arms, parallel group, superiority, randomized clinical trial that

contains an interim analysis for futility stopping. The distributions of groups 1 and 2 are

N(µ1, 1) and N(µ2, 1), respectively. For simplicity, the variance for each group is assumed

to be known. Let n denote the sample size per group for the final analysis. The aim of the

trial is to demonstrate that η = µ2−µ1 > 0. The final analysis is a two-sample Z-test with

the both-tailed hypothesis and the significance level α. The interim analysis is conducted

when 2rn subjects are completed (0 < r < 1), where the conditional power is calculated

under the assumption that the estimated mean difference, η̂, is the true value. The trial

is terminated for futility if the calculated conditional power is less than ω; otherwise, the

trial is continued. Thus, the overall power that accounts for the futility stopping, πn(γ), is
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given by

πn(γ) = Φ2

(√
rn

2
η −

z1−α/2 +
√
1− rzω√

r +
√
1− r

,

√
n

2
− z1−α/2;

√
r

)
,

where Φ2(·, ·; ρ) is the cumulative distribution function (CDF) of the standard bivariate

normal distribution with correlation ρ. We now set α = 0.05, γ = 0.5, and r = 0.5, and

then η is set such that πn(γ) = 0.8 for n = 100. We also set Γ = {k|k = 5 + 5l ≤ 200, l =

0, 1, 2, . . .}. Under these conditions, βγ and π∗
n(βγ) are calculated.

Figure 1(a) shows the relationship between n and πn(γ) (solid line) or π∗
n(βγ) (dashed

line). The overall power curve based on the misspecified model seems to be sufficiently

close to the true power curve.

3.2 Case 2: Equivalence trial

The second example is a two-arms, parallel group, randomized clinical trial that aims

to demonstrate the equivalence of two treatments. The distribution of the endpoint for

groups 1 and 2 are N(µ1, 1) and N(µ2, 1), respectively. For simplicity, the variance for each

group is also assumed to be known here. Let n, η, and C > 0 denote the sample size per

(a)
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Figure 1: Comparison of the true and probit model-based success probability curves. (a)

Results for case 1. Solid line: true power curve; dashed line: probit model-based power

curve. (b) Results for case 2. Solid line: true power curve; dashed line: probit model-

based power curve for Γ = {k|k = 5 + 5l ≤ 200, l = 0, 1, 2, . . .}; dotted-dashed line: probit

model-based power curve for Γ = {k|k = 50 + 5l ≤ 200, l = 0, 1, 2, . . .}.
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group, mean difference (µ2 −µ1), and equivalence margin, respectively. If the 100(1−α)%

confidence interval for η is contained within the interval [−C,C], equivalence is declared.

Thus, the probability that equivalence is established is given by

πn(γ) = max
[
0,Φ

{√
n/2(C − η)− z1−α/2

}
+ Φ

{√
n/2(C + η)− z1−α/2

}
− 1

]
.

We now set α = 0.05, η = C/4, and C is set such that πn(γ) = 0.8 for n = 100. We also

set Γ = {k|k = 5 + 5l ≤ 200, l = 0, 1, 2, . . .}. Under these conditions, βγ and π∗
n(βγ) are

calculated.

Figure 1(b) shows the relationship between n and πn(γ) (solid line) or π∗
n(βγ) (dashed

line). Here, the probability curve based on the misspecified model does not fit the true

curve well.

Since our motivation is to estimate np, it is sufficient to approximate the true curve

near the point of (np, p). Therefore, we narrow the range of Γ: Γ = {k|k = 50 + 5l ≤

200, l = 0, 1, 2, . . .}, then recalculate π∗
n(βγ) and plot it as the dotted-dashed line in Figure

1(b). The curve for the narrower Γ seems to fit the true curve sufficiently in the range of

50 ≤ n ≤ 200.

3.3 Range of Γ

From the previous results, it is suggested that the estimated curve based on the probit

model might not fit the true model well if the range of Γ is too wide. However, the

efficiency of the estimation would decrease if the range of Γ is too narrow. Therefore, we

investigate the optimal range of Γ for general situations on the basis of cases 1 and 2. We

denote Γ = {k|k = n1 + 5l ≤ n2, l = 0, 1, 2, . . .}. The parameter settings other than Γ and

p are the same as the settings described in Sections 3.1 and 3.2. Then, n1 and n2 are set

such that πn1 and πn2 become the specified values. We set p = 0.8 or 0.9, np = 100, and

πn1 = 0.2, 0.4, or 0.6. We also set πn2 ∈ [0.8, 1] for p = 0.8, and πn2 ∈ [0.9, 1] for p = 0.9.

For each parameter setting, the bias of the estimator for np based on the probit model is

evaluated in percentage terms: 100{np(βγ)− np}/np.

Figure 2 shows the bias evaluation results. The bias decreases as πn1 increases up to

p, and seems acceptable for all cases when πn1 = 0.6. For πn2 , we evaluate the results
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for πn1 = 0.6 only. The bias reaches a minimum around πn2 = 0.9 and 0.95 for p = 0.8

and 0.9, respectively. In practice, there would be few situations such that the success

probability curve is not smooth in the range of [0.6,0.95], other than for some exact test

methods. These results indicate that the settings of (πn1 , πn2) = (0.6, 0.9) for p = 0.8, and

(πn1 , πn2) = (0.6, 0.95) for p = 0.9 are reasonable. Although we evaluate the bias for fixed

np = 100, the above discussion for the percentage bias does not change if the value of np

changes, because only the scale of the horizontal axis of Figure 1 changes.

3.4 Proposed simulation procedure

On the basis of the above discussion, the proposed simulation procedure based on the probit

model is given as follows:

1. Set the number of simulations, m, and start the simulations from n = 10.
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Figure 2: Bias evaluation results based on the probit model for cases 1 and 2, p = 0.8, 0.9.

dotted-dashed line: πn1 = 0.2; dashed line: πn1 = 0.4; solid line: πn1 = 0.6.
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2. Determine the step size, s, for n as follows:

(a) If π̂10(m) > 0.5, then restart the simulations from n = 2 and set s = 1.

(b) If 0.3 < π̂10(m) ≤ 0.5, then set s = 2.

(c) If π̂10(m) ≤ 0.3, then set s = 5.

3. Conduct simulations, increasing n by s until π̂n(m) exceeds 0.9 (0.95) twice for p = 0.8

(0.9).

4. Set Γ = {k|k = n1+sl ≤ n2, l = 0, 1, 2, . . .}. Here, n1 is the smallest sample size such

that π̂n(m) > 0.6 and n2 is the sample size at which the simulations terminate.

5. Apply the probit model in formula (3) to the simulation data {n, yn(j)}, n ∈ Γ, j =

1, . . . ,m, and then obtain the MLE, β̂.

6. Obtain the estimated sample size as ⌈(zp − β̂0)
2/β̂2

1⌉.

Here, π̂n(m) is the simple MLE given in section 2.1. Step 2 (a) and (b) prevent the number

of members of Γ from becoming too small. One addable option is increasing the step size.

For example, if π̂100 < 0.3, then np would be larger than 300 and, therefore, it would be

better to increase s to 10 or 20.

Note that the proposed procedure can be applied with other statistical models such as

the logistic model or a nonparametric regression. However, in this study, we use the probit

model to maintain theoretical consistency. The determination of m is discussed in Sections

4 and 5.

4 Comparison of ordinary and proposed simulation

procedures

4.1 Theoretical comparison

In this section, we compare the performances of the ordinary and proposed simulation

procedures using the theoretical approach summarized in Section 2. We set the situation
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Table 1: Minimum number of simulations such that CV< 1% for the ordinary and proposed

simulation procedures.

Procedure np = 50 np = 200 np = 1000

Ordinary 12596 5175 2829

Proposed 1884 382 79

such that a two-sample t-test is conducted for two normal populations with known variance,

1. Then, πn is given by πn = Φ(z1−α/2 + (η/
√
2)
√
n), where η is the mean difference

between the two populations. We set the target power and the sample size per group,

p = 0.8 and np = 50, 200, 1000, respectively, and then, η is set such that πnp−0.5 = p = 0.8;

η =
√
2/(np − 0.5)(z1−α/2+zp). We use the condition that πnp−0.5 = p so that the estimator

based on the ordinary procedure has consistency. The range of m is from 100 to 10000.

The proposed procedure is defined for Γ = {k|n = n1 + 5l ≤ n2, l = 0, 1, 2, . . .}, where

n1 and n2 are the smallest sample sizes such that πn > 0.6 and πn > 0.9, respectively.

The ordinary procedure is given in Section 2.1. We calculate the bias for the ordinary

procedure as 100{E(n̂p(m))− np}/np and the coefficient of variation (CV) for the ordinary

and proposed procedures as 100
√
V ar{n̂p(m)}/np and 100

√
V ar{np(β̂)}/np, respectively.

Figure 3 shows the bias for the ordinary simulation procedure. For np > 200, the

size of the bias is larger than 3%, even when m = 1000. Figure 4 shows the CVs for the

ordinary and proposed procedures. Furthermore, the minimum numbers of simulations (m)

such that CV< 1% for the ordinary and proposed procedures are given in Table 1. The

precision of the proposed procedure is much higher than that for the ordinary procedure.

If we conduct simulations based on the proposed procedure for m = 1000, the variation

of the simulation results range by roughly ±2% with a 95% confidence level. If we want

to estimate the sample sizes based on the ordinary procedure with the same precision as

the proposed procedure, we would have to set m to be more than five times that of the

proposed procedure. The discrepancy in the precision between the two procedures becomes

larger as np increases.
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4.2 Simulation study

In this section, we discuss the designs and results of the two simulation studies we have

conducted.

Simulation 1. Simulation 1 aims to confirm the theoretical comparison results described

in Section 4.1 for finite m. We set np = 50 and m = 100, 300, 1000, 3000, and 10000.
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Figure 3: Relationship betweenm and the bias in the estimated sample size for the ordinary

simulation procedure. Solid line: np = 50; dashed line: np = 200; dotted-dashed line:

np = 1000. m is shown using the common logarithm scale.
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Figure 4: Relationship between m and the coefficient of variation of the estimated sample

size. Solid line: ordinary simulation procedure; dashed line: proposed simulation procedure.

m is shown using the common logarithm scale.
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The starting sample sizes for the ordinary and proposed procedures were both set to 10.

The other settings were the same as those in Section 4.1. For each value of m, the sample

sizes were estimated based on the ordinary and proposed procedures. We repeated these

processes 1000 times and calculated the mean and the standard deviation of the estimated

sample sizes as the simulated expectation and standard error (SE), respectively, for each

m and each procedure.

Figure 5 shows the simulation and the corresponding theoretical results. Although

there was a slight discrepancy between the simulation and the theoretical results for the

case where m = 100, the simulation results were sufficiently close to the theoretical results

for almost all the situations. On the other hand, the precision for the ordinary procedure

was much lower than that of the proposed procedure, and the bias for small m was large,

which were the results predicted by the theoretical comparison.

Simulation 2. Simulation 2 compares the two simulation procedures in the complicated

setting where no sample size formula is available and the computational cost is high. The
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Figure 5: Results of simulation 1. Error bar plot: mean ± standard deviation for simulated

sample size estimates; dotted line: theoretical expectation for estimated sample size; gray

area: range of theoretical mean ± theoretical SE. Further, m is shown using the common

logarithm scale.
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Table 2: Estimated sample size for Simulation 2. Cor: correlation structure, q: missing

probability at last occasion, ρ: correlation parameter for specified correlation structure, d:

efficacy parameter.

Settings Ordinary procedure Proposed procedure

m m

Cor q ρ d 300 1000 3000 300 1000 3000

AR(1) 0.2 0.4 0.3 284 294 301 296 302 301

AR(1) 0.2 0.4 0.4 161 167 174 168 170 170

AR(1) 0.2 0.4 0.5 106 110 112 110 111 109

AR(1) 0.2 0.8 0.3 214 223 223 228 224 223

AR(1) 0.2 0.8 0.4 122 125 127 126 129 127

AR(1) 0.2 0.8 0.5 84 78 83 84 82 82

AR(1) 0.4 0.4 0.3 506 532 527 540 542 542

AR(1) 0.4 0.4 0.4 291 299 305 305 306 306

AR(1) 0.4 0.4 0.5 184 197 196 200 197 199

AR(1) 0.4 0.8 0.3 347 350 361 365 366 364

AR(1) 0.4 0.8 0.4 202 206 207 212 208 209

AR(1) 0.4 0.8 0.5 132 137 136 136 136 136

CS 0.2 0.4 0.3 229 245 247 247 244 245

CS 0.2 0.4 0.4 134 140 138 139 141 141

CS 0.2 0.4 0.5 84 88 94 90 92 90

CS 0.2 0.8 0.3 96 101 101 99 103 103

CS 0.2 0.8 0.4 61 60 60 58 60 59

CS 0.2 0.8 0.5 41 40 41 39 40 40

CS 0.4 0.4 0.3 390 422 424 428 433 433

CS 0.4 0.4 0.4 222 241 247 244 246 246

CS 0.4 0.4 0.5 160 156 157 162 161 161

CS 0.4 0.8 0.3 158 171 172 173 173 174

CS 0.4 0.8 0.4 96 101 104 102 101 101

CS 0.4 0.8 0.5 66 66 69 67 67 68

Table 3: Computational time (hour) for Simulation 2.

Procedure m = 300 m = 1000 m = 3000

Ordinary 5.1 19.6 64.3

Proposed 2.9 10.7 33.2

planned trial design was randomized, two-group, placebo-controlled, parallel design. The

efficacy endpoints were observed at baseline (j = 0) and the post-treatment four occasions
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(j = 1, 2, 3, 4), where the primary occasion was the last one. The means for the placebo

and test drug groups were assumed as {0, 0.05, 0.10, 0.15, 0.20} and {0, (0.2− d)/4, 2(0.2−

d)/4, 3(0.2 − d)/4, 0.2 − d}, respectively (d = 0.3: minimum requirement, 0.4: moderate,

0.5: desirable). The standard deviation for all groups and occasions were set as 1. We

set the correlation structure for occasions as the compound symmetry (CS) and first-order

autoregression (AR(1)) structures, where the values of the correlation parameter, ρ, were

set as 0.4 or 0.8. The missing structure was set as monotone and missing at random.

The missing probability was modeled by logit{Pr(Rj = 1)} = Int + xj−1, where xj was

the value of the endpoint at the jth occasion and Rj was the indicator random variable,

such that Rj = 1 when xj was missing, otherwise, Rj = 0 (j = 1, 2, 3, 4). We also set

R0 = 0 (i.e., no missing values at the baseline). Then, Int was calculated such that the

missing proportion of the combined group at the last occasion became 100q% (q = 0.2,

0.4). The outcome at the last occasion was analyzed using an analysis of covariance,

including the treatment group as a factor and the baseline observation as a covariate. The

missing values were imputed by the control-based pattern imputation procedure (Ratitch
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Figure 6: Results of simulation 2 (correlation structure: AR(1), missing probability (q):

0.4, correlation parameter (ρ): 0.4, efficacy parameter (d): 0.3). Error bar plot: mean ±

standard deviation for simulated sample size estimates. Solid line: ordinary simulation pro-

cedure; dashed line: proposed simulation procedure. m is shown at the common logarithm

scale.
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et al., 2013) with an imputation number of 10. We calculated the sample sizes for the 24

settings of the primary analysis (correlation structure: {CS, AR(1)} , missing probability:

q = 0.2, 0.4, correlation parameter: ρ = 0.4, 0.8, efficacy: d = 0.3, 0.4, 0.5) using the

ordinary and proposed simulation procedures for m = 300, 1000, and 3000. The step size

for the ordinary procedure was set as 10 when π̂n(m) ≤ 0.3, 5 when 0.3 < π̂n(m) ≤ 0.5, and

1 when π̂n(m) ≥ 0.5. We set the target power as p = 0.8. We measured the simulation

run-time of the primary analysis for each value of m and each procedure (computation

environment: CPU: Intel(R) Xeon(R) CPU E5-2637 v3 @ 3.50 GHz ; memory: 32.0GB,

Software: SAS(R) 9.4; MI procedure). These simulations were conducted in parallel with

10 CPU cores and the computational time was calculated as the summation of the 10

measurements.

Furthermore, we conducted 100 simulations (e.g., 3000×100 times for m = 3000) for the

above setting, which provided the maximum sample size. Then, we calculated the means

and standard deviations of the 100 estimated sample sizes for each procedure and each value

of m in order to evaluate the accuracy and precision of the two simulation procedures.

Table 2 shows the estimated sample size for each value of m and simulation procedure.

The proposed procedure gave almost same estimated values for all values of m, while the

sample sizes from the ordinary procedure for m = 300 were unstable and would be seriously

biased, especially when the estimated value was large. Table 3 shows the computation time

for Simulation 2. The computation time for the ordinary method was about twice as long

as that of the proposed procedure for the same values of m. Figure 6 shows the simulation

results for the 100 estimated sample sizes for the setting that gave the maximum sample

size (correlation structure: AR(1), q = 0.4, ρ = 0.4, d = 0.3). The mean sample sizes for

the ordinary procedure were considered to be underestimated, even for m = 3000. The

precision of the proposed procedure for m = 100 was higher than that of the ordinary

procedure for m = 3000. This suggests that the accuracy and precision of the ordinary

procedure were much lower than those of the proposed procedure.
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5 Discussion

In this paper, we summarized the theoretical aspect of the sample size calculation based

on statistical simulations, and proposed a simulation procedure based on the probit model.

It was found that the proposed procedure allowed us to estimate the required sample size

with higher accuracy and precision than the ordinary simulation procedure even when the

probit model was not the true structure of the power curve. Our simulation also showed

that the computational time for sample size calculation with our proposed procedure was

much shorter than that for the ordinary procedure. Especially when np was moderate to

large, the time for the proposed procedure would become over 10 times shorter than that

for the ordinary procedure because the precision of the ordinary procedure for m = 3000

is lower than that of the proposed procedure for m = 300 from the results for np = 200 in

Figure 4.

Now, we discuss the setting of the simulation size, m. If we set m = 1000, the SE for

estimated sample size would become lower than max(1, 0.01np) for the proposed procedure,

and such precision would be acceptable when we evaluate and compare many scenarios

for planning a clinical trial. When the objective is that multiple scenarios are roughly

compared, it might be sufficient to setm = 200–500 because sample size would be estimated

with little bias and about 5% precision. On the other hand, the sample size estimator based

on the ordinary simulation procedure might be biased even if m ≥ 3000 especially for large

np. When we calculate the sample size for the main scenario in the protocol description, it

would be desirable to set an adequately large value of m (e.g., m = 10000).

Although we applied only one ordinary procedure, some other “ordinary” procedures

might be available. For example, the step size can be changed, the simulation can be started

from large sample size and stepped down, and the bisection method would be available.

Nevertheless, our proposed approach would still have the substantial advantages of high

precision and accuracy due to the statistical model fitting over other ordinary algorithm-

based approaches because the statistical model based procedure uses the simulation data

efficiently. These advantages would also result in the reduction of the computation time.

As our manuscript provides only the framework of the simulation procedure based on

some statistical models, the proposed procedure may still have room for improvement. For

18



example, Γ and m can be set more adaptively in response to the intermediate simulation

results. Also, our proposed procedure assumes equal sample sizes for multiple groups. We

can introduce an allocation ratio parameter for considering unequal sample size in our pro-

cedure. This proposed procedure can also be applied to calculate the effect size such that

the success probability for a fixed sample size attains a fixed level. While there are less

opportunities where the effect size is calculated, one might want to calculate the detectable

effect size for a fixed sample size. Although we only focused on statistical hypothesis test

with significance level of 0.05 in sections 3 and 4, this procedure would be useful for situ-

ations where the success probability function for amount of information, n, shows smooth

and monotone increasing curve at least for the range of p ∈ [0.6, 1]. Such situations would

be very common. Although we only focused on the probit model, simulation procedures

based on some other statistical models such as semiparametric models would be the subject

of future investigation.

Nevertheless, as our proposed simulation procedure applying statistical models to the

simulation data would help to reduce the computational time required to conduct clini-

cal trial simulations dramatically, it contributes to the cost reduction of the clinical trial

designing and/or the ease of wide-range parameter settings for the clinical trial simulations.
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