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Abstract Some malwares execute operations that de-

termine whether they are running in an analysis envi-
ronment created by monitoring software, such as de-

buggers, sandboxing systems, or virtual machine mon-

itors, and if such an operation finds that the malware

is running in an analysis environment, it terminates

execution to prevent analysis. The existence of mal-

wares that execute such operations (anti-analysis op-

erations) is widely known. However, the knowledge ac-

quired thus far, regarding what proportion of current

malwares execute anti-analysis operations, what types

of anti-analysis operations they execute, and how ef-

fectively such operations prevent analysis, is insuffi-

cient. In this study, we analyze FFRI Dataset, which

is a dataset of dynamic malware analysis results, and

clarify the trends in the anti-analysis operations exe-

cuted by malware samples collected in 2016. Our find-

ings revealed that, among 8243 malware samples, 856

(10.4%) samples executed at least one type of the 28

anti-analysis operations investigated in this study. We

also found that, among the virtual machine monitors,

VMware was the most commonly searched for by the

malware samples.
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1 Introduction

It is widely known that some malwares execute opera-

tions that make it difficult to analyze them. A major

operation involves determining whether the malware is

running in an analysis environment, such as a virtual

machine or debugger, and to prevent execution of the

original operation if the malware is found to be run-

ning in such an analysis environment. This study is

concerned with anti-analysis operations, i.e., counter-

measures adopted by malwares against analyzers.

Many studies have investigated anti-analysis oper-

ations and evasive malwares that behave in consider-

ation of analysis environments. Thus, researchers have

acquired a vast amount of knowledge on malware-side

techniques for detecting the presence of analysis sys-

tems such as virtual machine monitors and debuggers.

Further, it is known that a vulnerability in a virtual

machine monitor can cause a malware running in a vir-

tual machine to escape from it and execute arbitrary

code in the host operating system [1]. Some studies have

presented statistical data on real-world analysis-aware

malwares. For example, in its April 2016 threat report,

Symantec stated that approximately 16% of malwares

are routinely able to detect and identify a virtual ma-

chine environment [2]. Methods for stealth analysis (i.e.,

methods that analyze evasive malware without being

recognized) have also been studied extensively.

However, thus far, to the best of our knowledge,

the following questions have not been answered with

sufficient clarity.

– What proportion of malwares executes a certain

type of anti-analysis operations? What types of anti-

analysis operations do malwares execute frequently,

and what types do they execute rarely?
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– What virtual machine monitors or sandboxing sys-

tems do malwares attempt to detect?
– Do malwares execute a combination of multiple anti-

analysis operations or only a single anti-analysis

operation? What is the maximum number of anti-

analysis operations executed by a single malware?

– Do real-world malwares that execute anti-analysis

operations succeed in the detection of analysis sys-

tems?

We believe that researchers and engineers in this field

need to gain deeper insights into the above-mentioned

questions to effectively deal with recently developed

malwares, which are becoming increasingly sophisti-

cated.

The objective of this study is to clarify the recent

trends of anti-analysis operations executed by real-world

malwares. In this paper, we report on the results of

analyzing the dynamic behavior log of 8243 samples

of Windows malwares recorded in a malware analysis

dataset, namely FFRI Dataset 2016 [3,4]. This dataset

includes a complete log of Windows API calls invoked

by all the malware processes.

In this paper, we present a case study that addresses

the following points:

– The proportion of malwares that may become dif-

ficult to analyze if an analysis system does not adopt

additional countermeasures against anti-analysis op-

erations

– The types of anti-analysis operations against which

security systems should preferentially adopt coun-

termeasures

– The success ratio of each execution of anti-analysis

operations

– The range of countermeasures needed by an analysis

system to correctly analyze sophisticated malwares

that execute a variety of anti-analysis operations

– The limitations of an existing dynamic analysis sys-

tem that is widely used

– Insights that can be obtained only from dynamic

malware analysis logs and insights that are difficult

to obtain only from such logs

The remainder of this paper is organized as follows.

Sect. 2 compares the present study with other related

studies. Sect. 3 describes the anti-analysis operations

targeted in this study. Sect. 4 presents an overview

of the dataset used in this study. Sect. 5 presents the

results of our analysis on malware behavior. Finally,

Sect. 6 summarizes our findings and briefly explores di-

rections for future studies.

2 Related Studies

Numerous studies have been conducted on the tech-

niques by which a program determines the presence or

absence of an analysis system. The studies by Garfinkel

et al. [5] and Raffetseder et al. [6] provide rich surveys of

existing techniques for the detection of virtual machine

monitors and emulators. In these studies, the authors

have only compared the techniques qualitatively; they

did not clarify which techniques are adopted by actual

malwares or what proportion of malwares execute op-

erations based on each technique. The contribution of

the present study is to present quantitative results that

are useful for such clarifications.

Chen et al. [7] evaluated the differences between

APT-attack malwares and general malwares in terms

of the trends in operations that are aware of debuggers

or virtual machines. Although their study was similar

to the present study in that they analyzed the trends

in anti-analysis operations using many malware sam-

ples, there are also many differences between the stud-

ies. First, in their study, anti-analysis operations were

detected only through static analysis, while dynamic

behavior was not considered. Moreover, they adopted a

detection standard that is significantly less precise than

that applied in the present study. For example, they re-

garded a call of the function Sleep as an anti-analysis

operation. Furthermore, their study focused on the dif-

ferences between two classes of malwares and did not

clarify the details of the anti-analysis operations exe-

cuted by malwares.

Kirat et al. [8] proposed MalGene, an automated

technique for extracting the signatures of analysis eva-

sion from system call sequences. Their technique is based

on algorithms used in bioinformatics, data flow analy-

sis, and data mining. In their evaluation of 2810 evasive

malware samples, their system could automatically ex-

tract evasion signatures and classify them into 78 sim-

ilar evasion techniques. It is interesting to apply their

technique to API calls in the dataset we used in the

present study. While their study aimed to develop tech-

niques for analyzing system calls, the present study set

out to uncover the detailed trends in the anti-analysis

operations performed by recently developed real-world

malwares.

Kirat et al. [9] proposed BareCloud, a system for au-

tomatically detecting evasive malware. They reported

that their system could detect 5835 evasive malware

instances out of 110,005 samples. Branco et al. [10] re-

ported on the behavior related to anti-analysis opera-

tions using around four million malware samples. They

showed that a considerable proportion of malwares exe-

cuted these operations. Chubachi et al. [11] also studied
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anti-analysis operations using 89,119 real-world mal-

ware samples, and reported on the number of malware
samples that attempted to detect each artifact of hy-

pervisors or sandboxing systems. They also proposed

SLIME, which is a system for analyzing analysis-aware

malwares by monitoring their instruction execution and

disguising resources checked in anti-analysis operations.

In contrast to the present study, their studies did not

present any extensive statistical data on the operations

executed by the malwares.

Barbosa et al. [12] presented detailed statistical in-

formation on the anti-analysis characteristics of mil-

lions of malware samples. They leveraged static analy-

sis, not dynamic analysis, and hence the class of charac-

teristics they could find was substantially different from

those found in the present study.

Ferrand [13] investigated the internal details of

Cuckoo Sandbox and presented multiple methods by

which it can be detected by malwares. As described

in Sect. 4, FFRI Dataset was created with Cuckoo

Sandbox. Ferrand also presented countermeasures to

prevent detection and enable stealthier analysis with

Cuckoo Sandbox. His work could influence trends in

real-world malwares with regard to their awareness

of Cuckoo Sandbox and facilitate the development of

Cuckoo’s cloaking mechanism against such malwares.

His study and the present study are complementary.

His study accelerated the development of anti-analysis

techniques and stealthy monitoring techniques, whereas

the present study provides a deeper understanding of

the trends in the behavior of real-world malwares de-

veloped on the basis of these techniques.

Chen et al. [14] classified the behaviors of malware

whereby they are aware of virtual machines or debug-

gers and evaluated the differences in the behavior of

6222 malware samples executed on physical and virtual

machines managed by VMware Server. In contrast to

the present study, they presented experimental results

that included only the proportion of malwares that be-

have differently on a virtual machine. Moreover, their

study did not concretely clarify the anti-analysis oper-

ations executed by the malwares.

Wang et al. [15] proposed a timing-based technique

called hypervisor introspection, by which a program

running a virtual machine can determine the presence

of introspection operations executed by the hypervisor.

Cardinal Pill Testing [16] is a method for detecting vir-

tual machines through carefully designed tests with re-

gard to CPU instruction semantics. nEther [17] is a

method that detects the Ether Xen-based analysis sys-

tem using both timing information and CPU semantics

information. In contrast to their studies, the present

study focused on the detection of virtualization mech-

anisms without the use of timing information or CPU

instruction information, as described in Sect. 3.

In addition to the above-mentioned studies, many

other studies have examined those methods for analyz-

ing malwares that detect virtualization mechanisms and

evade analysis [18–30]. These studies and the present

study are complementary. We can further improve mal-

ware analysis methods by gaining a deeper understand-

ing of the anti-analysis operations executed by mal-

wares. Conversely, by adopting sophisticated analysis

methods, we can understand malware behavior in greater

detail.

3 Target Anti-Analysis Operations

Through anti-analysis operations, malwares attempt to

find artifacts of analysis systems such as virtual ma-

chine monitors, sandboxing systems, and debuggers.

Malwares can obtain a variety of information to per-

form anti-analysis operations [5, 6, 10, 13, 16, 17, 31, 32].

Ideally, all such information should be considered in this

study. However, we concentrate on understanding anti-

analysis operations with regard to the following infor-

mation, because this information can be obtained from

Windows API call sequences, which does not necessar-

ily reveal other information:

(1) Computing resources: This refers to the presence,

specification, and contents of computing resources,

including files, folders, registry keys, and hardware

information. Characteristic program files, configu-

ration files, or folders are created in many guest

operating systems running on a virtual machine to

cooperate with the underlying virtual machine mon-

itor. The specification of certain hardware devices,

such as hard disks and network interface cards, also

indicates a particular analysis system.

(2) Co-running programs: This refers to the names of

daemon programs or applications that are simulta-
neously running in the same environment. A debug-

ger process or other monitoring programs may be

running simultaneously with the current process.

(3) Human interface: This refers to activities of human-

interface devices such as a keyboard and mouse.

There tends to be less human-computer interaction

in an artificial environment created by an analysis

system. Even if there is any such interaction, it is

likely to be unnatural.

Malwares can attempt to obtain any of the above-mentioned

types of information, any one of which is useful for de-

tecting a virtualization mechanism.

Through anti-analysis operations, malwares can at-

tempt to directly hinder analysis through various means
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including delaying their execution and removing hooks

for function call interception. We also include these op-
erations in the target.

This study does not deal with anti-analysis opera-

tions with regard to the following types of information,

because it is difficult to understand them using FFRI

Dataset:

(4) Values in memory and registers: This refers to a

value stored in the start address of function code,

values stored in special registers, values of particular

flags in the process environment block, and so on.

The start address of function code is often patched

by debuggers to intercept a call. Values in debug

registers and the value of the BeingDebugged flag

in the block indicate whether the current process is
being debugged.

(5) Results of special CPU instructions: This refers to

the execution results of CPU instructions whose be-

havior in a virtual machine differs from that in a

physical machine because of factors such as the omis-

sion of exact instruction emulation by the virtual

machine monitor.

(6) Results of I/O operations: This refers to the exe-

cution results of instructions for operating I/O de-

vices. The behavior of I/O devices in a virtual ma-

chine may differ from that in a real machine.

(7) Performance information: This refers to the time

taken for the execution of a particular operation,

patterns of assigning CPU time to processes, etc.

We exclude (4), (5), and (6) from the target because

FFRI Dataset does not contain execution logs at the

CPU instruction level. Further, it may be possible to

recognize certain types of anti-analysis operations with

regard to (7) because FFRI Dataset associates an in-

vocation time with each Windows API call. However,

we believe that the result will not be useful because

many performance-based anti-analysis operations are

expected be performed by executing CPU instructions,

such as rdtsc, without invoking API calls, and FFRI

Dataset does not contain any instruction-level log. There-

fore, this study does not consider anti-analysis opera-

tions with regard to (7).

4 Dataset

FFRI Dataset [3, 4] is a dataset of dynamic analy-

sis results obtained by executing malwares in Cuckoo

Sandbox [33], which is a widely used open-source sand-

box for malware analysis based on a virtual machine

monitor. Four versions of FFRI Dataset are available

(2013–2016); we choose the latest dataset, namely FFRI

Dataset 2016. This study targets the analysis results of

Table 1 Statistics information

Number of malware samples 8243

Number of child processes created by
0, 0.68, 202

each malware sample (min, ave, max)

Number of API calls invoked by
0, 2721, 82337

each process (min, ave, max)

Total number of API calls 37664465

Number of API functions used by
0, 47.5, 140

each malware sample (min, ave, max)

Total number of API functions 288

8243 malware samples executed on Windows 10 (x64),

which are contained in FFRI Dataset 2016. FFRI, Inc.

collected these malware samples from January 2016 to

March 2016 from all over the world using techniques

such as Web crawling. Further, from these collected

samples, 8243 samples judged as malware by more than

10 anti-virus products were selected. According to the

dataset logs, Cuckoo Sandbox 2.0-dev and VirtualBox

were used to create the dataset.

Cuckoo Sandbox provides a mechanism to compare

program behavior with the characteristics of malware

behavior, which are referred to as signatures. Cuckoo

Sandbox records the signatures detected in the analy-

sis results. Functions for detecting signatures are main-

tained in a source tree called community, which is dis-

tinct from the source tree of the main part of Cuckoo

Sandbox. FFRI Dataset 2016 contains signatures de-

tected by the community code.

In addition, FFRI Dataset contains various types

of information, including data extracted statically from

malware binaries and communication logs created dur-

ing execution. From this set of information, we extract

(1) the signature detection results and (2) the call se-

quences of Windows API invoked by the malwares, and

we analyze the combination of the two.

Table 1 lists the call sequence statistics information

for FFRI Dataset 2016. In the table, min, ave, and max

indicate the minimum, average, and maximum num-

bers, respectively. All the analysis results in the dataset

contain logs of a process for which the program path

is C:\\Windows\\System32\\lsass.exe. However, we

excluded the logs from our analysis target because the

process is not derived from a malware.

5 Analysis Results

We analyzed the dynamic analysis logs in FFRI Dataset

2016 using our programs, which transform the logs into

a set of anti-analysis operation logs, and then summa-
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Table 2 Top 20 signatures detected from the malwares

Rank Description by Cuckoo Sandbox
Number and Number and
proportion of proportion of
malware samples malware families

1 File has been identified by at least one AntiVirus on VirusTotal 8243 (100.0%) 3044 (100.0%)
as malicious

2 Performs some HTTP requests 5332 (64.7%) 1976 (64.9%)
3 Allocates read-write-execute memory (usually to unpack itself) 4615 (56.0%) 1791 (58.8%)
4 Generates some ICMP traffic 4162 (50.5%) 1549 (50.9%)
5 One or more potentially interesting buffers were extracted, 2858 (34.7%) 1077 (35.4%)

these generally contain injected code, configuration data, etc.

6 Creates executable files on the filesystem 2214 (26.9%) 748 (24.6%)
7 One or more of the buffers contains an embedded PE file 2116 (25.7%) 758 (24.9%)
8 The executable has PE anomalies (could be a false positive) 2006 (24.3%) 983 (32.3%)
9 Executed a process and injected code into it, probably while 1486 (18.0%) 624 (20.5%)

unpacking

10 Installs itself for autorun at Windows startup 1378 (16.7%) 423 (13.9%)
11 This executable has a PDB path 1091 (13.2%) 387 (12.7%)
12 Collects information to fingerprint the system (MachineGuid, 1029 (12.5%) 334 (11.0%)

DigitalProductId, SystemBiosDate)

13 Code injection with CreateRemoteThread or NtQueueApcThread in a 579 (7.0%) 156 (5.1%)
remote process

14 A process attempted to delay the analysis task. 509 (6.2%) 95 (3.1%)
15 Checks the version of Bios, possibly for anti-virtualization 443 (5.4%) 100 (3.3%)
16 This executable is signed 432 (5.2%) 123 (4.0%)
17 Detects VMWare through the presence of various files 358 (4.3%) 55 (1.8%)
18 Connects to a Dynamic DNS Domain 310 (3.8%) 112 (3.7%)
19 One or more processes crashed 264 (3.2%) 116 (3.8%)
20 Uses Windows utilities for basic Windows functionality 204 (2.5%) 43 (1.4%)

rized them. In this section, we describe the results of

this analysis.

5.1 Detected Signatures

We counted the number of malware samples and mal-

ware families from which the signatures were detected.

We classified the malware samples into those malware

families leveraging malware identification results by anti-

virus products included in the dataset. Although all the

malware samples were examined by at least 36 anti-

virus products, we chose three major ones for the clas-

sification: those identified in the dataset as Microsoft,

Avast, or Malwarebytes. We chose them because anti-

malware market share reports by OPSWAT [34] in 2016

listed them as the top three products with the largest

market shares. We labeled each malware with a con-

catenation of three malware family names assigned by

the three products, and regarded the label as being the

family name of the malware. Among the malware sam-

ples, 418 were not identified as malware by any of the

three products, and so were excluded from the analysis.

We then randomly chose one malware sample from each

malware family and analyzed the logs of the samples.

The number of resulting families was 3044. It should be

noted that different signature sets can possibly be de-

tected from different malware samples in one malware

family, because their API calls do not necessarily agree

completely.

Table 2 lists the top 20 signatures in descending

order of the number of malware samples from which

the signatures were determined. It also lists the num-

ber of malware families from which the top signatures

were detected. The descriptions of the signatures are

the original descriptions that appear in the analysis

logs of Cuckoo Sandbox. The signatures of the anti-

analysis operations (anti-analysis signatures, hereafter)

are ranked 14, 15, and 17. Although the anti-analysis

signatures are not highly ranked, we regard their num-

bers and proportions as being relatively significant.

The total number of signatures detected from all

the malware samples was 41,626 (5.05 signatures per

malware on average), while 90 signatures were detected

from at least one malware sample.

Next, we counted the number of anti-analysis sig-

natures detected. Cuckoo Sandbox stores the functions

for detecting each signature in distinct files. In this

study, we regard those files with the prefix antidbg ,

antiemu , antisandbox , or antivm as files that con-

tain functions for detecting anti-analysis signatures. Here-

after, we refer to each signature by the name of the file

storing the corresponding detection function.
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Table 3 Numbers of anti-analysis signatures detected from the malwares

Signature name Description by Cuckoo Sandbox
Number and Number and
proportion of proportion of
malware samples malware families

antisandbox sleep A process attempted to delay the analysis task. 509 (6.2%) 95 (3.1%)
antivm generic bios Checks the version of Bios, possibly for 443 (5.4%) 100 (3.3%)

anti-virtualization

antivm vmware files Detects VMWare through the presence of various 358 (4.3%) 55 (1.8%)
files

antivm generic scsi Detects virtualization software with SCSI 113 (1.4%) 68 (2.2%)
Disk Identifier trick(s)

antisandbox forehwnd Checks whether any human activity is being 66 (0.80%) 20 (0.66%)
performed by constantly checking whether ...

antisandbox idletime Looks for the Windows Idle Time to determine 37 (0.45%) 20 (0.66%)
the uptime

antidbg windows Checks for the presence of known windows from 35 (0.42%) 16 (0.53%)
debuggers and forensic tools

antivm vbox keys Detects VirtualBox through the presence of a 34 (0.41%) 24 (0.79%)
registry key

antivm vbox files Detects VirtualBox through the presence of a 29 (0.35%) 15 (0.49%)
file

antivm vmware keys Detects VMWare through the presence of a 14 (0.17%) 7 (0.23%)
registry key

antivm generic disk Queries information on disks, possibly for 11 (0.13%) 7 (0.23%)
anti-virtualization

antisandbox mouse hook Installs an hook procedure to monitor for 7 (0.08%) 5 (0.16%)
mouse events

antivm generic services Enumerates services, possibly for 7 (0.08%) 5 (0.16%)
anti-virtualization

antivm generic firmware Detects Virtual Machines through their custom 2 (0.02%) 1 (0.03%)
firmware

antivm sandboxie Tries to detect Sandboxie 2 (0.02%) 2 (0.07%)
antiemu wine Detects the presence of Wine emulator 1 (0.01%) 1 (0.03%)
antisandbox unhook Tries to unhook Windows functions monitored by 1 (0.01%) 0 (0.00%)

Cuckoo

antivm virtualpc Tries to detect VirtualPC 1 (0.01%) 1 (0.03%)

Table 3 lists the numbers of the anti-analysis sig-

natures detected from the malware samples and mal-

ware families in descending order of the numbers of

malware samples from which the signatures were de-

tected. Among all the signatures of the virtualization

mechanisms, the signatures of VMware and Virtual-

Box were detected from the largest and second-largest

numbers of malware samples, respectively. The signa-

tures of generic operations for detecting virtualization

mechanisms were detected frequently, whereas the sig-

natures of Sandboxie, VirtualPC, and Wine were rarely

detected. Among the signatures of sandboxing systems,

the signature of long sleeps and the signatures for mon-

itoring foreground window and idle time were the most

frequently detected signatures, whereas the signatures

related to hook operations were rarely detected.

We observed nonnegligible changes in the pro-

portions of malware samples, according to whether

we used all the malware samples or only represen-

tative samples of the malware families. The propor-

tion of some signatures such as antisandbox sleep

and antivm vmware files significantly decreased when

using representative samples. This indicates that the

dataset contained many variants of malware families

from which such signatures were detected. On the

other hand, the proportion of some signatures such

as antivm generic scsi and antivm vbox keys sig-

nificantly increased, indicating that the dataset did

not contain so many variants of malware families from

which such signatures were detected.

Table 4 lists the standards for anti-analysis signa-

ture detection. The descriptions of the standards are

partly abbreviated and simplified owing to space limita-

tions. For example, although the standard for antivm

virtualpc includes pattern matching of the accessed

DLLs and files as well as mutexes, their description is

omitted from the table. For full details on the stan-

dards, readers are encouraged to refer to the script

programs under modules/signatures/windows/ in the

community source tree of Cuckoo Sandbox. Cuckoo Sand-

box detects every anti-analysis signature using the in-

formation available in an API call sequence.
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Table 4 Description of standards for signature detection (partly abbreviated and simplified)

Signature name Detection standard

antidbg windows An argument labeled with window name or class name matches patterns including OLLYDBG

antisandbox forehwnd Both GetForegroundWindow and NtDelayExecution are invoked more than 100 times
antisandbox idletime NtQuerySystemInformation is invoked with argument SystemProcessorPerformanceInformation
antisandbox mouse hook SetWindowsHookExA or SetWindowsHookExW is invoked with specified identifier values
antisandbox sleep The total amount of sleep time attempted is ≥ 120 s
antisandbox unhook Anomalies such as too many exceptions occur during analysis
antivm generic bios An accessed registry key ends with SystemBiosVersion or VideoBiosVersion
antivm generic disk DeviceIoControl is invoked with argument IOCTL_DISK_GET_DRIVE_GEOMETRY
antivm generic scsi An accessed registry key matches patterns including ...\\Services\\Disk\\Enum\\0
antivm generic firmware NtQuerySystemInformation is invoked with argument SystemFirmwareTableInformation
antivm generic services EnumServicesStatusA or EnumServicesStatusW is invoked
antivm sandboxie An accessed file or loaded DLL matches ...sbiedll(.dll)?
antivm vbox files An accessed file or loaded DLL matches patterns including VBoxVideo.[a-zA-Z]{3}

antivm vbox keys An accessed registry key ends with \\SOFTWARE\\Oracle\\VirtualBox Guest Additions

antivm virtualpc A mutex whose name matches ...MicrosoftVirtualPC7UserServiceMakeSure... is opened
antivm vmware files An accessed file matches patterns including ...vmmouse.sys, ...vmhgfs.sys, and ...vmci
antivm vmware keys An accessed registry key matches patterns including ...\\(Wow6432Node\\)?VMWare, Inc.

antiemu wine An accessed registry key matches \\HKEY_CURRENT_USER\\Software\\Wine

� �
class VMWareDetectFiles(Signature):

...

files_re = [

".*vmmouse\\.sys", ".*vmhgfs\\.sys",

".*hgfs$", ".*vmci$",

]

def on_complete(self):

for indicator in self.files_re:

for filepath in self.check_file(

pattern=indicator,

regex=True, ...):

self.mark_ioc("file", filepath)

return self.has_marks()� �
Fig. 1 Script for detecting an anti-analysis signature related
to VMware (indents are slightly changed)

Figure 1 shows an example script for signature de-

tection, which is extracted from the community source

code. The script program, written in Python, detects

the signature antivm vmware files by comparing file

paths accessed during execution with four regular ex-

pressions that represent characteristic file paths usu-

ally employed in a guest operating system running on

VMware. Cuckoo Sandbox records the accessed file paths

and finally calls the function on complete after the en-

tire execution. This function performs pattern match-

ing against each of the recorded paths and marks the

analysis result with an indicator of compromise (IOC)

if at least one file path matches with one of the regular

expressions.

The community source code that is expected to be

used to create the dataset includes 28 anti-analysis

signatures (i.e., 28 signatures that are categorized by

Cuckoo developers as anti-debug, anti-emulation,

anti-sandbox, or anti-vm). Although the following 10

signatures are provided in the community code in ad-

dition to the 18 signatures listed in Table 3, they were

not detected from any malware samples in the dataset:

antidbg devices, antisandbox file,

antisandbox sunbelt, antivm generic ide,

antivm vbox acpi, antivm vbox devices,

antivm vbox window, antivm virtualpc magic,

antivm vmware in insn, shutdown

Although the community source code as of August

12, 2016, additionally provides the following seven sig-

natures, none of them was detected as might be ex-

pected:

antivm bochs keys, antivm computername,

antivm generic cpu, antivm hyperv keys,

antivm parallels keys, antivm vpc keys,

antivm xen keys

Because these seven signatures are not expected to have

been introduced into the environment for dataset cre-

ation, Cuckoo Sandbox did not detect any signature

related to Bochs, Hyper-V, Parallels, or Xen. Hence,

we attempted to find these new signatures by apply-

ing their detection standard to the dataset. Neverthe-

less, none of these signatures was detected. However,

we found that remarkable strings, such as Hyper-V and

microsoft-hyper-v, appeared in the arguments of many

API calls. Thus, we did not exclude the possibility that

some of the malware samples attempt to recognize Hyper-

V.

Next, we examined how many signatures were de-

tected from each malware sample and each malware

family. Table 5 shows the results obtained when count-

ing all the signatures, not only the anti-analysis ones.



8 Yoshihiro Oyama

Table 5 Number of signatures detected from each malware
sample or each malware family

Number of
signatures

Number and Number and
proportion of proportion of
malware samples malware families

0 0 (0.00%) 0 (0.00%)
1 724 (8.8%) 241 (7.9%)
2 923 (11.2%) 322 (10.6%)
3 1548 (18.8%) 540 (17.7%)
4 1103 (13.4%) 399 (13.1%)
5 880 (10.7%) 369 (12.1%)
6 848 (10.3%) 348 (11.4%)
7 570 (6.9%) 242 (8.0%)
8 520 (6.3%) 235 (7.7%)
9 348 (4.2%) 126 (4.1%)
10 213 (2.6%) 74 (2.4%)
11 159 (1.9%) 57 (1.9%)
12 158 (1.9%) 41 (1.3%)
13 97 (1.2%) 20 (0.66%)
14 96 (1.2%) 19 (0.62%)
15 47 (0.60%) 9 (0.30%)
16 8 (0.10%) 2 (0.07%)
17 1 (0.01%) 0 (0.00%)

≥ 18 0 (0.00%) 0 (0.00%)

The maximum and minimum number of signatures de-

tected from one malware sample was 17 and 1, respec-

tively. This result indicates that some “active” mal-

wares conduct a large block of operations that are deter-

mined as signatures. The malware sample from which

17 signatures were detected will be elaborated as Mal-

ware 1 in Sect. 5.6. The maximum number of signatures

detected from one representative sample of a malware

family was 16, not 17, because the above-mentioned

malware sample (Malware 1) was not chosen as a rep-

resentative from the corresponding family. We did not

find a large difference in the distribution of the number

of signatures between when using all the malware sam-

ples and when using samples that are representative of

a family.

Table 6 lists the results obtained when counting

anti-analysis signatures only. In the same way as with

the previous results, we did not find a large difference

in the distribution between when using all the malware

samples and when using samples that are representative

of a family. At least one anti-analysis signature was de-

tected from the execution of around 10.4% of the mal-

ware samples. In general, only a few anti-analysis sig-

natures were detected from one malware sample. More

than three anti-analysis signatures were detected from

only around 0.15% of all the malware samples. Further,

more than four anti-analysis signatures were detected

from only five out of the 8243 samples. This result indi-

cates that only a small proportion of malwares execute

a wide range of anti-analysis operations.

Table 6 Number of anti-analysis signatures detected from
each malware sample or each malware family

Number of Number and Number and
anti-analysis proportion of proportion of
signatures malware samples malware families

0 7387 (89.6%) 2791 (91.7%)
1 416 (5.0%) 151 (5.0%)
2 83 (1.0%) 26 (0.85%)
3 345 (4.2%) 69 (2.3%)
4 7 (0.08%) 3 (0.10%)
5 5 (0.06%) 4 (0.13%)

≥ 6 0 (0.00%) 0 (0.00%)

We examined each of the five malware samples from

which five anti-analysis signatures were detected. The

signatures antivm generic bios, antivm generic

scsi, antivm vbox keys, and antivm vmware keys

were detected from all these samples. As the remain-

ing signature, antidbg windows was detected from two

malware samples and antisandbox sleep was detected

from three malware samples.

5.2 Programs that Execute Anti-Analysis Operations

Some malwares create a new process during their execu-

tion. Anti-analysis operations may be executed by the

first process of a malware or by a child process created

during the execution.

Some child processes can execute a downloaded ma-

licious program, while others can simply execute a be-

nign program to help the main process of the malware.

In addition, some child processes can first execute a

benign program and then become targets of shellcode

injection, which is typically achieved with the function

CreateRemoteThread. As shown in Table 2, the signa-

ture of code injection into a remote process was de-

tected from 579 malware samples.

We examined the names of the programs from which

an anti-analysis signature was detected, and counted

the number of API calls for anti-analysis operations in-

voked by each of the programs (including both success-

ful and unsuccessful calls). We also counted the number

of processes from which an anti-analysis signature was

detected.

We excluded the signatures antisandbox forehwnd

and antisandbox sleep from this result because the

numbers of API calls for these anti-analysis operations

are not meaningful.

Tables 7 and 8 show the results. Each malware file

in FFRI Dataset 2016 is named as “the SHA-1 hash

value of the file content”.exe. The tables show only

high-ranked programs in terms of the total number of

API calls. After these programs, the ranking continues
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Table 7 Number of API calls invoked for anti-analysis operations

antivm antivm antivm antivm anti antivm antivm antivm

Program name Sum generic debug vmware generic sandbox vbox vbox vmware Others
bios windows files scsi idletime keys files keys

Hashvalue.exe 3019 436 1375 17 457 526 86 48 20 54

explorer.exe 1916 1104 708 38 1 15 27 11 12
hh.exe 189 84 69 21 15
helppane.exe 144 64 50 16 14
regedit.exe 127 56 2 41 14 14
bfsvc.exe 62 28 26 7 1
powershell.exe 62 62
notepad.exe 57 24 24 3 6
write.exe 54 24 24 6
iesecure.exe 52 26 26

Table 8 Number of processes from which an anti-analysis signature was detected

antivm antivm antivm antivm anti antivm antivm antivm

Program name Sum generic debug vmware generic sandbox vbox vbox vmware Others
bios windows files scsi idletime keys files keys

Hashvalue.exe 383 84 40 13 110 31 34 29 15 27

explorer.exe 734 357 354 3 1 3 9 1 6
hh.exe 13 4 4 4 1
helppane.exe 7 2 2 2 1
regedit.exe 9 2 1 2 2 2
bfsvc.exe 13 4 4 4 1
powershell.exe 5 5
notepad.exe 10 3 3 1 3
write.exe 9 3 3 3
iesecure.exe 26 13 13

with splwow64.exe, winhlp32.exe, eventvwr.exe,

verifiergui.exe, 1.exe, MicrosoftTray.exe, M.exe,

Sdat.exe, kernel21.exe, and diskchk.exe. All these

programs invoked less than 20 API calls for anti-

analysis operations. Moreover, the tables show only

high-ranked signatures in terms of the total numbers

of API calls.

The result indicates that anti-analysis operations

are often executed by the first process of a malware as

well as by other processes. All programs except hash-

value programs in the tables are utilities provided by

the operating systems. These utilities could invoke anti-

analysis operations for benign purposes, or shellcode

injected into these utilities could invoke anti-analysis

operations for malicious purposes.

Signatures of generic anti-analysis operations and

signatures related to the registry keys of virtual ma-

chine monitors were detected from a wide range of pro-

grams. The other signatures were detected from only

a small number of programs. A strong correlation was

observed between powershell.exe and antisandbox

idletime as well as among explorer.exe, iesecure.

exe, and signatures related to the files of virtual ma-

chine monitors.

5.3 Discussion on Individual Signatures

5.3.1 Overview

To determine whether the malwares succeeded in anti-

analysis operations, we examined the number of suc-

cessful and unsuccessful API calls that match each anti-

analysis signature. We counted the number by compar-

ing the standards used by Cuckoo Sandbox for signa-
ture detection with the function names and argument

values of all API calls invoked by malwares from which

an anti-analysis signature was detected. Cuckoo Sand-

box ignores some unsuccessful API calls that match an

anti-analysis signature. However, in this study, we count

and report the numbers of both successful and unsuc-

cessful calls because the purpose of this study is to un-

derstand as much anti-analysis behavior of malwares as

possible. We determined the success and failure of each

API call based on the return value, the NTSTATUS er-

ror code, and the specification of the API function. Al-

though some API functions are exceptional, a call is de-

termined to be a failure if the return value or NTSTATUS

is negative, and a success otherwise.
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Table 9 Success and failure of API calls for anti-analysis
operations

Number of Number of
Signature name successful unsuccessful

calls calls

antisandbox sleep — —
antivm generic bios 1503 345
antivm vmware files 0 751
antivm generic scsi 745 0
antisandbox forehwnd — —
antisandbox idletime 587 5
antidbg windows 0 1379
antivm vbox keys 0 174
antivm vbox files 0 101
antivm vmware keys 0 76
antivm generic disk 25 0
antisandbox mouse hook 6 2
antivm generic services 7 7
antivm generic firmware 10 6
antivm sandboxie 0 3
antiemu wine 0 2
antisandbox unhook — —
antivm virtualpc 0 1

Table 9 shows the result. The numbers of some

anti-analysis operations are not filled in the table be-

cause the numbers do not indicate the number of

these anti-analysis operations. All calls of anti-analysis

operations related to virtualization mechanisms (i.e.,

antivm vmware *, antivm vbox *, antivm sandboxie,

antiemu wine, and antivm virtualpc) failed. On the

other hand, all calls of generic anti-analysis operations

that check disk information (antivm generic scsi

and antivm generic disk) were successful. The calls

of generic anti-analysis operations that check the

BIOS version (antivm generic bios) included success-
ful and unsuccessful ones. The calls of generic anti-

analysis operations that check the firmware informa-

tion and enumerate the services (antivm generic

firmware and antivm generic services) were all suc-

cessful practically, as described later in detail. In the

following subsections, we explain the details of malware

behavior related to each anti-analysis signature.

5.3.2 Sleeps

Some malwares sleep to delay analysis; thus, Cuckoo

Sandbox regards a large amount of accumulative sleep

time as a signature. It calculates the sum of the times

given as arguments of NtDelayExecution and com-

pares the sum with a threshold.

This signature was detected from the largest num-

ber of malware samples among all the signatures. For

this signature, the number of related API calls is not

meaningful because only the total amount of sleep time

matters.

A long sleep is easy to implement and effectively

hinders analysis. Hence, this signature was naturally

detected from many malware samples. However, it is

important to note that not all long sleeps are neces-

sarily intended for anti-analysis operations; some mal-

wares might sleep for other purposes, such as waiting

for communication.

5.3.3 BIOS Version Checks

Many virtual machine monitors provide an inherent vir-

tual BIOS. The BIOS version information enables mal-

wares to determine the presence and identify the name

of an underlying virtual machine monitor, if any, with

high accuracy.

In general, the BIOS version information is used

for various purposes besides anti-analysis operations.

Hence, BIOS version checks executed by a program do

not immediately imply that the program attempts to

detect artifacts of a virtual machine monitor. Actually,

Cuckoo Sandbox describes the signature with a sub-

tle expression, possibly for anti-virtualization.

Similar expressions are used to describe signatures of

antivm generic disk and antivm generic services.

API calls that match these signatures are not necessar-

ily for anti-analysis operations.

The signature of BIOS version checks was de-

tected from 443 malware samples. Success or fail-

ure of the calls was dependent solely on an ac-

cessed registry key. Accesses to keys located un-

der HKEY_LOCAL_MACHINE\\HARDWARE were successful,

whereas accesses to keys located under HKEY_LOCAL_

MACHINE\\SOFTWARE failed. Successful calls received

the string LENOVO - 2020 or LENOVO - 3220 for the

registry key SystemBiosVersion, and they received

the string Hardware Versio for the registry key

VideoBiosVersion.

Cuckoo Sandbox returns spurious BIOS informa-

tion that differs from the information on the physical
BIOS. For SystemBiosVersion, it randomly chooses

one of the two above-mentioned strings and re-

turns it. For VideoBiosVersion, it returns the string

Hardware Version 0.0. Because the strings are pub-

licly available, it is not difficult to write a program that

determines whether it is running in Cuckoo Sandbox. It

is possible for some malware samples attempting to rec-

ognize Cuckoo Sandbox with this operation to correctly

determine the presence of Cuckoo Sandbox.

5.3.4 Detection of Virtual Machine Monitors

The malwares in the dataset failed in all API calls for

detecting virtual machine monitors. Conversely, they
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were successful in most attempts to correctly predict

the absence of virtual machine monitors. The malwares
naturally failed in opening files or registry keys related

to VMware because the running environment was built

with VirtualBox. A signature of operations for recog-

nizing VirtualPC was detected only once from a call

to the function NtCreateMutant with the argument

MicrosoftVirtualPC7UserServiceMakeSureWe’reThe

OnlyOneMutex. This call also failed, and the failure is

natural for the same reason as that stated above. All

attempts to open files or registry keys related to Virtu-

alBox also failed because resources related to Virtual-

Box Guest Additions were not found in the guest OS.

Cuckoo Sandbox uses accesses to files of VirtualBox

Guest Additions as a detection standard of signatures

related to VirtualBox; all such file accesses failed in the

execution recorded in the dataset.

5.3.5 Detection of Sandboxie and Wine

Sandboxie is not a virtual machine monitor but soft-

ware that creates a virtual environment in the operat-

ing system for running untrusted programs. Operations

onto resources, such as files, performed in a virtual envi-

ronment are applied to virtualized counterparts and do

not affect the real resources. Signatures related to Sand-

boxie were detected from two malware samples. One of

them invokes the function LdrLoadDll twice with the

Sandboxie library SbieDll.dll as an argument. The

other invokes the function NtCreateMutant only once

with Sandboxie SingleInstanceMutex Control as an

argument. All the calls failed.

The signature related to Wine, which is a Win-

dows emulator, was detected from one malware sam-

ple. The malware accessed the registry key HKEY_

CURRENT_USER\\Software\\WINE twice with the func-

tion RegOpenKeyExW, and it failed in both accesses.

The malwares naturally failed in all API calls re-

lated to the Sandboxie and Wine signatures because it

is highly unlikely that either Sandboxie or Wine was

installed in the environment.

5.3.6 Checks of Disk Hardware Information

Many virtual machine monitors provide inherent vir-

tual disk hardware to virtual machines. Disk hardware

information is a critical clue for judging whether the

running environment is a virtual one. Cuckoo Sandbox

detects the signature antivm generic scsi from API

calls for accessing registry keys of SCSI device identi-

fiers or disk services. In general, these keys maintain

data for the identification of disk hardware, such as

product numbers.

Cuckoo Sandbox provides a mechanism called “VM

cloaking”, in which spurious hardware and software in-

formation is provided to virtual machines to deceive

malware. Specifically, when the original value of a SCSI

device registry contains a predefined substring such as

vbox, vmware, qemu, or virtual, Cuckoo Sandbox re-

places the value with a random character string or with

the string ST9160411AS, which represents a Seagate

hard disk. The string ST9160411AS appeared in the ar-

gument strings of 33 malware samples in the dataset.

The signature antivm generic disk was de-

tected from various API calls, which include

NtCreateFile calls with file paths containing the

substring physicaldrive0 or scsi0. They also include

DeviceIoControl calls with special control code. All

API calls for operations related to these signatures

were successful. If some malware samples in the

dataset determined the presence of virtualization

mechanisms using disk hardware information, they

might have correctly judged that they were running

in a virtual environment. As described above, some

malware samples actually obtained publicly available

information that Cuckoo Sandbox provides to disguise

environments.

5.3.7 Checks of Human Activity

Some malwares attempt to detect the character-

istic behavior related to human activity in order

to identify whether the running environment is a

sandbox for analysis. Cuckoo Sandbox supports the

signatures of such behavior, namely antisandbox

forehwnd, antisandbox idletime, and antisandbox

mouse hook.

For antisandbox forehwnd, Cuckoo Sandbox

makes a decision based on the number of calls

by malwares to GetForegroundWindow, which is

a function for obtaining the handle of the fore-

ground window, and NtDelayExecution, which is

a function for sleeping. In general, changes in the

foreground window indicate human activity. Many

malware samples in the dataset repeatedly invoked

GetForegroundWindow and NtDelayExecution

numerous times. We counted the maximum and

average numbers of GetForegroundWindow calls and

NtDelayExecution calls invoked by malwares from

which the signature antisandbox forehwnd was

detected. The maximum and average numbers of

GetForegroundWindow calls were 9960 and 1040,

respectively, while the maximum and average numbers

of NtDelayExecution calls were 5172 and 1067,

respectively.



12 Yoshihiro Oyama

For antisandbox idletime, Cuckoo Sandbox looks

for API calls to determine the amount of time for
which the system has been idle. In general, a long idle

time indicates a long uptime, and a long uptime indi-

cates an ordinary environment not intended for mal-

ware analysis. Most API calls for operations related to

antisandbox idletime were successful, and only five

calls were unsuccessful. All the unsuccessful calls were

caused by insufficient buffer sizes. Immediately after

each of the unsuccessful calls, the malwares invoked the

same API function again and succeeded in it.

For antisandbox mouse hook, Cuckoo Sandbox

looks for attempts by the malwares to intercept mouse

events. Six calls for operations related to this signature

were successful and two were unsuccessful. The unsuc-

cessful calls were caused by invalid code addresses given

to arguments. It is not straightforward to determine

whether the malware samples that executed the suc-

cessful calls recognized the analysis environment, be-
cause Cuckoo Sandbox automatically moves the mouse

cursor and clicks mouse buttons in a virtual machine

to disguise the virtual machine as an ordinary environ-

ment.

The signature antisandbox forehwnd was detected

frequently compared to the other anti-analysis sig-

natures. Further, antisandbox idletime was also

detected relatively frequently. On the other hand,

antisandbox mouse hook was detected from only a few

malware samples. We surmise from this result that mal-

ware developers prefer obscure anti-analysis operations,

such as simply reading system information, rather than

conspicuous operations, such as inserting hooks into

API calls.

5.3.8 Checks of Debuggers and Forensic Tools

Some malwares check for the presence of win-

dows from debuggers and forensic tools in the

running environment. Cuckoo Sandbox detects the

signature antidbg windows from API calls whose

argument labeled with window name or class

name matches strings that characterize debuggers

and forensic tools. The strings include OLLYDBG,

WinDbgFrameClass, FilemonClass, and Registry

Monitor - Sysinternals: www.sysinternals.com.

The malware samples in the dataset invoked 1379

API calls for operations related to this signature. All of

them were calls of either FindWindowA or FindWindowW,

which are functions for finding a window with a class

name and window name that matches given argument

strings. All 1379 calls failed because none of the searched

windows existed in the environment. Hence, the mal-

wares were likely to judge that no debugger or forensic

tool was running, which is consistent with the facts.

A well-known method for a malware to check

whether it is being debugged is calling the function

IsDebuggerPresent. However, Cuckoo Sandbox does

not have any signature detection standard based on

the call of this function. Although many malware sam-

ples in the dataset called IsDebuggerPresent, Cuckoo

Sandbox simply ignored the calls. The number of
malwares that called the function at least once was

2900, and the total number of calls was 4559, out of

which 4555 failed and only four were successful. All

the successful calls were invoked by the second pro-

cess that was dynamically created by the first mal-

ware process. The memory of the second process was

read and written by the first process with the func-

tions ReadProcessMemory and WriteProcessMemory,

respectively.

5.3.9 Enumeration of Services

The signature antivm generic services is de-

tected from calls of API functions whose prefix is

EnumServiceStatus. These functions enumerate the

currently running services. The presence of particular

services indicates the presence of analysis software.

This signature was detected from only two malware

samples, and only 14 API calls were invoked for op-

erations related to this signature. Among the 14 calls,

seven calls were successful and the other seven calls

were unsuccessful. However, the unsuccessful calls were

only for returning the error code ERROR MORE DATA,

which represents the continuation of data. Hence, prac-

tically, all attempts by the malwares for the operations

were successful. It is considered that the malwares suc-

cessfully recognized the services running in the operat-

ing system.

5.3.10 Checks of Firmware Information

The signature for checking firmware information,

namely antivm generic firmware, was detected from

only two malware samples, and only 16 API calls

were invoked for operations related to the sig-

nature. Both malware samples called the func-

tion NtQuerySystemInformation with the argument

SystemFirmwareTableInformation, and the signature

was detected from these calls. Among the 16 calls, 10

calls were successful and six calls were unsuccessful. All

the unsuccessful calls were caused by insufficient buffer

sizes for storing the results. Immediately after the un-

successful calls, the malwares called the same function

again, and these second attempts were all successful.
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Hence, the malwares successfully obtained the firmware

information in all attempts of the operations.

5.4 Whether the Malwares Recognized Virtualization

We consider that only a few malware samples from the

dataset recognized Cuckoo Sandbox because many mal-

ware samples did not terminate themselves and contin-

ued their execution long after the anti-analysis opera-

tions. We examined the position of the last successful

API call for operations related to each anti-analysis sig-

nature in the API call sequence of each malware pro-

cess. Table 10 shows the average positions. Here, the

position of a call in a sequence indicates the order of

the call (smaller is earlier) divided by the number of

calls contained in the sequence. In addition, the table

also shows the average number of subsequent API calls

invoked after the last successful call until process ter-

mination. If a malware was programmed to terminate

its execution immediately after the successful detection

of an analysis system, API calls for anti-analysis oper-

ations would be observed in the final stage of the call

sequence. However, API calls for anti-analysis opera-

tions were not actually observed in such stage. More-

over, the malwares executed more API calls than the

expected number required in a termination operation

(i.e., ∼100 calls). From the viewpoint of not only the

relative positions but also the absolute numbers of calls,

it is reasonable to assume that a majority of the mal-

wares did not successfully detect Cuckoo Sandbox and

terminate execution.

We also conducted a microscopic examination of
whether the malwares recognized Cuckoo Sandbox. We

investigated the behavior observed after the last suc-

cessful API call described above. Because some sophis-

ticated malwares execute dummy or misleading opera-

tions after they had detected an analysis system [35],

the behavior of API calls, as well as their numbers
and positions, should be considered. The targets of

the investigation were malware samples from which the

signature antisandbox mouse hook, antivm generic

disk, antivm generic firmware, or antivm generic

services was detected. We chose these targets because

of the small numbers of the samples. We found that 24

out of 28 malwares attempted at least one of the fol-

lowing operations: file write, registry key write, process

creation, network communication to the external net-

work, and thread creation in another process. These op-

erations are mainly used for malicious purposes. These

24 malware samples are expected to continue malicious

operations because they did not or could not detect

Cuckoo Sandbox. The remaining four malware sam-

Table 10 Average relative positions of the last successful
API call related to an anti-analysis operation and average
numbers of API calls invoked after the last API call

Signature name
Position of Number of
last call subsequent calls

antivm generic bios 21.6% 2865
antivm generic scsi 69.2% 1353
antisandbox idletime 84.2% 1049
antivm generic disk 37.7% 8125
antisandbox mouse hook 31.0% 301
antivm generic firmware 44.7% 524
antivm generic services 19.6% 300

ples terminated themselves without executing opera-

tions that can be regarded as malicious.

5.5 Overlooked Behavior

No security software can possibly detect all types of

anti-analysis operations. In fact, FFRI Dataset 2016

contains numerous signs of anti-analysis operations that

seem to be overlooked by Cuckoo Sandbox. Here, we

briefly describe several reasons for such oversight that

we consider important.

– Arguments of some API functions are not checked

even though they should be. For example, Cuckoo

Sandbox does not scan the arguments of the func-

tion LdrGetDllHandle; consequently, it ignored sev-

eral characteristic strings that appeared in the argu-

ments of LdrGetDllHandle in FFRI Dataset 2016.

Examples include sbiedll.dll (a library file of

Sandboxie) and api log.dll (a library file of Sun-

Belt Sandbox).

– Pattern matching of files and registry keys is not

exhaustive. For example, although some malwares

attempted to open the file vmmemctl, which is a file

used by VMware, Cuckoo Sandbox ignored them

owing to the lack of a pattern for signature detection

that matches the file name.

– Arguments of unsuccessful calls of some API func-

tions are not checked. For example, the arguments

of the function NtCreateFile are excluded from the

target of pattern matching if the call fails. The ar-

guments of unsuccessful calls are simply ignored. As

a result, Cuckoo Sandbox ignored many operations

that were considered highly likely to be anti-analysis

operations. Further, it ignored all arguments con-

taining a string that characterizes a virtual machine

monitor, such as VBoxGuest. We consider that in-

vocation attempts of API calls matching the pat-

terns themselves should be detected as signatures,

regardless of whether they are successful, because
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analysis systems should enable malware analysts to

keep track of all attempts of anti-analysis opera-
tions exhaustively. Providing different signatures to

successful anti-analysis operations and unsuccessful

ones may further facilitate malware analysis.

5.6 Behavior of Individual Malwares

The following paragraphs describe the behavior of sev-

eral remarkable malware samples.

Malware 1 (Hash Value 8a127994...): The number of

signatures detected from this malware sample (17) was

the largest among all the malware samples. The de-

tected signatures include four anti-analysis signatures,

namely antisandbox idletime, antisandbox sleep,

antivm generic bios, and antivm vmware files. Af-

ter the anti-analysis operations, this malware sample

attempted to execute a wide range of operations in-

cluding network communication and did not show the

behavior of immediate termination.

Malware 2 (Hash Value bef62f27...): The behavior of

this malware sample is rare in the sense that this is one

of two malware samples from which the signature re-

lated to Sandboxie was detected, one of two malware

samples from which the signature related to firmware

information checks was detected, and the only malware

sample from which the signature related to Wine was

detected. This malware sample attempted to open sev-

eral characteristic files such as VBoxGuest, HGFS, and

vmci with the function NtCreateFile. We regard these

as being highly likely to be anti-analysis operations

for detecting VirtualBox or VMware. However, Cuckoo

Sandbox ignored the open operations for the reason de-

scribed in Sect. 5.5. In addition, this malware sample

executed many apparently anti-analysis operations. For

example, it checked the free disk space, the number of

processors, and the location of the mouse cursor. It in-

voked the API function GetCursorPos as many as 5816

times.

Malware 3 (Hash Value f6772412...): Rare signatures

including firmware information checks, Sandboxie de-

tection, and VirtualPC detection were detected from

this malware sample. This malware sample immediately

began to terminate itself after the execution of these

anti-analysis operations. Here, it should be noted that

this malware failed to detect Sandboxie or VirtualPC.

Hence, if this malware terminated execution because

of being analyzed, the detection of the analysis was

likely to be caused by another information source, such

as firmware or performance. Thus far, it has not been

determined whether the termination is because of the

detection of Cuckoo Sandbox. Therefore, further inves-

tigation based on other information, such as malware

bodies and executed instruction sequences, is required.

This malware sample also executed other interesting op-

erations, although they were not reported as signatures.

For example, it obtained the number of CPUs with

the function GetNativeSystemInfo, obtained the cur-

sor position periodically every 100 ms, and attempted

to open a folder named C:\\Sandbox.

6 Summary and Future Work

We reported the trends of anti-analysis operations ex-

ecuted by recently developed malwares whose dynamic

behavior was recorded in FFRI Dataset 2016. Our find-

ings can be summarized as follows:

– Among 8243 malware samples, 856 (10.4%) samples

executed at least one type of the 28 anti-analysis op-

erations investigated in this study. Most of them ex-

ecuted only one, two, or three types of anti-analysis

operations. No malware sample executed more than

five types of anti-analysis operations.

– VMware was the virtual machine monitor that the

largest number of malware samples was aware of.

VirtualBox was in the next position. Behavior re-

lated to Bochs, Hyper-V, Parallels, and Xen was not

detected probably because the signatures of the be-

havior had not been incorporated in Cuckoo Sand-

box when the dataset was created. We found that

the dataset contains many API calls whose argu-

ment strings are related to Hyper-V.

– Anti-analysis operations were often executed by

the first process of a malware by itself. They

were also executed with nonnegligible frequency by

child processes created by the malware. Further,

explorer.exe, hh.exe, and helppane.exe were the

top three Windows programs running in child pro-

cesses that executed the largest number of anti-

analysis operations.

– We surmise that the malwares failed in all attempts

to detect a virtual machine monitor by accessing in-

dividual files or registry keys. Conversely, they were

successful in most attempts to correctly predict the

absence of virtual machine monitors. On the other

hand, thus far, it has not been determined whether

the malwares could successfully detect virtual ma-

chine monitors using hardware information or ser-

vice information.

– Some malware samples obtained hardware informa-

tion and then terminated themselves without exe-
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cuting any operation with the original purpose of

the malware.
– Cuckoo Sandbox ignored some operations that were

likely to be anti-analysis operations. One reason for

this oversight is that the patterns of functions and

arguments for signature detection are not exhaus-

tive. Another reason is that Cuckoo Sandbox ignores

arguments of some unsuccessful calls.

These are the trends observed only in FFRI Dataset

2016, which was collected with Cuckoo Sandbox 2.0-

dev. Further investigation is needed to determine

whether these trends are universal ones that are also

observed when analyzing a general set of recently devel-

oped malwares and when using other analysis systems.

There are several directions for future work. First,

future studies are expected to clarify malware behav-

ior that cannot be understood with only API call se-

quences. An extremely important example of the behav-

ior is time-based detection of analysis systems. It would

be necessary to combine the insights of the present

study with those obtained by analyzing performance

data or a trace of executed CPU instructions. Second,

it would be necessary to develop a method capable of

more accurately predicting whether and when malwares

successfully detect the presence of analysis systems. Al-

though some malware samples in the dataset finished

their execution without performing any malicious op-

erations, the reasons for their behavior have not been

fully identified. Moreover, sophisticated malwares in the

dataset might possibly execute dummy or misleading

operations after the detection of analysis systems [35].

One starting point for future work will be to gain a full

understanding of the behavior observed around the last

execution of anti-analysis operations.
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