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Social stress can lead to the development of psychological problems ranging from

exaggerated anxiety and depression to antisocial and violence-related behaviors.

Increasing evidence suggests that the immune system is involved in responses to

social stress in adulthood. For example, human studies show that individuals with

high aggression traits display heightened inflammatory cytokine levels and dysregulated

immune responses such as slower wound healing. Similar findings have been observed in

patients with depression, and comorbidity of depression and aggression was correlated

with stronger immune dysregulation. Therefore, dysregulation of the immune system

may be one of the mediators of social stress that produces aggression and/or

depression. Similar to humans, aggressive animals also show increased levels of

several proinflammatory cytokines, however, unlike humans these animals are more

protected from infectious organisms and have faster wound healing than animals with low

aggression. On the other hand, subordinate animals that receive repeated social defeat

stress have been shown to develop escalated and dysregulated immune responses

such as glucocorticoid insensitivity in monocytes. In this review we synthesize the

current evidence in humans, non-human primates, and rodents to show a role for the

immune system in responses to social stress leading to psychiatric problems such as

aggression or depression. We argue that while depression and aggression represent

two fundamentally different behavioral and physiological responses to social stress,

it is possible that some overlapped, as well as distinct, pattern of immune signaling

may underlie both of them. We also argue the necessity of studying animal models of

maladaptive aggression induced by social stress (i.e., social isolation) for understanding

neuro-immune mechanism of aggression, which may be relevant to human aggression.

Keywords: aggression, social stress, immune system, depression, humans, animal models

INTRODUCTION: INTERPLAY BETWEEN IMMUNE SYSTEM AND
CENTRAL NERVOUS SYSTEM

The immune system is the body’s primary active defense against physical injury and pathogens.
These insults cause activation of leukocytes that produce cytokines to promote multiple kinds
of inflammatory responses. Cytokines are known to produce an array of sickness behaviors
such as reductions in activity, food intake, and social interaction, along with increased sleep
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and anhedonia (Larson and Dunn, 2001; Dantzer et al., 2008).
Psychological stress can trigger cytokine release, and growing
evidence has shown an important role for the immune system in
regulating negative emotional states as well as personality (Black,
2003; Zalcman and Siegel, 2006; Dantzer et al., 2008; Koolhaas,
2008; Maes et al., 2009; Réus et al., 2015).

To produce deleterious behavioral effects in response to stress,
peripheral cytokines must enter and act upon brain circuitry
controlling mood and emotion (Menard et al., 2017b). There
are two main pathways for peripheral cytokines to affect the
central nervous system (CNS): the neural pathway via vagus
nerve and the humoral pathway via crossing of the blood brain
barrier (for more detail, see review from Hodes et al., 2015;
Pfau and Russo, 2015). Within the CNS, activated microglial
cells, astrocytes, neurons, and endothelial cells have all been
shown to produce several cytokines and express many cytokine
receptors (Hopkins and Rothwell, 1995; Allan et al., 2005).
Thus, brain cytokines have important roles beyond inflammatory
processes and can act as neuromodulators to regulate neuronal
transmission and plasticity. For example, one of the major
proinflammatory cytokines, interleukin-1β (IL-1β), has been
shown to increase metabolism of norepinephrine and serotonin
(5-HT) (Dunn, 1992; Linthorst et al., 1994, 1995; Zalcman
et al., 1994; Brebner et al., 2000; Anisman et al., 2008). In
addition, IL-1β increases the production of corticotrophin-
releasing factor (CRF) from the hypothalamus and therefore
activates the hypothalamus-pituitary-adrenal (HPA) stress axis
(Berkenbosch et al., 1987; Linthorst et al., 1994, 1995; Angeli
et al., 1999). IL-1 activates the nuclear factor kappa B
(NF-κB) signaling pathway (Osborn et al., 1989), which is well-
established to regulate synaptic plasticity (Schneider et al., 1998;
Russo et al., 2009; Boersma et al., 2011; Christoffel et al.,
2011).

The immune system can also be modulated by the CNS
via top-down mechanisms involving nervous and endocrine
systems. For example, stress or negative emotions such as
anger activates both the HPA axis and the sympathetic-
adrenal-medullary (SAM) axis to induce the release of pituitary
and adrenal hormones such as adrenocorticotropic hormone,
glucocorticoids, prolactin, growth hormone, noradrenaline, and
adrenaline. These hormones directly modulate the activity of
many immune cells, which express a variety of hormone
receptors (for review see Glaser and Kiecolt-Glaser, 2005). For
example, glucocorticoids strongly suppress immune cells, and
they are widely used in the treatment of inflammatory and
autoimmune diseases (Boumpas et al., 1993). Glucocorticoids
inhibit the production of pro-inflammatory cytokines by acting
directly on glucocorticoid receptors on leukocytes (Lew et al.,
1988; Angeli et al., 1999; Dhabhar and McEwen, 1999)
(Box 1). The sympathetic nervous system, which regulates
physical responses to fight/flight situations, also innervates
the hematopoietic stem cell niche located within lymphoid
organs and bone marrow to modulate leukocyte differentiation
and release through a β-adrenergic receptor mechanism
(Elenkov et al., 2000; Bierhaus et al., 2003; Tan et al., 2007)
(Box 1).

AGGRESSION AND THE IMMUNE SYSTEM
IN HUMANS

Aggressive behavior in humans is complex in its expression
(i.e., physical and verbal) as well as its causes (i.e., provoked
emotion) and consequences on victims (i.e., trauma induced
psychopathology) (Box 2). Several mental disorders, such as
schizophrenia, psychosis, antisocial personality disorder, impulse
control disorder, depression, attention deficit disorder, and
autism spectrum disorders accompany escalated forms of
aggression toward others (violence) or one’s self (self-mutilation)
(Connor et al., 2002; Raine et al., 2002; Volavka et al., 2005;
Comai et al., 2012; Matson and Jang, 2014; Das et al., 2016).

Increasing evidence shows that there is an important
relationship between aggression traits and the immune system.
For example, it has been reported that immunotherapy to
treat patients with hepatitis C by chronic administration of
interferon alpha (IFN-α) increases irritability and anger/hostility
in some patients (McHutchison et al., 1998; Kraus et al.,
2003; Lotrich et al., 2013). Also, hostile marital relationships
are associated with slower wound healing and dysregulated
cytokine production at wound sites (Kiecolt-Glaser et al.,
2005). Pathological levels of aggression in intermittent
explosive disorder (IED) or psychosis appear to be linked
to heightened proinflammatory cytokines (Coccaro et al.,
2014; Das et al., 2016). A similar relationship is observed
in healthy individuals with high aggression as a personality
trait. As summarized in Table 1, these individuals consistently
showed higher circulating cytokines such as interleukin-6
(IL-6) and tumor necrosis factor-α (TNF-α), as well as C-
reactive protein (CRP) than non-aggressive individuals (Box 3).
However, these correlations varied depending on the subtype
of aggression scale used. In one recent study, it was shown
that the behavioral, but not cognitive nor affective, subscale
of hostility positively correlated with IL-6 and CRP (Marsland
et al., 2008). Therefore, elevations in basal levels of circulating
proinflammatory cytokines, i.e., IL-6 or CRP, appear to be
related to the behavioral aspect of aggression traits. Whether this
relationship is direct or indirect must be addressed using animal
models.

High states of anger (acute episodes of anger) also induce
proinflammatory cytokine release. Marital couples show
increases in plasma IL-6 and TNF-α after conflict interactions
compared to after supportive interactions, and these increases
in cytokines were larger in couples who showed higher hostile
behaviors during their conflict interactions (Kiecolt-Glaser et al.,
2005). Interestingly, the expectation of an aggressive encounter
can also increase circulating proinflamatory cytokine levels as
well. Rugby athletes displayed increased IL-1β levels in their
blood 2 h before a match, when state anger is high, compared
to basal levels (Pesce et al., 2013). Furthermore, IL-1β levels
2 h before the match were positively correlated to anger score.
Thus, both an aggressive experience and an expectation of an
aggressive event are accompanied by state-related increases
in inflammatory cytokines. It is possible that the readiness
to provoke anger and aggressive behavior depends on these
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BOX 1 | Biphasic effects of stress on immune response.

Experiences leading to activation of the autonomic nervous system and HPA axis, as well as other mediators, have biphasic effects on immune responses. One

example of this is seen with delayed type hypersensitivity (DTH), an antigen-specific cell-mediated immune response, where acute stress enhances the DTH response

while chronic stress has an immunosuppressive effect on the DTH response (Dhabhar and McEwen, 1999). Immune cells “move to their battle stations” and traffic

via the circulation to places in the body where they can fight an infection or heal a wound (Dhabhar et al., 2012). Besides adrenaline and cortisol as mediators of this

trafficking, IFN-γ, and chemokines are involved (Dhabhar et al., 2000, 2010). IFN-γ plays a role in short-term stress induced immune-enhancement of cell-mediated

immunity (Dhabhar et al., 2000), the primary acquisition of immune memory (Dhabhar and Viswanathan, 2005), and in anti-tumor immunity (Dhabhar et al., 2010).

However, the actions of IFN-γ may largely come into play after leukocytes have been trafficked to potential sites of immune activation by corticosterone, epinephrine,

and norepinephrine (Dhabhar et al., 2012). Parasympathetic and sympathetic activation have synergistic and somewhat opposing effects on immune activation;

while activation of the sympathetic response increases inflammatory cytokine production, activation of the parasympathetic response has anti-inflammatory effects

(Borovikova et al., 2000; Bierhaus et al., 2003; Matteoli et al., 2014).

BOX 2 | Aggression study in human and animal models.

Human

Human aggression can be largely categorized into reactive aggression (impulsive and hostile) and premediated (instrumental) aggression. Quantification of

aggression in human is often conducted by psychometric inventories. Buss-Durkee Hostility Inventory (BDHI, Buss and Durkee, 1957) or its modified Buss and Perry

Aggression Questionnaire (BPAQ, Buss and Perry, 1992) contains subscales for hostility (cognitive aspect of aggression including feelings of ill-will and injustice), anger

(affective aspect of aggression including physiological arousal and preparation for aggression), and physical and verbal aggression (behavioral aspect of aggression

including instrumental or motor components of behavior). The Cook-Medley Hostility (Ho) Scale is another commonly used questionnaire (Cook and Medley, 1954)

that measures cognitive (cynicism and hostile attribute), affective (hostile affect), and behavioral (aggressive responding) aspects of aggression. Other studies use

methods to provoke anger in experimental settings and quantify participants’ aggressive responses toward fictitious competitors (for review, see Miczek et al., 2002).

Animal models

Aggressive behavior in animals is species-typical behavior and it differs depending upon the social system of the species, and includes factors such as territorial

aggression, dominance-related aggression, and maternal aggression (Miczek and Fish, 2006). Moreover, aggressive behavior in animals has been traditionally

separated into offensive vs. defensive forms of aggression. Offensive aggression is motived by resource control and threat to those resources, whereas defensive

aggression is motived by danger of harm to the individual itself (Blanchard and Blanchard, 2006). In the rodent model, aggressive behavior is often quantified by using

the resident-intruder test. This test is conducted in the home-cage of a resident male (or sometimes resident female or dam) where an intruder male is introduced.

Latency to first attack behavior (often a bite) is measured and used as an index of readiness to initiate aggressive behavior. Animals with shorter attack latency are

considered to have higher aggression. In addition, the overall frequency and duration of aggressive acts are measured. Importantly, while dominance is a trait often

associated aggression, for the purpose of this review it is important to highlight some distinctions. Dominance-related aggression typically occurs more often in

species with defined social hierarchies, such as non-human primates, and is measured by ethological observation to record animals’ interactive behaviors with other

members in their habitat (either captivity or the field). Importantly, social dominance does not simply reflect trait aggressiveness (Buwalda et al., 2017) but can result

from other factors such as ability to mobilize support or anxiety in monkeys and rats (de Waal, 1998; van der Kooij et al., 2017).

individual differences in cytokine production. But also, since
noradrenaline triggers activation of monocytes to produce
inflammatory cytokines (Bierhaus et al., 2003), sympathetic
activation by aggressive events or their expectation might be the
cause of this increased cytokine production.

Immune responses are largely divided into two categories:
a rapid general immune response (innate immunity) and
an acquired delayed immune response (adaptive immunity).
Lipopolysaccharide (LPS) is an endotoxin that composes the
outer surface membrane of gram-negative bacteria, acts as a
pathogen-associated molecular pattern (PAMPs), and stimulates
the innate immune response. Studies examining the role of the
innate immune response on aggression show that there is a
positive correlation between LPS-stimulated monocyte TNF-α
expression and aggression (in hostility and behavioral, but not
anger, subscales) in healthy males (Suarez et al., 2002). Similarly,
monocytes isolated from females with high hostility released
more IL-1 and IL-8 than those isolated from low hostility females
after LPS-stimulation (Suarez et al., 2004). There have also been
reports of increased natural killer (NK) cell cytotoxicity in highly
hostile individuals (Christensen et al., 1996; Miller et al., 1999).
Thus, individuals with high aggression traits tend to have high

innate immune responses, though it is still unclear whether these
are causally linked to aggression.

Only a few studies have examined the adaptive immune
system in anger/hostility. Of note, one study found that there
was a significant positive correlation between the frequency
of T and B lymphocyte numbers and past aggressive acts;
however, this relationship was only clear in individuals with
moderate aggression, but not in highly aggressive individuals
(Granger et al., 2000). Another study found that hostility is
positively correlated with the release of both pro-inflammatory
(TNF-α and IL-2) and anti-inflammatory (IL-4 and IL-10)
cytokines from isolated T-cells (Mommersteeg et al., 2008).
T-cell driven IL-6, however, was negatively correlated with
hostility in the aforementioned study, which opposes the results
observed in studies where cytokines were measured from
whole serum/plasma or directly in monocytes. This discrepancy
suggests that the relationship between aggression traits and
inflammatory response is different depending on the leukocyte
cell types studied.

Studies measuring cytokines from cerebrospinal fluid (CSF)
contrast with those measuring them from peripheral blood.
There is no observed correlation between IL-6 levels in the CSF
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BOX 3 | IL-1, IL-6, CRP, TNF-α.

IL-1 (interleukin-1) is a potent pro-inflammatory cytokine first identified as an endogenous pyrogen due to its ability to affect the hypothalamic thermoregulatory

center. Currently, there are 11 cytokines in the IL-1 super family (for review, see Allan et al., 2005). Two major subtypes of IL-1 ligands, IL-1α and IL-1β, bind to

IL-1 receptors (IL-1R) to activate intracellular cascades such as NF-κB and mitogen-activated protein kinases (MAPKs), and trigger the transcription of multiple

inflammation-associated genes including IL-6 and TNF-α. There is also a ligand known as IL-1RA that antagonizes IL-1R to inhibit downstream signaling. Many types

of cells in both the peripheral and central immune system produce IL-1 and express IL-1 receptors, including leukocytes, endothelial cells, adipocytes, fibroblasts,

neurons, and glial cells.

IL-6 (interleukin-6) is a cytokine that can exhibit either anti-inflammatory or pro-inflammatory properties depending on whether the IL-6 receptor and glycoprotein

130 (gp130) signal transducer are soluble or membrane bound. As is the case with IL-1, IL-6 is produced in many cell types. It was originally identified as B-cell

differentiation factor, but it also has a variety of additional functions outside of B cells such as production of acute-phase proteins from liver, angiogenesis, T-cell

differentiation, bone metabolism, and neuronal growth (for review, see Hodes et al., 2016).

CRP (C-reactive protein) is one of the acute-phase proteins from the liver activated in by pro-inflammatory cytokines as early a response to inflammation. CRP acts

as a pattern recognition molecule that binds to the surface of several microbes and dead cells, and it has been used as a sensitive but non-specific marker of

inflammation and infection (Pepys and Hirschfield, 2003).

TNF-α (tumor necrosis factor alpha) is a pro-inflammatory cytokine that was originally identified as a cytotoxic factor produced by lymphocytes and macrophages.

More recently TNF-α has been shown to trigger the induction of an array of pro-inflammatory cytokines to regulate cell proliferation, differentiation, and cell death

(Aggarwal et al., 2012).

and aggression (Coccaro et al., 2015). Instead, there is a positive
correlation between levels of soluble IL-1 receptor II (sIL-1R2)
in the CSF and aggression history (Coccaro et al., 2015). IL-1R2
and its soluble form sIL-1R2 act as decoy receptors for IL-1 and
inhibit IL-1 mediated signal transduction (Allan et al., 2005). The
sIL-1R2 binds to IL-1β with high affinity, and thus the level of IL-
1R2 was used as an indirect measurement of IL-1β in the CNS in
their study.

These studies in humans highlight the correlational
relationship between aggression and the immune system.
In the later section, we discuss findings from animal models
where more causal relationships between the immune system
and aggressive behaviors are beginning to be examined.

LINK BETWEEN AGGRESSION,
DEPRESSION, AND THE IMMUNE SYSTEM
IN HUMAN STUDIES

Similar to the findings from aggression studies, increased
circulating IL-6 has been observed in humans suffering from
major depression (Maes et al., 1997; Kiecolt-Glaser et al., 2003;
Hodes et al., 2014; Kiraly et al., 2017). Thus, increased circulating
IL-6 seems to be one of the important endophenotypes in
depressive-like behaviors as well. Although aggression (violence)
and depression are phenotypically very different behavioral
outputs, both aggression and depression are triggered by
social stress. In fact, suicidal behavior, the most problematic
consequence of depression, can be considered as a form of
escalated aggression toward the self, and a high comorbidity of
suicide and aggression has been observed in human patients
(McCloskey and Ammerman, 2018). Thus, it is possible that
aggression and depression share certain biological mechanisms.

Repeated immunotherapy to treat patients with acquired
immune deficiency syndrome, autoimmune disease, or hepatitis
C increases depression as well as anger/hostility (McHutchison
et al., 1998; Kraus et al., 2003). In addition, epidemiological
evidence has shown that individuals with psychological traits of
either depression or hostility have a greater risk of developing

coronary heart disease (CHD), which is a known inflammatory
disease (Rozanski et al., 1999; Smith and Ruiz, 2002; Betensky
and Contrada, 2010). Both male and female individuals with high
hostility displayed higher plasma IL-6 levels than non-hostile
controls only when they concurrently suffered high depression
symptoms (Suarez, 2003). This positive correlation between
hostility and IL-6 levels was absent among individuals with
low depression symptoms. A similar pattern was observed in
another study, where the authors found a significant interaction
between hostility and depression symptoms for serum IL-6
and CRP (Stewart et al., 2008). A much larger study of both
males and females confirmed a positive correlation between
hostility and CRP in highly depressed individuals, but also
found no relationship between these measures in people with
low levels of depression (Brummett et al., 2010). In contrast,
other studies observed a positive correlation between hostility
and IL-6 or TNF-α only in individuals with low levels of
depression (Miller et al., 2003). This study reported that all
individuals with high levels of depression showed high levels of
IL-6 regardless of hostility, and thus the relationship between
hostility and circulating cytokine levels was not observed. In
other experimental designs, the relationship between hostility
and cytokines remained even after correcting for depression
phenotypes (Marsland et al., 2008). Given the inconsistent results
from these correlational studies in humans, far more work is
needed to elucidate whether disruptions within the immune
system are a common endophenotype for both depression and
anger/hostility traits in humans.

ANIMAL MODELS OF AGGRESSION AND
THE IMMUNE SYSTEM

In contrast to human aggression research, which mainly focuses
on examining anger and hostility as negative emotional states
with pathological aspects that could be the matter of clinical
concern, aggression research in animals must consider its
ethological and evolutionary importance. Aggression has an
adaptive significance for most animal species and is critical for

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 March 2018 | Volume 12 | Article 56

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Takahashi et al. Aggression, Social Stress, and the Immune System

acquiring and protecting territory, food, reproductive mates,
and offspring. In animals with hierarchical societies, aggressive
behavior is thought to help individuals gain and maintain higher
social status (Box 2). It has been shown that aggressive behavior,
especially the experience of winning, has rewarding properties
in animals and repeated aggressive experience may lead to
compulsive, pathological aggression that is highly reinforcing
(Fish et al., 2002; Falkner et al., 2016; Golden et al., 2016, 2017).
Since aggressive behavior poses a strong risk of injury, it is
reasonable to assume that animals with high levels of aggression
would have stronger immune responses in order to actively
recover from injury and to protect themselves from infection.

As with humans, differences in peripheral immune function
have been observed between high and low aggressive non-
human primates and rodents. For example, baboons with higher
hierarchical status within the group showed faster wound
healing than subordinate individuals in the wild (Archie et al.,
2012). Male cynomolgus monkeys with the lowest social status
had rates of infection by adenovirus five times greater than
monkeys with higher social rank (Cohen et al., 1997). Also,
more aggressive cynomolgus monkeys had higher lymphocyte
numbers than less aggressive monkeys when they were infected
by herpes B virus (Line et al., 1996). In mice, female BALB/c
mice with high aggressive behavior were less vulnerable to
tumor induction by murine sarcoma virus than low aggression
BALB/c females (Amkraut and Solomon, 1972). In agreement
with this, highly aggressive C57BL/6 and CBA male mice show
stronger immune response (increase in plaque- and rosette-
forming cell numbers) toward immunization with protein
antigen than submissive males (Devoino et al., 1993). There
was also a positive correlation between aggression traits and
experimental autoimmune encephalomyelitis (EAE) response
in a wild rat population whereby aggressive male rats were
more susceptible to experimentally-induced autoimmune disease
(Kavelaars et al., 1999), suggesting that aggressive individuals
have highly activated immune systems (Table 2). These data
are in some conflict with data obtained from humans, as
highly aggressive humans tend to have higher concentrations
of proinflammatory cytokines and slower wound healing than
less aggressive humans (Kiecolt-Glaser et al., 2005). It is possible
that activation of the immune system is adaptive in aggressive
or dominant individuals but can become maladaptive in extreme
cases of pathological aggression, whichmake upmost of the cases
in human studies. This hypothesis needs further testing.

Individual differences in peripheral immune responses are
also reported in forward genetic models of aggression in
which animals are selectively bred for aggressive behavior.
High aggression NC900 mice and low aggression NC100 mice
have been selected over generations from the ICR outbred
founder population (Cairns et al., 1983; Gariepy et al., 1996).
Interestingly, the NC900 line showed reduced vulnerability
to tumor development after calcinogen treatment than the
low aggression NC100 line (Petitto et al., 1993). Furthermore,
splenic NK cytotoxic activity was also higher in NC900 mice,
and exposure to a T cell mitogen caused greater splenic T
cell proliferation and increased production of proinflammatory
cytokines IL-2 and intereferon-gamma (IFN-γ) in NC900 mice

(Petitto et al., 1993, 1994). Thus, aggressive NC900 mice have
stronger NK cell and T cell immune responses than non-
aggressive NC100 mice. These differences were observed without
having any aggressive experience, suggesting that theymay reflect
trait-like immunity differences.

Studies in constitutive gene knockout mice support the
involvement of the immune system in aggressive behaviors.
Deletion of TNF receptors, TNF-R1 and TNF-R2, reduced
the duration of aggressive behaviors in the resident-intruder
test in male mice (Patel et al., 2010). This is in line with
findings from human studies in which TNF-α is increased in
highly aggressive individuals (Table 1). On the other hand, IL-
6 knockout mice showed shorter attack latency and increased
frequency of aggressive behaviors in the resident-intruder test
(Alleva et al., 1998). This same study showed that overexpression
of IL-6 had no effect on inter-male aggression, but increased non-
agonistic social interaction behaviors such as anogenital sniffing.
Although interpretation of the results from these knockout mice
is complex because of possible compensatory changes in other
cytokines throughout the developmental period, these results
strongly indicate functional involvement of the immune system
in aggressive behaviors.

Although there are relatively few studies that have investigated
the role of brain cytokine signaling in aggression, a handful
of studies performed in a cat defensive rage model suggest
that it functionally promotes defensive aggression (Zalcman
and Siegel, 2006). In this model, electrical activation of
either the periaqueductal gray (PAG) or medial preoptic
area/hypothalamus causes cats to express a range of defensive
aggressive behaviors in response to threat such as hissing,
pupillary dilatation, retraction of the ear, as well as increases
in blood pressure and heart rate (Siegel et al., 1999). It has
been shown that IL-1β, IL-2, and their receptors are localized
in a variety brain regions including the PAG and the medial
hypothalamus (Bhatt et al., 2005; Hassanain et al., 2005). The
local administration of IL-1β into the medial hypothalamus
caused an enhancement of the defensive rage response (reduction
of attack latency) after PAG stimulation (Hassanain et al., 2003).
This pro-aggressive effect of IL-1β injection into the medial
hypothalamus was blocked by the 5-HT2 receptor antagonist LY-
53857. Importantly, strong co-localization of 5-HT2C receptors
and IL-1 type 1 receptors (IL-1RI) in the medial hypothalamus
may reflect the fact that IL-1β and 5-HT are activating the
same population of neurons in this region to enhance defensive
rage responses (Hassanain et al., 2005). In contrast to IL-1β,
microinjection of IL-2 into the medial hypothalamus suppressed
defensive rage behavior (Bhatt et al., 2005). The suppressive
effect of IL-2 was blocked by pretreatment with a GABAA

receptor antagonist into the medial hypothalamus, suggesting
that the effect of IL-2 in the medial hypothalamus is mediated
through GABAA receptors (Bhatt et al., 2005). However, IL-2
also facilitated defensive rage behavior when it was microinjected
into the PAG (Bhatt and Siegel, 2006), and thus the function
of cytokines for defensive rage depends heavily on the brain
area in which it is expressed. Also, the function of cytokines
might be different depending upon the type of aggression. In
mouse territorial aggression models using a resident-intruder
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test, it has been shown that systemic injection of IL-1β causes a
strong increase in attack latency concomitant with a reduction
in the total duration of aggressive behaviors (Cirulli et al.,
1998), indicating that systemic IL-1β has a suppressive effect on
intermale offensive aggression. However, this study used only
systemic treatment of IL-1β and its effect in the brain has to be
studied in offensive aggression.

In summary, both peripheral cytokines and cytokines in the
brain have important modulatory roles in both offensive and
defensive aggression. Further studies to examine the complex
neural circuitry in which cytokines act to affect aggressive
behavior will be necessary to understand the extent of neuro-
immune interactions in aggression.

ANIMAL MODEL OF DEPRESSION AND
THE IMMUNE SYSTEM

A large body of evidence shows that both chronic and repeated
exposure to social defeat stress, which leads to depression-like
behaviors in stress susceptible individuals, has a significant effect
on the immune system. Currently, we understand far more
about the detailed biological mechanisms underlying the link
between social defeat stress and immune activation than we
do between aggression and immune activation (for reviews,
see Hodes et al., 2015; Pfau and Russo, 2015; Ménard et al.,
2017a; Weber et al., 2017). Chronic social defeat stress has been
used as an animal model of depression with high ethological
and face validity (Miczek et al., 2008; Golden et al., 2011).
Disruption of established social hierarchy in the home cage by
repeated intrusions of a large dominant male has been shown
to cause intensive stress and increases circulating corticosterone
in male C57BL/6 mice (Avitsur et al., 2001, 2002). Despite the
known immuno-suppressive effect of corticosterone, animals
who underwent this social disruption procedure displayed an
increased number of splenic monocytes and elevations in IL-
6, IL-1β, and TNF-α release after endotoxin LPS stimulation
compared to unstressed controls (Stark et al., 2001; Avitsur et al.,
2003, 2005; Bailey et al., 2009). Interestingly, these studies also
found that social stress caused glucocorticoid receptor (GR)
desensitization in splenic monocytes, making them insensitive to
inhibition by glucocorticoids and further exacerbating the pro-
inflammatory effects of stress (Stark et al., 2001; Avitsur et al.,
2002; Jung et al., 2015). Furthermore, monocytes expressing GR
lost the ability to efficiently translocate GR into the nucleus, and
thus were unable to suppress NF-κB activity (Quan et al., 2003).
These changes in the properties of spleen monocytes in socially
disrupted animals were mediated by increased norepinephrine
and epinephrine release in the blood and spleen (Hanke et al.,
2012). These results suggest that repeated social stress results
in abnormal activation of the immune system through a loss of
negative feedback signaling via corticosterone.

The peripheral immune system has also been implicated in
determining individual vulnerability to social stress. For example,
Hodes et al. (2014) examined the levels of circulating cytokines
in susceptible and resilient C57BL/6 male mice after 10 days of
repeated social defeat stress. Susceptible animals that developed

social avoidance after repeated defeat experiences, exhibited
higher IL-6 in their serum compared to stress-resilient mice
as well as non-defeated control mice. Transplantation of bone
marrow from susceptible donor males into host control males
caused an increased social aversion following acute social stress,
indicating that leukocytes are at least partly responsible for stress
susceptibility. Interestingly, there was a preexisting difference
in leukocytes between susceptible and resilient males such
that susceptible animals had more circulating leukocytes and
produced more IL-6 after LPS stimulation than resilient animals
(Hodes et al., 2014). Increased peripheral IL-6 levels were also
observed in susceptible female mice in a newly developed female
social defeat stress model, indicating that IL-6 is a common
mechanismmediating social stress susceptibility among the sexes
(Takahashi et al., 2017). In addition to exhibiting differences in
the immune response to stress, we also show that permeability
of the blood brain barrier is different between resilient and
susceptible male mice (Menard et al., 2017b). Stress susceptible
mice display damaged and leaky blood vessels in the nucleus
accumbens (NAc) due to loss of Claudin 5 expression, a molecule
that helps form tight junctions between endothelial cells that
make up the blood brain barrier (BBB). This impairment in
BBB permeability allows more blood IL-6 to enter the brain
and promotes depression-like behaviors following social defeat.
Future work is needed to understand at the molecular level
how social stress primes the neuro-immune axis to open the
BBB and promotes a permissive environment for immune-CNS
interactions.

BIOLOGICAL MECHANISMS LINKING
AGGRESSION, DEPRESSION, AND
IMMUNE FUNCTION

Broadly, the studies described above support the notion that
both aggressive and socially-defeated animals display increased
production of peripheral cytokines. However, mounting evidence
suggests that this simple view does not capture the complex
dynamics of cytokine levels in socially stressed animals. For
example, repeated aggressive encounters over 20 days caused
increases of serum proinflammatory cytokines IL-6, IL-7, and
IL-15 in loser, but not winner, male C57BL/7 mice (Stewart
et al., 2015). Importantly, there was an increase in the anti-
inflammatory cytokine IL-10 only in winner males. Further
studies are required to understand whether these changes in
cytokines observed in winners and losers represent common
responses to social stress, or if there are specific immune
responses that differ between winners and losers (such as specific
activation of anti-inflammatory IL-10 in winners) that function
to alter subsequent behavioral outputs. One hypothesis is that
dominant individuals have well-balanced activation of both pro-
inflammatory and anti-inflammatory cytokines to actively cope
with injury or infections caused by aggressive interactions. In
contrast, the experience of repeated social defeat stress, which
causes a depression-like phenotype, may induce dysregulation of
the immune system leading to a pro-inflammatory state of the
animal.
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The stress hormone corticosterone increases in both
dominant and subordinate animals during an aggressive
encounter (Covington and Miczek, 2005), but only subordinate
animals show over-activation of HPA axis and long-term
hypercortisolism after continuous subordination (Ely and
Henry, 1978; Sapolsky, 1989). For example, dominant baboons
showed normal activation of cortisol secretion by corticosterone-
releasing factor (CRF) and suppression by glucocorticoid
negative feedback. By contrast, continuously subordinated
baboons displayed hypercortisolism, a blunted response to CRF,
and resistance to glucocorticoid-induced negative immune
feedback (Sapolsky, 1990). Similarly, in human air traffic
controllers with high competence and satisfaction showed
a positive correlation between plasma cortisol and amount
of workload (number of airplanes under their control), but
individuals with low competence showed blunted or disregulated
cortisol response (Rose et al., 1982). However, recent work
suggests that both the stability of the hierarchy as well as the
species under investigation influences findings of whether
subordinate status is associated with the highest rate of physical
and psychological stressors (Abbott et al., 2003). The immune
system also responds to agonistic encounters (acute social stress)
in both aggressive dominant and submissive defeated individuals.
However, as we have discussed in former sections, dominant
animals mount strong adaptive immune responses that protect
them from infection or enhance their recovery from injury,
while defeated animals develop more prolonged dysregulation
of the immune system that leads to pathological physiology and
behavioral phenotypes. While causal data linking corticosterone
to immune-mediated aggression is not yet available, it is one of
the key mediators of brain-immune interactions (Spencer et al.,
1991; Dhabhar and McEwen, 1999; Marques-Deak et al., 2005;
also see Box 1) making it an attractive candidate for further
study.

5-HT is one of the most well-studied neurotransmitters
involved in the pathophysiology of both depression and
escalated aggression (Olivier, 2015; Manchia et al., 2017).
Serotonin reuptake inhibitors (SSRIs), the most widely used
pharmacological treatment for depressed patients, suppress
escalated forms of aggression in rodent models (Pinna et al.,
2003; Caldwell and Miczek, 2008; Mikics et al., 2017) and
owner-directed aggression in dogs (Dodman et al., 1996). It has
been shown in a variety of studies that peripheral cytokines
are capable of altering central 5-HT neurotransmission. For
example, endotoxin LPS administration activated catecholamine
metabolism and increased tryptophan in the brain of mice and
rats (Mefford and Heyes, 1990; Dunn, 1992; Linthorst et al.,
1995). Furthermore, peripheral IL-1β administration increased
levels of 5-HT or its metabolite 5-HTIAA in several brain areas
and increased 5-HT1B and 5-HT2C receptor expression in the
hippocampus (Gemma et al., 1997; Connor et al., 1998; Dunn,
2006; Anisman et al., 2008), whereas IL-1 receptor antagonists
reduced extracellular 5-HT in the hypothalamus (El-Haj et al.,
2002). Conversely, in the periphery, 5-HT has immunoregulatory
functions via its actions on 5-HT receptors expressed on immune
cells (Mössner and Lesch, 1998; Herr et al., 2017). It has been
shown that antidepressants, such as imipramine and fluoxetine,
have anti-inflammatory effects and reduce the production of the

pro-inflammatory cytokine IFN-γwhile increasing production of
the anti-inflammatory cytokine IL-10 (Maes et al., 1999; Kubera
et al., 2001; Ramirez et al., 2015; Köhler et al., 2017). However,
these findings need to be interpreted with caution, given that
other studies have reported that SSRI treatment increases several
pro-inflammatory cytokines in the brain, and that this elevation
is necessary to produce the anti-depressant effects of SSRIs
(Warner-Schmidt et al., 2011).

In most species, the expression of aggression is generally not
pathological but adaptive. Therefore, the link between immune
function, aggression, and depression that is observed in humans
cannot be simply studied in ethologically relevant animal models
of aggression. Rather, it will be appropriate for future studies
to utilize animal models of escalated or pathological aggression
when investigating the specific role of the immune system
in aggression that is relevant to human psychiatric disease.
For example, social isolation stress has been shown to induce
escalated aggression as well as depressive-like behaviors in
rodents (Haller et al., 2014). There are other animal models of
escalated aggression considered to be relevant to the study of
human aggression (Miczek et al., 2013). These animal models
should be used in future studies aimed at understanding the
immunobiology of aggression and its relation to depression.

CONCLUSION AND FUTURE
PERSPECTIVES

Findings from studies using animal models of social stress have
uncovered numerous neurobiological mechanisms of immune—
brain interactions that have opened up new avenues for anti-
depressant drug discovery. In contrast, studies to define the
neurobiological mechanism of immune—brain interactions in
pathological aggression have lagged far behind, which some have
argued reflects the relative paucity in novel drug targets for the
treatment of psychiatric conditions with high aggression. Thus,
we need a much better understanding of the neural circuits
affected by the immune system involved in aggressive behavior.
The use of animal models of escalated pathological aggression
will help us understand relevant immunobiological mechanisms
driving aggressive behavior and provide insight into the possible
causes of pathological human aggression. Additionally, it is
important to better define how the immune system interfaces
with brain circuitry to control aggression. Future studies will have
to consider whether individual differences in the immune system
are causally linked with aggression, or whether the differences in
immune function are simply a consequence of differing amounts
of aggressive behaviors.

We currently have a very limited understanding of the neuro-
immune interactions mediating aggression in females. In human
studies, positive correlations between aggression and peripheral
cytokine levels are observed in bothmales and females, yet rodent
studies have not tested causal immunological mechanisms of
aggression in females. Future studies will be required to clarify the
degree of overlap in the immunological mechanisms that mediate
male and female aggression. Given that that there are significant
basal sex differences in the immune system (Klein and Flanagan,
2016), it is hypothesized that the immunological mechanisms
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driving aggression in males and females are different and highly
dependent upon gonadal hormone status.
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