
JSIAM Letters Vol.9 (2017) pp.17–20 c⃝2017 Japan Society for Industrial and Applied Mathematics J S I A MLetters

Improving the numerical stability of the Sakurai-Sugiura

method for quadratic eigenvalue problems

Hongjia Chen1, Yasuyuki Maeda1, Akira Imakura1, Tetsuya Sakurai1,2 and Françoise Tisseur3

1 Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8573, Japan

2 CREST, Japan Science and Technology Agency, 4-1-8 Hon-machi, Kawaguchi, Saitama 332-
0012, Japan

3 School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

E-mail chen mma.cs.tsukuba.ac.jp

Received September 30, 2016, Accepted December 2, 2016

Abstract

The Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR method) finds the eigen-
values in a certain domain of the complex plane of large quadratic eigenvalue problems (QEPs).
The SS-RR method can suffer from numerical instability when the coefficient matrices of the
projected QEP vary widely in norm. To improve the numerical stability of the SS-RR method,
we combine it with a numerically stable eigensolver for the small projected QEP. We analyze
the backward stability of the proposed method and show, through numerical experiments,
that it computes eigenpairs with backward errors that are smaller than those computed by
the SS-RR method.
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1. Introduction

We consider quadratic eigenvalue problems (QEPs)

Q(λ)x = (λ2A2 + λA1 +A0)x = 0, (1)

where A2, A1, A0 ∈ Cn×n\{O}, and λ ∈ C and x ∈
Cn\{0} are eigenvalues and their associated eigenvec-
tors.
QEPs appear naturally in modal analysis of physi-

cal structures [1]. In certain applications such as struc-
tural dynamics and structural-acoustic interactions, only
a partial set of eigenpairs (λ,x) is desired.
The Sakurai-Sugiura method has been proposed as

an efficient method for computing a subset of eigenpairs
of generalized eigenvalue problems [2] and of quadratic
eigenvalue problems [3]. The Sakurai-Sugiura method
with Rayleigh-Ritz procedure (SS-RR method) can ex-
tract eigenvalues inside a Jordan curve Γ using a sub-
space constructed by a contour integral approach. In the
SS-RR method, Q(λ) is projected into a quadratic ma-
trix polynomial

R(λ) = V HQ(λ)V = λ2R2 + λR1 +R0 (2)

of smaller dimension, where the matrix V ∈ Cn×m,
m ≪ n, has orthonormal columns consisting of basis vec-
tors for the subspace constructed by the SS-RR method.
Then the pair (λ̂, V ŷ) is taken as approximate eigenpair

for Q(λ), where (λ̂, ŷ) is an approximate eigenpair of
R(λ). However, unless special care is taken when solv-
ing the projected QEP R(λ)y = 0, the SS-RR method
can suffer from numerical instability when the coefficient
matrices Ri, i = 0, 1, 2, of R(λ) vary widely in norm (for
example when ∥R0∥2 ≫ ∥R2∥2 and ∥R2∥2 ≫ ∥R1∥2).

Our aim is to show that solving the projected QEP (2)
with a numerically stable eigensolver is crucial for the
numerical stability of the SS-RR method.
The remainder of this paper is organized as follows.

In Section 2, we give a brief description of the SS-RR
method. In Section 3, we describe an eigensolver for the
complete solution of QEPs and discuss its backward sta-
bility. In Section 4, we investigate the backward stability
of the SS-RR method. In Section 5, we present numer-
ical experiments that confirm our results. Finally, our
conclusions are presented in Section 6.

2. The SS-RR method for QEPs

The SS-RR method computes eigenvalues located in-
side a Jordan curve Γ as follows. Here, we assume that
Q(λ) has no eigenvalues on Γ. Given two positive inte-
gers K and L, define

S = [S0, . . . , SK−1] ∈ Cn×KL,

where

Sk =
1

2πi

∫
Γ

gk(z)Q(z)−1Udz ∈ Cn×L, (3)

with gk a k-th degree polynomial function and U an
n × L matrix of full rank. Since the target eigenvectors
of Q(λ) belong to span{S}, the target eigenpairs of Q(λ)
can be computed by the Rayleigh-Ritz procedure with
projection onto span{S}.
Numerical quadrature is used to approximate the con-

tour integral in (3). The approximation of Sk is then
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Algorithm 1 SS-RR method

Input: N,K,L ∈ N+, U ∈ Cn×L, zp, ωp, p = 1, . . . , N , a
Jordan curve Γ, and a quadratic matrix polynomial
Q(λ).

Output: λ̂j , x̂j , j = 1, . . . , n(Γ), where n(Γ) is the
number of eigenvalues of Q(λ) inside Γ.

1: Compute Q(zp)
−1U , p = 1, . . . , N .

2: Compute Ŝk, k = 0, . . . ,K − 1 using (4).

3: Compute the singular value decomposition Ŝ =
V̂ Σ̂ŴH, where Ŝ = [Ŝ0, . . . , ŜK−1].

4: Set V = V̂ (:, 1 : m), where m is the numerical rank

of Ŝ.
5: Compute the eigenpairs (λ̂j , ŷj), j = 1, . . . ,m of

R(λ) = V HQ(λ)V .

6: Extract the n(Γ) eigenvalues λ̂j , j = 1, . . . , n(Γ) that
are inside Γ and set x̂j = V ŷj , j = 1, . . . , n(Γ).

given by

Sk ≈ Ŝk =

N∑
p=1

ωpgk(zp)Q(zp)
−1U, (4)

where zp and ωp, p = 1, . . . , N , are quadrature points
and their associated weights.
A low-rank approximation of Ŝ = [Ŝ0, . . . , ŜK−1] is

constructed by computing the singular value decompo-
sition of Ŝ as

Ŝ = V̂ Σ̂ŴH ≈ V ΣWH,

where V = V̂ ( : , 1: m) and m is the numerical rank of

Ŝ. The matrix V is then used to reduce Q(λ) into R(λ)
as in (2). The eigenpairs of Q(λ) are approximated by

(λ̂j , x̂j) = (λ̂j , V ŷj), j = 1, . . . ,m,

where (λ̂j , ŷj), j = 1, . . . ,m are the computed eigenpairs
of R(λ).
The main steps of the SS-RR method are summarized

in Algorithm 1.

3. Eigensolvers for the complete solution

of QEPs

We now discuss why the numerical solution of the
QEP in step 5 requires special attention. The standard
way of solving small to medium size dense QEPs,

R(λ)y = (λ2R2 + λR1 +R0)y = 0, (5)

is via linearization. We assume R2, R1, R0 ∈
Cm×m\{O}. This consists of rewriting (5) as a
generalized eigenvalue problem (GEP) L(λ)v = 0 of
twice the dimension, where for example,

L(λ) = λ

[
R2 O
O I

]
+

[
R1 R0

−I O

]
, v =

[
λy
y

]
then solve the GEP with the QZ algorithm, and finally
recover the eigenvectors y of R(λ) from the eigenvectors
v of L(λ).
Despite the fact that the QZ algorithm is backward

stable for GEPs, it can be backward unstable for QEPs,

in particular when the norms of the coefficient matri-
ces of R(λ) vary widely [4]. As a result, the computed
eigenpairs of Q(λ) may not be the exact eigenpairs of a
nearby quadratic.
Scaling of the eigenvalue parameter (e.g., λ = γµ, µ

being the new eigenvalue) has been shown to improve
the backward stability of the solution process [5–7].
Such scaling has been implemented in the eigensolver
quadeig [8]. The latter offers three types of eigenvalue
parameter scalings:

• Fan, Lin, and Van Dooren scaling:
γFLV =

√
∥R0∥2/∥R2∥2,

• tropical scaling with largest root,
γ+
trop = ∥R1∥2/∥R2∥2,

• tropical scaling with smallest root,
γ−
trop = ∥R0∥2/∥R1∥2.

The Fan, Lin, and Van Dooren scaling [7] is employed
by default in quadeig for QEPs that are not too heavily
damped, i.e., when

∥R1∥2 ≤
√
∥R2∥2∥R0∥2. (6)

In that case, an eigenpair (λ̂, ŷ) computed by quadeig is
guaranteed to have a small backward error. Recall from
[4] that the backward error of an approximate eigenpair

(λ̂, ŷ) of R(λ) in (2) can be defined by

η(R, λ̂, ŷ) := min{ϵ : (R(λ̂) + ∆R(λ̂))ŷ = 0,

∥∆Ri∥2 ≤ ϵ∥Ri∥2, i = 0, 1, 2},

where ∆R(λ) = λ2∆R2+λ∆R1+∆R0 is a perturbation
of R(λ).
For heavily damped QEPs, it follows from [9, Thm. 2]

that when R2 and R1 are well conditioned, and
γ−
trop/γ

+
trop is small enough then there are precisely m

eigenvalues of the m × m quadratic matrix polynomial
R(λ) with moduli of the order of γ+

trop. Similarly, when
R1 and R0 are both well conditioned, the moduli of the
m smallest eigenvalues of R(λ) are close to the smallest
tropical root γ−

trop. Then quadeig with tropical scaling
with largest root (respectively smallest root) guarantees

to return computed eigenpairs (λ̂, ŷ) with small back-

ward errors for those eigenvalues λ̂ of moduli close to
γ+
trop (respectively, γ−

trop).
Based on the above comments, we propose to use

quadeig in step 5 of Algorithm 1 to solve the projected
QEP R(λ)y = 0. We use the Fan, Lin and Van Dooren
scaling for not too heavily damped QEPs, i.e., when
the matrix coefficients of R(λ) satisfy (6). For heavily
damped QEPs, we use tropical scaling: we choose γ+

trop

if we are interested in the eigenvalues of large magnitude
and γ−

trop otherwise.
Note that we could have used the backward stable

eigensolver for QEPs presented in [10], but the latter is
not freely available unlike quadeig.

4. Analysis of the backward errors of

eigenpairs computed by Algorithm 1

In this section, we investigate why the use of a back-
ward stable eigensolver in step 5 of Algorithm 1 improves
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the backward stability of the SS-RR algorithm. We will
make use of the explicit and computable expression for
the backward error η(R, λ̂, ŷ) given in [4]:

η(R, λ̂, ŷ) =
∥R(λ̂)ŷ∥2

(
∑2

i=0 |λ̂|i∥Ri∥2)∥ŷ∥2
. (7)

Let (λ̃, ỹ) and (λ̂, ŷ) be approximations to the same

eigenpair (λ,y) of R(λ) in (2). Assume that (λ̃, ỹ) com-

puted by a stable eigensolver and (λ̂, ŷ) computed by an
unstable eigensolver are such that

η(R, λ̂, ŷ) ≥ η(R, λ̃, ỹ). (8)

In what follows we identify a sufficient condition under
which (8) implies that

η(Q, λ̂, V ŷ) ≥ η(Q, λ̃, V ỹ). (9)

We will need the following lemma.

Lemma 1 Let (λ̂, ŷ) be an approximate eigenpair of
R(λ) in (2) with ŷ normalized so that ∥ŷ∥2 = 1. Then

for the approximate eigenpair (λ̂, V ŷ) of Q(λ) we have

L1(λ̂)η(R, λ̂, ŷ) ≤ η(Q, λ̂, V ŷ) ≤ L2(λ̂, ŷ)η(R, λ̂, ŷ),

where

L1(λ̂) :=
(
∑2

i=0 |λ̂|i∥V HAiV ∥2)
(
∑2

i=0 |λ̂|i∥Ai∥2)
,

L2(λ̂, ŷ) :=
∥Q(λ̂)V ŷ∥2
∥R(λ̂)ŷ∥2

.

Proof This follows directly from (7) and ∥V ŷ∥2 =

∥ŷ∥2 = 1. Note that ∥R(λ̂)ŷ∥2 ̸= 0 since (λ̂, ŷ) is not
an eigenpair of R(λ).

(QED)

Based on Lemma 1, we have the following theorem.

Theorem 2 Let (λ̃, ỹ) and (λ̂, ŷ) be approximations to
an eigenpair (λ,y) of the QEP R(λ) in (2). Let α ≥ 1 be

such that η(R, λ̂, ŷ) = αη(R, λ̃, ỹ) and let the functions
L1, L2 be defined as in Lemma 1. If

κ := α
L1(λ̂)

L2(λ̃, ỹ)
≥ 1 (10)

then the inequality (9) holds for the approximate eigen-

pairs (λ̃, V ỹ) and (λ̂, V ŷ) of Q(λ).

Proof Based on Lemma 1, we have

η(Q, λ̂, V ŷ) ≥ L1(λ̂)η(R, λ̂, ŷ)

= L1(λ̂)
η(R, λ̂, ŷ)

η(R, λ̃, ỹ)
η(R, λ̃, ỹ)

≥ α
L1(λ̂)

L2(λ̃, ỹ)
η(Q, λ̃, V ỹ)

= κη(Q, λ̃, V ỹ).

The inequality (9) holds because κ ≥ 1.
(QED)

Let us examine the condition in (10). It is easy to

show that L1(λ̂) ≤ 1 and that L2(λ̃, ỹ) ≥ 1 so that

L1(λ̂)/L2(λ̃, ỹ) ≤ 1. But if the projection V does not
change much the norms of the coefficient matrices of
Q(λ), that is, ∥Ai∥2 ≈ ∥V HAiV ∥2 then L1(λ̂) ≈ 1. Also,
if the norm of the residual for the approximate eigenpair
(λ̃, ỹ) ofR(λ) is small then we can expect the norm of the

residualQ(λ̃)V ỹ to be small as well so that L2(λ̃, ỹ) ≈ 1.
Since α ≥ 1 then (9) is likely to hold. So what Theorem 2
says is that if we can improve the backward error for the
approximate eigenpairs of R(λ) then we can improve the
backward error for the approximate eigenpairs of Q(λ).
This justifies the use of a numerically stable eigensolver
in step 5 of Algorithm 1.

5. Numerical experiments

We now compare the numerical stability of the SS-
RR method with either quadeig and the choice of scal-
ing discussed in Section 3 or polyeig to perform step 5
of Algorithm 1. The MATLAB function polyeig solves
polynomial eigenvalue problems of arbitrary degree and
hence is more general than quadeig. However, it does
not employ any scaling and can suffer from numerical
instability. All the computations are performed using
MATLAB 2015.
The test problems listed in Table 1 are QEPs belong-

ing to the collection of nonlinear eigenvalue problems
NLEVP [11] and are selected so as to have large vari-
ations in the norms of their coefficient matrices. The
mod−spring and mod−sleeper problems correspond to
the spring and sleeper problems in [11] but with the
damping matrix A1 multiplied by 102.
For each problem, the Jordan curve Γ is a circle of

center c and radius r, whose values are given in Table 2.
For the parameters N,K,L we use N = 32, K = 8 and
L = 16. For the quadrature points and corresponding
weights we use

zp = c+ r exp

(
2πi(p− 1/2)

N

)
,

ωp =
(zp − c)

N
, p = 1, . . . , N.

As shown in Table 3, the norms of the coeffi-
cient matrices of the projected problems vary widely.
The projected damped−beam and wiresaw2 problems
are not too heavily damped since ∥V HA1V ∥22 ≤
∥V HA2V ∥2∥V HA0V ∥2. Hence, for these two problems,
quadeig is called with the Fan, Lin and Van Dooren scal-
ing γFLV . The projected mod−spring and mod−sleeper

are overdamped. Since we are interested in computing
eigenvalues of magnitude around 103 for these two prob-
lems (see Table 2), quadeig is called with tropical scaling
with largest root γ+

trop (Table 4 shows that γ+
trop ≈ 103

for both problems). With this choice of scalings, quadeig

guarantees to return eigenpairs (λ̃, ỹ) inside Γ with back-

ward errors η(R, λ̃, ỹ)) <∼ nu, where u is the machine
precision. For these problems, polyeig returns eigen-

pairs (λ̂, ŷ) with η(R, λ̂, ŷ)) ≫ nu so that (8) holds.
Table 4 displays the smallest value κmin of κ in

(10), where λ̂ corresponds to eigenvalues computed by

polyeig and (λ̃, ỹ) are the corresponding eigenpairs
computed by quadeig. Table 4 shows that the assump-
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Table 1. List of test problems.

Problem n applications

damped−beam 400 vibration analysis
wiresaw2 500 vibration analysis of a wiresaw

mod−spring 200 damped mass-spring system
mod−sleeper 1000 oscillations of a rail track

Table 2. Parameters for the SS-RR method.

Problem center c radius r #eigs

damped−beam −2 + 2.6× 106i 3× 105 22
wiresaw2 1.5× 103i 40 26

mod−spring −5000 50 14
mod−sleeper −1650 15 24

Table 3. Norm of the coefficient matrices of R(λ) = V HQ(λ)V .

Problem ∥V HA0V ∥2 ∥V HA1V ∥2 ∥V HA2V ∥2
damped−beam 1010 2× 10−1 2× 10−3

wiresaw2 106 2× 101 5× 10−1

mod−spring 25 5× 103 1
mod−sleeper 13 2× 103 1

Table 4. Minimum value of κ in (10), type of scaling γ used with
quadeig and its value.

Problem κmin
Parameter scaling

γ value

damped−beam 1.4 γFLV 3× 106

wiresaw2 1× 103 γFLV 2× 103

mod−spring 6× 102 γ+
trop 5× 103

mod−sleeper 4× 103 γ+
trop 2× 103

Table 5. Largest backward errors of eigenpairs.

Problem
SS-RR with

polyeig quadeig nu

damped−beam 3× 10−9 2× 10−13 9× 10−14

wiresaw2 6× 10−11 8× 10−15 1× 10−13

mod−spring 4× 10−10 2× 10−15 4× 10−14

mod−sleeper 2× 10−10 5× 10−15 2× 10−13

tion κ > 1 is satisfied for all the problems. It then follows
from Theorem 2 that the inequality (9) holds between
eigenpairs from SS-RR with quadeig and SS-RR with
polyeig. This is confirmed by the backward error results
presented in Table 5, Fig. 1, and Fig. 2. They also show
that the SS-RR method with quadeig and appropriate

scaling computes eigenpairs (λ̃, V ỹ) with backward er-

rors η(Q, λ̃, V ỹ)) <∼ nu, which is the best we can expect.

6. Conclusion

We have shown that to improve the backward stabil-
ity of the SS-RR method, it is crucial to combine it with
a backward stable algorithm for the complete solution
of the projected QEP. In future work, we plan to inves-
tigate the inclusion of scaling techniques in other types
of Sakurai-Sugiura methods.
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Fig. 1. Backward errors for the damped−beam problem.
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Fig. 2. Backward errors for the mod−sleeper problem.
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