
Symbolic-Numeric Algorithms
for Univariate Polynomials

Akira Terui

February 2010

Symbolic-Numeric Algorithms
for Univariate Polynomials

Akira Terui

Submitted to the Graduate School of
Pure and Applied Sciences

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy in Science

at the
University of Tsukuba

A B S T R A C T

In computer algebra, “symbolic-numeric computation” is attracting broad range of
attentions for developing new aspect of scientific computation in recent decades.
Symbolic-numeric computation includes the following two approaches such as 1)
employing algebraic methods in numerical computation, and 2) executing polyno-
mial and/or rational function computations over the floating-point arithmetic. In
this dissertation, we present numerous algorithms in symbolic-numeric computa-
tion for univariate polynomials: 1) “the Durand-Kerner method for the real roots,”
as the former approach; and 2) “ ‘approximate zero-points’ of real univariate poly-
nomial with large error terms,” 3) “recursive polynomial remainder sequence (PRS)
and its subresultants,” and 4) “GPGCD: an iterative method for calculating approx-
imate greatest common divisor (GCD) of univariate polynomials;” as the latter ap-
proach.

iii

C O N T E N T S

Abstract iii

Contents v

List of Tables vii

List of Figures ix

Acknowledgments xi

Note to This Edition xiii

1 introduction 1

1.1 What is ”Symbolic-Numeric Algorithms”? 1

1.2 Topics Discussed in This Work . 1

2 the durand-kerner method for the real roots 5

2.1 The DK Method and Smith’s Theorem 5

2.1.1 The DK Iteration Formula . 6

2.1.2 The Smith’s Theorem . 6

2.1.3 Initial Values for a Real Polynomial 6

2.2 The DK Method Calculating Only Real Roots 8

2.2.1 Modification of the DK Formula 8

2.2.2 Convergence Property . 9

2.2.3 Error Bound . 12

2.3 Computing Time Analysis . 14

2.3.1 DKA Method . 14

2.3.2 DKAreal Method . 14

2.3.3 DKreal Method . 15

2.4 Experiments . 16

2.4.1 Comparison in the General Case 16

2.4.2 Usefulness in a Special Case . 18

2.4.3 Comparison with the Newton’s Method and Weakness 20

2.5 Summary . 22

3 ”approximate zero-points” of real univariate polynomial with large
error terms 23

3.1 Approximate Polynomials and Approximate Real Zero-points 24

3.1.1 The Existence Domain of Values of P̃(x) 24

3.1.2 Approximate Real Zero-points and their Existence Domains . . 25

3.2 Bounding Existence Domains by Using the Smith’s Theorem 27

3.2.1 Single Zero-points . 27

3.2.2 Multiple or Close Zero-points 28

3.3 Calculating the Number of Real Zero-points of a Real Approximate
Polynomial . 29

v

3.3.1 Sufficient Condition for Fixing the Number of Real Zero-points 29

3.3.2 Problem of Small Leading Coefficient in the Sturm Sequence . 30

3.4 Evaluating the Effects of Error Terms 34

3.4.1 Evaluation of the Subresultant Determinant 35

3.4.2 Utilization of Interval Arithmetic 38

3.4.3 Backward Error Analysis for a Linear System 38

3.4.4 Calculating Error Terms Parametrically 41

3.5 Summary . 41

4 recursive polynomial remainder sequence and its subresultants 45

4.1 Recursive Polynomial Remainder Sequence (PRS) 46

4.2 Subresultants for Recursive PRS . 48

4.2.1 Fundamental Theorem of Subresultants 48

4.2.2 Recursive Subresultants . 50

4.3 Nested Subresultants . 59

4.4 Reduced Nested Subresultants . 62

4.5 Summary . 67

5 gpgcd: an iterative method for calculating approximate gcd of
univariate polynomials 69

5.1 Formulation of the Approximate GCD Problem 70

5.1.1 The Real Coefficient Case . 71

5.1.2 The Complex Coefficient Case 72

5.2 The Gradient-Projection Method and a Modified Newton Method . . 74

5.2.1 The Gradient-Projection Method 74

5.2.2 The Modified Newton Method 75

5.3 The Algorithm for Approximate GCD 76

5.3.1 Representation of the Jacobian Matrix 77

5.3.2 Certifying the Rank of the Jacobian Matrix 78

5.3.3 Setting the Initial Values . 80

5.3.4 Regarding the Minimization Problem as the Minimum Dis-
tance (Least Squares) Problem 82

5.3.5 Calculating the Actual GCD and Correcting the Deformed
Polynomials . 82

5.3.6 The Algorithm . 84

5.3.7 Preserving Monicity . 85

5.3.8 Examples . 86

5.4 Experiments . 87

5.4.1 Comparison of the Gradient-Projection Method and the Mod-
ified Newton Method . 88

5.4.2 Tests on Large Sets of Randomly-generated Polynomials 89

5.5 Summary . 91

Bibliography 93

L I S T O F TA B L E S

Table 2.1 The number of real arithmetic operations required for each
complex arithmetic operation. 14

Table 2.2 Result of computation in interval I1. 19

Table 2.3 Result of computation in interval I2. 19

Table 2.4 Result of computation in interval I3. 19

Table 2.5 Computing time of four methods. 21

Table 2.6 Accuracies of computed real zero-points of P7(x). 21

Table 2.7 Accuracies of computed real zero-points of P8(x). 21

Table 2.8 Accuracies of computed real zero-points of P9(x). 21

Table 3.1 Condition number of the matrix in Formula (3.22) computed
for 10 polynomials with random-number coefficients. 40

Table 3.2 ‖P̃n(x, δn−1, . . . , δ0)‖/‖P̃n(x, 0, . . . , 0)‖ for 10 polynomials, where
P̃n is the last element of the Sturm sequence. 42

Table 3.3 Computing times for calculating the Sturm sequences with
and without parameterized error terms. 42

Table 5.1 Test results comparing the gradient-projection method and
the modified Newton method. 89

Table 5.2 Test results for large sets of polynomials with approximate
GCD, in the case of the real coefficients. 90

Table 5.3 Test results for large sets of polynomials with approximate
GCD, in the case of the complex coefficients. 90

vii

L I S T O F F I G U R E S

Figure 2.1 Average computing time of one iteration for P1,k(x). 17

Figure 2.2 Average computing time of one iteration for P2,k(x). 17

Figure 3.1 Existence domain of an approximate real zero-point. 26

Figure 4.1 Illustration of N̄(k,j)(F,G). 51

Figure 4.2 Illustration of M(k,j)(F,G). 54

Figure 4.3 Illustration of M̄(k,j)(F,G). 55

Figure 4.4 Illustration of M̂(k,j)(F,G). 57

ix

A C K N O W L E D G M E N T S

First of all, I express my sincere gratitude to Professor Tateaki Sasaki for inviting
me to this exciting subject of research and for outstanding guidance for many years,
including some parts in the work. I am also grateful to his collaborators in approx-
imate algebraic computation: Professor Matu-Tarow Noda, Professor Fujio Kako,
Professor Tetsuo Fukui, and Professor Hiroshi Kai, for their advices and encourage-
ment for many years.

I would like to thank to the member of my dissertation committee for valuable
comments and suggestions; Professor Ko Sakai, Professor Akito Tsuboi, Professor
Makoto Aoshima, for advices in daily collaboration in Mathematics of Informa-
tion Group in Department of Mathematics, University of Tsukuba; and Professor
Kiyoshi Shirayanagi, for advices and encouragement in the research of approximate
algebraic computation.

I am greatly indebted to the member of former computer algebra research group
(so-called Sasaki Lab.) in Department of Mathematics, University of Tsukuba. My
apologies for not listing everyone’s name because there are too many, yet their
support and discussions have been and will be invaluable for me. I would also
like to express my heartfelt appreciation to Professor Hiroyuki Tachikawa for his
discussions, advices and continuous encouragement in collaboration with myself
and/or the lab members.

Many thanks go to the faculty of Department of Mathematics, Graduate School
of Pure and Applied Sciences, University of Tsukuba, for cooperation and support
in daily activities in research and teaching. In particular, I am very grateful to
Professor Masahiko Miyamoto, Chair of the department; and Professor Hisao Kato,
the person in charge of graduate program in the department; for their arrangements
for my dissertation committee.

The author acknowledges that some parts in this work have been supported by
the Ministry of Education, Culture, Sports, Science and Technology of Japan, under
Grant-in-Aid for Scientific Research (KAKENHI); and University of Tsukuba, under
grant-in-aid for research projects.

I would also like to thank Mr. Jiro Miyamoto, the instructor of mathematics when
I was in the high school, for guiding me to the journey into the world of mathemat-
ics, which I am still continuing, and search for toretate, or “just harvested” theorems,
for which I am still looking now.

Finally, but not least, I express my deepest appreciation to my wife, Mayumi, for
understanding and patience; my daughter, Chihiro, for everyday cheer and hope;
and my parents, Yoshio and Tomiko Terui, for countless support and encourage-
ment. This work has only become possible with their unflagging love and dedica-
tion.

xi

N OT E TO T H I S E D I T I O N

This is re-typeset version of the original dissertation. While I have maintained the
original contents without changing any words and/or formulas in the main body, I
have added the following information:

1. Copyright notice of corresponding articles in each chapter;

2. Digital Object Identifiers (DOI) or URLs of references as many as possible.

Please note that the number of pages is slightly increased in the present edition
from that of the original edition, possibly by changes of page style parameters.

Akira Terui
November 2017

xiii

1 I N T R O D U C T I O N

1.1 what is “symbolic-numeric algorithms” ?
The theory of computer algebra (symbolic computation) has been constructed based
on the arithmetic including polynomials and/or rational functions over algebra
such as groups, rings and fields (finite fields, the fields of real or complex num-
bers, algebraic extension fields, etc.) with exact arithmetic. Exact arithmetic on the
coefficients was a demand for consistency of such algebraic computations, which
made significant contributions for solving certain problems in scientific computing.

However, the most of scientific computations has been carried out using numeric
computation with the floating-point arithmetic, by the following reasons:

• Sources of data are often observed values thus they frequently contain numer-
ical errors;

• The floating-point arithmetic is far more efficient than the exact arithmetic;

• Numerous numerical methods have been developed for solving various prob-
lems accurately, stably and efficiently, with comprehensive analysis on com-
putational accuracy, stability, complexity, and so on.

Nevertheless, there exist some situations in numercal methods which algebraic
computations with polynomials and/or rational functions are effective, which have
lead to try the following approaches:

(1) Executing algebraic methods in numerical computation;

(2) Executing polynomial and/or rational function computations over the floating-
point arithmetic. This approach is called “approximate algebraic computa-
tion,” which has been initiated in the field of computer algebra [43] and has
been attracting attention for new research results.

“Symbolic-numeric computation” includes above approaches in scientific computa-
tions, which are getting more popular in recent decades. In the field of symbolic and
algebraic computation, an international workshop on symbolic-numeric algebra for
polynomials (SNAP) was held in 1996 [17], followed by a series of international
workshops on symbolic-numeric computation (SNC) (SNC ’05 [62], SNC ’07 [63],
and SNC ’09 [23]).

1.2 topics discussed in this work
Now the reader should understand that “symbolic-numeric algorithms” are algo-
rithms designed to execute symbolic-numeric computations. In the dissertation, we
discuss symbolic-numeric algorithms based on above approaches. First, we discuss
on the following topic based on approach (1).

1

2 introduction

the durand-kerner method for the real roots (Chapter 2 [61]). Given
a univariate real polynomial, we consider calculating all the real zero-points of
the polynomial simultaneously. Among several numerical methods for calculating
zero-points of a univariate polynomial, the Durand-Kerner method is quite useful
because it is most stable to converge to the zero-points. On the basis of the Durand-
Kerner method, we propose two methods for calculating the real zero-points of
a univariate polynomial simultaneously. Convergence and error analysis of our
methods are discussed. We compared our methods, the original Durand-Kerner
method and the Newton’s method and found that 1) our methods are more stable
than the Newton’s method but less than the original Durand-Kerner method, and
2) they are more efficient than the original Durand-Kerner method but less than
the Newton’s method. We conclude that our methods are useful when good initial
values of the zero-points are known.

Then, we discuss on the following topics based on approach (2).

“approximate zero-points” of real univariate polynomial with large er-
ror terms (Chapter 3 [60]). Let P(x) be a real univariate polynomial and let
P̃(x) = P(x) + ∆(x), where ∆(x) is the sum of error terms, that is, a polynomial
with small real unknown but bounded coefficients. We first consider specifying the
“existence domain” of the values of P̃(x), or the domain in which the value of P̃(x)
exists for any real number x, by the coefficient bounds for ∆(x), and then intro-
duce a concept of an “approximate real zero-point” of P̃(x). We present a practical
method for estimating the existence domain of zero-points of P̃(x) by applying the
Smith’s theorem. We next consider counting the number of real zero-points of P̃(x).
If all the zero-points are sufficiently far apart from each other, the number of real
zero-points of P̃(x) is the same as that of P(x), and we derive a condition for which
we can assert that P(x) and P̃(x) have the same number of real zero-points. We
calculate the actual number of real zero-points by the Sturm’s method, which en-
counters the so-called small leading coefficient problem. For this problem, we show
that, under some conditions, small leading terms can be discarded. Furthermore,
we investigate four methods for evaluating the effect of error terms on the elements
of the Sturm sequence.

recursive polynomial remainder sequence and its subresultants (Chap-
ter 4 ([59], [58], [57])). We introduce concepts of “recursive polynomial remain-
der sequence (PRS)” and “recursive subresultant,” along with investigation of their
properties. A recursive PRS is defined as, if there exists the greatest common divisor
(GCD) of initial polynomials, a sequence of PRSs calculated “recursively” for the
GCD and its derivative until a constant is derived, and recursive subresultants are
defined by determinants representing the coefficients in recursive PRS as functions
of coefficients of initial polynomials. We give three different constructions of subre-
sultant matrices for recursive subresultants; while the first one is built-up just with
previously defined matrices thus the size of the matrix increases fast as the recur-
sion deepens, the last one reduces the size of the matrix drastically by the Gaussian
elimination on the second one which has a “nested” expression, i.e. a Sylvester
matrix whose elements are themselves determinants.

gpgcd: an iterative method for calculating approximate gcd of univari-
ate polynomials (Chapter 5 ([55], [56])). We present an iterative algorithm for

1.2 topics discussed in this work 3

calculating approximate greatest common divisor (GCD) of univariate polynomials
with the real or the complex coefficients. For a given pair of polynomials and a
degree, our algorithm finds a pair of polynomials which has a GCD of the given de-
gree and whose coefficients are perturbed from those in the original inputs, making
the perturbations as small as possible, along with the GCD. The problem of approx-
imate GCD is transfered to a constrained minimization problem, then solved with
the so-called modified Newton method, which is a generalization of the gradient-
projection method, by searching the solution iteratively. We demonstrate that our
algorithm calculates approximate GCD with perturbations as small as those calcu-
lated by a method based on the structured total least norm (STLN) method, while
our method runs significantly faster than theirs by approximately up to 30 times,
compared with their implementation. We also show that our algorithm properly
handles some ill-conditioned problems with GCD containing small or large leading
coefficient.

2 T H E D U R A N D - K E R N E R M E T H O D
F O R T H E R E A L R O OT S 1

Given a univariate real polynomial P(x), we consider calculating all the real zero-
points of P(x) simultaneously.

The Durand-Kerner method ([15], [28]) is widely used for calculating both the real
and the complex zero-points of a univariate polynomial simultaneously. However,
there are many cases in which we need only the real zero-points of a polynomial.
For example, consider drawing an algebraic function on the real plane, where the
algebraic function is defined by the root of F(x,y) = 0 w.r.t. x, with F(x,y) a real bi-
variate polynomial. We draw a graph of the function by calculating a finite number
of real zero-points of F(x, ȳ) numerically for ȳ = yj (j = 1, . . . ,k), with y1, . . . ,yk
suitable values of y-coordinate, then connecting these zero-points properly to ap-
proximate the graph of the function. In such a case, except for the neighborhood
of the singular points, we have only to calculate the real zero-points of univariate
polynomial F(x, ȳ).

As an iterative method for calculating real zero-points of a univariate polynomial,
the Newton’s method is quite popular. However, for multiple or very close zero-
points, it is not easy to obtain all of these zero-points properly. On the other hand,
the Durand-Kerner method is more stable thus useful than the Newton’s method
for multiple or very close zero-points.

In this chapter, on the basis of the Durand-Kerner method, we propose two ways
of calculating the real zero-points of a real univariate polynomial. In Section 2.1,
we propose a new setting of initial values for the Durand-Kerner method, which
allows us to calculate the real and the complex zero-points distinguishably. In Sec-
tion 2.2, we modify the iteration formula of the Durand-Kerner method to calculate
only the real zero-points of a polynomial. In Section 2.3, we compare computing
time of methods proposed with that of the original Durand-Kerner method. In Sec-
tion 5.4, several numerical examples are shown to manifest efficiency, usefulness
and weakness of the methods proposed.

2.1 the dk method and smith’s theorem
In order to make the thesis self-contained, we give a brief survey on the Durand-
Kerner method, or the DK method in short, and the Smith’s theorem for the error
estimation. (For details, see the literature ([15], [22], [28], [34], [39], [64]).)

1 The contents of this chapter is based on the following article: A. Terui and T. Sasaki. Durand-Kerner
method for the real roots. Japan J. Indus. Appl. Math., 19(1):19–38, January 2002 [61]. c© 2002 JJIAM
Publishing Committee. The final publication is available on SpringerLink with doi: 10.1007/BF03167446.

5

https://dx.doi.org/10.1007/BF03167446

6 the durand-kerner method for the real roots

2.1.1 The DK Iteration Formula

Let P(x) be a univariate polynomial with complex coefficients, given as

P(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, a0 6= 0.

In the quadratic DK method, we give numbers x1(0), x2(0), . . . , xn(0) initially and
calculate numbers x1(ν), x2(ν), . . . , xn(ν) iteratively by

xj
(ν+1) = xj

(ν) −
P(xj

(ν))

a0
∏n
k=1, 6=j(xj

(ν) − xk(ν))
, (2.1)

for j = 1, . . . ,n. Then, after some number of iterations, the numbers x1(ν), . . . , xn(ν)

approximate the zero-points of P(x) quite well. The initial values x1(0), . . . , xn(0)

are usually determined by the so-called Aberth’s method [1].

2.1.2 The Smith’s Theorem

Accurate estimation of errors of numerical results is usually quite difficult. In
the case of algebraic equation solving, however, we have the following celebrated
Smith’s theorem [52] which allows us to determine reasonable upper bounds of the
approximate zero-points computed numerically.

Theorem 2.1 (Smith [52]). Let x1, . . . , xn be n distinct complex numbers and define

rj =

∣∣∣∣∣ nP(xj)

a0
∏n
k=1, 6=j(xj − xk)

∣∣∣∣∣ ,
for j = 1, . . . ,n. Let Dj (1 6 j 6 n) be a disc of radius rj and the center at xj. Then,
the union D1 ∪ · · · ∪Dn contains all the zero-points of P(x). Furthermore, if a union
D1 ∪ · · · ∪Dm (m 6 n) is connected and does not intersect with Dm+1, . . . ,Dn, then
this union contains exactly m zero-points.

Corollary 2.2. Let α1, . . . , αn and x1(ν), . . . , xn(ν) be the zero-points of P(x) and their
approximations, respectively. If every αj is a single zero-point and all the discs defined above
do not intersect with each other, then, for j = 1, . . . ,n, the errors of approximations xj(ν)

is bounded as

|xj
(ν) −αj| 6 n

∣∣∣∣∣ P(xj
(ν))

a0
∏n
k=1, 6=j(xj

(ν) − xk(ν))

∣∣∣∣∣ . (2.2)

The above bound is called the Smith’s error bound. Note that the right-hand-side
of (2.2) is proportional to the “correction term” in (2.1), although the above formula
is derived independently from the DK method.

2.1.3 Initial Values for a Real Polynomial

All the complex zero-points of a real polynomial P(x) are pairwise conjugate. For a
real polynomial P(x), we can determine the initial values by modifying the Aberth’s
method as follows.

2.1 the dk method and smith’s theorem 7

1. Let the zero-points be distributed within a circle of radius r and the center at
β. Calculate β and r0, an upper bound for r, from the coefficients of P(x).

2. Let m be the number of real zero-points of P(x), with µ multiple zero-points
counted as µ. Determine the value of m by the Sturm’s method [53].

3. For j = 1, . . . ,m, determine the initial values for real zero-points as

xj
(0) = β+ r0 ·

[
1−

2(j− d)

m+ 1

]
, (2.3)

where d ≈ 0.3.

4. For j = m+ 1, m+ 3, . . . , n− 1, determine the initial values for imaginary
zero-points as

xj
(0) = β+ r0 · exp

[
j−m− d

n−m
πi
]

,

xj+1
(0) = xj(0),

(2.4)

where d ≈ 0.3.

The number d is set to prevent the initial values to be placed symmetrically with
respect to the imaginary axis. With the above-defined initial values for the DK
method, we expect that xj(ν) is real if xj(0) is so and xj+1(ν) = xj(ν) if xj+1(0) =

xj(0). This expectation is in fact true by the following proposition.

Proposition 2.3. Let P(x), n, m and xj(ν) (j = 1, . . . ,n; ν = 0, 1, . . .) be defined as above.
Then, for ν = 0, 1, 2, . . ., we have the followings.

1. For j = 1, . . . ,m, if xj(0) is real then xj(ν) is also real.

2. For j = m+ 1,m+ 3, . . . ,n− 1, if xj+1(0) = xj(0) then xj+1(ν) = xj(ν).

Proof. By the induction on ν. The proposition is obviously valid for ν = 0. By
the induction hypothesis, assume that the proposition is valid for 0, . . . ,ν. Put
P̃ν(x) = a0

∏n
k=1(x− xk

(ν)) then formula (2.1) can be expressed as

xj
(ν+1) = xj

(ν) −
P(xj

(ν))

P̃ ′ν(xj
(ν))

,

where P̃ ′ν(x) is the derivative of P̃ν(x). Note that P̃ν(x) and P̃ ′ν(x) are real polynomi-
als. Therefore, if xj(ν) is a real number then xj(ν+1) is also a real number because
P(xj

(ν)) and P̃ ′ν(xj(ν)) are real, and if xj+1(ν) = xj(ν) then xj+1(ν+1) = xj(ν+1) be-
cause P(xj+1(ν)) and P̃ ′ν(xj+1(ν)) are complex conjugate of P(xj(ν)) and P̃ ′ν(xj(ν)),
respectively. Thus, the proposition is valid for ν + 1, which proves the proposi-
tion.

Remark 2.1. The above proposition is also valid for the cubic DK method.

Remark 2.2. We have only to calculate one of mutually conjugate roots, which makes
the computation considerably efficient.

8 the durand-kerner method for the real roots

Remark 2.3. In the above method, the Sturm’s method is applied only for determin-
ing the number of real zero-points, not for determining the position of real zero-
points. When we calculate the position of real zero-points by the Sturm’s method,
we first calculate the Sturm’s sequence, then calculate the values of elements of the
sequence accurately for quite a few times. However, for calculating the number of
real zero-points, we have only to find the sign changes of leading coefficients of
elements of the Sturm’s sequence, which is quite fast.
Remark 2.4. If we set d = 0 in formulas (2.3) and (2.4), the initial values may not
converge to the true zero-points. For example, consider P(x) = (x2 + 4)(x2 + 9)

which has zero-points at x = ±2i and x = ±3i, and define the initial values as
x1

(0) = a+ bi, x2(0) = x1(0), x3(0) = −x1
(0) and x4(0) = −x1(0), where a,b ∈ R.

Then, formula (2.1) gives us x2(ν) = x1(ν), x3(ν) = −x1
(ν) and x4(ν) = −x1(ν)

for ν = 1, 2, . . ., thus some of xj(ν) will never converge to the corresponding zero-
points. Note that, even if we set as d ≈ 0.3, the DK method may not give a sequence
of numbers which converges to the zero-points. Therefore, we must be careful to
define the initial values for the DK method so that they converge correctly.

Throughout this paper, we call the DK method with the above-determined ini-
tial values “DKAreal,” while we call the DK method with Aberth’s initial values
“DKA.”

2.2 the dk method calculating only real roots
In this section, assuming that P(x) is monic and that all the coefficients of P(x) are
real, we make a modification of the DK method so that we will calculate only the
real zero-points of P(x).

Let F(x) and G(x) be polynomials and assume that the degree of F(x) is greater
than or equal to that ofG(x). Throughout this paper, we denote polynomial quotient
of F(x) divided by G(x) by quotient(F(x),G(x)).

2.2.1 Modification of the DK Formula

We first state how we modify the DK method.

1. Let the roots be distributed within a circle of radius r and the center at β.
Calculate β and r0, an upper bound for r, from the coefficients of P(x). Note
that β is real.

2. Let m be the number of real zero-points of P(x), with µ multiple zero-points
counted as µ. Determine the value of m by the Sturm’s method.

3. For j = 1, . . . ,m, determine the initial value for real zero-points as

xj
(0) = β+ r0

[
1−

2(j− d)

m+ 1

]
,

where d ≈ 0.3.

4. For j = 1, . . . ,m, modify the DK iteration formula as

xj
(ν+1) = xj

(ν) −
P(xj

(ν))∏m
k=1, 6=j(xj

(ν) − xk(ν)) ·Qν(xj(ν))
, (2.5)

2.2 the dk method calculating only real roots 9

where
Qν(x) = quotient(P(x),

∏m
k=1(x− xk

(ν))). (2.6)

Obviously the calculated values x1(ν), x2(ν), . . . , xn(ν) are real numbers for all
ν. Throughout this paper, we call the above method “DKreal.”

2.2.2 Convergence Property

Let α1, . . . ,αn be the zero-points of P(x), where we assume that the real zero-
points are α1, . . . ,αm (m 6 n) and P(x) is monic, for simplicity. Assume that
α1 = · · · = αm ′ (m ′ 6 m) and αk 6= α1 for k > m ′ + 1. Let x1(ν), . . . , xm(ν) be
the approximations of α1, . . . ,αm, respectively. Put εj(ν) = xj

(ν) − αj and assume
that |εj(ν)| � 1 for j = 1, . . . ,m. Then, formula (2.5) allows us to calculate εj(ν+1)

(1 6 j 6 m ′) as

εj
(ν+1) =xj

(ν+1) −αj

=xj
(ν) −

P(xj
(ν))∏m

k=1, 6=j(xj
(ν) − xk(ν)) ·Qν(xj(ν))

−αj

=εj
(ν) −

[
(εj

(ν))m
′∏m ′

k=1, 6=j(xj
(ν) − xk(ν))

] m∏
k=m ′+1

xj
(ν) −αk

xj(ν) − xk(ν)


×

[∏n
k=m+1(xj

(ν) −αk)

Qν(xj(ν))

]
.

(2.7)

Let ε0(ν) = max{|ε1(ν)|, . . . , |εm(ν)|}, then we see that

m∏
k=m ′+1

xj
(ν) −αk

xj(ν) − xk(ν)
=

m∏
k=m ′+1

(
1+

εk
(ν)

xj(ν) − xk(ν)

)

=

m∏
k=m ′+1

(
1+

εk
(ν)

α1 + εj(ν) − xk(ν)

)

=

m∏
k=m ′+1

(
1+

εk
(ν)

α1 − xk(ν)
+O(εj

(ν)εk
(ν))

)

= 1+

m∑
k=m ′+1

εk
(ν)

α1 − xk(ν)
+O((ε0

(ν))2).

We next consider the quotient Qν(x). The dividend in the right-hand-side of (2.6)
is decomposed as

P(x) =

m∏
k=1

(x− xk
(ν) + εk

(ν))

n∏
k=m+1

(x−αk)

=

m∏
k=1

(x− xk
(ν))

n∏
k=m+1

(x−αk)

+

m∑
j=1

[
εj

(ν)
m∏

k=1,6=j
(x− x

(ν)
k)

n∏
k=m+1

(x−αk)

]
+O(ε2(x))

10 the durand-kerner method for the real roots

=

m∏
k=1

(x− xk
(ν))

n∏
k=m+1

(x−αk)

+

m∑
j=1

[
ε
(ν)
j (x− x

(ν)
j + x

(ν)
j −αn)

m∏
k=1, 6=j

(x− x
(ν)
k)

n−1∏
k=m+1

(x−αk)

]
+O(ε2(x))

=

m∏
k=1

(x− x
(ν)
k)

n∏
k=m+1

(x−αk)

+

m∑
j=1

[
ε
(ν)
j

{
m∏
k=1

(x− x
(ν)
k)

n−1∏
k=m+1

(x−αk)

+ (x
(ν)
j −αn)

m∏
k=1, 6=j

(x− x
(ν)
k)

n−1∏
k=m+1

(x−αk)

}]
+O(ε2(x)),

whereO(ε2(x)) denotes a polynomial of terms whose coefficients are of magnitudes
O((ε

(ν)
0)2). Continuing this rewriting, we see that

Qν(x) =
∏n
k=m+1(x−αk) + δQν(x), (2.8)

where

δQν(x)

=

m∑
j=1

ε
(ν)
j

{
n−1∏

k=m+1

(x−αk) + (x
(ν)
j −αn)

n−2∏
k=m+1

(x−αk) + · · ·

}
+O(ε2(x)).

Remembering x(ν)j = α1 +O(ε
(ν)
0) for j = 1, . . . ,m, we find that

δQν(xj
(ν)) = δQν(α1) +O((ε0

(ν))2), δQν(α1) = O(ε0
(ν)),

and we obtain∏n
k=m+1(x

(ν)
j −αk)

Qν(x
(ν)
j)

=

∏n
k=m+1(x

(ν)
j −αk)∏n

k=m+1(x
(ν)
j −αk) + δQν(x

(ν)
j)

=1−
δQν(xj

(ν))∏n
k=m+1(xj

(ν) −αk)
+O((ε0

(ν))2)

=1−
δQν(α1)∏n

k=m+1(α1 −αk)
+O((ε0

(ν))2).

In the case that α1 is a single zero-point, i.e. m ′ = 1, the above arguments lead
us to that

ε1
(ν+1) = ε1

(ν) − ε1
(ν) · (1+O(ε0(ν)))(1+O(ε0(ν)))

= O(ε1
(ν)ε0

(ν)).

As a consequence, we have the following proposition.

Proposition 2.4. Let α1, . . . ,αm be the real zero-points of P(x) and assume that αi 6= αj
for any i 6= j. Let x1(ν), . . . , xm(ν) be the approximations of α1, . . . ,αm, respectively, and
assume that every xj(ν) is sufficiently close to αj. Then, iteration formula (2.5) converges
quadratically.

2.2 the dk method calculating only real roots 11

If m ′ > 2, the approximations x1(ν), . . . , xm ′(ν) corresponding to m ′ multiple
roots do not converge quadratically. However, we find that the “center” of these
approximations, or (x1

(ν) + · · ·+ xm ′(ν))/m ′, converges quadratically, as we show
below.

Proposition 2.5. Let α1, . . . ,αm be the real zero-points of P(x) and assume that α1 =

· · · = αm ′ (m ′ 6 m) and α1 6= αi 6= αj for m ′ < i < j 6 m. Let x1(ν), . . . , xm ′(ν)

be the approximations of α1, . . . ,αm ′ , respectively, and assume that every xj(ν) is
sufficiently close to αj. Then, (x1(ν) + · · ·+ xm ′(ν))/m ′ converges to α1 quadrati-
cally.

Proof. Using (2.7), we can calculate the error of the “center” as

1

m ′

∣∣∣∣∣∣
m ′∑
j=1

εj
(ν+1)

∣∣∣∣∣∣ = 1

m ′

∣∣∣∣∣
m ′∑
j=1

{
εj

(ν) −

[
(εj

(ν))m
′∏m ′

k=1, 6=j(xj
(ν) − xk(ν))

]

×

 m∏
k=m ′+1

xj
(ν) −αk

xj(ν) − xk(ν)

[∏nk=m+1(xj
(ν) −αk)

Qν(xj(ν))

]}∣∣∣∣∣
=
1

m ′

∣∣∣∣∣
m ′∑
j=1

εj
(ν) −

m ′∑
j=1

{[
(εj

(ν))m
′∏m ′

k=1,6=j(εj
(ν) − εk(ν))

]

×

1+ m∑
k=m ′+1

εk
(ν)

α1 − xk(ν)
+O((ε0

(ν))2)


×
[
1−

δQν(α1)∏n
k=m+1(α1 −αk)

+O((ε0
(ν))2)

]} ∣∣∣∣∣
=
1

m ′

∣∣∣∣∣
m ′∑
j=1

εj
(ν) −

m ′∑
j=1

(εj
(ν))m

′∏m ′
k=1, 6=j(εj

(ν) − εk(ν))

−

m ′∑
j=1

{[
(εj

(ν))m
′∏m ′

k=1, 6=j(εj
(ν) − εk(ν))

]

×

[
m∑

k=m ′+1

εk
(ν)

α1 − xk(ν)
−

δQν(α1)∏n
k=m+1(α1 −αk)

+O((ε0
(ν))2)

]}∣∣∣∣∣. (2.9)

In the right-hand-side of (2.9), we have

m ′∑
j=1

(εj
(ν))m

′∏m ′
k=1, 6=j(εj

(ν) − εk(ν))
=

m ′∑
j=1

εj
(ν), (2.10)

which can be seen as follows. Putting

F =

m ′∑
j=1

(εj
(ν))m

′
∏m ′−1
j ′=1

∏m ′
k=j ′+1(εj ′

(ν) − εk
(ν))∏m ′

k=1, 6=j(εj
(ν) − εk(ν))

,

G =

m ′−1∏
j ′=1

m ′∏
k=j ′+1

(εj ′
(ν) − εk

(ν)),

12 the durand-kerner method for the real roots

we see that
m ′∑
j=1

(εj
(ν))m

′∏m ′
k=1, 6=j(εj

(ν) − εk(ν))
=
F

G
.

We note that F and G are polynomials in εj(ν) (j = 1, . . . ,m ′). If we put ε1(ν) =

ε2
(ν), then we see that G = 0 directly and find that F = 0 because the first and the

second terms in the summation over j cancel each other and other terms become
zero. Similarly, for any i 6= j, if we put εi(ν) = εj

(ν) then we obtain F = G = 0.
This means that every factor in G is contained in F, therefore we find G|F. Putting
H = F/G, we see from F and G that H is a symmetric polynomial. With respect to
any “variable” ε(ν)j , 1 6 j 6 m ′, the degree of H is 1, H contains no constant term
and the leading coefficient of H is 1 because those of F and G are 1. Therefore, H
is an elementary symmetric polynomial of degree 1, which is equal to ε1(ν) + · · ·+
εm ′

(ν).
Eq. (2.10) allows us to rewrite (2.9) as

1

m ′

∣∣∣∣∣∣
m ′∑
j=1

εj
(ν+1)

∣∣∣∣∣∣
=
1

m ′

∣∣∣∣∣
m ′∑
j=1

{[
(εj

(ν))m
′∏m ′

k=1, 6=j(εj
(ν) − εk(ν))

]

×

 m∑
k=m ′+1

εk
(ν)

α1 − xk(ν)
−

δQν(α1)∏n
k=m+1(α1 −αk)

+O((ε0
(ν))2)

}∣∣∣∣∣
=O((ε0

(ν))2).

Therefore, the “center” of x1(ν), . . . , xm(ν) converges to α1 quadratically, which
proves the proposition.

A property described in Proposition 2.5 is called “quadratic-like convergence of
the mean,” discussed in Fraigniaud [18] and Iri [22] for the DK method and in
Pasquini and Trigiante [38] for its variations.

2.2.3 Error Bound

We can estimate an upper bound of the errors of the approximations x1(ν), . . . , xm(ν),
by the following proposition.

Proposition 2.6. Let P(x), αk (k = 1, . . . ,n) and xj(ν) (j = 1, . . . ,m) be defined as above.
For j = 1, . . . ,m, let r ′j be

r ′j = n

∣∣∣∣∣ P(xj
(ν))

a0
∏m
k=1,6=j(xj

(ν) − xk(ν)) ·Qν(xj(ν))

∣∣∣∣∣ ,
and Dj (1 6 j 6 m) be a disc of radius r ′j and center at xj(ν). Then, for j = 1, . . . ,m, the
error of approximation xj(ν) is bounded as

|xj
(ν) −αj| 6 r

′
j

∣∣∣∣∣1− δQν(xj
(ν))

Qν(xj(ν))

∣∣∣∣∣
−1

,

2.2 the dk method calculating only real roots 13

if all the discs Dj, j = 1, . . . ,m, do not intersect with each other and each xj(ν) is suffi-
ciently close to αj.

Proof. Applying Theorem 2.1 to the case xj = xj(ν) for j = 1, . . . ,m and xk = αk for
k = m+ 1, . . . ,n, we have

rj = n

∣∣∣∣∣ P(xj
(ν))

a0
∏m
k=1, 6=j(xj

(ν) − xk(ν)) ·
∏n
k=m+1(xj

(ν) −αk)

∣∣∣∣∣ .
Using (2.8), we rewrite the above expression as

rj = n

∣∣∣∣∣ P(xj
(ν))

a0
∏m
k=1, 6=j(xj

(ν) − xk(ν)) · {Qν(xj(ν)) − δQν(xj(ν))}

∣∣∣∣∣ .
Since xj(ν) is sufficiently close to αj, we have

|Qν(xj
(ν))|� |δQν(xj

(ν))| = O(ε0
(ν)).

Therefore, we have

rj = n

∣∣∣∣∣ P(xj
(ν))

a0
∏m
k=1, 6=j(xj

(ν) − xk(ν)) ·Qν(xj(ν))

∣∣∣∣∣ ·
∣∣∣∣∣1− δQν(xj

(ν))

Qν(xj(ν))

∣∣∣∣∣
−1

= r ′j

∣∣∣∣∣1− δQν(xj
(ν))

Qν(xj(ν))

∣∣∣∣∣
−1

, (2.11)

which proves the proposition.

Remark 2.5. We can estimate the number |1− δQν(xj(ν))/Qν(xj(ν))|−1 in (2.11) as∣∣∣∣∣1− δQν(xj
(ν))

Qν(xj(ν))

∣∣∣∣∣
−1

' 1+
|δQν(xj

(ν))|

|Qν(xj(ν))|
.

Therefore, for i = 1, . . . ,m, the error of xj(ν) is approximately bounded as

|xj
(ν) −αj| . r

′
j

(
1+

|δQν(xj
(ν))|

|Qν(xj(ν))|

)
.

Remark 2.6. We can estimate the number |δQν(xj(ν))/Qν(xj(ν))| in (2.11) quite pre-
cisely as follows. Formula (2.8) tells us that

Qν(xj
(ν)) −Qν+1(xj

(ν)) = δQν(xj
(ν)) − δQν+1(xj

(ν))

' δQν(xj(ν)),

because |δQν+1(xj
(ν))|� |δQν(xj

(ν))|. Therefore, we have∣∣∣∣∣δQν(xj(ν))Qν(xj(ν))

∣∣∣∣∣ ' |Qν(xj
(ν)) −Qν+1(xj

(ν))|

|Qν(xj(ν))|
.

14 the durand-kerner method for the real roots

Real arithmetic Complex arithmetic
Addition Multiplication Division

Addition 2 2 3

Multiplication — 4 6

Division — — 2

Total 2 6 11

Table 2.1: The number of real arithmetic operations required for each complex arithmetic
operation.

2.3 computing time analysis

Let P(x) be a monic polynomial of degree n and let m be the number of real zero-
points of P(x), as above. In this section, we analyze the computing time for one it-
eration in algorithms DKA, DKAreal and DKreal. Here, by “computing time,” we
mean the number of arithmetic operations (addition, multiplication and division)
on real numbers, because the ordinary CPU executes only real arithmetic opera-
tions. For operations on polynomials, we consider only the number of coefficient
operations and discard the operations on structuring polynomials such as sorting
and collecting terms.

As Table 2.1 shows, complex arithmetic operations can be done by combina-
tions of real arithmetic operations. For example, let zj = aj + bji (j = 1, 2) with
aj,bj ∈ R and z2 6= 0, then the division of z1 by z2 is executed as z1/z2 =

{(a1a2 + b1b2) + (−a1b2 + b1a2)i}/(a22 − b22), or three additions, six multipli-
cations and two divisions. In this paper, by “real” addition, multiplication and
division and by “complex” addition, multiplication and division, we mean the arith-
metic operations on real numbers and complex numbers, respectively.

2.3.1 DKA Method

In iteration formula (2.1), computation of the denominator
∏n
k=1, 6=j(xj

(ν) − xk
(ν))

requires n− 1 complex additions and n− 2 complex multiplications, thus it requires
4n− 6 real additions and 4n− 8 real multiplications. Computation of P(xj(ν)) can
be done by the Horner’s rule. Since every coefficient in P(x) is real, it requires
n real additions and and n complex multiplications, or 3n real additions and 4n
real multiplications. Consequently, xj(ν+1) can be calculated by 15n arithmetic
operations for each j. Therefore, the computing time for one iteration of DKA is
15n2.

2.3.2 DKAreal Method

We apply iteration formula (2.1) to m real zero-points xj(ν) for j = 1, . . . ,m and to
(n−m)/2 complex zero-points xj(ν) for j = m+ 1,m+ 3, . . . ,n− 1. We consider
the real zero-points and the complex zero-points separately.

2.3 computing time analysis 15

For real xj(ν): Calculation of the product
∏m
k=1, 6=j(xj

(ν) − xk
(ν)) requires m− 1

real additions and m− 2 real multiplications, because all the numbers concerned
are real. We calculate the product

∏n
k=m+1(xj

(ν) − xk
(ν)) as

(n−m)/2∏
l=1

(
xj

(ν) − xm+2l−1
(ν)
)(
xj

(ν) − xm+2l
(ν)
)

=

(n−m)/2∏
l=1

[
{xj

(ν) − Re(xm+2l−1
(ν))}2 + Im(xm+2l−1

(ν))2
]

.

Thus, we can calculate it by n−m real additions and 3
2 (n−m) − 1 real multiplica-

tions. Therefore, calculation of
∏n
k=1, 6=j(xj

(ν)− xk
(ν)) requires n− 1 real additions

and 3
2n − 1

2m − 2 real multiplications. Computation of P(xj(ν)) by the Horner’s
rule requires n real additions and n real multiplications. Consequently, xj(ν+1) is
calculated by 9

2n− 1
2m real arithmetic operations.

For complex xj(ν): Since
∏m
k=1(xj

(ν)−xk
(ν)) =

∏m
k=1{Re(xj(ν))−xk(ν)+ Im(xj

(ν))i},
we can calculate it by m real additions and m− 1 complex multiplications, or by
3m− 2 real additions and 4(m− 1) real multiplications. We calculate the product∏n
k=m+1, 6=j(xj

(ν) − xk
(ν)) by n−m− 1 complex additions and n−m− 2 complex

multiplications, or 4(n−m)− 6 real additions and 4(n−m− 2) real multiplications.
Computation of P(xj(ν)) is executed by the Horner’s rule with the same computing
time as in DKA. Therefore, xj(ν+1) is calculated by 15n −m − 1 real arithmetic
operations.

Consequently, the computing time for one iteration in DKAreal is

m

(
9

2
n−

1

2
m

)
+

(
n−m

2

)
(15n−m) =

15

2
n2 −

7

2
mn.

We see that, if the number of real zero-points is small, the computing time of
DKAreal is approximately equal to the half of that of DKA, and it decreases as
m increases.

2.3.3 DKreal Method

In DKreal, all the computations are done with real arithmetic. In each iteration
step of (2.5), we calculate Qν(x) in (2.6). Since the multiplication of two monic
polynomials of degrees k and 1 requires k − 1 additions and k − 1 multiplica-
tions on their coefficients, calculation of a term

∏m
k=1(x− xk

(ν)) requires m2 −m
arithmetic operations. Next, we consider the quotient(P(x),

∏m
k=1(x− xk

(ν))). Let
F(x) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an and G(x) =

∏m
k=1(x− xk

(ν)) = xm +

b1x
m−1 + · · ·+ bm−1x+ bm. The elimination of the leading term of F(x) by G(x)

is executed as F(x) − a0xn−mG(x) and it takes 2m arithmetic operations (m multi-
plications for calculating the coefficients of a0xn−mG(x) and m additions for cal-
culating the coefficients of F(x) − a0xn−mG(x)). Since the polynomial division of
P(x) by G(x) requires n −m + 1 eliminations of the leading term, calculation of
the quotient(P(x),

∏m
k=1(x− xk

(ν))) requires 2m(n−m+ 1) arithmetic operations.
Therefore, the computing time for Qν(x) is 2mn−m2 +m.

In iteration formula (2.5) for DKreal, the denominator∏m
k=1, 6=j(xj

(ν) − xk
(ν)) requires m− 1 additions and m− 2 multiplications. Eval-

uations of P(xj(ν)) and Qν(xj(ν)) require 2n and 2(n−m) arithmetic operations,

16 the durand-kerner method for the real roots

respectively. Consequently, xj(ν+1) can be calculated by 4n − 1 arithmetic oper-
ations for each j. Therefore, the computing time for one iteration in DKreal is
6mn−m2.

We see that, if the number of real zero-points is small, the computing time of
DKreal is approximately equal to 2

5m/n of that of DKA. However, as the number
of real zero-points increases, the computing time of DKreal increases in proportion
to m.

2.4 experiments
We have implemented the algorithms DKA, DKAreal and DKreal on a computer
algebra system GAL [44] (General Algebraic Language/Laboratory, a LISP-based
general purpose computer algebra system), using numeric computation functions
in LISP and GAL’s facility of computing polynomial quotient. All the following
experiments were carried out on a SPARC Station 5 (microSPARC II of 85 MHz)
with 32MB RAM. The computing time is shown in milli-seconds and the time for
garbage collection is discarded.

2.4.1 Comparison in the General Case

We first consider the case that we have no information on the zero-points of target
polynomial. Let P1,k(x) (k = 0, 1, . . . , 10) and P2,k(x) (k = 0, 1, . . . , 20) be polynomi-
als of degree 20 and 40, respectively, containing 2k real zero-points, as

P1,k(x) =

k∏
j=1

{
x2 − (1−

2j

2k+ 1
)2
}

×
10−k∏
j=k+1

{
[x− cos(δ+

j

11− k
)π]2 + [sin(δ+

j

11− k
)π]2
}

,

P2,k(x) =

k∏
j=1

{
x2 − (1− 2

j

2k+ 1
)2
}

×
20−k∏
j=k+1

{
[x− cos(δ+

j

21− k
)π]2 + [sin(δ+

j

21− k
)π]2
}

,

where δ is a small number (0 < δ� 1) such that complex zero-points are not placed
symmetrically to the imaginary axis. In our experiment we set δ = 0.03.

Figures 2.1 and 2.2 show the result of computations of the real zero-points of
P1,k(x) and P2,k(x), respectively. We measured the computing time by repeating
each computation 10 times and calculating the average for one iteration.

We see that computing time of one iteration of DKAreal is approximately equal
to the one-half of that of DKA for k = 0, and it becomes smaller as k increases.
We also see that computing time of one iteration of DKreal increases as k increases,
and it becomes greater than that of DKAreal for relatively large value of k.

2.4 experiments 17

�

�

�

�

�

��

��

��

��

��

��

� � � � � �� �� �� �� �� ��

����	�
��
�������������������
���

�
��

��
��

��

���

�������

������

Figure 2.1: Average computing time of one iteration for P1,k(x).

�

��

��

��

��

��

��

��

	�

� � 	 �� �� �� �� �	 �� �� ��

��
��

�����
��
����
��������
���

�
��

�

��

��

���

�������

������

Figure 2.2: Average computing time of one iteration for P2,k(x).

18 the durand-kerner method for the real roots

2.4.2 Usefulness in a Special Case

We next consider the case that we know rather good approximations of real zero-
points of target polynomial. Such a case happens quite often practically. For exam-
ple, let us consider drawing an algebraic function on the real plane, determined as
the solution of a bivariate polynomial equation P3(x,y) = 0. Let P3(x,y) be

P3(x,y) =
93392896

15625
x6 +

(
94359552

625
y2 +

91521024

625
y−

249088

125

)
x4

+

(
1032192

25
y4 − 36864y3 −

7732224

25
y2 − 207360y+

770048

25

)
x2

+ (65536y6 + 49152y5 − 135168y4 − 72704y3 + 101376y2

+ 27648y− 27648).

Throughout this paper, by degx(P3(x,y)) we denote the degree of P3(x,y) with
respect to x. Function P3(x,y) = 0 has eight multiple points of multiplicity 2 in the
real plane; two are on lines which are tangent with horizontal line y =

√
2, two are

“cusps” at (0,−1) and (0, 3/4), and the other four are isolated points at

y =

{
−380351 (' −1.0997150997151),
−4176 (' −0.53947368421053).

Suppose that we draw the graph in the interval −1 6 y 6
√
2. We first divide the

y-axis of drawing area into the following three intervals as
I1 = [−1.0, −0.53947368421053],

I2 = [−0.53947368421053, 0.75],

I3 = [0.75, 1.414213562].

In each interval Ij (1 6 j 6 3), we calculate the graph of P3(x,y) = 0 on the real
plane as follows.

1. Let yj,0 = (max Ij + min Ij)/2 (the middle point of Ij) and δj = (max Ij −
min Ij)/L, where L is an even integer such as L ' 10, and divide Ij into L
subintervals of width δj.

2. Calculate the zero-points of univariate polynomial P3(x,yj,0).

3. Let yj,±k = yj,0 ± kδj (k = 1, . . . ,L/2 − 1) and calculate the zero-points of
polynomials P3(x,yj,+k) and P3(x,yj,−k), respectively. In order to calculate
the zero-points of P3(x,yj,±(k+1)), use the zero-points of P3(x,yj,±k) as the
initial values.

4. Connect the real zero-points computed smoothly.

Note that, in Step 3 (the main step), we calculate the real zero-points with initial
values which are good approximations. We measured the computing time by re-
peating each computation for 100 times. Tables 2.2, 2.3 and 2.4 show the result of
computations of zero-points in intervals I1, I2 and I3, respectively.

Except for the computation at y = yj,0, the initial values are apart from true
zero-points by about 0.01 to 0.1. In intervals I1 and I2, the number of the real zero-
points is two which is much smaller than degx(P3(x,y)). The number of iteration

2.4 experiments 19

Step Value The number of iteration Computing time (100 times, ms.)
of y DKreal DKAreal DKA DKreal DKAreal DKA

y1,−1 −0.815789 5 6 6 210 450 1040

y1,−2 −0.861842 5 6 6 230 460 1030

y1,−3 −0.907895 6 6 6 240 470 1060

y1,−4 −0.953947 6 7 7 240 520 1180

y1,1 −0.723684 5 5 5 210 400 860

y1,2 −0.677632 5 5 5 210 400 870

y1,3 −0.631579 5 6 6 210 470 1090

y1,4 −0.585526 4 6 6 180 470 1020

Table 2.2: Result of computation in interval I1, centered at y1,0 = −0.769737.

Step Value The number of iteration Computing time (100 times, ms.)
of y DKreal DKAreal DKA DKreal DKAreal DKA

y2,−1 −0.023684 5 8 8 270 630 1380

y2,−2 −0.152632 4 6 6 190 490 1040

y2,−3 −0.281579 5 6 6 210 520 1050

y2,−4 −0.410526 4 6 6 220 530 1050

y2,1 0.234211 5 110 80 210 8400 10230

y2,2 0.363158 5 7 7 260 550 1220

y2,3 0.492105 5 6 6 210 460 1060

y2,4 0.621053 5 6 6 260 500 1050

Table 2.3: Result of computation in interval I2, centered at y = 0.105263.

Step Value The number of iteration Computing time (100 times, ms.)
of y DKreal DKAreal DKA DKreal DKAreal DKA

y3,−1 1.032225 5 6 6 430 450 1060

y3,−2 0.961669 6 6 6 510 450 1070

y3,−3 0.891113 6 6 6 530 450 1050

y3,−4 0.820556 7 7 7 600 520 1200

y3,1 1.173338 5 6 10 420 450 1700

y3,2 1.243895 5 5 5 410 390 1970

y3,3 1.314451 5 5 5 420 390 870

y3,4 1.385007 5 5 5 420 390 890

Table 2.4: Result of computation in interval I3, centered at y = 1.102782.

20 the durand-kerner method for the real roots

is not much different among the three algorithms. However, the computing time of
DKreal is approximately equal to one-fourth of that of DKA, and the computing
time of DKAreal is approximately equal to one-half of that of DKA. We see that
this result is almost the same as the result in Section 2.4.1.

At y2,1 = 0.234211, DKA and DKAreal spent much times with many iterations.
This is due to the existence of complex singular point in the neighborhood of y2,1.
In this case DKreal is much faster and more stable than DKA and DKAreal.

In interval I3, the number of the real zero-points is increased to four and the
computing time of DKreal also increases so that it becomes a little greater than
that of DKAreal. This is due to that the number of real zero-points of polynomial is
close to degx(P3(x,y)), as our computing time analysis shows. In this case DKAreal
shows a better performance than DKreal.

We see that, in the case that we know good approximations of real zero-points of
target polynomial, DKreal is the most efficient method among three if the number
of the real zero-points is relatively small, and DKAreal is efficient if the number of
the real zero-points is relatively large.

2.4.3 Comparison with the Newton’s Method and Weakness

We have also implemented the Newton’s method on GAL. The initial value for the
Newton’s method is determined by the maximum of the absolute values calculated
by formula (2.3). We compared the performance of the Newton’s method, DKreal,
DKAreal and DKA by the following polynomials.

P4(x) =(x2 − 3.2)(x2 + 0.0001),

P5(x) =(x2 − 3.2){(x− 3.5)2 + 0.01},

P6(x) =(x2 − 3.2){(x− 9.57)2 + 0.01},

P7(x) =(x− 5.1378890651692)(x− 5.138)(x− 0.057396173363021)(x− 0.05738),

P8(x) =(x− 5.1378890651692)(x− 5.1378890630871){(x+ 3.457)2 + 17.64567},

P9(x) =(x− 12.2)(x− 19.666666666666)3.

Note that polynomials P4(x), P5(x) and P6(x) have complex zero-points which are
close to the real axis, P7(x) and P8(x) have two real close zero-points, and P9(x) has
real multiple zero-points of multiplicity 3.

Table 2.5 shows the result of computations, where blanks in the table mean that
the computation did not converge within 100 iterations. For P4(x), the Newton’s
method converges while DKreal does not, and we get the opposite result for P6(x).
Furthermore, for P5(x), neither the Newton’s method nor DKreal converge within
100 iterations. As these examples show, if we compute only real zero-points, the
computation often will not converge often when the given polynomial has complex
zero-points with small imaginary parts.

Tables 2.6 and 2.7 show accuracies of calculated zero-points of P7(x) and P8(x),
respectively, where inaccurate digits are underlined and we show only the real parts
for DKA. For each zero-point computed, its accuracy is not much different among
the algorithms.

For P9(x), the Sturm’s method fails to calculate correct number of the real zero-
points, thus we gave correct number of the real zero-points to methods except
for DKA to calculate real zero-points. Table 2.8 shows accuracies of calculated

2.4 experiments 21

Poly- Computing time (100 times, ms.)
nomial Newton DKreal DKAreal DKA
P4 370 — 690 1170

P5 — — 1730 1000

P6 — 2100 — 1090

P7 670 1280 840 2000

P8 570 1290 1080 2130

P9 — 1330 870 1760

Table 2.5: Computing time of four methods; 100 times of computations for each method.
“—” means that the method failed to converge within 100 iterations.

Method Real zero-points
Newton 5.1378890651343 5.1380000000349 0.057396173362996 0.057380000000025
DKreal 5.1378890651439 5.1380000000376 0.057396173362978 0.057380000000071

DKAreal 5.1378890651439 5.1380000000376 0.057396173362978 0.057380000000071
DKA 5.1378890651302 5.1380000000311 0.057396173362958 0.057380000000088

Table 2.6: Accuracies of computed real zero-points of P7(x).

Method Real zero-points
Newton 5.1378891215841 5.1378890066722
DKreal 5.1378891318238 5.1378889991241

DKAreal 5.1378891189296 5.1378890066883
DKA 5.1378890857556 5.1378890413680

Table 2.7: Accuracies of computed real zero-points of P8(x).

Method Real zero-points
Newton — — — 19.666985842244
DKreal 12.200000000000 19.666327629088 19.666713528554 19.666999258452

DKAreal 12.200000000000 19.666327629088 19.666713528554 19.666999258452
DKA 12.200000000000 19.666346248713 19.666732891919 19.666921927080

Table 2.8: Accuracies of computed real zero-points of P9(x). Newton’s method failed to
calculate all the real zero-points.

22 the durand-kerner method for the real roots

zero-points of P9(x). The Newton’s method fails to give all the real zero-points,
while DKreal, DKAreal and DKA succeed, by the following reason. In the New-
ton’s method, we perform deflation of polynomial after calculating each zero-point.
Hence, if one of multiple zero-points is calculated with a low accuracy, then coef-
ficients in the deflated polynomial become inaccurate and the Newton’s method
does not converge. On the other hand, the other methods calculate all the real
zero-points including multiple zero-points, although accuracies of approximations
for the multiple zero-points become low.

We see that, so long as correct number of the real zero-points is given, DKreal
and DKAreal give approximations for all the real zero-points even if there exist
multiple zero-points.

2.5 summary
In this chapter, we have proposed two methods for calculating the real zero-points
of a real univariate polynomial, on the basis of the Durand-Kerner method. In
the first method we calculate the real and the complex zero-points separately by
a new setting of initial values for the Durand-Kerner method, and in the second
method we calculate only the real zero-points of the polynomial. Furthermore, on
the basis of the Smith’s theorem, we have given a method to estimate the errors of
the approximations in the second method.

As we have seen in the experiments, algorithm DKreal has an advantage over the
Newton’s method in that it calculates upper bounds of the errors of approximations
simultaneously. However, the experiments also show that, in the case that there exist
complex zero-points with very small imaginary parts, both the Newton’s method
and DKreal may not converge correctly. Therefore, in application, we had better
use DKA if we have no information on the zero-points. In the case we already
know good approximations of real zero-points and there does not exist complex
zero-points with very small imaginary parts, we had better choose DKreal if the
number of real zero-points is relatively small, or DKAreal if the number of real
zero-points is relatively large.

In this chapter, we have assumed that the number of the real zero-points can be
calculated by the Sturm’s method. However, this assumption falls down in general
if the given polynomial has multiple or close zero-points. How to calculate the
number of real zero-points correctly for polynomial with large error terms will be
discussed in the next chapter.

3 “A P P R O X I M AT E Z E R O - P O I N T S ” O F
R E A L U N I VA R I AT E P O LY N O M I A L
W I T H L A R G E E R R O R T E R M S 1

In traditional computer algebra on polynomials, we usually assume that the coef-
ficients of polynomials are given rigorously by integers, rational numbers, or alge-
braic numbers, and that manipulation on the polynomials is also exact. However,
in many practical applications or real-world problems, the coefficients contain er-
rors; that is, polynomials have “error terms.” In such cases, many of the traditional
algorithms in computer algebra break down.

In this chapter, we consider the real zero-points of a real univariate polynomial
with error terms, or “approximate polynomial,” where the coefficients of error
terms can be much larger than the machine epsilon εM of the floating-point arith-
metic. In fact, even if the initial errors in coefficients are as small as εM, the errors
can become much larger than εM after the calculation. Furthermore, in approximate
algebraic calculation, we handle polynomials with perturbed terms that are much
larger than εM in general.

If a polynomial P(x) has error terms, we cannot draw the graph of function y =

P(x) exactly; all we can draw is the “existence domain” of P(x), or the domain in
which values of P(x) can exist. Similarly, in such a case, the positions of its zero-
points cannot be determined exactly; all we can handle is the domains in which
zero-points can exist. Therefore, we introduce a concept of an “approximate real
zero-point” by defining a minimal interval outside of which no real zero-points
can exist. Although the existence domains of real zero-points can be calculated
rigorously, we propose methods for calculating them approximately and efficiently
by using the Smith’s theorem on the error bounds of zero-points of a polynomial
[52].

Next, we consider calculation of the number of real zero-points of an approxi-
mate polynomial by the Sturm’s method. If all the zero-points are single and well
separated, the number of real zero-points is definite unless some error term is quite
large, although the positions of zero-points are changed by the error terms. How-
ever, in the calculation of the Sturm sequence, the leading coefficient of some ele-
ment may become too small to determine whether it is equal to zero or not. Since
the sign of the leading coefficient in the Sturm sequence is essential in determin-
ing the number of real zero-points, this is a serious problem. Our answer to it is
that, under some conditions, we may discard the small leading term and continue
further calculation of the Sturm sequence. Shirayanagi and Sekigawa also attacked
this problem [51], and proposed an interval arithmetic method with zero rewriting.
We will investigate the Sturm sequence with interval coefficients in Section 3.4.

1 The contents of this chapter is based on the following article: A. Terui and T. Sasaki. “Approximate
zero-points” of real univariate polynomial with large error terms. IPSJ J., 41(4):974–989, April 2000 [60].
c© 2000 Information Processing Society of Japan. The final publication is available on IPSJ Digital Library

at http://id.nii.ac.jp/1001/00012339/.

23

http://id.nii.ac.jp/1001/00012339/

24 “approximate zero-points” of real univariate polynomial

The rest of this chapter is organized as follows. In Section 3.1, we investigate
the existence domains of the values of a real approximate polynomial, then define
an approximate real zero-point. In Section 3.2, we propose a practical method for
calculating the existence domains of the zero-points of an approximate polynomial.
In Section 3.3, on the assumption that the polynomial does not have multiple or
close zero-points, we derive a sufficient condition for the number of real zero-points
not to be changed by error terms. In Section 3.4, we propose and investigate several
methods for checking the effect of the error terms of a given polynomial on the
Sturm sequence.

3.1 approximate polynomials and approximate real
zero-points

Let P(x) be a univariate polynomial with real coefficients, given as

P(x) = cnx
n + · · ·+ c0x0, (3.1)

and let P̃(x) be a real univariate polynomial such that

P̃(x) = P(x) +∆(x), (3.2)

where ∆(x) represents the sum of real “error terms,” that is, a polynomial with
unknown small real coefficients. Thus, we know neither P̃(x) nor ∆(x); what we
know usually is an upper bound for each coefficient in ∆(x). Representing ∆(x) as

∆(x) = δn−1x
n−1 + · · ·+ δ0x0,

we assume that we know upper bounds εn−1, . . . , ε0, given as

|δi| 6 εi, (3.3)

for i = n− 1, . . . , 0. Throughout this chapter, we write

P̃(x | δi = ε
′
i (i = n− 1, . . . , 0))

to denote that the values of δn−1, . . . , δ0 in P̃(x) are specified as δi = ε ′i for i =
n− 1, . . . , 0.

3.1.1 The Existence Domain of Values of P̃(x)

Assume that the variable x is fixed to x0 and that δn−1, . . . , δ0 are changed continu-
ously under the restrictions in Formula (3.3); the value of P̃(x0) moves continuously
inside an interval. By changing x0 in R, we will have the minimal domain outside
of which there is no possibility of the existence of the value of P̃(x).

Definition 3.1 (The existence domain). Let x0 be a real number and δi move contin-
uously in the whole interval [−εi, εi] for i = 0, . . . ,n− 1. Define PU(x0) and PL(x0)
as

PU(x0) = max
δi∈[−εi ,εi]
i=0,...,n−1

P̃(x0), PL(x0) = min
δi∈[−εi ,εi]
i=0,...,n−1

P̃(x0).

3.1 approximate polynomials and approximate real zero-points 25

By changing the value x0 in R, we obtain a domain

{[PL(x),PU(x)] | x ∈ R}. (3.4)

We call this domain the “existence domain of P̃(x).”

The existence domain of P̃(x) can be specified rigorously by using P(x).

Lemma 3.1. Let the value of δi in P̃(x) be changed continuously within the range [−εi, εi],
while the values of δj’s (j 6= i) are fixed, and, for each real value of x, define PUi(x) and
PLi(x) as

PUi(x) = max
δi∈[−εi,εi]

P̃(x), PLi(x) = min
δi∈[−εi,εi]

P̃(x).

Then, we have

PUi(x) =

{
P̃(x | δi = εi) if x > 0 or i is even,
P̃(x | δi = −εi) if x 6 0 and i is odd,

PLi(x) =

{
P̃(x | δi = −εi) if x > 0 or i is even,
P̃(x | δi = εi) if x 6 0 and i is odd.

Furthermore, for any real value x0, P̃(x0) moves all the points inside
[PLi(x0),PUi(x0)].

Proof. Let x0 be any real number. We see that −εi|x0|i 6 δi|x0|i 6 εi|x0|i, and since
δi|x0|

i moves all the points inside [−εi|x0|
i, εi|x0|i], we obtain the lemma.

This lemma directly leads us to the following theorem.

Theorem 3.2. Let the polynomials P(x) and P̃(x) be as above. Then, the functions PU(x)
and PL(x) in Formula (3.4) are given as follows.

PU(x) =

{
P̃(x | δi = εi (i = n− 1, . . . , 0)) for x > 0,
P̃(x | δi = (−1)iεi (i = n− 1, . . . , 0)) for x < 0,

PL(x) =

{
P̃(x | δi = −εi (i = n− 1, . . . , 0)) for x > 0,
P̃(x | δi = (−1)i+1εi (i = n− 1, . . . , 0)) for x < 0.

Furthermore, for any real number x0, the values of P̃(x0) move all the points inside [PL(x0),PU(x0)].

3.1.2 Approximate Real Zero-points and their Existence Domains

We first define a concept of “approximate real zero-points” and their existence do-
mains.

Definition 3.2 (Approximate real zero-point). A real number ζ is an “approximate
real zero-point of P̃(x)” if there exist numbers ε ′i ∈ [−εi, εi] for i = n − 1, . . . , 0,
such that P̃(ζ | δi = ε ′i (i = n− 1, . . . , 0)) = 0. Let [ζ1,1, ζ1,2], . . . , [ζr,1, ζr,2], with
ζ1,1 6 ζ1,2 < · · · < ζr,1 6 ζr,2, be the set of all the approximate real zero-points of
P̃(x). Then, for i = 1, . . . , r, we call each interval [ζi,1, ζi,2] an “existence domain” of
the approximate real zero-point of P̃(x).

26 “approximate zero-points” of real univariate polynomial

)(xPL

1ê

)(xPU

2ê

(a)

)(xPL)(xPU

(b)

1ê 2ê
)(xPL

)(xPU

(c)

1ê 2ê

)(xPU

)(xPL
(d)

1ê 2ê
xx x x

Figure 3.1: Existence domain of an approximate real zero-point.

Theorem 3.2 tells us that the existence domains of all the approximate real zero-
points can be specified rigorously by drawing graphs of PL(x) and PU(x). Suppose
[ζ1, ζ2] is an existence domain of an approximate real zero-point. Since ζ1 and ζ2
are real zero-points of PU(x) and/or PL(x), and since PL(x0) < PU(x0) for any real
number x0, the graphs of PL(x) and PU(x) around this interval can be classified
into one of the following four cases:

(a) PL(ζ1) = PU(ζ2) = 0, PL(x) < 0 for ζ1 < x 6 ζ2, PU(x) > 0 for ζ1 6 x < ζ2,
and there exists δ > 0 such that PL(ζ1 − x) > 0 and PU(ζ2 + x) < 0 for any
x ∈ [0, δ],

(b) PU(ζ1) = PL(ζ2) = 0, PU(x) > 0 for ζ1 < x 6 ζ2, PL(x) < 0 for ζ1 6 x < ζ2,
and there exists δ > 0 such that PU(ζ1 − x) < 0 and PL(ζ2 + x) > 0 for any
x ∈ [0, δ],

(c) PL(ζ1) = PL(ζ2) = 0, PU(x) > 0 for ζ1 6 x 6 ζ2, PL(x) < 0 for ζ1 < x < ζ2,
and there exists δ > 0 such that PL(ζ1 − x) > 0 and PL(ζ2 + x) > 0 for any
x ∈ [0, δ],

(d) PU(ζ1) = PU(ζ2) = 0, PL(x) < 0 for ζ1 6 x 6 ζ2, PU(x) > 0 for ζ1 < x < ζ2,
and there exists δ > 0 such that PU(ζ1 − x) < 0 and PU(ζ2 + x) < 0 for any
x ∈ [0, δ].

Fig. 3.1 illustrates these four cases conceptually. Cases (a) and (b) usually corre-
spond to a single zero-point, while cases (c) and (d) correspond to multiple zero-
points.

We now give a simple example of approximate real zero-points and their exis-
tence domains. We will see that one of the existence domains is fairly wide, which
indicates that the concept of approximate zero-point is indispensable in handling
polynomials with error terms.

Example 3.1. Let F(x,y) be

F(x,y) = x3 − x2 + y2.

We calculate a singular point of F(x,y) with approximate arithmetic of precision
εM = 1.0× 10−6. First, let us calculate the discriminant R(y) of F(x,y) with respect
to x as

R(y) = res(F,dF/dx) = 27y4 − 4y2.

Note that R(y) has zero-points at y = 0 and ±2
√
3/9. Assume that we have calcu-

lated the value of y = 2
√
3/9 approximately as 0.384900. (Note that if deg(R) > 5

3.2 bounding existence domains by using the smith’s theorem 27

then use of approximate arithmetic is necessary in general to solve R(y) = 0.) Let
P(x) and P̃(x) be

P(x) = x3 − x2 + (0.384900)2, P̃(x) = P(x) + δ0,

where |δ0| 6 1.0× 10−6, and let us calculate the approximate real zero-points of
P̃(x). From Theorem 3.2, we have

PU(x) = x
3 − x2 + 0.148149, PL(x) = x

3 − x2 + 0.148147.

PU(x) has a real zero-point at x ' −0.333334, and PL(x) has real zero-points at
x ' −0.333332, 0.665595, and 0.667738. From Definition 3.2, the existence domains
of approximate real zero-points of P̃(x) are intervals [−0.333334,−0.333332], and
[0.665595, 0.667738]. Therefore, with an approximate arithmetic of precision εM =

1.0× 10−6, the singular point (x0,y0) of F(x,y) can be specified only vaguely as
y0 ∈ [0.384899, 0.384901] and x0 ∈ [0.665595, 0.667738].

3.2 bounding existence domains by using the smith’s
theorem

Although we have defined rigorously the existence domain of only real zero-points,
we present in this section a method for bounding the existence domains of both
real and complex zero-points by means of discs in the complex plane, because the
method is common to both of them.

A key to bounding existence domains is the Smith’s theorem: see Theorem 2.1
(page 6).

3.2.1 Single Zero-points

Without loss of generality, we assume that P and P̃ are monic. Let ζ1, . . . , ζn and
ζ̃1, . . . , ζ̃n be the zero-points of P(x) and P̃(x), respectively, as

P(x) = (x− ζ1)(x− ζ2) · · · (x− ζn),
P̃(x) = (x− ζ̃1)(x− ζ̃2) · · · (x− ζ̃n).

First, we consider the case in which ζ1 is a single zero-point such that |ζ1− ζj|� εM
for j = 2, . . . ,n. Let z1, . . . , zn be approximate values for ζ1, . . . , ζn, respectively.
(Actually, we may determine z1, . . . , zn by solving equation P(x) = 0 numerically,
and thus approximately, with accuracy εM.) Using Theorem 2.1, we can formally
calculate the domain that contains ζ̃1 in C, as follows. Let R1 be

R1 = n · |P̃(z1)|∣∣∣∏nj=2(z1 − zj)∣∣∣ , (3.5)

then ζ̃1 is contained in the disc of radius R1 with its center at z1. Although we
cannot calculate P̃(z1) explicitly, we have

|P̃(z1)| 6 |P(z1)|+ |∆(z1)| 6 |P(z1)|+

n−1∑
j=0

εj|z1|
j.

28 “approximate zero-points” of real univariate polynomial

Therefore, R1 is bounded as

R1 6 n ·
|P(z1)|+

∑n−1
j=0 εj|z1|

j∣∣∣∏nj=2(z1 − zj)∣∣∣ . (3.6)

In ordinary numerical computation, we calculate an error bound by the above
formula with εj = 0, which gives a good estimate such that the magnitude of the
error bound is only several times larger than the true error. Therefore, we expect
that the above formula gives a good bound.

3.2.2 Multiple or Close Zero-points

Next, we consider the case of multiple or close zero-points. Without loss of gener-
ality, let ζ1 ' · · · ' ζm (m 6 n) and assume that ζm+1, . . . , ζn satisfy |ζj − ζ1| �
m
√
εM for j = m + 1, . . . ,n. In this case, we cannot apply Formula (3.6) directly,

for the following reason. Let z1, . . . , zn be the same as above and assume that
we have calculated them by a numerical method. Then, z1, . . . , zm usually satisfy
|zj − z1| ' m

√
εM for j = 2, . . . ,m; thus, in Formula (3.6), we have∣∣∣∣∣∣

n∏
j=2

(z1 − zj)

∣∣∣∣∣∣ ' εM
∣∣∣∣∣∣

n∏
j=m+1

(z1 − zj)

∣∣∣∣∣∣ .
Therefore, if |∆(zi)| � εM, an upper bound calculated by Formula (3.6) will be an
overestimate.

We determine z1, . . . , zm so that the radius R1 in Formula (3.5) becomes as small
as possible. (The determination method is the same as that described in the litera-
ture; for example, see Iri [22]; the only difference is that our setting of error terms
is different from the conventional ones.) We express P(x) as

P(x) = (x− ζ1) · · · (x− ζm) ·Q(x).

From our assumption, we have

Q(z1) =

n∏
j=m+1

(z1 − ζj) '
n∏

j=m+1

(z1 − zj);

thus R1 defined by Formula (3.5) can be approximated as

R1 = n ·

∣∣∣∣∣∣
n∏
j=1

(z1 − ζj) +∆(z1)

∣∣∣∣∣∣∣∣∣∣∣∣
n∏
j=2

(z1 − zj)

∣∣∣∣∣∣
' n ·

∣∣∣∣∣∣
m∏
j=1

(z1 − ζj) +
∆(z1)

Q(z1)

∣∣∣∣∣∣∣∣∣∣∣∣
m∏
j=2

(z1 − zj)

∣∣∣∣∣∣
. (3.7)

If z1, . . . , zm are distributed equally on a disc of radius r with its center at (ζ1 +

· · ·+ ζm)/m, we have∣∣∣∣∣∣
m∏
j=1

(z1 − ζj)

∣∣∣∣∣∣ ≈ rm,

∣∣∣∣∣∣
m∏
j=2

(z1 − zj)

∣∣∣∣∣∣ = mrm−1,

3.3 calculating the number of real zero-points 29

and Formula (3.7) can be evaluated as

R1 ' n ·
rm +C

mrm−1
,

where C = |∆(z1)/Q(z1)|. We can almost minimize the magnitude of R1 by setting
r as

r = m
√
(m− 1)C. (3.8)

With the above consideration, we calculate an upper bound for R1 as follows:

1. Calculate r from Formula (3.8).

2. Let β = (ζ1 + · · ·+ ζm)/m and

zj = β+ r exp(2πji/m)

for j = 1, . . . ,m. The approximate values z1, . . . , zm are distributed equally on
a disc of radius r with its center at β.

3. Substitute z1, . . . , zm into Formula (3.6) to obtain a rigorous bound of R1.

Remark 3.1. While research for calculating existence domains of zero-points has al-
ready been carried out, especially in control theory, and some results including
Kharitonov’s Theorem [29] and the Edge Theorem [3] have been obtained, our
method is relatively simple and efficient for practical computation. Recent progress
of the research includes calculating existence domains of real and complex zero-
points of an interval polynomial which is a generalization of our definition of ap-
proximate polynomial ([50], [49]).

3.3 calculating the number of real zero-points
of a real approximate polynomial

If a real approximate polynomial has multiple or close zero-points, they may change
significantly, or some real zero-points may become complex, when the coefficients
are changed slightly. Therefore, it is not adequate to count the number of real zero-
points of a real approximate polynomial that may have multiple or close zero-points.
On the other hand, if a polynomial has only single zero-points, the number of its
real zero-points rarely changes, although their positions may change considerably,
when the coefficients are changed slightly. In this section, we focus on calculating
the number of real zero-points of a real approximate polynomial containing only
single zero-points.

3.3.1 Sufficient Condition for Fixing the Number of Real Zero-points

We first derive a sufficient condition for asserting that P(x) and P̃(x) have the same
number of real zero-points.

Theorem 3.3. Let P(x) and P̃(x) be as in Formulas (3.1) and (3.2), respectively. Then, the
number of real zero-points of P̃(x) is the same as that of P(x) if the discriminant of P̃, or
res(P̃,dP̃/dx) does not become zero for any values δn−1, . . . , δ0 satisfying Formula (3.3).

30 “approximate zero-points” of real univariate polynomial

Proof. As the coefficients of P̃(x) change continuously, the number of real zero-
points of P̃(x) changes only if there exist δi ∈ [−εi, εi] for i = 0, . . . ,n − 1 such
that P̃(x) has real multiple zero-points. Its contraposition shows the validity of the
theorem.

Theorem 3.3 tells us that we can calculate the number of real zero-points of an
unknown polynomial P̃(x) by calculating the number of the real zero-points of
P(x), so long as the discriminant res(P̃,dP̃/dx) does not become zero for any values
δn−1, . . . , δ0 satisfying Formula (3.3). Therefore, we can check the definiteness of
the number of real zero-points by checking whether or not res(P̃,dP̃/dx) becomes
zero because of the error terms.

3.3.2 Problem of Small Leading Coefficient in the Sturm Sequence

Below, the leading coefficient and the degree of P(x) are denoted as lc(P) and deg(P),
respectively. Let ζmax be the maximum of the absolute values of real zero-points of
P(x).

The p-norm of P(x), with P(x) given in Formula (3.1), is defined as

‖P‖p =

(
n∑
i=1

|ci|
p

)1/p
, (3.9)

where p = 1, 2, . . . ,∞. In this chapter, we use the 2-norm for polynomials.
Assuming that P(x) and P̃(x) satisfy the condition in Theorem 3.3, ‖P‖2 ' 1,

and ‖P̃‖2 ' 1, let us consider calculating the number of real zero-points of P̃(x) by
the Sturm’s method on P(x). The Sturm’s theorem is as follows (for the proof, see
Cohen [8], for example):

Theorem 3.4 (Sturm). Let P(x) be a real square-free polynomial of degree n, and define a
polynomial sequence (the Sturm sequence)

(P0(x),P1(x), . . . ,Pn(x)) (3.10)

as P0 = P(x), P1 =
d

dx
P(x),

Pi = −rem(Pi−2,Pi−1) for i = 2, . . . ,n,

where rem(Pi−2,Pi−1) denotes the remainder of Pi−2 divided by Pi−1. For a real number
x, let N(x) be the number of sign changes, counting from the left to the right without
counting zeros, in the sequence (3.10), and let s and t be real numbers satisfying s < t. Then,
the number of the real zero-points of P in the interval [s, t] is equal to N(s) −N(t).

Note that we can calculate the number of all the real zero-points of P by putting
s = −∞ and t = ∞ in Theorem 3.4. In the following, the zeros of the Sturm
sequence and its modifications are not counted as sign changes.

Consider calculation of the Sturm sequence of P(x) by means of floating-point
arithmetic. During the calculation, we may encounter the so-called leading coeffi-
cient problem as follows.

1. It is hard for us to decide whether or not a very small leading coefficient is
equal to zero.

3.3 calculating the number of real zero-points 31

2. The division by a polynomial by a small leading coefficient will cause large
cancellation errors in the coefficients of the remainder polynomial.

Let P, s, and t be the same as in Theorem 3.4. A Sturm sequence of P with
Pn ≡ (constant) 6= 0 has the following properties (for example, see Cohen [8]):

(1) For any real number x, consecutive elements Pi−1(x) and Pi(x) do not simul-
taneously become zero.

(2) If Pj(x) = 0 for some j (1 6 j < n) and x ∈ R, then we have Pj−1(x)Pj+1(x) < 0.

(3) Pn has no real zero-point.

With Property (1), we can calculate the number of sign changes by investigating
each Pi separately. Let Pj(xj) = 0 for some xj ∈ R; then Property (2) means that
Pj−1 and Pj+1 have no zero-point in the neighborhood of x = xj. Property (3) is
trivial in our case, because Pn = (constant), but it is not trivial for the general Sturm
sequence. The above three properties are sufficient for determining the number of
real zero-points, and a sequence that has those properties is called a general Sturm
sequence.

We note that the sign change of Pj(x) at x = xj, j > 1, does not affect the number
of sign changes in sequence (3.10); the value of N(x) changes only when the evalu-
ation point x passes a real zero-point of P0(x) (= P(x)). Furthermore, we have the
following property of the Sturm sequence.

Lemma 3.5. Let P(x) and P0, . . . ,Pn be the same as in Theorem 3.4, and assume that
Pk(x) = 0 (1 < k < n) at x = xk,1, . . . , xk,lk , where lk < deg(Pk) and |xk,j| > ζmax for
j = 1, . . . , lk. Define P ′′k (x) as

P ′′k (x) =
Pk(x)

(x− xk,1) · · · (x− xk,lk)
,

and let s and t be real numbers satisfying s < t. For real number x, let N(x) be the same as
in Theorem 3.4, and let N ′′k(x) be the numbers of sign changes in the sequence

(P0(x), . . . ,Pk−1(x),P ′′k (x),Pk+1(x), . . . ,Pn(x)).

Then we have
N ′′k(s) −N

′′
k(t) = N(s) −N(t).

That is, N ′′k(s) −N
′′
k(t) is equal to the number of real zero-points of P(x) in the interval

[s, t].

Proof. Property (1) assures us that there exists a small positive number δ such that
[xk,j1 − δ, xk,j1 + δ] ∩ [xk,j2 − δ, xk,j2 + δ] = ∅ for 1 6 j1 < j2 6 lk and Pk±1(x) 6=
0 for any x ∈ [xk,j − δ, xk,j + δ]. We show N ′′k(x) = N(x) for any x ∈ [xk,j −

δ, xk,j + δ]. Consider a case in which dPk/dx < 0 at x = xk,1, Pk−1(xk,1) > 0,
and Pk+1(xk,1) < 0. Property (2) says that the sequence of signs of polynomials
(Pk−1(x),Pk(x),Pk+1(x)) at x = xk,1 − δ, x = xk,1 and x = xk,1 + δ are (+,+,−),
(+, 0,−) and (+,−,−), respectively; thus the number of sign changes of the se-
quence (Pk−1(x),Pk(x),Pk+1(x)) is equal to 1 for any x ∈ [xk,1 − δ, xk,1 + δ]. Now,
assume that P ′′k (x) > 0 for x ∈ [xk,1 − δ, xk,1 + δ]; then the sequence of signs of
polynomials (Pk−1(x),P ′′k (x),Pk+1(x)) is (+,+,−) for any x ∈ [xk,1 − δ, xk,1 + δ].
Therefore, we have N ′′k(x) = N(x) for any x ∈ [xk,1 − δ, xk,1 + δ]. The other cases
can be proved similarly.

32 “approximate zero-points” of real univariate polynomial

Theorem 3.6. Assume the same hypotheses as in Lemma 3.5, and define a polynomial
sequence

(P0(x), . . . ,Pk−1(x),P ′′k (x), . . . ,P
′′
n ′′(x)) (3.11)

as P
′′
k =

Pk(x)

(x− xk,1) · · · (x− xk,lk)
, P ′′k+1 = −rem(Pk−1,P ′′k),

P ′′i = −rem(P ′′i−2,P ′′i−1) for i = k+ 2, . . . ,n ′′,
(3.12)

where deg(P ′′n ′′) = 0. For a real number x, let N ′′(x) be the number of sign changes in
sequence (3.11), and let s and t be real numbers satisfying s < t. Then, the number of real
zero-points of P(x) in the interval [s, t] is equal to N ′′(s) −N ′′(t).

Proof. From Lemma 3.5, we need not consider xk,1, . . . , xk,lk for calculating the num-
ber of real zero-points of P(x). Let xk be any zero-point of P ′′k ; thus Pk−1(xk) 6= 0.
Then, we have Pk−1(xk) ·P ′′k+1(xk) < 0 because −P ′′k+1(x) = Pk−1(x)−Q

′′
k(x)P

′′
k (x).

Repeating this argument for P ′′k+1, P ′′k+2, and so on, we see that the new polyno-
mial sequence (3.11) satisfies Properties (1), (2), and (3) described above, and that
sequence (3.11) is a general Sturm sequence of P(x). Thus, we can count all the real
zero-points of P(x) by using sequence (3.11).

Remark 3.2. Properties (1), (2), and (3) are sufficient to prove Theorem 3.6, and
Lemma 3.5 is unnecessary. We introduced Lemma 3.5 to help the reader to under-
stand what happens when large real zero-points of Pk are removed.

In Theorem 3.6, calculating the general Sturm sequence by using P ′′k in For-
mula (3.12) is theoretically simple but not practical, because we have to calculate
the real zero-points of Pk rigorously. We next show that, if a polynomial has small
leading terms, these terms correspond to zero-points of large magnitudes.

Lemma 3.7. Let εn, . . . , εn−s+1 be real numbers such that 0 < |εj| � 1, and, without
loss of generality, let Q(x) be

Q(x) = εnx
n + · · ·+ εn−s+1xn−s+1 + bn−sxn−s + · · ·+ b0x0,

where |bi| > 1 (i = n− s, . . . , 0) for bi 6= 0. Let x1, . . . , xn be the zero-points of Q(x)

such that |x1| < · · · < |xn|. Then, for j = n− s+ 1, . . . ,n, we have

lim
(εn,...,εn−s+1)→(0,...,0)

|xj| =∞.

Proof. Define QI(x) as

QI(x) = x
n ·Q(1/x) = b̄nx

n + · · ·+ b̄0x0,

and let x̄1, . . . , x̄n be the zero-points of QI(x) with |x̄1| < · · · < |x̄n|. Then we have
b̄n−j = εj for j = n, . . . ,n− s+ 1 and x̄n−i+1 = 1/xi for i = 1, . . . ,n. We have
|x̄i|→ 0 (i = n, . . . ,n− s+ 1) for |b̄n−j|→ 0 (j = n, . . . ,n− s+ 1); thus |xi|→∞ for
εj → 0.

Remark 3.3. Although Lemma 3.7 is a limiting case of (εn, . . . , εn−s+1)→ (0, . . . , 0)
and is sufficient to prove Theorem 3.8, we investigate the location of zero-points of
QI(x) in our supplementary work ([47], [60, Appendix]).

3.3 calculating the number of real zero-points 33

Theorem 3.6 and Lemma 3.7 lead us to an idea of discarding the small leading
terms to calculate a general Sturm sequence in practice. Since the zero-points of
Pk(x) are moved slightly by discarding the small leading terms, we must be more
careful than in Theorem 3.6.

Theorem 3.8. Define P(x) and P̃(x) as in Formulas (3.1) and (3.2), respectively. Let
(P0 = P(x),P1 = dP/dx,P2, . . . ,Pi, . . .) be the Sturm sequence of P(x) and assume that
Pk(x) has small leading terms as

Pk(x) =εk,nkx
nk + · · ·+ εk,nk−s+1x

nk−s+1 + bk,nk−sx
nk−s + · · ·+ bk,0x

0,

where
max{|εk,nk |, . . . , |εk,nk−s+1|}� min

bk,j 6=0
{|bk,nk−s|, . . . , |bk,0|}.

Define a polynomial sequence

(P0(x), . . . ,Pk−1(x),P ′k(x), . . . ,P
′
n ′(x)) (3.13)

as {
P ′k = bk,nk−sx

nk−s + · · ·+ bk,0x
0, P ′k+1 = −rem(Pk−1,P ′k),

P ′i = −rem(P ′i−2,P ′i−1) for i = k+ 2, . . . ,n ′,

where deg(P ′n ′) = 0. For a real number x, let N ′(x) be the number of sign changes in
sequence (3.13), and let s and t be real numbers such that s < −ζmax and ζmax < t.
Then, if P̃(x), Pk−1(x), and Pk(x) satisfy the following two conditions, the number of real
zero-points of P̃(x) is equal to N ′(s) −N ′(t):

(1) The resultant res(P̃,Pk) does not become zero for any values δn−1, . . . , δ0 satisfy-
ing (3.3) or when the values of εk,nk , . . . , εk,nk−s+1 are changed to zero.

(2) The resultant res(Pk−1,Pk) does not become zero when the values of εk,nk , . . . ,
εk,nk−s+1 are changed to zero.

Proof. Even if Pk(x) has real zero-points whose magnitudes are larger than that
of any zero-point of P̃(x), Lemma 3.7 and condition (1) assure us that these real
zero-points will be “safely removed” from Pk(x) by changing the values of εk,n, . . . ,
εk,n−s+1 to 0. We also see that the removed zero-points do not affect the calcu-
lation of the number of real zero-points, as Theorem 3.6 shows. Next, changing
the values of εk,j’s to 0 will change the values of the other zero-points of Pk(x)
slightly. However, condition (2) assures us that none of the real zero-points of Pk(x)
passes through the real zero-points of Pk−1(x); thus sequence (3.13) is a general
Sturm sequence. Therefore, as in Theorem 3.6, we can calculate the number of real
zero-points of P̃(x) by using sequence (3.13).

Theorem 3.8 tells us that the problem of small leading coefficients reduces to that
of checking whether or not any resultants become zero. We will propose several
methods for this in Section 3.4.

We explain Theorem 3.8 by means of an example with exact arithmetic.

Example 3.2. Let P(x) and P̃(x) be

P(x) = x5 + 4x4 +
6401

1000
x3 − 20x2 + 5x+ 1,

P̃(x) = P(x) + δ0,4x
4 + δ0,3x

3 + · · ·+ δ0,0x
0,

34 “approximate zero-points” of real univariate polynomial

where numbers δ0,4, . . . , δ0,0 are unknown but bounded as

|δ0,j| 6 ε = 1/10000.

We obtain (P0, . . . ,P5), the Sturm sequence of P(x), as

P0 =P(x),

P1 =
d

dx
P(x) = 5x4 + 16x3 +

19203

1000
x2 − 40x+ 5,

P2 =−
1

2500
x3 +

94203

6250
x2 −

52

5
x−

1

5
,

P3 =−
7099837085603

1000
x2 + 4898974540x+ 94210995,

P4 =−
1838986143841703970

50407686642103700749873609
x+

581470528239934409

50407686642103700749873609
,

P5 =−
3156650856766728652582995769441472408792519708557

3381870037241780324384640993113760900000
.

(3.14)

Therefore, we have N(−∞) −N(∞) = 3. In Formula (3.14), P2 has a small lead-
ing coefficient. (Correspondingly, P2(x) has a real zero-point at x ' 37680.5.) The
conditions in Theorem 3.8 are satisfied as follows. First, the existence domains of
approximate zero-points of P̃(x) in the neighborhood of x = 0 are the intervals
[−0.12992,−0.12989], [0.44536, 0.44541], and [0.19803, 0.19810], while the existence
domains of approximate zero-points of P2(x) when we change the value of the lead-
ing coefficient continuously from −1/2500 to 0 are the intervals [−0.01877227 · · · ,
−0.01877227 · · ·], [0.708722, 0.708735], and [37680.5,∞). Therefore, the existence
domains of the real zero-points of P̃(x) and P2(x) do not overlap; thus we have
res(P̃,P2) 6= 0. Second, the existence domains of approximate zero-points of P1(x)
are the intervals [0.134731, 0.134738], and [0.910227, 0.910260]. Therefore, the exis-
tence domains of the real zero-points of P1(x) and P2(x) do not overlap; thus we
have res(P1,P2) 6= 0. Since P(x), P̃(x), P1, and P2 satisfy the conditions in Theo-
rem 3.8, we can calculate P ′2, . . . ,P ′4 as

P ′2 =
94203

6250
x2 −

52

5
x−

1

5
,

P ′3 =
14367059719609325

835976753303427
x−

18170016322960675

3343907013213708
,

P ′4 =
65440159831618155883480530106785213

33025984797891324206068900312900000
.

We have N ′(−∞) −N ′(∞) = 3 = N(−∞) −N(∞).

3.4 evaluating the effects of error terms
Theorems 3.3 and 3.8 show that some important problems in counting the number
of approximate real zero-points can be reduced to checking whether or not certain
resultants become zero owing to the error terms. In this section, we consider how
to evaluate errors in the resultant of an approximate univariate polynomial. We
investigate the following four methods:

1. Evaluating the “subresultant determinant” by using the Hadamard’s inequal-
ity (Section 3.4.1),

3.4 evaluating the effects of error terms 35

2. Calculating the Sturm sequence with the coefficients of interval numbers (Sec-
tion 3.4.2),

3. Solving a linear system on polynomial coefficients and evaluating errors in the
solution by backward error analysis, which is a standard method in numerical
analysis (Section 3.4.3),

4. Calculating the Sturm sequence with parametric error terms (Section 3.4.4).

The experiments were performed with a computer algebra system GAL [44] (Gen-
eral Algebraic Language/Laboratory, a LISP-based computer algebra system) run-
ning on a SPARC Station 5 (CPU: microSPARC II, 70MHz) and SunOS 4.1.4.

3.4.1 Evaluation of the Subresultant Determinant

Except for the overall signs of polynomials, the Sturm sequence is the same as the
polynomial remainder sequence (PRS) for which the subresultant theory has been
developed. (For the subresultant theory, see Mishra [33], for example.) With this the-
ory, we can express the elements in the Sturm sequence by the determinants of the
coefficients of two consecutive elements. Let (P0 = P,P1 = dP/dx,P2, . . . ,Pk−1,Pk, . . .)
be a Sturm sequence, and assume that

Pk−1(x) =alx
l + · · ·+ a0x0,

Pk(x) =εmx
m + · · ·+ εm−s+1x

m−s+1 + bm−sx
m−s + · · ·+ b0x0,

where
max{|εk,nk |, . . . , |εk,nk−s+1|}� min

bk,j 6=0
{|bk,nk−s|, . . . , |bk,0|},

as before.
Let Si(Pk−1,Pk) be the following determinant:

Si(Pk−1,Pk) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al · · · · · · · · · · · · · · · · · · al−2i+1 xi−1Pk−1
. . .

...
...

al · · · · · · · · · · · · al−i x0Pk−1
εm · · · εm−s+1 bm−s · · · · · · · · · bm−2i+1 xiPk

. . .
. . .

. . .
...

...
εm · · · εm−s+1 bm−s · · · bm−i+1 x0Pk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Si(Pk−1,Pk) is called the i-th subresultant of Pk−1(x) and Pk(x), and we have
Pk+i(x) = γiSi(Pk−1,Pk), with γi a constant. For example, if deg(Pk−1) = deg(Pk)+
1, we have

Pk+1(x) = S1(Pk−1,Pk) =

∣∣∣∣∣∣
al al−1 Pk−1(x)

εm εm−1 xPk(x)

εm Pk(x)

∣∣∣∣∣∣ .
Below, we consider only the leading coefficients of Pk+1, Pk+2, and so on. Ap-

plying the Hadamard’s inequality to the subresultant, we can bound the effect of
εm, . . . , εm−s+1 on lc(Pk+i), as follows.

36 “approximate zero-points” of real univariate polynomial

Proposition 3.9. Define P ′k and L as

P ′k =Pk − (εmx
m + · · ·+ εm−s+1x

m−s+1) = bm−sx
m−s + · · ·+ b0,

L =‖Pk‖
(i−1)
2

(i− s) |al|
s ‖Pk−1‖

(i−s)
2 +

s∑
j=1

|al|
(j−1)‖Pk−1‖

(i−j+1)
2

 .
(3.15)

If lc(Si(Pk−1,Pk)) 6= 0 and we have

{|εm|+ · · ·+ |εm−s+1|} · L < |al
s · lc(Si(Pk−1,P ′k))|, (3.16)

for i = s, . . . ,m, then we have

lc(Si(Pk−1,Pk)) · als · lc(Si(Pk−1,P ′k)) > 0. (3.17)

Proof. Note that

lc(Si(Pk−1,Pk)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al · · · · · · · · · · · · · · · · · · al−2i
. . .

...
al · · · · · · · · · · · · al−i−1

εn · · · εm−s+1 bm−s · · · · · · · · · bm−2i

.
...

εm · · · εm−s+1 bm−s · · · bm−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣AiBi
∣∣∣∣ , (3.18)

where Ai and Bi are the row blocks consisting of the coefficients in Pk−1 and Pk,
respectively, and

lc(Si(Pk−1,P ′k)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

al · · · · · · · · · al−2i+s
. . .

...
al · · · al−i−1

bm−s · · · · · · · · · bm−2i

. . .
...

bm−s · · · bm−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣A ′iB ′i
∣∣∣∣ ,

where A ′i and B ′i are the row blocks consisting of the coefficients in Pk−1 and P ′k,
respectively, Note that, in the determinants above, we assume aj = bj = 0 for j < 0.
Furthermore, let B ′i,j be the top j − 1 rows of B ′i, bi,j be the j-th row of Bi with
replacing the coefficients in Pk with zeros, and Bi,j be the bottom i+ 1− j rows of
Bi.

By expanding the determinant in Eq. (3.18) with respect to the (i+ 1)-th row as∣∣∣∣∣∣
· · · · · ·

εm · · · εm−s+1 bm−s · · · bm−2i

· · · · · ·

∣∣∣∣∣∣
=

∣∣∣∣∣∣
· · · · · ·

εm · · · εm−s+1 0 · · · 0

· · · · · ·

∣∣∣∣∣∣+
∣∣∣∣∣∣
· · · · · ·

0 · · · 0 bm−s · · · bm−2i

· · · · · ·

∣∣∣∣∣∣ ,

3.4 evaluating the effects of error terms 37

and expanding the last determinant similarly, we finally obtain

lc(Si(Pk−1,Pk)) = als · lc(Si(Pk−1,P ′k)) +
i+1∑
j=1

det(Ri,j), (3.19)

where

Ri,j =


Ai
B ′i,j
bi,j
Bi,j

 .

Expanding det(Ri,j) with respect to the (i+ j)-th row, or the row

bi,j = (0 · · · 0 εm · · · εm−s+1 0 · · · 0),

we have

det(Ri,j) = (−1)i+2jεm det(R̃i,j,j) + · · · + (−1)i+2j+sεm−s+1 det(R̃i,j,j+s),

where R̃i,j,q is a 2i × 2i submatrix obtained by removing the (i + j)-th row and
the q-th column from Ri,j. After removing several top-left diagonal elements al’s
of R̃i,j,q, and applying the Hadamard’s inequality to det(R̃i,j,q), with inequalities
|al|

2 + |al−1|
2 + · · ·+ |al−2i|

2 6 ‖Pk−1‖22 and |εm|2 + · · ·+ |εm−s+1|
2 + |bm−s|

2 +

· · ·+ |bm−2i|
2 6 ‖Pk‖22, we finally obtain the following inequality:

|det(Ri,j)| 6Mi
{
|al|

(j−1) ‖Pk−1‖
(i−j+1)
2

}
for j = 1, . . . , s,

|det(Ri,j)| 6Mi
{
|al|

s ‖Pk−1‖
(i−s)
2

}
for j = s+ 1, . . . , i+ 1,

where
Mi = {|εm|+ · · ·+ |εm−s+1|} · ‖Pk‖i2.

From assumption (3.16), we have∣∣∣∣∣∣
i+1∑
j=1

det(Ri,j)

∣∣∣∣∣∣ 6
i+1∑
j=1

∣∣det(Ri,j)
∣∣ 6 {|εm|+ · · · |εm−s+1|} · L

< |al
s · lc(Si(Pk−1,P ′k))|.

(3.20)

Therefore, from (3.19) and (3.20), we obtain Formula (3.17).

From the fundamental theorem of subresultants (see Theorem 4.1 on page 49 [6]),
we have

Si(Pk−1,P ′k) = P
′
k+h lc(P ′k+h)

dk+h−1−1

×
h∏
l=1

{
lc(P ′k+l−1)

(dk+l−2+dk+l−1)(−1)(nk+l−2−nk+h)(nk+l−1−nk+h)
}

,

where h = i− s, nk+j = deg(P ′k+j) and dj = nj −nj+1. Therefore, we can calculate
lc(Si(Pk−1,P ′k)) easily from lc(P ′k+h).

Proposition 3.9 shows that, so long as εm, . . ., εm−s+1 satisfy condition (3.16),
discarding terms εmxm, . . ., εm−s+1x

m−s+1 in Pk does not change the signs of
leading coefficients of the subresultants Si(Pk−1,P ′k) for i = 0, . . . ,m− s− 1. How-
ever, in actual calculation of the Sturm sequence, the number L in (3.15) seems to
become too large, thus condition (3.16) is not useful in practice.

38 “approximate zero-points” of real univariate polynomial

3.4.2 Utilization of Interval Arithmetic

In this method, we transform the coefficients of the given polynomial into interval
numbers each of which includes the corresponding error, and calculate the Sturm
sequence by using interval arithmetic.

By observing how the widths of intervals increased during the calculation, we
found that the increase of the width of each interval was about one decimal-digit
for each remainder computation. In fact, the division of polynomials of degree dif-
ference 1 requires two “polynomial × number” multiplications and two polynomial
subtractions. The width of an interval is increased to about twice that of the original
interval by one arithmetic operation if the operands are of almost the same widths;
thus the width increases by about 24 = 16 times after the polynomial division. As
a consequence, for a polynomial of degree 10, for example, the width of an interval
in the last element of the Sturm sequence may become about 1010 times larger than
the initial widths, which shows that this method is not useful in practice.

3.4.3 Backward Error Analysis for a Linear System

In numerical analysis, we have a good method of error estimation for the solution
of a system of linear equations called “backward error analysis.” Calculation of the
resultant can be reduced to solving a linear system.

Usually, the norm of vectors and matrices are defined as follows. Let x =

(x1, . . . , xm)T be a vector in Rm. Then, for p = 1, 2,∞, the p-norm of x is defined
as

‖x‖p =

(
m∑
i=1

|xi|
p

)1/p
.

Let A = (aij) be a real (m,m)-matrix. Then, by using the norm of a vector, we
define the p-norm of A as

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

.

In this chapter we use only ‖A‖1 and ‖A‖∞.
Let F(x) and G(x) be

F(x) = fmx
m + · · ·+ f0x0, fm 6= 0,

G(x) = gnx
n + · · ·+ g0x0, gn 6= 0,

where m > n. Calculation of the PRS is equivalent to eliminating the terms of
higher degrees of F and G to derive Rs, a polynomial of degree s, for 0 6 s 6 n− 1.
For each Rs, there exist polynomials Us and Vs such that

UsF+ VsG = Rs, deg(Us) 6 n− s− 1, deg(Vs) 6 m− s− 1.

We consider calculating R0 = res(F,G). Let U0 and V0 be expressed as

U0 = un−1x
n−1 + · · ·+ u0x0, V0 = vm−1x

m−1 + · · ·+ v0x0.

3.4 evaluating the effects of error terms 39

From the relation U0F+ V0G = R0, we obtain a system of linear equations on the
coefficients in U0 and V0, as



fm gn
...

. . .
...

. . .
f0 fm g0 gn

. . .
...

. . .
...

f0 g0





un−1
...
u0
vm−1

...
v0


=


0
...
0

R0

 . (3.21)

U0 and V0 can be normalized in any way so long as U0 and V0 satisfy the above
relation. Therefore, we normalize U0 and V0 as un−1 = gn and vm−1 = −fm. With
this normalization, we can rewrite relation (3.21) as

fm gn
...

. . .
...

. . .
... fm

... gn

f1
... fm g1

... gn

f0
. . .

...
... g0

. . .
...

...
. . . f1

...
. . . g1

...
f0 f1 g0 g1





un−2
...
u0
vm−2

...
v0


=



gn−1fm − fm−1gn
...

gn−mfm − f0gn
0
...
0


, (3.22)

where gj = 0 for j < 0, and
R0 = f0u0 + g0v0. (3.23)

The linear system (3.22) is of the form

Ax = b, (3.24)

where A is a “coefficient matrix,” and x and b are vectors of unknowns and given
numbers, respectively. We briefly describe a perturbation theory for linear system.
(The theory can be found in various literature on numerical analysis; see Higham
[21], for example.) Assume that b has an error ∆b that causes an error ∆x1 in the
solution x. Then we have

A(x+∆x1) = b+∆b. (3.25)

Using Formula (3.24), we can easily evaluate the magnitude of ∆x1 as

‖∆x1‖
‖x‖

6 ‖A‖ ‖A−1‖ ‖∆b‖
‖b‖

. (3.26)

Furthermore, assume that A has an error ∆A and that the error of x becomes ∆x1 +

∆x2, as
(A+∆A)(x+∆x1 +∆x2) = b+∆b.

Using (3.25), we derive the evaluation of ∆x2 as

‖∆x2‖
‖x+∆x1 +∆x2‖

6 ‖A‖ ‖A−1‖ ‖∆A‖
‖A‖

. (3.27)

40 “approximate zero-points” of real univariate polynomial

Degree Condition number
of 1-norm ∞-norm
P(x) Maximum Minimum Average Maximum Minimum Average
10 8.73× 103 1.69× 102 2.55× 103 7.96× 103 2.92× 102 2.99× 103
20 2.57× 106 4.44× 103 2.95× 105 8.51× 105 1.83× 103 1.08× 105
30 1.16× 107 4.97× 104 2.46× 106 5.97× 107 2.45× 104 1.18× 106
40 5.37× 107 1.48× 105 7.44× 106 4.76× 107 6.01× 104 6.00× 106
50 1.47× 108 1.56× 105 2.25× 107 6.42× 107 7.38× 104 8.09× 106

Table 3.1: Condition number of the matrix in Formula (3.22) computed for 10 polynomials
with random-number coefficients.

Formulas (3.26) and (3.27) lead us to the following evaluation as

‖∆x1‖+ ‖∆x2‖
‖x‖+ ‖∆x1‖+ ‖∆x2‖

6 ‖A‖ ‖A−1‖
{
‖∆A‖
‖A‖

+
‖∆b‖
‖b‖

}
, (3.28)

where the number ‖A‖ ‖A−1‖ is called the “condition number” which specifies how
the initial errors are magnified in the solution.

Although we did not consider rounding errors in floating-point arithmetic in
the above evaluation, the evaluation of rounding errors can easily be included by
adding ∆R, a term representing rounding errors, into A. It is known that, if we solve
(3.24) by the Gaussian elimination with pivoting, for example, the errors ∆x1 +∆x2
in the solution x are well bounded by the formula (3.28) (see Higham [21]).

Applying formula (3.28) to linear system (3.22), we can bound the errors |δu0 |

and |δv0 | of the solutions u0 and v0, due to the perturbations δfi of fi (i = 0, . . . ,m)
and δgj of gj (j = 0, . . . ,n). Formula (3.23) tells us that if |f0u0 + g0v0| � |f0 ·
δu0 |, |g0 · δv0 | then we can say definitely that R0 6= 0 for the perturbations of the
coefficients of F and G. If |f0u0 + g0v0| � |f0u0|, |g0v0| then this case corresponds
to F and G having mutually close zero-points, and the above method cannot be
applied to such cases. If |f0u0 + g0v0| is not small, then we can apply the above
method so long as |δu0 | and |δv0 | are not large. Formula (3.28) shows that the
measure of largeness of |δu0 | and |δv0 | is the condition number. Therefore, in order
to check whether or not the above method is useful, we check the largeness of the
condition number for polynomials of degrees from 10 to 50. We generate a real
univariate polynomial P(x) with random coefficients, and construct the matrix in
the left-hand-side of Formula (3.22) by putting F = P and G = dP/dx. We generate
each coefficient c of P(x) to satisfy |c| 6 10. We set deg(P) = 10, 20, 30, 40, 50, and
generate 10 polynomials for each degree. We used the LAPACK library [2] linked
to GAL to estimate the condition number (for estimating the condition number, see
Natori [34], for example).

Table 3.1 shows the result of computations. For each degree of polynomial, we
show the maximum, minimum, and average values of our estimates of 10 condition
numbers. We see from this result that, for a polynomial of degree 10, for example,
the error in res(P,dP/dx) may become 103 or 104 times larger than the error in the
initial polynomial. Although these numbers are rather large, they are much smaller
than the increase of the interval width explained above.

3.5 summary 41

3.4.4 Calculating Error Terms Parametrically

The method described in this subsection gives good estimates of errors in the Sturm
sequence, but the calculated value does not give the rigorous error bound.

For simplicity, we assume that P(x) is monic in (3.1), and express P̃(x) in For-
mula (3.2) as

P̃(x, δn−1, . . . , δ0) = xn + (cn−1 + δn−1)x
n−1 + · · ·+ (c0 + δ0)x

0,

where δn−1, . . . , δ0 are parameters representing errors in the coefficients. Exact cal-
culation of the Sturm sequence of a parametric polynomial P̃ exactly is extremely
time-consuming, because P̃ is (n+1)-variate. However, if we neglect all the quadratic
and higher-order terms with respect to δn−1, . . . , δ0, then the computation cost is
only O(n) times larger than that of a numerical Sturm sequence. Therefore, we
calculate the i-th element P̃i of the Sturm sequence as

P̃i(x, δn−1, . . . , δ0) ' Pi(x) + P̃i,n−1(x, 0, . . . , 0)δn−1 + · · ·+ P̃i,0(x, 0, . . . , 0)δ0,

where P̃i,j = ∂P̃i/∂δj (j = n − 1, . . ., 0). Then, by neglecting the terms of order
O(δ2), we can approximately bound the effect of error terms fairly well, as

|P̃i − Pi| . |P̃i,n−1(x, 0, . . . , 0)| εn−1 + · · ·+ |P̃i,0(x, 0, . . . , 0)| ε0,

where |(polynomial)| denotes a polynomial with the coefficients replaced by their
absolute values.

Actually, the calculation is performed by introducing the total-degree variable t
for δn−1, . . . , δ0 as δi → δit (i = 0, . . . ,n− 1). We calculate the Sturm sequence only
up to the total-degree 1, and substitute 1 for t after the calculation.

We calculated the Sturm sequences with and without parameterized error terms.
For this experiment, we used the same polynomials as in Section 3.4.3.

Table 3.2 shows the value ‖P̃n(x, δn−1, . . . , δ0)‖/‖P̃n(x, 0, . . . , 0)‖, where
P̃n(x, δn−1, . . . , δ0) is the last element of the Sturm sequence, and Table 3.3 shows
the computing times of the Sturm sequences with and without parametric errors.
In Table 3.2, for each degree of polynomial, we show the maximum, the minimum,
and the average of 10 ratios. Note that the values in Table 3.2 show how the initial
errors are magnified by the computation of the Sturm sequence, just as the values
in Table 3.1 show. Comparing with Table 3.1, we see that the numbers are too large
for polynomials of higher degrees. Table 3.3 shows the maximum, minimum, and
average values of the computation times for ten examples. We see that, very roughly
speaking, the computation time for a parameterized sequence is about deg(P) times
larger than that for a numerical sequence. These results indicate that we can use
this method only for polynomials of low or medium degrees.

3.5 summary
In this chapter we have considered the real zero-points of a real univariate poly-
nomial with error terms whose coefficients may be much larger than the machine
epsilon εM of the floating-point arithmetic. For such an approximate polynomial,
we introduced the concept of an “approximate real zero-point” and proposed a

42 “approximate zero-points” of real univariate polynomial

Degree Polynomial norm
of 1-norm ∞-norm
P̃(x) Maximum Minimum Average Maximum Minimum Average
10 2.57× 104 1.02× 102 5.97× 103 1.52× 104 1.68× 102 5.00× 103
20 2.83× 105 1.34× 105 1.81× 105 3.65× 105 3.44× 105 2.62× 105
30 2.68× 109 7.01× 108 1.13× 109 4.75× 109 1.78× 109 1.76× 109
40 3.50× 1013 2.99× 1011 5.39× 1012 1.60× 1014 1.42× 1011 3.65× 1012
50 2.80× 1017 7.81× 1015 9.19× 1016 2.47× 1017 1.32× 1016 1.36× 1017

Table 3.2: ‖P̃n(x, δn−1, . . . , δ0)‖/‖P̃n(x, 0, . . . , 0)‖ for 10 polynomials, where P̃n is the last
element of the Sturm sequence.

Degree Computing time (msec.)
of With error terms Without error terms
P̃(x) Maximum Minimum Average Maximum Minimum Average
10 70 50 55 10 < 10 < 10

20 420 400 403 10 < 10 < 10

30 1420 1330 1357 20 10 11

40 3280 3210 3244 50 10 31

50 6080 6030 6050 50 30 37

Table 3.3: Computing times for calculating the Sturm sequences with and without parame-
terized error terms.

method for calculating the existence domains of zero-points fairly accurately and
simply.

Next, we considered how to calculate the number of real zero-points of an ap-
proximate polynomial by the Sturm’s method. We gave a sufficient condition for
the number of real zero-points to be definite. We also derived a sufficient condi-
tion for the small leading coefficients in the Sturm sequence to be discarded, and
showed that these problems can be reduced to a problem to that of estimating the
errors in the resultants of univariate polynomials.

Finally, in order to estimate the errors in the Sturm sequence, we investigated
four methods:

(1) Evaluating the “subresultant determinant” by using the Hadamard’s inequal-
ity,

(2) Calculating the Sturm sequence with coefficients of interval numbers,

(3) Solving a linear system on polynomial coefficients and evaluating errors in
the solution by backward error analysis,

(4) Calculating the Sturm sequence with parametric error terms.

Method (1) is theoretically correct, but the calculated upper bound is too large, and
with method (2) the width of each interval number grows too rapidly during the
calculation of the Sturm sequence; thus methods (1) and (2) do not seem to be
useful in practice. Method (3) gives a rather practical estimation, and thus seems
to be useful in practice. Method (4) gives the errors rather accurately, and we have

3.5 summary 43

seen that calculating the resultant by PRS gives much larger errors than method
(3). This means that the errors contained in the resultant depend on which method
we have used to calculate the resultant, and method (3) seems to be the best for
evaluating the errors.

We still have a problem in cases where P(x) has multiple or close zero-points. Let
us briefly mention what happens if P(x) has close zero-points. Let ‖.‖ be an appro-
priate norm of a polynomial defined by Formula (3.9), and assume that ‖P‖ = 1

and Pk contains m close zero-points of closeness δ, 0 < δ � 1, around the ori-
gin. Then, Sasaki and Sasaki [46] tell us that ‖Pk‖ = O(δ0) and ‖Pk+1‖ = O(δ2),
‖Pk+2‖ = O(δ3), . . . , ‖Pk+m‖ = O(δm+1). Therefore, if these close zero-points can
be separated and counted as m single zero-points, we must have ‖Pk+m‖ � εM or
δ � m+1

√
εM. On the other hand, if we change coefficients of P(x) slightly, the posi-

tions of these close zero-points are changed considerably. Therefore, the treatment
of close zero-points is not easy, but an approach toward possible treatment will be
discussed in the next chapter.

4 R E C U R S I V E P O LY N O M I A L
R E M A I N D E R S E Q U E N C E A N D I T S
S U B R E S U LTA N T S 1

The polynomial remainder sequence (PRS) is one of the most fundamental tools in
computer algebra. Although the Euclidean algorithm (see Knuth [30]) for calculat-
ing PRS is simple, coefficient growth in PRS makes the Euclidean algorithm often
very inefficient. To overcome this problem, the mechanism of coefficient growth
has been extensively studied through the theory of subresultants; see Collins [9],
Brown and Traub [6], Loos [32], etc. By the theory of subresultant, we can remove
extraneous factors of the elements of PRS systematically.

In this chapter, we consider a variation of the subresultant. When we calculate
PRS for polynomials which have a nontrivial greatest common divisor (GCD), we
usually stop the calculation with the GCD. However, it is sometimes useful to con-
tinue the calculation by calculating the PRS for the GCD and its derivative; this is
necessary for calculating the number of real zeros including their multiplicities. We
call such a PRS a “recursive PRS.”

Although the theory of subresultants has been developed widely, the correspond-
ing theory for recursive PRS is still unknown within the author’s knowledge; this
is the main problem which we investigate here. By “recursive subresultants,” we
denote determinants which represent elements of recursive PRS as functions of the
coefficients of initial polynomials.

We give three different constructions of subresultant matrices to express recursive
subresultants. The first matrix construction recursively builds the matrix by shifting
previously defined matrices, similarly as the Sylvester matrix shifts coefficients of
the initial polynomials, thus the size of the matrices increases fast as the recursion
deepens. The second matrix construction uses “nested” matrices, or a Sylvester
matrix whose entries are themselves determinants. Finally, by the Gaussian elimi-
nation with the Sylvester’s identity on the second construction, we succeed to give
the reduced matrix construction which expresses the coefficients of the polynomi-
als in the recursive PRS as determinants of very small matrices, whose size actually
decreases as the recursion deepens.

This chapter is organized as follows. In Section 4.1, we introduce the concept of
recursive PRS. In Section 4.2, we define recursive subresultant and show its relation-
ship to recursive PRS. In Section 4.3, we define the “nested subresultant,” which is
derived from the second construction of subresultant matrix, and show its equiva-
lence to the recursive subresultant. In Section 4.4, we define the “reduced nested
subresultant,” whose matrix is derived from the nested subresultant, and show that
it is a reduced expression of the recursive subresultant. In Section 4.5, we briefly
discuss usage of the reduced nested subresultant in approximate algebraic compu-
tation.

1 The contents of this chapter is based on the following article: A. Terui. Recursive polynomial remainder
sequence and its subresultants. Journal of Algebra, 320(2):633–659, July 2008 [57]. c© 2008 Elsevier Inc.
The final publication is available on ScienceDirect with doi: 10.1016/j.jalgebra.2007.12.023.

45

https://dx.doi.org/10.1016/j.jalgebra.2007.12.023

46 recursive polynomial remainder sequence and its subresultants

4.1 recursive polynomial remainder sequence (prs)
First, we review the PRS, then define the recursive PRS. In the end of this section, we
show a recursive Sturm sequence as an example of recursive PRS. We follow defini-
tions and notations by von zur Gathen and Lücking [19]. Throughout this chapter,
let R be an integral domain and K be its quotient field. We define a polynomial
remainder sequence as follows.

Definition 4.1 (Polynomial Remainder Sequence (PRS)). Let F and G be polynomi-
als in R[x] of degree m and n (m > n), respectively. A sequence

(P1, . . . ,Pl)

of nonzero polynomials is called a polynomial remainder sequence (PRS) for F and G,
abbreviated to prs(F,G), if it satisfies

P1 = F, P2 = G, αiPi−2 = qi−1Pi−1 +βiPi,

for i = 3, . . . , l, where α3, . . . ,αl, β3, . . . ,βl are elements of R and deg(Pi−1) >
deg(Pi). A sequence ((α3,β3), . . . , (αl,βl)) is called a division rule for prs(F,G). If
Pl is a constant, then the PRS is called complete.

If F and G are coprime, the last element in the complete PRS for F and G is a
constant. Otherwise, it equals the GCD of F and G up to a constant: we have
prs(F,G) = (P1 = F,P2 = G, . . . ,Pl = γ · gcd(F,G)) for some γ ∈ R. Then, we can
calculate new PRS, prs(Pl, ddxPl), and if this PRS ends with a non-constant polyno-
mial, then calculate another PRS for the last element, and so on. By repeating this
calculation, we can calculate several PRSs “recursively” such that the last polyno-
mial in the last sequence is a constant. Thus, we define “recursive PRS” as follows.

Definition 4.2 (Recursive PRS). Let F and G be the same as in Definition 4.1. Then,
a sequence

(P
(1)
1 , . . . ,P(1)l1 ,P(2)1 , . . . ,P(2)l2 , . . . ,P(t)1 , . . . ,P(t)lt)

of nonzero polynomials is called a recursive polynomial remainder sequence (recursive
PRS) for F and G, abbreviated to rprs(F,G), if it satisfies

P
(1)
1 = F, P

(1)
2 = G, P

(1)
l1

= γ1 · gcd(P(1)1 ,P(1)2) with γ1 ∈ R,

(P
(1)
1 ,P(1)2 , . . . ,P(1)l1) = prs(P(1)1 ,P(1)2),

P
(k)
1 = P

(k−1)
lk−1

, P
(k)
2 =

d

dx
P
(k−1)
lk−1

, P
(k)
lk

= γk · gcd(P(k)1 ,P(k)2) with γk ∈ R,

(P
(k)
1 ,P(k)2 , . . . ,P(k)lk) = prs(P(k)1 ,P(k)2),

for k = 2, . . . , t. If α(k)i , β(k)i ∈ R satisfy

α
(k)
i P

(k)
i−2 = q

(k)
i−1P

(k)
i−1 +β

(k)
i P

(k)
i

for k = 1, . . . , t and i = 3, . . . , lk, then a sequence ((α
(1)
3 ,β(1)3), . . . , (α(t)lt ,β(t)lt))

is called a division rule for rprs(F,G). Furthermore, if P(t)lt is a constant, then the
recursive PRS is called complete.

4.1 recursive polynomial remainder sequence (prs) 47

Remark 4.1. In this chapter, we use the following notations unless otherwise defined:
for k = 1, . . . , t and i = 1, . . . , lk, let c(k)i = lc(P(k)i), n(k)

i = deg(P(k)i) (letters lc and
deg denote the leading coefficient and the degree of the polynomial, respectively),
j0 = m and jk = n

(k)
lk

, and let d(k)i = n
(k)
i −n

(k)
i+1 for k = 1, . . . , t and i = 1, . . . , lk−

1. Furthermore, we represent P(k)i (x) as

P
(k)
i (x) = a

(k)

i,n(k)
i

xn
(k)
i + · · ·+ a(k)i,0 x

0,

and its “coefficient vector” as

p
(k)
i = t(a

(k)

i,n(k)
i

, . . . ,a(k)i,0).

As an example of recursive PRS, we calculate Sturm sequences recursively for cal-
culating the number of real zeros of univariate polynomial including multiplicities
(see Bochnak, Coste and Roy [5]), as follows.
Example 4.1 (Recursive Sturm Sequence). Let P(x) = (x+ 2)2{(x− 3)(x+ 1)}3, and
calculate the recursive Sturm sequence of P(x) as

(complete) rprs
(
P(x),

d

dx
P(x)

)
,

with division rule given by

(α
(k)
i ,β(k)i) = (1,−1),

for k = 1, . . . , t and i = 3, . . . , lk.
The first sequence L1 = (P

(1)
1 , . . . ,P(1)4) has the following elements:

P
(1)
1 = P(x) = (x+ 2)2{(x− 3)(x+ 1)}3,

P
(1)
2 =

d

dx
P(x) = 8x7 − 14x6 − 102x5 + 80x4 + 460x3 + 66x2 − 558x− 324,

P
(1)
3 =

75

16
x6 −

45

16
x5 − 60x4 −

225

8
x3 +

3315

16
x2 +

4815

16
x+

945

8
,

P
(1)
4 =

128

25
x5 −

256

25
x4 −

256

5
x3 +

1024

25
x2 +

4224

25
x+

2304

25
.

The second sequence L2 = (P
(2)
1 , . . . ,P(2)4) has the following elements:

P
(2)
1 = P

(1)
4 =

128

25
x5 −

256

25
x4 −

256

5
x3 +

1024

25
x2 +

4224

25
x+

2304

25
,

P
(2)
2 =

d

dx
P
(1)
4 =

128

5
x4 −

1024

25
x3 −

768

5
x2 +

2048

25
x+

4224

25
,

P
(2)
3 =

14848

625
x3 −

1536

125
x2 −

88576

625
x−

66048

625
,

P
(2)
4 =

12800

841
x2 −

25600

841
x−

38400

841
.

The last sequence L3 = (P
(3)
1 , . . . ,P(3)3) has the following elements:

P
(3)
1 = P

(2)
4 =

12800

841
x2 −

25600

841
x−

38400

841
,

P
(3)
2 =

d

dx
P
(2)
4 =

25600

841
x−

25600

841
,

P
(3)
3 =

51200

841
.

48 recursive polynomial remainder sequence and its subresultants

For PRS Lk, k = 1, 2, 3, define sequences of nonzero real numbers λ(Lk,−∞) and
λ(Lk,+∞) as

λ(Lk,−∞) =

(
(−1)n

(k)
1 lc(P(k)1), . . . , (−1)n

(k)
lk lc(P(k)lk)

)
,

λ(Lk,+∞) =
(

lc(P(k)1), . . . , lc(P(k)lk)
)

,

where n(k)
i = deg(P(k)i) denotes the degree of P(k)i and lc(P(k)i) denotes the leading

coefficients of P(k)i . Then, λ(Lk,−∞) and λ(Lk,+∞) for k = 1, 2, 3 are

λ(L1,±∞) =

(
1,±8, 75

16
,±128

25

)
,

λ(L2,±∞) =

(
±128
25

,
128

5
,±18848

625
,
12800

841

)
,

λ(L3,±∞) =

(
12800

841
,±25600

841
,
51200

841

)
.

For a sequence of nonzero real numbers L = (a1, . . . ,am), let V(L) be the number
of sign variations of the elements of L. Then, we calculate the number of the real
zeros of P(x), including multiplicity, as

3∑
k=1

{V(λ(Lk,−∞)) − V(λ(Lk,+∞))} = 3+ 3+ 2 = 8.

4.2 subresultants for recursive prs
To make this chapter self-contained and to use notations in our definitions, we first
review the fundamental theorem of subresultants, then discuss subresultants for
recursive PRS.

Although the theory of subresultants is established for polynomials over an inte-
gral domain, in what follows, we handle polynomials over a field for the sake of
simplicity. Let F and G be polynomials in K[x] such that

F(x) = fmx
m + · · ·+ f0x0, G(x) = gnx

n + · · ·+ g0x0, (4.1)

with m > n > 0. For a square matrix M, we denote its determinant by |M|.

4.2.1 Fundamental Theorem of Subresultants

Definition 4.3 (Sylvester Matrix). Let F and G be as in (4.1). The Sylvester matrix of
F and G, denoted by N(F,G), is an (m+ n)× (m+ n) matrix constructed from the
coefficients of F and G, such that

N(F,G) =



fm gn
...

. . .
...

. . .
f0 fm g0 gn

. . .
...

. . .
...

f0 g0

 .

︸ ︷︷ ︸
n

︸ ︷︷ ︸
m

4.2 subresultants for recursive prs 49

Definition 4.4 (Subresultant Matrix). Let F and G be defined as in (4.1). For j < n,
the j-th subresultant matrix of F and G, denoted by N(j)(F,G), is an (m+ n− j)×
(m + n − 2j) sub-matrix of N(F,G) obtained by taking the left n − j columns of
coefficients of F and the left m− j columns of coefficients of G, such that

N(j)(F,G) =



fm gn
...

. . .
...

. . .
f0 fm g0 gn

. . .
...

. . .
...

f0 g0

 .

︸ ︷︷ ︸
n−j

︸ ︷︷ ︸
m−j

Furthermore, define N(j)
U (F,G) as a sub-matrix of N(j)(F,G) by deleting the bottom

j+ 1 rows.

Definition 4.5 (Subresultant). Let F and G be defined as in (4.1). For j < n and
k = 0, . . . , j, let N(j)

k = N
(j)
k (F,G) (distinguish it from N

(j)
U (F,G) in the above) be

a sub-matrix of N(j)(F,G) obtained by taking the top m+ n− 2j− 1 rows and the
(m+n− j−k)-th row (note thatN(j)

k (F,G) is a square matrix). Then, the polynomial

Sj(F,G) = |N
(j)
j |xj + · · ·+ |N

(j)
0 |x0

is called the j-th subresultant of F and G.

Theorem 4.1 (Fundamental Theorem of Subresultants [6]). Let F and G be defined as
in (4.1), (P1, . . . ,Pk) = prs(F,G) be complete PRS, and ((α3,β3), . . . , (αk,βk)) be its
division rule. Let ni = deg(Pi) and ci = lc(Pi) for i = 1, . . . ,k, and di = ni −ni+1 for
i = 1, . . . ,k− 1. Then, we have

Sj(F,G) =0 for 0 6 j < nk, (4.2)

Sni(F,G) =Pic
di−1−1
i

i∏
l=3

{(
βl
αl

)nl−1−ni
c
dl−2+dl−1
l−1

× (−1)(nl−2−ni)(nl−1−ni)

}
, (4.3)

Sj(F,G) =0 for ni < j < ni−1 − 1, (4.4)

Sni−1−1(F,G) =Pic
1−di−1
i−1

i∏
l=3

{(
βl
αl

)nl−1−ni−1+1
c
dl−2+dl−1
l−1

× (−1)(nl−2−ni−1+1)(nl−1−ni−1+1)

}
, (4.5)

for i = 3, . . . ,k.

By the Fundamental Theorem of subresultants, we can express coefficients of PRS
by determinants of matrices whose elements are the coefficients of initial polynomi-
als.

50 recursive polynomial remainder sequence and its subresultants

4.2.2 Recursive Subresultants

We construct “recursive subresultant matrix” whose determinants represent ele-
ments of recursive PRS by the coefficients of initial polynomials. To help the readers,
we first show an example of recursive subresultant matrix for the recursive Sturm
sequence in Example 4.1.

Example 4.2 (Recursive Subresultant Matrix). We express P(x) and d
dxP(x) in Exam-

ple 4.1 by

P(x) = f8x
8 + · · ·+ f0x0,

d

dx
P(x) = g7x

7 + · · ·+ g0x0.

Let N̄(1,5)(F,G) = N(5)(F,G), then the matrices N̄(1,5)
U (F,G), N̄(1,5)

L (F,G) and

N̄
′(1,5)
L (F,G) are given as

N̄(1,5)(F,G) =

(
N̄

(1,5)
U

N̄
(1,5)
L

)
=



f8 g7
f7 f8 g6 g7
f6 f7 g5 g6 g7
f5 f6 g4 g5 g6
f4 f5 g3 g4 g5
f3 f4 g2 g3 g4
f2 f3 g1 g2 g3
f1 f2 g0 g1 g2
f0 f1 g0 g1

f0 g0


,

N̄
′(1,5)
L (F,G) =


5f4 5f5 5g3 5g4 5g5
4f3 4f4 4g2 4g3 4g4
3f2 3f3 3g1 3g2 3g3
2f1 2f2 2g0 2g1 2g2
f0 f1 g0 g1

 ,

where horizontal lines in matrices divide them into the upper and the lower compo-
nents. Note that the matrix N̄

′(1,5)(F,G) is derived from N̄
(1,5)
L (F,G) by multiplying

the l-th row by 6− l for l = 1, . . . , 5 and deleting the bottom row. Then, the (2, 3)-th
recursive subresultant matrix N̄(2,3)(F,G) is constructed as

N̄(2,3)(F,G) =



N̄
(1,5)
U

N̄
(1,5)
U

N̄
(1,5)
U

0 · · · 0
N̄

(1,5)
L N̄

′(1,5)
L

N̄
′(1,5)
L

0 · · · 0


. (4.6)

Definition 4.6 (Recursive Subresultant Matrix). Let F and G be defined as in (4.1),
and let (P

(1)
1 , . . . ,P(1)l1 , . . . ,P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F and G

as in Definition 4.2. Then, for each pair of numbers (k, j) with k = 1, . . . , t and
j = jk−1 − 2, . . . , 0, define matrix N̄(k,j) = N̄(k,j)(F,G) recursively as follows.

1. For k = 1, let N̄(1,j)(F,G) = N(j)(F,G).

4.2 subresultants for recursive prs 51

N̄(k,j)(F,G)

=



N̄
(k−1,jk−1)
U

N̄
(k−1,jk−1)
U

. . .

N̄
(k−1,jk−1)
U

N̄
(k−1,jk−1)
U

N̄
(k−1,jk−1)
U

. . .

N̄
(k−1,jk−1)
U

0 · · · · · · 0 0 · · · · · · 0
N̄

(k−1,jk−1)
L N̄

′(k−1,jk−1)
L

N̄
(k−1,jk−1)
L N̄

′(k−1,jk−1)
L

. . .
. . .

N̄
(k−1,jk−1)
L N̄

′(k−1,jk−1)
L



.

Figure 4.1: Illustration of N̄(k,j)(F,G). Note that the number of blocks N̄(k−1,jk−1)
L is jk−1 −

j− 1, whereas that of N̄
′(k−1,jk−1)
L is jk−1 − j; see Definition 4.6 for details.

2. For k > 1, let N̄(k,j)(F,G) consist of the upper block and the lower block,
defined as follows:

a) The upper block is partitioned into (2jk−1 − 2j − 1) × (2jk−1 − 2j − 1)

blocks with the diagonal blocks filled with N̄(k−1,jk−1)
U , where N̄(k−1,jk−1)

U

is a sub-matrix of N̄(k−1,jk−1)(F,G) obtained by deleting the bottom jk−1+

1 rows.

b) Let N̄(k−1,jk−1)
L be a sub-matrix of N̄(k−1,jk−1) obtained by taking the

bottom jk−1+ 1 rows, and let N̄
′(k−1,jk−1)
L be a sub-matrix of N̄(k−1,jk−1)

L

by multiplying the (jk−1 + 1− τ)-th rows by τ for τ = jk−1, . . . , 1, then
by deleting the bottom row. Then, the lower block consists of jk−1− j− 1
blocks of N̄(k−1,jk−1)

L such that the leftmost block is placed at the top row
of the container block and the right-side block is placed down by 1 row

from the left-side block, then followed by jk−1 − j blocks of N̄
′(k−1,jk−1)
L

placed by the same manner as N̄(k−1,jk−1)
L .

As a result, N̄(k,j)(F,G) becomes as shown in Fig. 4.1. Then, N̄(k,j)(F,G) is called
the (k, j)-th recursive subresultant matrix of F and G.

Proposition 4.2. The numbers of rows and columns of N̄(k,j)(F,G), the (k, j)-th recursive
subresultant matrix of F and G, are as follows: for k = 1 and j < n, they are equal to

m+n− j and m+n− 2j, (4.7)

52 recursive polynomial remainder sequence and its subresultants

respectively, and, for (k, j) = (1, j1) and k = 2, . . . , t and j < jk−1 − 1, they are equal to

(m+n− 2j1)

{
k−1∏
l=2

(2jl−1 − 2jl − 1)

}
(2jk−1 − 2j− 1) + j (4.8)

and

(m+n− 2j1)

{
k−1∏
l=2

(2jl−1 − 2jl − 1)

}
(2jk−1 − 2j− 1), (4.9)

respectively, with j0 = j1 + 1 for (k, j) = (1, j1).

Proof. By induction on k. For k = 1, (4.7) immediately follows from Case 1 of
Definition 4.6, and we also have (4.8) and (4.9) for (k, j) = (1, j1). Let us assume that
we have (4.8) and (4.9) for 1, . . . ,k− 1. Then, we calculate the numbers of the rows
and columns of N̄(k,j)(F,G) as follows.

1. The numbers of rows of N̄(k−1,jk−1)
L and N̄

′(k−1,jk−1)
L are equal to jk−1 + 1

and jk−1, respectively, thus the number of rows a block which consists of

N̄
(k−1,jk−1)
L and N̄

′(k−1,jk−1)
L in N̄(k,j)(F,G) equals

2jk−1 − j− 1. (4.10)

On the other hand, the number of rows of N̄(k−1,jk−1)
U is equal to (m+ n−

2j1){
∏k−1
l=2 (2jl−1 − 2jl − 1)}− 1, thus the number of rows of diagonal blocks

in N̄(k,j)(F,G) is equal to{
(m+n− 2j1)

k−1∏
l=2

(2jl−1 − 2jl − 1) − 1

}
(2jk−1 − 2j− 1). (4.11)

By adding (4.10) and (4.11), we obtain (4.8).

2. The number of columns of N̄(k−1,jk−1)(F,G) is equal to (m + n − 2j1)

×{
∏k−1
l=2 (2jl−1− 2jl− 1)}, thus the number of columns of N̄(k,j)(F,G) is equal

to (4.9).

This proves the proposition.

Now, we define the recursive subresultant.

Definition 4.7 (Recursive Subresultant). Let F and G be defined as in (4.1), and
let (P

(1)
1 , . . . , P(1)l1 , . . . ,P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F and G as in

Definition 4.2. For j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, let N̄(k,j)
τ = N̄

(k,j)
τ (F,G) be

a sub-matrix of the (k, j)-th recursive subresultant matrix N̄(k,j)(F,G) obtained by
taking the top (m+ n− 2j1){

∏k−1
l=2 (2jl−1 − 2jl − 1)}(2jk−1 − 2j− 1) − 1 rows and

the
(
(m+n− 2j1){

∏k−1
l=2 (2jl−1 − 2jl − 1)}(2jk−1 − 2j− 1) + j− τ

)
-th row (note that

N̄
(k,j)
τ is a square matrix). Then, the polynomial

S̄k,j(F,G) = |N̄
(k,j)
j |xj + · · ·+ |N̄

(k,j)
0 |x0

is called the (k, j)-th recursive subresultant of F and G.

4.2 subresultants for recursive prs 53

We show the relationship between recursive subresultants and coefficients in the
recursive PRS.

Lemma 4.3. Let F and G be defined as in (4.1), and let (P(1)1 , . . . ,P(1)l1 , . . . , P(t)1 , . . . ,P(t)lt)

be complete recursive PRS for F and G as in Definition 4.2. For k = 1, . . . , t− 1, define

Bk =(c
(k)
lk

)
d
(k)
lk−1

−1
lk∏
l=3

{(
β
(k)
l

α
(k)
l

)n(k)
l−1−n

(k)
lk

×(c(k)l−1)
(d

(k)
l−2+d

(k)
l−1)(−1)

(n
(k)
l−2−n

(k)
lk

)(n
(k)
l−1−n

(k)
lk

)

}
.

For k = 2, . . . , t and j = jk−1 − 2, . . . , 0, define

uk,j =(m+n− 2j1)

{
k−1∏
l=2

(2jl−1 − 2jl − 1)

}
(2jk−1 − 2j− 1)

with uk = uk,jk and u1 = m+n− 2j1,

bk,j =2jk−1 − 2j− 1 with bk = bk,jk and b1,j = 1 for j < n,

rk,j =(−1)(uk−1−1)(1+2+···+(bk,j−1)) with rk = rk,jk and r1,j = 1 for j < n,

R̄k =(R̄k−1)
bkrkBk with R̄0 = 1.

Then, for the (k, j)-th recursive subresultant of F and G with k = 1, . . . , t and j = jk−1 −

2, . . . , 0, we have
S̄k,j(F,G) = (R̄k−1)

bk,jrk,j · Sj(P
(k)
1 ,P(k)2). (4.12)

To prove Lemma 4.3, we prove the following lemma.

Lemma 4.4. For k = 1, . . . , t, j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, we have

|N̄
(k,j)
τ (F,G)| = (R̄k−1)

bk,jrk,j |N
(j)
τ (P

(k)
1 ,P(k)2)|.

Proof. By induction on k. For k = 1, it is obvious from Case 1 in Definition 4.6. Let
us assume that the lemma is valid for 1, . . . ,k− 1, then we prove the claim for k by
the following steps.

Lemma 4.5. Assume that we have Lemma 4.4 for 1, . . . ,k− 1. Then, for k, j = jk−1 −

2, . . . , 0 and τ = j, . . . , 0, N̄(k,j)(F,G) can be transformed by certain eliminations and
permutations on its columns into M(k,j)(F,G) as shown in Fig. 4.2, satisfying

|N̄
(k,j)
τ (F,G)| = ((R̄k−2)

bk−1rk−1)
bk,j |M

(k,j)
τ (F,G)|, (4.13)

where M(k,j)
τ (F,G) is a sub-matrix of M(k,j)(F,G) obtained by the same manner as we

have obtained N̄(k,j)
τ (F,G) from N̄(k,j)(F,G) in Definition 4.7.

Proof. By the induction hypothesis, for τ ′ = jk−1, . . . , 0, we have

|N̄
(k−1,jk−1)
τ ′ (F,G)| = (R̄k−2)

bk−1rk−1 |N
(jk−1)
τ ′ (P

(k−1)
1 ,P(k−1)2)|.

Let N̄ ′(k,j)(F,G) be a matrix defined as

N̄ ′(k,j)(F,G) =

(
N̄

(k,j)
U

N̄
′(k,j)
L

)
,

54 recursive polynomial remainder sequence and its subresultants

M(k,j)(F,G)

=



Wk−1 0

∗ N
(jk−1)
U

. . .
Wk−1 0

∗ N
(jk−1)
U

Wk−1 0

∗ N
(jk−1)
U

. . .
Wk−1 0

∗ N
(jk−1)
U

∗ N
(jk−1)
L ∗ N

′(jk−1)
L

. . .
. . .

∗ N
(jk−1)
L ∗ N

′(jk−1)
L



.

Figure 4.2: Illustration of M(k,j)(F,G). Note that the number of column blocks is equal to
bk,j = 2jk−1 − 2j− 1; see Lemma 4.5 for details.

where N̄
(k,j)
U and N̄

′(k,j)
L are defined as in Definition 4.6. Furthermore, let

N ′(jk−1)(P
(k−1)
1 ,P(k−1)2) be defined as N(jk−1)(P

(k−1)
1 ,P(k−1)2) with the (jk−2 +

1− τ)-th row multiplied by τ for τ = jk−1, . . . , 1, then by deleting the bottom row,
N

(jk−1)
U (P

(k−1)
1 ,P(k−1)2) be a sub-matrix of N(jk−1)(P

(k−1)
1 ,P(k−1)2) and

N ′(jk−1)(P
(k−1)
1 ,P(k−1)2) by taking the top jk−2 − jk−1 rows, and

N
(jk−1)
L (P

(k−1)
1 ,P(k−1)2) and N

′(jk−1)
L (P

(k−1)
1 ,P(k−1)2) be sub-matrices of

N(jk−1)(P
(k−1)
1 ,P(k−1)2) and N ′(jk−1)(P(k−1)1 ,P(k−1)2), respectively, by eliminating

the top jk−2 − jk−1 rows.

Then, by certain eliminations and exchanges on columns, we can transform N̄(k−1,jk−1)(F,G)
and N̄ ′(k−1,jk−1)(F,G) to

D(k−1,jk−1)(F,G) =

(
Wk−1 0

∗ N(jk−1)(P
(k−1)
1 ,P(k−1)2)

)

=

Wk−1 0

∗ NU
(jk−1)(P

(k−1)
1 ,P(k−1)2)

∗ NL
(jk−1)(P

(k−1)
1 ,P(k−1)2)

 ,

D ′
(k−1,jk−1)(F,G) =

(
Wk−1 0

∗ N ′(jk−1)(P
(k−1)
1 ,P(k−1)2)

)

=

Wk−1 0

∗ NU
(jk−1)(P

(k−1)
1 ,P(k−1)2)

∗ NL
′(jk−1)(P

(k−1)
1 ,P(k−1)2)

 ,

(4.14)

4.2 subresultants for recursive prs 55

M̄(k,j)(F,G)

=



Wk−1 0

∗ N̄
(jk−1)
U

0

. . .
Wk−1 0

∗ N̄
(jk−1)
U

0

Wk−1 0

∗ N̄
(jk−1)
U

0

. . .
Wk−1 0

∗ N̄
(jk−1)
U

0

∗ p
(k)
1 ∗ p

(k)
2

. . .
. . .

∗ p
(k)
1 ∗ p

(k)
2



.

Figure 4.3: Illustration of M̄(k,j)(F,G); see Lemma 4.6 for details.

respectively, satisfying

|Wk−1| = 1,

|D
(k−1,jk−1)
τ ′ (F,G)| = (R̄k−2)

bk−1rk−1|N
(jk−1)
τ ′ (P

(k−1)
1 ,P(k−1)2)|,

|D ′
(k−1,jk−1)
τ ′ (F,G)| = (R̄k−2)

bk−1rk−1|N
′(jk−1)
τ ′ (P

(k−1)
1 ,P(k−1)2)|,

whereD(k−1,jk−1)
τ ′ (F,G) andD ′(k−1,jk−1)

τ ′ (F,G) are sub-matrices ofD(k−1,jk−1)(F,G)
and D ′(k−1,jk−1)(F,G), respectively, obtained by the same manner as we have ob-
tained N̄(k−1,jk−1)

τ ′ (F,G) from N̄(k−1,jk−1)(F,G) (see Definition 4.7).
Therefore, by the above transformations on the columns in each column blocks in

N̄(k,j)(F,G) as shown in Fig. 4.1, we obtain M(k,j)(F,G) as shown in Fig. 4.2, where
NU

(jk−1)(P
(k−1)
1 ,P(k−1)2), NL(jk−1)(P

(k−1)
1 ,P(k−1)2) and N ′L

(jk−1)(P
(k−1)
1 ,P(k−1)2)

are abbreviated to NU(jk−1), NL(jk−1) and N ′L
(jk−1), respectively, satisfying (4.13)

because M(k,j)(F,G) has bk,j = 2jk−1 − 2j − 1 column blocks that have
D(k−1,jk−1)(F,G) or D ′(k−1,jk−1)(F,G). This proves the lemma.

Lemma 4.6. For k, j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, M(k,j)(F,G) can be transformed
by certain eliminations and permutations on its columns into M̄(k,j)(F,G) as shown in
Fig. 4.3, satisfying

|M
(k,j)
τ (F,G)| = (Bk−1)

bk,j |M̄
(k,j)
τ (F,G)|, (4.15)

where M̄(k,j)
τ is a sub-matrix of M̄(k,j) obtained by the same manner as we have obtained

N̄
(k−1,jk−1)
τ ′ from N̄(k−1,jk−1) in Definition 4.7.

Proof. ForN ′(jk−1)(P(k−1)1 ,P(k−1)2) (defined as in the proof of Lemma 4.5) and τ ′′ =

jk−1 − 1, . . . , 0, let N ′
(jk−1)
τ ′′ (P

(k−1)
1 ,P(k−1)2) be a sub-matrix of

56 recursive polynomial remainder sequence and its subresultants

N ′(jk−1)(P
(k−1)
1 ,P(k−1)2) obtained by taking the top 2(n(k−1)

1 − jk−1 − 1) rows and

the (2n
(k−1)
1 − 2− jk−1 − τ

′′)-th row. Then, by the Fundamental Theorem of subre-
sultants (Theorem 4.1), we have

|N
(jk−1)
jk−1

(P
(k−1)
1 ,P(k−1)2)|xjk−1 + · · ·+ |N

(jk−1)
0 (P

(k−1)
1 ,P(k−1)2)|x0

=Sjk−1(P
(k−1)
1 ,P(k−1)2) = Bk−1P

(k−1)
lk−1

= Bk−1P
(k)
1 ,

|N ′
(jk−1)−1
jk−1

(P
(k−1)
1 ,P(k−1)2)|xjk−1−1 + · · ·+ |N ′

(jk−1)
0 (P

(k−1)
1 ,P(k−1)2)|x0

=
d

dx
Sjk−1(P

(k−1)
1 ,P(k−1)2) = Bk−1

d

dx
P
(k−1)
lk−1

= Bk−1P
(k)
2 ,

thus, for τ ′ = jk−1, . . . , 0 and τ ′′ = jk−1 − 1, . . . , 0, we have

|N
(jk−1)
τ ′ (P

(k−1)
1 ,P(k−1)2)| = Bk−1a

(k)
1,τ ′ , |N ′

(jk−1)
τ ′′ (P

(k−1)
1 ,P(k−1)2)| = Bk−1a

(k)
2,τ ′′ ,

where a(k)i,j represents the coefficient of degree j of P(k)i (see Remark 4.1). Therefore,
by certain eliminations and exchanges on columns, we can transform
N(jk−1)(P

(k−1)
1 ,P(k−1)2) and N ′(jk−1)(P(k−1)1 ,P(k−1)2) into(

N̄
(jk−1)
U 0

∗ p
(k)
1

)
and

(
N̄

(jk−1)
U 0

∗ p
(k)
2

)
,

respectively, satisfying |N̄
(jk−1)
U | = 1 (see Remark 4.1 for the notation of “coeffi-

cient vectors”). By these transformations, we can transform D(k−1,jk−1)(F,G) and
D ′(k−1,jk−1)(F,G) in (4.14) to

D̄(k−1,jk−1)(F,G) =

 Wk−1 0

N̄
(jk−1)
U

∗ p
(k)
1

 ,

D̄ ′
(k−1,jk−1)(F,G) =

 Wk−1 0

N̄
(jk−1)
U

∗ p
(k)
2

 ,

respectively, satisfying

|N̄
(jk−1)
U | = 1,

|D̄
(k−1,jk−1)
τ ′ (F,G)| = Bk−1|D

(k−1,jk−1)
τ ′ (F,G)|,

|D̄
′(k−1,jk−1)
τ ′ (F,G)| = Bk−1|D

′(k−1,jk−1)
τ ′ (F,G)|,

where D(k−1,jk−1)
τ ′ , D ′(k−1,jk−1)

τ ′ , D̄(k−1,jk−1)
τ ′ and D̄ ′(k−1,jk−1)

τ ′ are sub-matrices of
D(k−1,jk−1), D ′(k−1,jk−1), D̄(k−1,jk−1) and D̄ ′(k−1,jk−1), respectively, obtained by
the same manner as we have obtained N̄

(k−1,jk−1)
τ ′ from N̄(k−1,jk−1). Therefore,

by the above eliminations on the columns in each column blocks, we can trans-
form M(k,j)(F,G) to M̄(k,j)(F,G) as shown in Fig. 4.3 satisfying (4.15) because
M(k,j)(F,G) has bk,j = 2jk−1 − 2j − 1 column blocks that have D(k−1,jk−1)(F,G)
or D ′(k−1,jk−1)(F,G). This proves the lemma.

4.2 subresultants for recursive prs 57

M̂(k,j)(F,G)

=



Wk−1 0

∗ N̄
(jk−1)
U

. . .
Wk−1 0

∗ N̄
(jk−1)
U

Wk−1 0

∗ N̄
(jk−1)
U

. . .
Wk−1 0

∗ N̄
(jk−1)
U

∗ ∗ p
(k)
1 p

(k)
2

. . .
. . .

. . .
. . .

∗ ∗ p
(k)
1 p

(k)
2



.

Figure 4.4: Illustration of M̂(k,j)(F,G). Note that the lower-right block which consists of p(k)1
and p(k)2 is equal to N(j)(P

(k)
1 ,P(k)2) and |Wk−1| = |N̄

(jk−1)
U | = 1; see Lemma 4.4

for details.

Proof of Lemma 4.4 (continued). By exchanges on column blocks, we can transform
M̄(k,j)(F,G) to M̂(k,j)(F,G) as shown in Fig. 4.4, with

|M̄
(k,j)
τ (F,G)| = rk,j |M̂

(k,j)
τ (F,G)|, (4.16)

where M̂(k,j)
τ is a sub-matrix of M̂(k,j) obtained by the same manner as we have ob-

tained N̄(k,j)
τ from N̄(k,j), because the (uk,j−(l− 1)uk−1)-th column in M̄(k,j)(F,G)

was moved to the (uk,j − (l− 1))-th column in M̂(k,j)(F,G) for l = 1, . . . ,bk,j. (Note
that M̂(k,j)(F,G) is a block lower triangular matrix.) Then, we have

|M̂
(k,j)
τ (F,G)| = |N

(j)
τ (P

(k)
1 ,P(k)2)|, (4.17)

because we have |Wk−1| = |N̄
(jk−1)
U | = 1 and the lower-right block of p(k)1 s and

p
(k)
2 s in M̂(k,j)(F,G) is equal to N(j)(P

(k)
1 ,P(k)2).

Finally, from (4.13), (4.15), (4.16) and (4.17), we have

|N̄
(k,j)
τ (F,G)| = ((R̄k−2)

bk−1rk−1)
bk,j(Bk−1)

bk,jrk,j|N
(j)
τ (P

(k)
1 ,P(k)2)|

= (R̄k−1)
bk,jrk,j|N

(j)
τ (P

(k)
1 ,P(k)2)|,

which proves the lemma.

58 recursive polynomial remainder sequence and its subresultants

Theorem 4.7. With the same conditions as in Lemma 4.3, and for k = 1, . . . , t and i =
3, 4, . . . , lk, we have

S̄k,j(F,G) = 0 for 0 6 j < n(k)
lk

, (4.18)

S̄
k,n(k)

i

(F,G) = P(k)i (c
(k)
i)d

(k)
i−1−1(Rk−1)

bk,n(k)
i r

k,n(k)
i

×
i∏
l=3

{(
β
(k)
l

α
(k)
l

)n(k)
l−1−n

(k)
i

(c
(k)
l−1)

(d
(k)
l−2+d

(k)
l−1)(−1)(n

(k)
l−2−n

(k)
i)(n

(k)
l−1−n

(k)
i)

}
, (4.19)

S̄k,j(F,G) = 0 for n(k)
i < j < n

(k)
i−1 − 1, (4.20)

S̄
k,n(k)

i−1−1
(F,G) = P(k)i (c

(k)
i−1)

1−d
(k)
i−1(Rk−1)

bk,n(k)
i−1−1r

k,n(k)
i−1−1

×
i∏
l=3

{(
β
(k)
l

α
(k)
l

)n(k)
l−1−n

(k)
i−1+1

(c
(k)
l−1)

(d
(k)
l−2+d

(k)
l−1)

× (−1)(n
(k)
l−2−n

(k)
i−1+1)(n

(k)
l−1−n

(k)
i−1+1)

}
. (4.21)

Proof. By substituting Sj(P
(k)
1 ,P(k)2) in (4.12) by (4.2)–(4.5), we obtain (4.18)–(4.21),

respectively.

We show an example of the proof of Lemma 4.3 for the recursive subresultant
matrix in Example 4.2.

Example 4.3. (Continued from Example 4.2.) Since we have N̄(1,5)(F,G) = N(5)(F,G),
we can regard N̄(1,5)(F,G) and N̄ ′

(1,5)
(F,G) as D(1,5)(F,G) and D ′(1,5)(F,G) in

(4.14), respectively. Then, by eliminations and exchanges of columns as shown

in Lemma 4.6, we can transform N̄(1,5)(F,G) =

(
N̄

(1,5)
U

N̄
(1,5)
L

)
and N̄

′(1,5)(F,G) =(
N̄

(1,5)
U

N̄
′(1,5)
L

)
in (4.6) to D̄(1,5)(F,G) and D̄

′(1,5)(F,G), respectively, as

D̄(1,5)(F,G) =

(
N̄

(5)
U 0

∗ p
(2)
1

)
, D̄

′(1,5)(F,G) =

(
N̄

(5)
U 0

∗ p
(2)
2

)
,

with |N̄
(5)
U | = 1 and B1 = (a

(1)
2,7)

2(a
(1)
3,6)

2. Therefore, by the above transformations
of columns in each column blocks in N̄(2,1)(F,G), we have

M̄(2,3)(F,G) =



N̄
(5)
U 0

N̄
(5)
U 0

N̄
(5)
U 0

0 · · · 0
∗ p

(2)
1 ∗ p

(2)
2

∗ p
(2)
2

0 · · · 0


,

4.3 nested subresultants 59

satisfying |N̄
(2,3)
τ (F,G)| = (B1)

3 |M̄
(2,3)
τ (F,G)| for τ = 3, . . . , 0. Furthermore, by

exchanges of columns, we can transform M̄(2,3)(F,G) to M̂(2,3)(F,G) as

M̂(2,3)(F,G) =



N̄
(5)
U

N̄
(5)
U

N̄
(5)
U

0 · · · 0 0

∗ ∗ ∗ p
(2)
1 p

(2)
2

p
(2)
2

0 · · · 0 0



=


N̄

(5)
U

N̄
(5)
U

N̄
(5)
U

∗ N(3)(P
(2)
1 ,P(2)2)

 ,

satisfying |M̄
(2,3)
τ (F,G)| = r2,3 |M̂

(2,3)
τ (F,G)| = r2,3 |N

(3)
τ (P

(2)
1 ,P(2)2)|. Therefore, we

have

|N̄
(2,3)
τ (F,G)| = (B1)

3r2,3 |N
(3)
τ (P

(2)
1 ,P(2)2)| = (R1)

3r2,3 |N
(3)
τ (P

(2)
1 ,P(2)2)|,

for τ = 3, . . . , 0, and we have

S̄2,3(F,G) = (R1)
3r2,3 · S3(P

(2)
1 ,P(2)2) = {(a

(1)
2,7)

2(a
(1)
3,6)

2}3(a
(2)
2,4)

2 P
(2)
3 .

4.3 nested subresultants
As we have seen in the above, the recursive subresultant can represent the coef-
ficients of the elements in the recursive PRS. However, the size of the recursive
subresultant matrix increases rapidly as the recursion of the recursive PRS deepens,
thus making use of the recursive subresultant matrix become inefficient.

To overcome this problem, we should introduce other representations for the
subresultant that are equivalent to the recursive subresultant, and more suitable
for efficient computations. The nested subresultant matrix is a subresultant matrix
whose elements are again determinants of certain subresultant matrices (or even the
nested subresultant matrices), and the nested subresultant is a subresultant whose
coefficients are determinants of the nested subresultant matrices.

Note that the nested subresultant is mainly used to show the relationship between
the recursive subresultant and the reduced nested subresultant that will be defined
in the next section.

We show an example of a nested subresultant matrix.

Example 4.4. Let F(x) and G(x) be defined as

F(x) = a6x
6 + a5x

5 + · · ·+ a0, a6 6= 0,

G(x) = b5x
5 + b4x

4 + · · ·+ b0, b5 6= 0.

Let prs(F,G) = (P
(1)
1 = F, P(1)2 = G, P(1)3 = gcd(F,G)) with deg(P(1)3) = 4, and let

us consider recursive PRS for F and G.

60 recursive polynomial remainder sequence and its subresultants

Let P(2)1 = P
(1)
3 , P(2)2 = d

dxP
(1)
3 , and calculate a subresultant of degree 1, which

corresponds to P(2)4 . By the Fundamental Theorem of subresultants (Theorem 4.1),
we have

S4(F,G) = A4x4 +A3x3 +A2x2 +A1x+A0,
d

dx
S4(F,G) = 4A4x3 + 3A3x2 + 2A2x+A1,

where
Aj = |N

(4)
j (F,G)| (4.22)

for j = 0, . . . , 4 with N(j)
k (F,G) as in Definition 4.4.

Then, we can express the subresultant matrix N(2)(S4(F,G), ddxS4(F,G)) as

N(2)

(
S4(F,G),

d

dx
S4(F,G)

)
=


A4 4A4
A3 3A3 4A4
A2 2A2 3A3
A1 A1 2A2
A0 A1

 , (4.23)

and the subresultant S2(S4(F,G), ddxS4(F,G)) as

S2

(
S4(F,G),

d

dx
S4(F,G)

)

=

∣∣∣∣∣∣
A4 4A4
A3 3A3 4A4
A2 2A2 3A3

∣∣∣∣∣∣ x2 +
∣∣∣∣∣∣
A4 4A4
A3 3A3 4A4
A1 A1 2A2

∣∣∣∣∣∣ x+
∣∣∣∣∣∣
A4 4A4
A3 3A3 4A4
A0 A1

∣∣∣∣∣∣ , (4.24)

respectively, with Aj as in (4.22). We see that the elements in (4.23) are minors
of subresultant matrix, hence the coefficients in (4.24) is “nested” expression of
determinants.

Definition 4.8 (Nested Subresultant Matrix). Let F and G be defined as in (4.1),
and let (P

(1)
1 , . . . ,P(1)l1 , . . . ,P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F and G

as in Definition 4.2. Then, for each pair of numbers (k, j) with k = 1, . . . , t and
j = jk−1 − 2, . . . , 0, define matrix Ñ(k,j)(F,G) recursively as follows.

1. For k = 1, let Ñ(1,j)(F,G) = N(j)(F,G).

2. For k > 1, let

Ñ(k,j)(F,G) = N(j)

(
S̃k−1,jk−1(F,G),

d

dx
S̃k−1,jk−1(F,G)

)
,

where S̃k−1,jk−1(F,G) is defined by Definition 4.9. Then, Ñ(k,j)(F,G) is called
the (k, j)-th nested subresultant matrix of F and G.

Definition 4.9 (Nested Subresultant). Let F and G be defined as in (4.1), and let
(P

(1)
1 , . . . , P(1)l1 , . . . ,P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F and G as in Def-

inition 4.2. For j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, let Ñ(k,j)
τ = Ñ

(k,j)
τ (F,G) be a

4.3 nested subresultants 61

sub-matrix of the (k, j)-th nested subresultant matrix Ñ(k,j)(F,G) obtained by tak-
ing the top n(k)

1 +n
(k)
2 − 2j− 1 rows and the (n

(k)
1 +n

(k)
2 − j− τ)-th row (note that

Ñ
(k,j)
τ is a square matrix). Then, the polynomial

S̃k,j(F,G) = |Ñ
(k,j)
j |xj + · · ·+ |Ñ

(k,j)
0 |x0

is called the (k, j)-th nested subresultant of F and G.

We show the relationship between the nested subresultant and the recursive sub-
resultant.

Lemma 4.8. Let F and G be defined as in (4.1), and let (P(1)1 , . . . ,P(1)l1 , . . . , P(t)1 , . . . ,P(t)lt)

be complete recursive PRS for F and G as in Definition 4.2. For k = 1, . . . , t− 1, define Bk,
and for k = 2, . . . , t and j = jk−1 − 2, . . . , 0, define bk,j as in Lemma 4.3. Furthermore,
for k = 2, . . . , t− 1, define R̃k = (R̃k−1)

bkBk with R̃0 = R̃1 = 1. Then, we have

S̃k,j(F,G) = (R̃k−1)
bk,j · Sj(P

(k)
1 ,P(k)2). (4.25)

Proof. By induction on k. For k = 1, it is obvious by the definition of the nested
subresultant. Assume that (4.25) is valid for 1, . . . ,k− 1. Then, by the Fundamental
Theorem of subresultants (Theorem 4.1), we have

S̃k−1,jk−1(F,G) = (R̃k−2)
bk−1Bk−1P

(k−1)
lk−1

= (R̃k−1)P
(k)
1 ,

d

dx

(
S̃k−1,jk−1(F,G)

)
= (R̃k−1)

d

dx

(
P
(k)
1

)
= (R̃k−1)P

(k)
2 .

Then, we have

Ñ(k,j)(F,G) = (R̃k−1) N
(j)(P

(k)
1 ,P(k)2),

|Ñ
(k,j)
τ (F,G)| = (R̃k−1)

bk,j |N
(j)
τ (P

(k)
1 ,P(k)2)|,

for τ = j, . . . , 0. Therefore, we have (4.25), which proves the lemma.

Theorem 4.9. Let F andG be defined as in (4.1), and let (P(1)1 , . . . ,P(1)l1 , . . . , P(t)1 , . . . ,P(t)lt)

be complete recursive PRS for F and G as in Definition 4.2. For k = 2, . . . , t and j =
jk−1 − 2, . . . , 0, define uk,j, bk,j, rk,j as in Lemma 4.3 and R ′k = (R ′k−1)

bkrk with
R ′0 = R ′1 = 1. Then, we have

S̄k,j(F,G) = (R ′k−1)
bk,jrk,j · S̃k,j(F,G).

Proof. By induction on k. For k = 1, it is obvious by the definitions of the recursive
and the nested subresultants. We first show that R̄k = R̃k · R ′k for k = 0, . . . , t− 1. It
is obvious for k = 0 and 1. Let us assume R̄k−1 = R̃k−1 · R ′k−1. Then, we have

R̄k = (R̄k−1)
bkrkBk = (R̃k−1 · R ′k−1)

bkrkBk

= (R̃k−1)
bkBk · (R ′k−1)

bkrk = R̃k · R ′k.

Now, by Lemma 4.3, we have S̄k,j(F,G) = (R̄k−1)
bk,jrk,j · Sj(P

(k)
1 ,P(k)2), then, by

Lemma 4.8, we have

S̄k,j(F,G) = (R̃k−1 · R ′k−1)
bk,jrk,j · Sj(P

(k)
1 ,P(k)2)

= (R ′k−1)
bk,jrk,j · (R̃k−1)bk,j · Sj(P

(k)
1 ,P(k)2)

= (R ′k−1)
bk,jrk,j · S̃k,j(F,G),

which proves the theorem.

62 recursive polynomial remainder sequence and its subresultants

Remark 4.2. Since rk,j = ±1, we see that R ′k = ±1, thus the nested subresultant is
equal to the recursive subresultant up to a sign.

4.4 reduced nested subresultants
The nested subresultant matrix has “nested” representation of subresultant matrices,
which makes practical use difficult. However, in some cases, we can reduce the
representation of the nested subresultant matrix to a “flat” representation, or a
representation without nested determinants by the Gaussian elimination; this is the
reduced nested subresultant (matrix). As we will see, the size of the reduced nested
subresultant matrix becomes much smaller than that of the recursive subresultant
matrix, with reasonable computing time.

First, we illustrate the idea of reduction of the nested subresultant matrix with an
example.

Example 4.5. Let F(x) and G(x) be defined as

F(x) = a6x
6 + a5x

5 + · · ·+ a0, a6 6= 0,

G(x) = b5x
5 + b4x

4 + · · ·+ b0, b5 6= 0,

with vectors of coefficients (a6,a5) and (b5,b4) are linearly independent as vectors
over K. Assume that prs(F,G) = (P

(1)
1 = F, P(1)2 = G, P(1)3 = gcd(F,G)) with

deg(P(1)3) = 4. Consider the (2, 2)-th nested subresultant; its matrix Ñ(2,2)(F,G) is
defined as

Ñ(2,2)(F,G) =


A4 4A4
A3 3A3 4A4
A2 2A2 3A3
A1 A1 2A2
A0 A1

 , Aj =

∣∣∣∣∣∣
a6 b5
a5 b4 b5
aj bj−1 bj

∣∣∣∣∣∣ ,
for j 6 4 with bj = 0 for j < 0. Now, let us calculate the leading coefficient of
S̃2,2(F,G) as

|Ñ
(2,2)
2 | =

∣∣∣∣∣∣
A4 4A4
A3 3A3 4A4
A2 2A2 3A3

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a6 b5
a5 b4 b5
a4 b3 b4

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
4a4 4b3 4b4

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
0a4 0b3 0b4

∣∣∣∣∣∣∣∣∣∣∣∣
a6 b5
a5 b4 b5
a3 b2 b3

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
3a3 3b2 3b3

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
4a4 4b3 4b4

∣∣∣∣∣∣∣∣∣∣∣∣
a6 b5
a5 b4 b5
a2 b1 b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
2a2 2b1 2b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5
a5 b4 b5
3a3 3b2 3b3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=|H| =

∣∣(Hp,q
)∣∣ .

(4.26)

Then, we make the (3, 1) and the (3, 2) elements in Hp,q (p,q = 1, 2, 3) equal to
0 by adding the first and the second rows, multiplied by certain numbers, to the

4.4 reduced nested subresultants 63

third row. For example, in H1,1, calculate x11 and y11 by solving a system of linear
equations {

a6x11 + a5y11 = −a4

b5x11 + b4y11 = −b3
, (4.27)

(Note that (4.27) has a solution in K by the assumption), followed by adding the
first row multiplied by x11 and the second row multiplied by y11, respectively, to
the third row. Then, we have

H1,1 =

∣∣∣∣∣∣
a6 b5
a5 b4 b5
0 0 h11

∣∣∣∣∣∣ =
∣∣∣∣a6 b5
a5 b4

∣∣∣∣h11, with h11 = b4 + y11b5. (4.28)

Doing similar calculations for the other Hp,q, we calculate hp,q (p,q = 1, 2, 3) for
Hp,q similarly as in (4.28). Finally, by putting such new representations of Hp,q into
(4.26), we have

|Ñ
(2,2)
2 | =

∣∣∣∣a6 b5
a5 b4

∣∣∣∣3
∣∣∣∣∣∣
h11 h12 h13
h21 h22 h23
h31 h32 h33

∣∣∣∣∣∣ =
∣∣∣∣a6 b5
a5 b4

∣∣∣∣3 |N̂(2,2)
2 |, (4.29)

note that we have derived N̂(2,2)
2 as a reduced form of Ñ(2,2)

2 .
As (4.29) shows, we derive a “reduced” form of the nested subresultant matrix by

the Gaussian elimination for solving certain systems of linear equations. We define
the reduced nested subresultant (matrix), as follows.

Definition 4.10 (Reduced Nested Subresultant Matrix). Let F and G be defined as
in (4.1), and let (P

(1)
1 , . . . ,P(1)l1 , . . . , P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F

and G as in Definition 4.2. Then, for each pair of numbers (k, j) with k = 1, . . . , t
and j = jk−1 − 2, . . . , 0, define matrix N̂(k,j)(F,G) recursively as follows.

1. For k = 1, let N̂(1,j)(F,G) = N(j)(F,G).

2. For k > 1, let N̂(k−1,jk−1)
U (F,G) be a sub-matrix of N̂(k−1,jk−1)(F,G) by delet-

ing the bottom jk−1 + 1 rows, and N̂
(k−1,jk−1)
L (F,G) be a sub-matrix of

N̂(k−1,jk−1)(F,G) by taking the bottom jk−1 + 1 rows, respectively. For τ =

jk−1, . . . , 0 let N̂(k−1,jk−1)
τ (F,G) be a sub-matrix of N̂(k−1,jk−1)(F,G) by putting

N̂
(k−1,jk−1)
U (F,G) on the top and the (jk−1− τ+ 1)-th row of N̂(k−1,jk−1)

L (F,G)

in the bottom row. Let Â(k−1)
τ = |N̂

(k−1,jk−1)
τ | and construct a matrix H(k,j)

as

H(k,j) =
(
H

(k,j)
p,q

)
= N(j)

(
Â(k−1)(x),

d

dx
Â(k−1)(x)

)
, (4.30)

where
Â(k−1)(x) = Â

(k−1)
jk−1

xjk−1 + · · ·+ Â(k−1)
0 x0.

Since N̂(k−1,jk−1)
τ consists of N̂(k−1,jk−1)

U and a row vector in the bottom, we

express N̂(k−1,jk−1)
U =

(
U(k)|v(k)

)
, where U(k) is a square matrix and v(k) is

a column vector, and the row vector in the bottom by
(
b
(k,j)
p,q

∣∣∣ g(k,j)
p,q

)
, where

b
(k,j)
p,q is a row vector and g(k,j)

p,q is a number, respectively, such that

H
(k,j)
p,q =

∣∣∣∣∣ U(k) v(k)

b
(k,j)
p,q g

(k,j)
p,q

∣∣∣∣∣ , (4.31)

64 recursive polynomial remainder sequence and its subresultants

with b(k,j)
p,q = 0 and g(k,j)

p,q = 0 for H(k,j)
p,q = 0. Furthermore, we assume that

U(k) is not singular. Then, for p = 1, . . . ,n(k)
1 +n

(k)
2 − j and q = 2, . . . ,n(k)

1 +

n
(k)
2 − j, calculate a row vector x(k,j)

p,q by solving a system of linear equations

x
(k,j)
p,q U

(k) = −b
(k,j)
p,q , (4.32)

and define h(k,j)
p,q as

h
(k,j)
p,q = x

(k,j)
p,q v

(k,j).

Note that we have

H
(k,j)
p,q =

∣∣∣∣∣ U(k) v(k)

0 h
(k,j)
p,q

∣∣∣∣∣ = ∣∣∣U(k)
∣∣∣h(k,j)
p,q .

Finally, define N̂(k,j)(F,G) as

N̂(k,j)(F,G) =


h
(k,j)
1,1 h

(k,j)
1,2 · · · h

(k,j)
1,Jk,j

h
(k,j)
2,1 h

(k,j)
2,2 · · · h

(k,j)
2,Jk,j

...
...

...
h
(k,j)
Ik,j,1

h
(k,j)
Ik,j,2

· · · h
(k,j)
Ik,j,Jk,j

 , (4.33)

where

Ik,j = n
(k)
1 +n

(k)
2 − j = (2jk−1 − 2j− 1) + j,

Jk,j = n
(k)
1 +n

(k)
2 − 2j = 2jk−1 − 2j− 1.

(4.34)

Then, N̂(k,j)(F,G) is called the (k, j)-th reduced nested subresultant matrix of F
and G.

Remark 4.3. Definition 4.10 shows that, For k = 1, . . . , t and j < jk−1 − 1, the
numbers of rows and columns of the (k, j)-th reduced nested subresultant matrix
N̂(k,j)(F,G) are Ik,j and Jk,j in (4.34), respectively, which are much smaller than
those of the recursive subresultant matrix of the corresponding degree (see Propo-
sition 4.2).

Definition 4.11 (Reduced Nested Subresultant). Let F and G be defined as in (4.1),
and let (P(1)1 , . . . ,P(1)l1 , . . . ,P(t)1 , . . . ,P(t)lt) be complete recursive PRS for F andG as in

Definition 4.2. For j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, let N̂(k,j)
τ = N̂

(k,j)
τ (F,G) be a

sub-matrix of the (k, j)-th reduced nested subresultant matrix N̂(k,j)(F,G) obtained
by the top n(k)

1 + n
(k)
2 − 2j− 1 rows and the (n

(k)
1 + n

(k)
2 − j− τ)-th row (note that

N̂
(k,j)
τ (F,G) is a square matrix). Then, the polynomial

Ŝk,j(F,G) = |N̂
(k,j)
j (F,G)|xj + · · ·+ |N̂

(k,j)
0 (F,G)|x0

is called the (k, j)-th reduced nested subresultant of F and G.

Now, we derive the relationship between the nested and the reduced nested sub-
resultants.

4.4 reduced nested subresultants 65

Theorem 4.10. Let F andG be defined as in (4.1), and let (P(1)1 , . . . ,P(1)l1 , . . . , P(t)1 , . . . ,P(t)lt)

be complete recursive PRS for F and G as in Definition 4.2. For k = 2, . . . , t, j =

jk−1 − 2, . . . , 0 with Jk,j as in (4.33), define B̂k,j and R̂k as

B̂k,j = |U(k)|Jk,j

with B̂k = B̂k,jk and B̂1 = B̂2 = 1, and

R̂k = (R̂k−1 · B̂k−1)Jk,jk

with R̂1 = R̂2 = 1, respectively. Then, we have

S̃k,j(F,G) = (R̂k−1 · B̂k−1)Jk,j B̂k,j · Ŝk,j(F,G).

To prove Theorem 4.10, we prove the following lemma.

Lemma 4.11. For k = 1, . . . , t, j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, we have

|Ñ
(k,j)
τ (F,G)| = (R̂k−1 · B̂k−1)Jk,j B̂k,j|N̂

(k,j)
τ (F,G)|. (4.35)

Proof. By induction on k. For k = 1, it is obvious from the definitions of the nested
and the reduced nested subresultants. Assume that (4.35) is valid for 1, . . . ,k− 1.
Then, for τ = jk−1, . . . , 0, we have

|Ñ
(k−1,jk−1)
τ (F,G)| =(R̂k−2 · B̂k−2)

Jk−1,jk−1 B̂k−1,jk−1 |N̂
(k−1,jk−1)
τ (F,G)|

=(R̂k−1 · B̂k−1)|N̂
(k−1,jk−1)
τ (F,G)|.

Let

Ã
(k−1)
τ = |Ñ

(k−1,jk−1)
τ (F,G)|, Â

(k−1)
τ = |N̂

(k−1,jk−1)
τ (F,G)|,

and H(k,j)
τ =

(
H

(k,j)
τp,q

)
be a sub-matrix of H(k,j) in (4.30) by taking the top Jk,j rows

and the (Ik,j − τ)-th row, where Ik,j and Jk,j are defined as in (4.34), respectively.
Then, we have

|H
(k,j)
τ |

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Â
(k−1)
jk−1

jk−1Â
(k−1)
jk−1

...
. . .

...
. . .

... Â
(k−1)
jk−1

... jk−1Â
(k−1)
jk−1

...
...

...
...

Â
(k−1)
2j−jk−1+3

· · · Â
(k−1)
j+1 (2j− jk−1 + 3)Â

(k−1)
2j−jk−1+3

· · · (j+ 2)Â
(k−1)
j+2

Â
(k−1)
j−jk−1+τ+2

· · · Â
(k−1)
τ (j− jk−1 + τ+ 2)Â

(k−1)
j−jk−1+τ+2

· · · (τ+ 1)Â
(k−1)
τ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

66 recursive polynomial remainder sequence and its subresultants

where Â(k−1)
l = 0 for l < 0. On the other hand, by the definition of the (k, j)-th

nested subresultant, we have

|Ñ
(k,j)
τ (F,G)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã
(k−1)
jk−1

jk−1Ã
(k−1)
jk−1

...
. . .

...
. . .

... Ã
(k−1)
jk−1

... jk−1Ã
(k−1)
jk−1

...
...

...
...

Ã
(k−1)
2j−jk−1+3

· · · Ã
(k−1)
j+1 (2j− jk−1 + 3)Ã

(k−1)
2j−jk−1+3

· · · (j+ 2)Ã
(k−1)
j+2

Ã
(k−1)
j−jk−1+τ+2

· · · Ã
(k−1)
τ (j− jk−1 + τ+ 2)Ã

(k−1)
j−jk−1+τ+2

· · · (τ+ 1)Ã
(k−1)
τ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=(R̂k−1 · B̂k−1)Jk,j |H

(k,j)
τ |, (4.36)

where Ã(k−1)
l = 0 for l < 0. (Note that Ñ(k,j)

τ and H(k,j)
τ are square matrices of

order Jk,j.) By Definition 4.10, we can express H(k,j)
τp,q as

H
(k,j)
τp,q =

∣∣∣∣∣ U(k) v(k)

b
′(k,j)
p,q g

′(k,j)
p,q

∣∣∣∣∣ ,
with b ′(k,j)

p,q = 0 and g ′(k,j)
p,q = 0 for H(k,j)

τp,q = 0. Note that, for q = 1, . . . , Jk,j, we have

b
′(k,j)
p,q = b

(k,j)
p,q and g ′(k,j)

p,q = g
(k,j)
p,q for p = 1, . . . , Jk,j − 1, and b ′(k,j)

Jk,j,q
= b

(k,j)
Ik,j−τ,q

and g ′(k,j)
Jk,j,q

= g
(k,j)
Ik,j−τ,q, where b(k,j)

p,q and g(k,j)
p,q are defined as in (4.31), respectively.

Thus, by (4.32)–(4.33), we have

|H
(k,j)
τ | = |U(k)|Jk,j |N̂

(k,j)
τ (F,G)| = B̂k,j|N̂

(k,j)
τ (F,G)|, (4.37)

and, by putting (4.37) into (4.36), we prove the lemma.

Remark 4.4. We can calculate the (k, j)-th reduced nested subresultant matrix as a
sub-matrix of the (k, 0)-th reduced nested subresultant matrix. In (4.30), we see
that the matrix H(k,j) is a sub-matrix of N

(
Â(k−1)(x), ddx Â

(k−1)(x)
)

, and, by the

construction of the reduced nested resultant matrix (4.33), we see that N̂(k,j)(F,G)
is a sub-matrix of N̂(k,0)(F,G) by taking the left n(k)

2 − j columns from those corre-

sponding to the coefficients of Â(k−1)(x) and the left n(k)
1 − j columns from those

corresponding to the coefficients of d
dx Â

(k−1)(x), then taking the top n(k)
1 +n

(k)
2 − j

rows.
Remark 4.5. We can estimate arithmetic computing time for the (k, j)-th reduced
nested resultant matrix N̂(k,j) in (4.33), as follows. The computing time for the
elements hp,q is dominated by the time for the Gaussian elimination of U(k). Since
the order of U(k) (k = 2, . . . , t) is equal to 2(jk−2 − jk−1 − 1) (see Remark 4.3), it
is bounded by O((jk−2 − jk−1)3) (see Golub and van Loan [20]). As Remark 4.4
shows, we can calculate N̂(k,j)(F,G) for j < jk−1 − 2 by N̂(k,0)(F,G). Therefore,
total computing time for N̂(k,j) for entire recursive PRS (k = 1, . . . , t) is bounded by

t∑
k=2

O
(
(jk−2 − jk−1)

3
)
= O

(
t∑
k=2

(jk−2 − jk−1)
3

)
= O

(
(j0 − jt−1)

3
)
= O(m3),

4.5 summary 67

note that j0 = m (see Remark 4.1). See also for remarks below.

4.5 summary
In this chapter, we have introduced concepts of recursive PRS and recursive subresul-
tants, and investigated constructions of their subresultant matrices to compute the
recursive subresultants. Among three different constructions of recursive subresul-
tant matrices, we have shown that the reduced nested subresultant matrix reduces
the size of the matrix drastically to at most the order of the degree of initial poly-
nomials in each PRSs, compared with the naive recursive subresultant matrix. We
have also shown that we can calculate the reduced nested subresultant matrix by the
Gaussian elimination of order at most the sum of the degree of initial polynomials
in each PRSs.

From a point of view of computational complexity, the algorithm for the reduced
nested subresultant matrix has a cubic complexity bound in terms of the degree of
the input polynomials (see Remark 4.5). However, subresultant algorithms which
have a quadratic complexity bound in terms of the degree of the input polynomi-
als have been proposed ([14], [31]); those algorithms exploit the structure of the
Sylvester matrix to increase their efficiency with controlling the size of coefficients
well. Although, in this chapter, we have primarily focused our attention into reduc-
ing the structure of the nested subresultant matrix to “flat” representation, develop-
ment of more efficient algorithms such as exploiting the structure of the Sylvester
matrix would be the next problem. Furthermore, the reduced nested subresultant
may involve fractions which may be unusual for subresultants, thus more detailed
analysis of computational efficiency including comparison with (ordinary and re-
cursive) subresultants would also be necessary.

We expect that the reduced nested subresultants can be used for approximate al-
gebraic computation such as the square-free decomposition of approximate univari-
ate polynomials with approximate GCD computations based on Singular Value De-
composition (SVD) of subresultant matrices ([11], [16]), which motivates the present
work. For the approximate square-free decomposition of the given polynomial P(x),
we have to calculate the approximate GCDs of P(x), . . . , P(n)(x) (by P(n)(x) we de-
note the n-th derivative of P(x)) or those of the recursive PRS for P(x) and P ′(x);
we have to find the representation of the subresultant matrices for P(x), . . . ,P(n)(x),
or that for the recursive PRS for P(x) and P ′(x), respectively. As for the former
approach, several algorithms based on different representations of subresultant ma-
trices have been proposed ([13], [41]); our reduced nested subresultant matrix can
be used as for the latter approach. To make use of the reduced nested subresultant
matrix, we need to reveal the relationship between the structure of the subresul-
tant matrices and their singular values; this is among the next problems in the
future. Approximate GCD computation using (plain) subresultant matrices will be
discussed in the next chapter.

5 G P G C D : A N I T E R AT I V E M E T H O D
F O R C A LC U L AT I N G A P P R O X I M AT E
G C D O F U N I VA R I AT E P O LY N O M I A L S 1

For algebraic computations on polynomials and matrices, approximate algebraic al-
gorithms are attracting broad range of attentions recently. These algorithms take
inputs with some “noise” such as polynomials with floating-point number coeffi-
cients with rounding errors, or more practical errors such as measurement errors,
then, with minimal changes on the inputs, seek a meaningful answer that reflect
desired property of the input, such as a common factor of a given degree. By this
characteristic, approximate algebraic algorithms are expected to be applicable to
more wide range of problems, especially those to which exact algebraic algorithms
were not applicable.

As an approximate algebraic algorithm, we consider calculating the approximate
greatest common divisor (GCD) of univariate polynomials with the real or the com-
plex coefficients, such that, for a given pair of polynomials and a degree d, finding
a pair of polynomials which has a GCD of degree d and whose coefficients are
perturbations from those in the original inputs, with making the perturbations as
small as possible, along with the GCD. This problem has been extensively stud-
ied with various approaches including the Euclidean method on the polynomial
remainder sequence (PRS) ([4], [45], [48]), the singular value decomposition (SVD)
of the Sylvester matrix ([11], [16]), the QR factorization of the Sylvester matrix or
its displacements ([10], [65], [67]), Padé approximation [37], optimization strategies
([7], [25], [26], [27], [66]). Furthermore, stable methods for ill-conditioned problems
have been discussed ([10], [36], [42]).

Among methods in the above, we focus our attention on optimization strategy
in this paper, especially iterative method for approaching an optimal solution, af-
ter transferring the approximate GCD problem into a constrained minimization
problem. Already proposed algorithms utilize iterative methods including the
Levenberg-Marquardt method [7], the Gauss-Newton method [66] and the struc-
tured total least norm (STLN) method ([25], [26]). Among them, STLN-based meth-
ods have shown good performance calculating approximate GCD with sufficiently
small perturbations efficiently.

Here, we utilize the so-called modified Newton method [54], which is a gener-
alization of the gradient-projection method [40], for solving the constrained mini-
mization problem. This method has interesting features such that it combines the
projection and the restoration steps in the original gradient-projection method, which

1 The contents of this chapter is based on the following articles: A. Terui. An iterative method for
calculating approximate GCD of univariate polynomials. In Proceedings of the 2009 International Sym-
posium on Symbolic and Algebraic Computation, pages 351–358, ACM Press, New York, NY, USA, 2009

[55]. c© 2009 ACM, doi: 10.1145/1576702.1576750; A. Terui. GPGCD, an iterative method for calcu-
lating approximate GCD of univariate polynomials, with the complex coefficients. In Proceedings of the
Joint Conference of ASCM 2009 and MACIS 2009, volume 22 of COE Lecture Note, pages 212–221. Fac-
ulty of Mathematics, Kyushu University, December 2009 [56]. The proceedings is published online at
https://hdl.handle.net/2324/16844.

69

https://dx.doi.org/10.1145/1576702.1576750
https://hdl.handle.net/2324/16844

70 gpgcd: an iterative method for calculating approximate gcd

reduces the number of solving a linear system. We demonstrate that our algorithm
calculates approximate GCD with perturbations as small as those calculated by the
STLN-based methods, while our method show significantly better performance over
them in its speed compared with their implementation, by approximately up to 30
times. Furthermore, we also show that our algorithm can properly handle some
ill-conditioned problems such as those with GCD containing small or large leading
coefficient.

The rest part of this chapter is organized as follows. In Section 5.1, we trans-
form the approximate GCD problem into a constrained minimization problem. In
Section 5.2, we review the framework of the gradient-projection method and a mod-
ified Newton method. In Section 5.3, we show an algorithm for calculating the ap-
proximate GCD, with discussing issues in the application of the gradient-projection
method or a modified Newton method. In Section 5.4, we demonstrate performance
of our algorithm with experiments.

5.1 formulation of the approximate gcd problem
Let F(x) and G(x) be univariate polynomials with the real or the complex coeffi-
cients, given as

F(x) = fmx
m + fm−1x

m−1 + · · ·+ f0,

G(x) = gnx
n + gn−1x

n−1 + · · ·+ g0,

with m > n > 0. We permit F and G to be relatively prime in general. For a given
integer d satisfying n > d > 0, let us calculate a deformation of F(x) and G(x) in
the form of

F̃(x) = F(x) +∆F(x) = H(x) · F̄(x),
G̃(x) = G(x) +∆G(x) = H(x) · Ḡ(x),

(5.1)

where ∆F(x), ∆G(x) are polynomials whose degrees do not exceed those of F(x)
and G(x), respectively, H(x) is a polynomial of degree d, and F̄(x) and Ḡ(x) are
pairwise relatively prime. If we find F̃, G̃, F̄, Ḡ and H satisfying (5.1), then we call
H an approximate GCD of F and G. For a given degree d, we tackle the problem
of finding an approximate GCD H with minimizing the norm of the deformations
‖∆F(x)‖22 + ‖∆G(x)‖

2
2.

In the case F̃(x) and G̃(x) have a GCD of degree d, then the theory of subresultants
tells us that the (d− 1)-th subresultant of F̃ and G̃ becomes zero, namely we have

Sd−1(F̃, G̃) = 0,

where Sk(F̃, G̃) denotes the subresultant of F̃ and G̃ of degree k. Then, the (d− 1)-th
subresultant matrix

Nd−1(F̃, G̃) =



f̃m g̃n
...

. . .
...

. . .
f̃0 f̃m g̃0 g̃n

. . .
...

. . .
...

f̃0 g̃0

 ,

︸ ︷︷ ︸
n−d+1

︸ ︷︷ ︸
m−d+1

(5.2)

5.1 formulation of the approximate gcd problem 71

where the k-th subresultant matrix Nk(F̃, G̃) is a submatrix of the Sylvester matrix
N(F̃, G̃) by taking the left n − k columns of coefficients of F̃ and the left m − k

columns of coefficients of G̃, has a kernel of dimension equal to 1. Thus, there exist
polynomials A(x),B(x) ∈ R[x] or C[x] satisfying

AF̃+BG̃ = 0, (5.3)

with deg(A) < n− d and deg(B) < m− d and A(x) and B(x) are relatively prime.
Therefore, for the given F(x), G(x) and d, our problem is to find ∆F(x), ∆G(x), A(x)
and B(x) satisfying Eq. (5.3) with making ‖∆F‖22 + ‖∆G‖

2
2 as small as possible.

5.1.1 The Real Coefficient Case

Assuming that we have F(x) and G(x) as polynomials with the real coefficients and
find an approximate GCD with the real coefficients as well, we represent F̃(x), G̃(x),
A(x) and B(x) with the real coefficients as

F̃(x) = f̃mx
m + · · ·+ f̃0x0, G̃(x) = g̃nx

n + · · ·+ g̃0x0,

A(x) = an−dx
n−d + · · ·+ a0x0, B(x) = bm−dx

m−d + · · ·+ b0x0,
(5.4)

respectively, thus ‖∆F‖22 + ‖∆G‖
2
2 and Eq. (5.3) become as

‖∆F‖22 + ‖∆G‖
2
2

= (f̃m − fm)2 + · · ·+ (f̃0 − f0)
2 + (g̃n − gn)

2 + · · ·+ (g̃0 − g0)
2, (5.5)

Nd−1(F̃, G̃) · v = 0, (5.6)

respectively, with Nd−1(F̃, G̃) as in (5.2) and

v = t(an−d, · · · ,a0,bm−d, · · · ,b0). (5.7)

Then, Eq. (5.6) is regarded as a system of m + n − d + 1 equations in f̃m, . . . , f̃0,
g̃n, . . . , g̃0, an−d, . . . ,a0, bm−d, . . . ,b0, as

q1 = f̃man−d + g̃nbm−d = 0, · · · ,qm+n−d+1 = f̃0a0 + g̃0b0 = 0, (5.8)

by putting qj as the j-th row. Furthermore, for solving the problem below stably,
we add another constraint enforcing the coefficients of A(x) and B(x) such that
‖A(x)‖22 + ‖B(x)‖

2
2 = 1; thus we add

q0 = a2n−d + · · ·+ a20 + b
2
m−d + · · ·+ b20 − 1 = 0 (5.9)

into Eq. (5.8).
Now, we substitute the variables

(f̃m, . . . , f̃0, g̃n, . . . , g̃0,an−d, . . . ,a0,bm−d, . . . ,b0) (5.10)

as x = (x1, . . . , x2(m+n−d+2)), thus Eq. (5.5) and (5.8) with (5.9) become

f(x) = (x1 − fm)2 + · · ·+ (xm+1 − f0)
2

+ (xm+2 − gn)
2 + · · ·+ (xm+n+2 − g0)

2, (5.11)

72 gpgcd: an iterative method for calculating approximate gcd

q(x) = t(q0(x),q1(x), . . . ,qm+n−d+1(x)) = 0, (5.12)

respectively. Therefore, the problem of finding an approximate GCD can be formu-
lated as a constrained minimization problem of finding a minimizer of the objective
function f(x) in (5.11), subject to q(x) = 0 in Eq. (5.12).

5.1.2 The Complex Coefficient Case

Now let us assume that we have F(x) and G(x) with the complex coefficients in
general, represented as

F(x) = (fm,1 + fm,2i)xm + · · ·+ (f0,1 + f0,2i),

G(x) = (gn,1 + gn,2i)xn ++ · · ·+ (g0,1 + g0,2i),

where fj,1, gj,1, fj,2, gj,2 are real numbers; fj,1, and gj,1 represent the real parts;
fj,2, gj,2 represent the imaginary parts, with i as the imaginary unit, and find an
approximate GCD with the complex coefficients. Then, we represent F̃(x), G̃(x),
A(x) and B(x) with the complex coefficients as

F̃(x) = (f̃m,1 + f̃m,2i)xm + · · ·+ (f̃0,1 + f̃0,2i)x0,

G̃(x) = (g̃n,1 + g̃n,2i)xn + · · ·+ (g̃0x
0 + g̃0,2i)x0,

A(x) = (an−d,1 + an−d,2i)xn−d + · · ·+ (a0,1 + a0,2i)x0,

B(x) = (bm−d,1 + bm−d,2i)xm−d + · · ·+ (b0,1 + b0,2i)x0,

(5.13)

respectively, where f̃j,1, f̃j,2, g̃j,1, g̃j,2, aj,1, aj,2, bj,1, bj,2 are real numbers.
For the objective function, ‖∆F‖22 + ‖∆G‖

2
2 becomes as

m∑
j=0

[(f̃j,1 − fj,1)
2 + (f̃j,2 − fj,2)

2] +

n∑
j=0

[(g̃j,1 − gj,1)
2 + (g̃j,2 − gj,2)

2]. (5.14)

For the constraint, Eq. (5.3) becomes as

f̃m,1 + f̃m,2i g̃n,1 + g̃n,2i
...

. . .
...

. . .
f̃0,1 + f̃0,2i f̃m,1 + f̃m,2i g̃0,1 + g̃0,2i g̃n,1 + g̃n,2i

. . .
...

. . .
...

f̃0,1 + f̃0,2i g̃0,1 + g̃0,2i



×



an−d,1 + an−d,2i
...

a0,1 + a0,2i
bm−d,1 + bm−d,2i

...
b0,1 + b0,2i


= 0. (5.15)

By expressing the subresultant matrix and the column vector in (5.15) separated
into the real and the complex parts, respectively, we express (5.15) as

(N1 +N2i)(v1 + v2i) = 0, (5.16)

5.1 formulation of the approximate gcd problem 73

with

N1 =



f̃m,1 g̃n,1
...

. . .
...

. . .
f̃0,1 f̃m,1 g̃0,1 g̃n,1

. . .
...

. . .
...

f̃0,1 g̃0,1

 , N2 =



f̃m,2 g̃n,2
...

. . .
...

. . .
f̃0,2 f̃m,2 g̃0,2 g̃n,2

. . .
...

. . .
...

f̃0,2 g̃0,2

 ,

v1 = t(an−d,1, . . . ,a0,1,bm−d,1, . . . ,b0,1),
v2 = t(an−d,2, . . . ,a0,2,bm−d,2, . . . ,b0,2).

(5.17)

We can expand the left-hand-side of Eq. (5.16) as

(N1 +N2i)(v1 + v2i) = (N1v1 −N2v2) + i(N1v2 +N2v1),

thus, Eq. (5.16) is equivalent to a system of equations

N1v1 −N2v2 = 0, N1v2 +N2v1 = 0,

which is expressed as (
N1 −N2
N2 N1

)(
v1
v2

)
= 0. (5.18)

Furthermore, as well as in the real coefficients case, we add another constraint for
the coefficient of A(x) and B(x) as

‖A(x)‖22 + ‖B(x)‖
2
2 = (a2n−d,1 + · · ·+ a

2
0,1) + (b2m−d,1 + · · ·+ b

2
0,1)

+ (a2n−d,2 + · · ·+ a
2
0,2) + (b2m−d,2 + · · ·+ b

2
0,2) − 1 = 0, (5.19)

which can be expressed together with (5.18) astv1 tv2 −1

N1 −N2 0

N2 N1 0

v1v2
1

 = 0, (5.20)

where Eq. (5.19) has been put on the top of Eq. (5.18). Note that, in Eq. (5.20), we
have total of 2(m + n − d + 1) + 1 equations in the coefficients of polynomials in
(5.13) as a constraint, with the j-th row of which is expressed as qj = 0, as similarly
as in the real case (5.8) with (5.9).

Now, as in the real case, we substitute the variables

(f̃m,1, . . . , f̃0,1, g̃n,1, . . . , g̃0,1, f̃m,2, . . . , f̃0,2, g̃n,2, . . . , g̃0,2,

an−d,1, . . . ,a0,1,bm−d,1, . . . ,b0,1,an−d,2, . . . ,a0,2,bm−d,2, . . . ,b0,2) (5.21)

as x = (x1, . . . , x4(m+n−d+2)), thus Eq. (5.14) and (5.20) become as

f(x) = (x1 − fm,1)
2 + · · ·+ (xm+1 − f0,1)

2

+ (xm+2 − gn,1)
2 + · · ·+ (xm+n+2 − g0,1)

2

+ (xm+n+3 − fm,2)
2 + · · ·+ (x2m+n+3 − f0,2)

2

+ (x2m+n+4 − gn,2)
2 + · · ·+ (x2(m+n+2) − g0,2)

2, (5.22)

q(x) = t(q1(x), . . . ,q2(m+n−d+1)+1(x)) = 0, (5.23)

respectively. Therefore, the problem of finding an approximate GCD can be formu-
lated as a constrained minimization problem of finding a minimizer of the objective
function f(x) in Eq. (5.22), subject to q(x) = 0 in Eq. (5.23).

74 gpgcd: an iterative method for calculating approximate gcd

5.2 the gradient-projection method and a modi-
fied newton method

In this section, we consider the problem of minimizing an objective function f(x) :
Rn → R, subject to the constraints q(x) = 0 for q(x) = t(q1(x),q2(x), . . . ,qm(x)),
with m 6 n, where qj(x) is a function of Rn → R, and f(x) and qj(x) are twice
continuously differentiable (here, we refer presentations of the problem to Tanabe
[54] and the references therein).

If we assume that the Jacobian matrix

Jq(x) =

(
∂qi
∂xj

)
is of full rank, or

rank(Jq(x)) = m, (5.24)

on the feasible region Vq defined by

Vq = {x ∈ Rn | q(x) = 0},

then the feasible region Vq is an (n−m)-dimensional differential manifold in Rn

and f is differentiable function on the manifold Vq. Thus, our problem is to find
a point in Vq, which will be a candidate of a local minimizer, satisfying the well-
known “first-order necessary conditions” (for the proof, refer to the literature on
optimization [35]).

Theorem 5.1 (First-order necessary conditions). Suppose that x∗ ∈ Vq is a local solu-
tion of the problem in the above, that the functions f(x) and q(x) are continuously differen-
tiable at x∗, and that we have (5.24) at x∗. Then, there exist a Lagrange multiplier vector
λ∗ ∈ Rm satisfying

∇f(x∗) − t(Jq(x∗))λ∗ = 0, q(x∗) = 0.

5.2.1 The Gradient-Projection Method

Let xk ∈ Rn be a feasible point, or a point satisfying xk ∈ Vq. Rosen’s gradient
projection method [40] is based on projecting the steepest descent direction onto the
tangent space of the manifold Vq at xk, which is denoted to Txk and represented
by the kernel of the Jacobian matrix Jq(xk) as

Txk = ker(Jq(xk)) = {z ∈ Rn | Jq(xk)z = 0 ∈ Rm}. (5.25)

We have steepest descent direction of the objective function f at xk as

−∇f(xk) = −t
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
. (5.26)

Then, the search direction dk is defined by the projection of the steepest descent
direction of f in (5.26) onto Txk in (5.25) as

dk = −P(xk)∇f(xk). (5.27)

5.2 the gradient-projection method and a modified newton method 75

Here, P(xk) is the orthogonal projection operator on Txk defined as

P(xk) = I− (Jq(xk))
+(Jq(xk)),

where I is the identity matrix and (Jq(xk))
+ is the Moore-Penrose inverse of (Jq(xk)).

Under the assumption (5.24), we have

(Jq(xk))
+ = t(Jq(xk)) · (t(Jq(xk)))−1.

With an appropriate step width αk (in this paper, we omit how to calculate αk in
detail) satisfying 0 < αk 6 1, let

yk = xk +αk ·dk.

Since Vq is nonlinear in general, yk may not in Vq: in such a case, we take a
restoration move to bring yk back to Vq, as follows. Let x ∈ Rn be an arbitrary
point. Then, at yk, the constraint q(x) can be linearly approximated as

q(yk + x) ' q(yk) + Jq(yk)x.

Assuming yk + x ∈ Vq, we have q(yk + x) = 0 thus the approximation of x can be
calculated as

x = −(Jq(yk))
+q(yk). (5.28)

If yk is sufficiently close to Vq, then we can restore yk back onto Vq by applying
(5.28) iteratively for several times. Note that the restoration move can also be used
in the case the initial point of the minimization process is away from the feasible
region Vq.

Summarizing the above, we obtain an algorithm for the gradient projection as
follows.

Algorithm 1 (The gradient-projection method [40]).

step 1 [Restoration] If the given point x0 does not satisfy x0 ∈ Vq, first move x0
onto Vq by the iteration of Eq. (5.28), then let x0 be the restored point on Vq.
Let k = 0.

step 2 [Projection] For xk, calculate dk = −P(xk)∇f(xk) by (5.27). If ‖dk‖ is
sufficiently small for an appropriate norm, go to Step 4. Otherwise, calculate
the step width αk by an appropriate line search method (we omit its detail
here) then let yk,0 = xk +αkdk.

step 3 [Restoration] If q(yk,0) 6= 0, move yk,0 back onto Vq iteratively by (5.28).
Let yk,l+1 = −(Jq(yk,l))

+q(yk,l) for l = 0, 1, 2, When yk,l satisfies
q(yk,l), then let xk+1 = yk,l and go to Step 2.

step 4 [Checking the first-order necessary conditions] If xk satisfies Theorem 5.1,
then return xk.

5.2.2 The Modified Newton Method

The modified Newton method by Tanabe [54] is a generalization of the Newton’s
method, which derives several different methods, by modifying the Hessian of the
Lagrange function. A generalization of the gradient-projection method combines

76 gpgcd: an iterative method for calculating approximate gcd

the restoration step and the projection step in Algorithm 1. For xk ∈ Vq, we calculate
the search direction dk, along with the associated Lagrange multipliers λk+1, by
solving a linear system(

I −t(Jq(xk))

Jq(xk) O

)(
dk
λk+1

)
= −

(
∇f(xk)
q(xk)

)
, (5.29)

then put xk+1 = xk +αk ·dk with an appropriate step width αk. Solving Eq. (5.29)
under assumption (5.24), we have

dk = −P(xk)∇f(xk) − (Jq(xk))
+q(xk),

λk+1 = t((Jq(xk))
+)∇f(xk) − (Jq(xk) · t(Jq(xk)))−1q(xk).

(5.30)

Note that, in dk in (5.30), the term −P(xk)∇f(xk) comes from the projection (5.27),
while another term −(Jq(xk))

+q(xk) comes from the restoration (5.28). If we have
xk ∈ Vq, the iteration formula (5.29) is equivalent to the projection (5.27). After an
iteration, the new estimate xk+1 may not satisfy xk+1 ∈ Vq: in such a case, in the
next iteration, the point will be pulled back onto Vq by the −(Jq(xk))

+q(xk) term.
Therefore, by solving Eq. (5.29) iteratively, we expect that the approximations xk
moves toward descending direction of f along with tracing the feasible set Vq.

Summarizing the above, we obtain an algorithm as follows.

Algorithm 2 (The modified Newton method [54]).

step 1 [Finding a search direction] For xk, calculate dk by solving the linear
system (5.29). If ‖dk‖ is sufficiently small, go to Step 2. Otherwise, calculate
the step width αk by an appropriate line search method (we omit its detail
here), let xk+1 = xk +αkdk, then go to Step 1.

step 2 [Checking the first-order necessary conditions] If xk satisfies Theorem 5.1,
then return xk.

5.3 the algorithm for approximate gcd
In applying the gradient-projection method or a modified Newton method to the
approximate GCD problem, we discuss issues in the construction of the algorithm
in detail, such as

• Representation of the Jacobian matrix Jq(x) (Section 5.3.1),

• Certifying that Jq(x) has full rank (Section 5.3.2),

• Setting the initial values (Section 5.3.3),

• Regarding the minimization problem as the minimum distance problem (Sec-
tion 5.3.4),

• Calculating the actual GCD and correcting the coefficients of F̃ and G̃ (Sec-
tion 5.3.5),

as follows. After presenting the algorithm, we give a modification for preserving
monicity for the real coefficient case, and end this section with examples.

5.3 the algorithm for approximate gcd 77

5.3.1 Representation of the Jacobian Matrix

For a polynomial P(x) ∈ R[x] or C[x] represented as

P(x) = pnx
n + · · ·+ p0x0,

let Ck(P) be a complex (n+ k,k+ 1) matrix defined as

Ck(P) =



pn
...

. . .
p0 pn

. . .
...
p0

 .

︸ ︷︷ ︸
k+1

We show the Jacobian matrix in the real and the complex coefficient cases, both
of which can easily be constructed in every iteration in Algorithms 1 and 2.

The Real Coefficient Case

For co-factors A(x) and B(x) as in (5.4), consider matrices Cm(A) and Cn(B). Then,
by the definition of the constraint (5.12), we have the Jacobian matrix Jq(x) (with
the original notation of variables for x as in (5.10)) as

Jq(x) =

(
0 0 2 · tv

Cm(A) Cn(B) Nd−1(F̃, G̃)

)
, (5.31)

with Nd−1(F̃, G̃) as in (5.2) and v as in (5.7), respectively.

The Complex Coefficient Case

For co-factors A(x) and B(x) as in (5.13), consider matrices Cm(A) and Cn(B) and
express them as the sum of matrices consisting of the real and the imaginary parts
of whose elements, respectively, as

Cm(A) =



an−d,1
...

. . .
a0,1 an−d,1

. . .
...

a0,1

+ i



an−d,2
...

. . .
a0,2 an−d,2

. . .
...

a0,2


= Cm(A)1 + iCm(A)2,

Cn(B) =



bm−d,1
...

. . .
b0,1 bm−d,1

. . .
...

b0,1

+ i



bm−d,2
...

. . .
b0,2 bm−d,2

. . .
...

b0,2


= Cn(B)1 + iCn(B)2,

78 gpgcd: an iterative method for calculating approximate gcd

respectively, and define

A1 = [Cm(A)1 Cn(B)1] =



an−d,1 bm−d,1
...

. . .
...

. . .
a0,1 an−d,1 b0,1 bm−d,1

. . .
...

. . .
...

a0,1 b0,1

 ,

A2 = [Cm(A)2 Cn(B)2] =



an−d,2 bm−d,2
...

. . .
...

. . .
a0,2 an−d,2 b0,2 bm−d,2

. . .
...

. . .
...

a0,2 b0,2

 .

(5.32)

(Note that A1 and A2 are matrices of the real numbers of m+ n− d+ 1 rows and
m+ n+ 2 columns.) Then, by the definition of the constraint (5.23), we have the
Jacobian matrix Jq(x) (with the original notation of variables for x as in (5.21)) as

Jq(x) =

 0 0 2 · tv1 2 · tv2
A1 −A2 N1 −N2
A2 A1 N2 N1

 , (5.33)

with A1 and A2 as in (5.32) and N1, N2, v1 and v2 as in (5.17), respectively.

5.3.2 Certifying the Rank of the Jacobian Matrix

In executing Algorithm 1 or 2, we need to keep that Jq(x) has full rank: other-
wise, we cannot correctly calculate (Jq(x))

+ (in Algorithm 1) or the matrix in (5.29)
becomes singular (in Algorithm 2) thus we are unable to decide proper search di-
rection. For this requirement, we have the following observations.

Proposition 5.2. Let x∗ ∈ Vq be any feasible point satisfying Eq. (5.12). Then, if the
corresponding polynomials do not have a GCD whose degree exceeds d, then Jq(x∗) has full
rank.

Proof. We prove the proposition in the real and the complex coefficient cases sepa-
rately.

The Real Coefficient Case

Let x∗ = (f̃m, . . . , f̃0, g̃n, . . . , g̃0, an−d . . . ,a0, bm−d, . . . ,b0) with its polynomial
representation expressed as in (5.4) (note that this assumption permits the polyno-
mials F̃(x) and G̃(x) to be relatively prime in general). To verify our claim, we show
that we have rank(Jq(x∗)) = m+n− d+ 2 as in (5.24), with Jq(x∗) as in (5.31). Let
us express Jq(x∗) =

(
JL | JR

)
, where JL and JR are column blocks expressed as

JL =

(
0 0

Cm(A) Cn(B)

)
, JR =

(
2 · v

Nd−1(F̃, G̃)

)
,

respectively. Then, we have the following lemma.

5.3 the algorithm for approximate gcd 79

Lemma 5.3. We have rank(JL) = m+n− d+ 1.

Proof. Let us express JL =
(
JLL | JLR

)
, where

JLL =

(
0

Cm(A)

)
, JLR =

(
0

Cn(B)

)
,

and let J̄L be a submatrix of JL by taking the rightm−d columns of JLL and the right
n− d columns of JLR. Then, we see that the bottom m+n− 2d rows of J̄L is equal
to N(A,B), the Sylvester matrix of A(x) and B(x). By the assumption, polynomials
A(x) and B(x) are relatively prime, and there exist no nonzero elements in J̄L except
for the bottom m+n− 2d rows, we have rank(J̄L) = m+n− 2d.

By the above structure of J̄L and the lower triangular structure of JLL and JLR, we
can take the left d+ 1 columns of JLL or JLR satisfying linear independence along
with the m+n− 2d columns in J̄L. Therefore, these m+n−d+ 1 columns generate
a (m+n− d+ 1)-dimensional subspace in Rm+n−d+2 satisfying

{t(x1, . . . , xm+n−d+2) ∈ Rm+n−d+2 | x1 = 0}, (5.34)

and we see that none of the columns in JL have nonzero element in the top coordi-
nate. This proves the lemma.

Proof of Proposition 5.2 (in the real coefficient case, continued). By the assumptions, we
have at least one column vector in JR with nonzero coordinate on the top row. By
adding such a column vector to the basis of the subspace (5.34) that are generated
as in Lemma 5.3, we have a basis of Rm+n−d+2. This implies rank(Jq(x)) = m+

n− d+ 2, which proves the proposition in the real coefficient case.

The Complex Coefficient Case

Let x∗ = (f̃m,1, . . . , f̃0,1, g̃n,1, . . . , g̃0,1, f̃m,2, . . . , f̃0,2, g̃n,2, . . . , g̃0,2,an−d,1, . . . ,a0,1,
bm−d,1, . . . ,b0,1,an−d,2, . . . ,a0,2,bm−d,2, . . . ,b0,2) with its polynomial representa-
tion expressed as in (5.13) (note that this assumption permits the polynomials F̃(x)
and G̃(x) to be relatively prime in general). To verify our claim, we show that we
have rank(Jq(x∗)) = 2(m+ n− d+ 1) + 1 as in (5.24), with Jq(x∗) as in (5.33). Let
us express Jq(x∗) =

(
JL | JR

)
, where JL and JR are column blocks expressed as

JL =

 0 0

A1 −A2
A2 A1

 , JR =

2 · tv1 2 · tv2
N1 −N2
N2 N1

 ,

respectively. Then, we have the following lemma.

Lemma 5.4. We have rank(JL) = 2(m+n− d+ 1).

Proof. For A1 = [Cm(A)1 Cn(B)1], let Cm(A)1 be the right m − d columns of
Cm(A)1 and Cn(B)1 be the right n − d columns of Cn(B)1. Then, we see that
the bottom m+ n− 2d rows of the matrix C̄ = [Cm(A)1 Cn(B)1] is equal to the
matrix consisting of the real part of the elements of N(A,B), the Sylvester matrix of
A(x) and B(x). By the assumption, polynomials A(x) and B(x) are relatively prime,
and there exist no nonzero elements in C̄ except for the bottom m+ n− 2d rows,
thus we have rank(C̄) = m+n− 2d.

80 gpgcd: an iterative method for calculating approximate gcd

By the structure of C̄ and the lower triangular structure of Cm(A)1 and Cn(B)1,
we can take the left d+ 1 columns of Cm(A)1 or Cn(B)1 satisfying linear indepen-
dence along with C̄, which implies that there exist a nonsingular square matrix T
of order m+n+ 2 satisfying

A1T = R, (5.35)

where R is a lower triangular matrix, thus we have rank(A1) = rank(R) = m+ n−

d+ 1.
Furthermore, by using T and R in (5.35), we have 0 0

A1 −A2
A2 A1

(T 0

0 T

)
=

 0 0

R −A2T

A2T R

 , (5.36)

followed by a suitable transformation on columns on the matrix in the right-hand-
side of (5.36), we can make A2T to zero matrix, which implies that

rank(JL) = rank

 0 0

R −A2T

A2T R

 = 2 · rank(R) = 2(m+n− d+ 1).

This proves the lemma.

Proof of Proposition 5.2 (in the complex coefficient case, continued). By the assumptions,
we have at least one nonzero coordinate in the top row in JR, while we have no
nonzero coordinate in the top row in JL, thus we have rank(Jq(x)) = 2(m+n− d+

1) + 1, which proves the proposition in the complex coefficient case.

Proposition 5.2 says that, so long as the search direction in the minimization prob-
lem satisfies that corresponding polynomials have a GCD of degree not exceeding
d, then Jq(x) has full rank, thus we can safely calculate the next search direction for
approximate GCD.

5.3.3 Setting the Initial Values

At the beginning of iterations, we give the initial value x0 by using the singular
value decomposition (SVD) [12], as follows.

The Real Coefficient Case

In the case of the real coefficients, we calculate the SVD of the (d−1)-th subresultant
matrix Nd−1(F,G) : Rm+n−2d → Rm+n−d in (5.2). Let Nd−1(F,G) = UΣ tV be
the SVD of Nd−1(F,G), where

Nd−1(F,G) = UΣ tV , U = (u1, . . . ,um+n−2d),
Σ = diag(σ1, . . . ,σm+n−2d), V = (v1, . . . , vm+n−2d),

(5.37)

with uj ∈ Rm+n−d, vj ∈ Rm+n−2d, and Σ = diag(σ1, . . . , σm+n−2d) denotes
the diagonal matrix whose the j-th diagonal element is σj. Note that U and V

are orthogonal matrices. Then, by a property of the SVD [12, Theorem 3.3], the
smallest singular value σm+n−2d gives the minimum distance of the image of the
unit sphere Sm+n−2d−1, given as

Sm+n−2d−1 = {x ∈ Rm+n−2d | ‖x‖2 = 1},

5.3 the algorithm for approximate gcd 81

by Nd−1, represented as

Nd−1 · Sm+n−d−1 = {Nd−1x | x ∈ Rm+n−2d, ‖x‖2 = 1},

from the origin, along with σm+n−2dum+n−2d as its coordinates. By (5.37), we
have

Nd−1 · vm+n−2d = σm+n−2dum+n−2d,

thus vm+n−2d represents the coefficients of A(x) and B(x): let

vm+n−2d = t(ān−d, . . . , ā0, b̄n−d, . . . , b̄0),

Ā(x) = ān−dx
n−d + · · ·+ ā0x0,

B̄(x) = b̄m−dx
m−d + · · ·+ b̄0x0.

Then, Ā(x) and B̄(x) give the least norm of AF+ BG satisfying ‖A‖22 + ‖B‖
2
2 = 1 by

putting A(x) = Ā(x) and B(x) = B̄(x).
Therefore, we admit the coefficients of F, G, Ā and B̄ as the initial values of the

iterations as

x0 = (fm, . . . , f0,gn, . . . ,g0, ān−d, . . . , ā0, b̄m−d, . . . , b̄0). (5.38)

The Complex Coefficient Case

In the complex case, we calculate the SVD of N =

(
N1 −N2
N2 N1

)
in (5.18) as

N = UΣ tV , U = (u1, . . . ,u2(m+n−2d+2)),
Σ = diag(σ1, . . . ,σ2(m+n−2d+2)), V = (v1, . . . , v2(m+n−2d+2)),

(5.39)

where uj ∈ R2(m+n−d+1), vj ∈ R2(m+n−2d+2), and U and V are orthogonal
matrices. Then, as in the case of the real coefficients, the smallest singular value
σ2(m+n−2d+2) gives the minimum distance of the image of the unit sphere
S2(m+n−2d+2)−1, given as

S2(m+n−2d+2)−1 = {x ∈ R2(m+n−2d+2) | ‖x‖2 = 1},

by N, represented as

N · S2(m+n−2d+1)−1 = {Nx | x ∈ R2(m+n−2d+2), ‖x‖2 = 1},

from the origin, along with σ2(m+n−2d+2)u2(m+n−2d+2) as its coordinates. By
(5.39), we have

N · v2(m+n−2d+2) = σ2(m+n−2d+2)u2(m+n−2d+2),

thus v2(m+n−2d+2) represents the coefficients of A(x) and B(x): let

v2(m+n−2d+2) =
t(ān−d,1, . . . , ā0,1, b̄n−d,1, . . . , b̄0,1,

ān−d,2, . . . , ā0,2, b̄n−d,2, . . . , b̄0,2),

Ā(x) = (ān−d,1 + ān−d,2i)xn−d + · · ·+ (ā0,1 + ā0,2i)x0,

B̄(x) = (b̄m−d,1 + b̄m−d,2i)xm−d + · · ·+ (b̄0,1 + b̄0,2i)x0.

82 gpgcd: an iterative method for calculating approximate gcd

Then, Ā(x) and B̄(x) give the least norm of AF+ BG satisfying ‖A‖22 + ‖B‖
2
2 = 1 by

putting A(x) = Ā(x) and B(x) = B̄(x) in (5.13).
Therefore, we admit the coefficients of F, G, Ā and B̄ as the initial values of the

iterations as

x0 = (fm,1, . . . , f0,1,gn,1, . . . ,g0,1, fm,2, . . . , f0,2,gn,2, . . . ,g0,2,

ān−d,1, . . . , ā0,1, b̄n−d,1, . . . , b̄0,1, ān−d,2, . . . , ā0,2, b̄n−d,2, . . . , b̄0,2). (5.40)

5.3.4 Regarding the Minimization Problem as the Minimum Distance (Least Squares)
Problem

Since we have the object function f as in (5.11) or (5.22) in the case of the real or the
complex coefficients, respectively, we have ∇f(x) as

2 · t(x1 − fm, . . . , xm+1 − f0, xm+2 − gn, . . . , xm+n+2 − g0, 0, . . . , 0),

in the case of the real coefficients, or

2 · t(x1 − fm,1, . . . , xm+1 − f0,1, xm+2 − gn,1, . . . , xm+n+2 − g0,1,

xm+n+3 − fm,2, . . . , x2m+n+3 − f0,2,

x2m+n+4 − gn,2, . . . , x2(m+n+2) − g0,2, 0, . . . , 0),

in the case of the complex coefficients, respectively. However, we can regard our
problem as finding a point x ∈ Vq which has the minimum distance to the initial
point x0 with respect to the (x1, . . . , xm+n+2)-coordinates in the case of the real
coefficients or the (x1, . . . , x2(m+n+2))-coordinates in the case of the complex coef-
ficients, respectively, which correspond to the coefficients in F(x) and G(x). There-
fore, in the gradient projection method at x ∈ Vq, the projection of −∇f(x) in (5.27)
should be the projection of

t(x1 − fm, . . . , xm+1 − f0, xm+2 − gn, . . . , xm+n+2 − g0, 0, . . . , 0),

in the case of the real coefficients, or

t(x1 − fm,1, . . . , xm+1 − f0,1, xm+2 − gn,1, . . . , xm+n+2 − g0,1,

xm+n+3 − fm,2, . . . , x2m+n+3 − f0,2,

x2m+n+4 − gn,2, . . . , x2(m+n+2) − g0,2, 0, . . . , 0),

in the case of the complex coefficients, respectively, onto Tx. These changes are
equivalent to changing the objective function as f̄(x) = 1

2f(x) then solving the mini-
mization problem of f̄(x), subject to q(x) = 0.

5.3.5 Calculating the Actual GCD and Correcting the Deformed Polynomials

After successful end of the iterations in Algorithms 1 or 2, we obtain the coefficients
of F̃(x), G̃(x), A(x) and B(x) satisfying (5.3) with A(x) and B(x) are relatively prime.
Then, we need to compute the actual GCD H(x) of F̃(x) and G̃(x). Although H can
be calculated as the quotient of F̃ divided by B or G̃ divided by A, naive polynomial
division may cause numerical errors in the coefficient. Thus, we calculate the coef-
ficients of H by the so-called least squares division [66], followed by correcting the
coefficients in F̃ and G̃ by using the calculated H, as follows.

5.3 the algorithm for approximate gcd 83

Calculating Candidates for the GCD in the Real Coefficient Case

For polynomials F̃, G̃, A and B represented as in (5.4) and H represented as

H(x) = hdx
d + · · ·+ h0x0,

solve the equations HB = F̃ and HA = G̃ with respect to H as solving the least
squares problems of linear systems

Cd(A)
t(hd, . . . ,h0) = t(g̃n, . . . , g̃0), (5.41)

Cd(B)
t(hd, . . . ,h0) = t(f̃m, . . . , f̃0), (5.42)

respectively. Let H1(x),H2(x) ∈ R[x] be the candidates for the GCD whose coeffi-
cients are calculated as the least squares solutions of (5.41) and (5.42), respectively.

Calculating Candidates for the GCD in the Complex Coefficient Case

For polynomials F̃, G̃, A and B represented as in (5.13) and H represented as

H(x) = (hd,1 + hd,2i)xd + · · ·+ (h0,1 + h0,2i)x0,

solve the equations HB = F̃ and HA = G̃ with respect to H as solving the least
squares problems of linear systems

Cd(A)
t(hd,1 + hd,2i, . . . ,h0,1 + h0,2i) = t(g̃n,1 + g̃n,2i, . . . , g̃0,1 + g̃0,2i), (5.43)

Cd(B)
t(hd,1 + hd,2i, . . . ,h0,1 + h0,2i) = t(f̃m,1 + f̃m,2i, . . . , f̃0,1 + f̃0,2i), (5.44)

respectively. Then, we transfer the linear systems (5.43) and (5.44), as follows. For
(5.44), let us express the matrices and vectors as the sum of the real and the imagi-
nary part of which, respectively, as

Cd(B) = B1 + iB2,
t(hd,1 + hd,2i, . . . ,h0,1 + h0,2i) = h1 + ih2,
t(f̃m,1 + f̃m,2i, . . . , f̃0,1 + f̃0,2i) = f1 + if2.

Then, (5.42) is expressed as

(B1 + iB2)(h1 + ih2) = (f1 + if2). (5.45)

By equating the real and the imaginary parts in Eq. (5.45), respectively, we have

(B1h1 −B2h2) = f1, (B1h2 +B2h1) = f2,

or (
B1 −B2
B2 B1

)(
h1
h2

)
=

(
f1
f2

)
. (5.46)

Thus, we can calculate the coefficients of H(x) by solving the real least squares prob-
lem (5.46). We can solve (5.43) similarly. Let H1(x),H2(x) ∈ C[x] be the candidates
for the GCD whose coefficients are calculated as the least squares solutions of (5.43)
and (5.44), respectively.

84 gpgcd: an iterative method for calculating approximate gcd

Choosing the GCD and Calculating the Deformed Polynomials

Let H1(x),H2(x) ∈ C[x] be the candidates for the GCD calculated as in the above.
Then, for i = 1, 2, calculate the norms of the residues as

ri = ‖F̃−HiB‖22 + ‖G̃−HiA‖22,

respectively, and set the GCD H(x) be Hi(x) giving the minimum value of ri.
Finally, for the chosen H(x), correct the coefficients of F̃(x) and G̃(x) as

F̃(x) = H(x) ·B(x), G̃(x) = H(x) ·A(x),

respectively.

5.3.6 The Algorithm

Summarizing the above, the algorithm for calculating approximate GCD becomes
as follows.

Algorithm 3 (GPGCD: Approximate GCD by the Gradient-Projection Method).

• Inputs:

– F(x),G(x) ∈ R[x] or C[x] with deg(F) > deg(G) > 0,

– d ∈ N: the degree of approximate GCD with d 6 deg(G),

– ε > 0: a threshold for terminating iteration in the gradient-projection
method,

– u ∈ N: an upper bound for the number of iterations permitted in the
gradient-projection method.

• Outputs: F̃(x), G̃(x),H(x) ∈ R[x] or C[x] such that F̃ and G̃ are deformations of
F and G, respectively, whose GCD is equal to H with deg(H) = d.

step 1 [Setting the initial values] As the discussions in Section 5.3.3, set the initial
values x0 as in (5.38) in the case of the real coefficients, or (5.40) in the case of
the complex coefficients, respectively.

step 2 [Iteration] As the discussions in Section 5.3.4, solve the minimization prob-
lem of f̄(x) = 1

2f(x), subject to q(x) = 0, with f(x) and q(x) as in (5.11) and
(5.12) in the case of the real coefficients, or in (5.22) and (5.23) in the case of
the complex coefficients, respectively. Apply Algorithm 1 or 2 for the min-
imization: repeat iterations until the search direction dk (as in (5.27) in the
gradient-projection method or in (5.30) in a modified Newton method, respec-
tively) satisfies ‖dk‖2 < ε, or the number of iteration reaches its upper bound
u.

step 3 [Construction of F̃, G̃ and H] As the discussions in Section 5.3.5, construct
the GCD H(x) and correct the coefficients of F̃(x) and G̃(x). Then, return F̃(x),
G̃(x) and H(x). If Step 2 did not end with the number of iterations less than
u, report it to the user.

5.3 the algorithm for approximate gcd 85

5.3.7 Preserving Monicity

While Algorithm 3 permits changing the leading coefficients for calculating F̃(x) and
G̃(x), we can also give an algorithm restricting inputs F(x) and G(x) and outputs
F̃(x) and G̃(x) to be monic as follows, in the case of the real coefficients.

Let F̃(x) and G̃(x) be represented as in (5.4) with f̃m = g̃n = 1, then, by Eq.
(5.6), we have bm−d = −an−d. Thus, we eliminate the variables f̃m, g̃n and bm−d,
which cause the following changes.

Changes on the Subresultant Matrix

By eliminating the variables as in the above, we see that Eq. (5.6) is equivalent to

N ′d−1(F̃, G̃) ·
t(am−d, . . . ,a0,bn−d−1, . . . ,b0) = 0,

where N ′d−1(F̃, G̃) is defined as

N ′d−1(F̃, G̃) =



f̃m−1 − g̃n−1 1 1
... f̃m−1

. . . g̃n−1
. . .

f̃0 − g̃n−m
...

. . . 1
...

. . . 1

f̃0 f̃m−1 g̃0 g̃n−1
. . .

...
. . .

...
f̃0 g̃0


,

with (in the first column) g̃j = 0 for j < 0, by subtracting the first column by the
(n − d + 1)-th column, then deleting the first row and the (n − d + 1)-th column
(corresponding to the bm−d term) in Nd−1(F̃, G̃).

Changes on the Settings in the Minimization Problem

In solving the minimization problem, we substitute the variables

(f̃m−1, . . . , f̃0, g̃n−1, . . . , g̃0,an−d, . . . ,a0,bm−d−1, . . . ,b0)

as x = (x1, . . . , x2(m+n−d)+1), instead of (5.10).
As a consequence, in contrast to (5.11), the objective function f(x) becomes as

f(x) = (x1 − fm−1)
2 + · · ·+ (xm − f0)

2

+ (xm+1 − gn−1)
2 + · · ·+ (xm+n − g0)

2. (5.47)

Also, in contrast to (5.8) and (5.9), the constraints q(x) become as

q0 = 2a2n−d + a2n−d−1 · · ·+ a
2
0 + b

2
m−d−1 + · · ·+ b

2
0 − 1 = 0,

q1 = (f̃m−1 − g̃n−1)an−d + an−d−1 + bm−d−1 = 0,
...

qm+n−d+1 = f̃0a0 + g̃0b0 = 0.

(5.48)

86 gpgcd: an iterative method for calculating approximate gcd

Changes on the Initial Values

Let N ′d−1 = UΣ tV be the SVD of N ′d−1(F,G), with

V = t(v1, . . . , vm+n−2d−1),

vm+n−2d−1 = t(ān−d, . . . , ā0, b̄m−d−1, . . . , b̄0),

Then, in contrast to (5.38), the initial values become as

x0 = (fm−1, . . . , f0,gn−1, . . . ,g0, ān−d, . . . , ā0, b̄m−d−1, . . . , b̄0). (5.49)

The Algorithm

Summarizing discussions in the above, for preserving F̃(x) and G̃(x) to be monic,
we modify Algorithm 3 as follows.

Algorithm 4 (GPGCD with preserving monicity). Change Steps 1 and 2 in Algo-
rithm 3 as follows.

step 1 [Setting the initial values] Set the initial values x0 as in (5.49).

step 2 [Iteration] Solve the minimization problem of f̄(x) = 1
2 (x), subject to q(x) =

0, with f(x) and q(x) defined as in (5.47) and (5.48), respectively, as Step 2 in
Algorithm 3.

5.3.8 Examples

Now we show examples of Algorithm 3 in the case of the real coefficients (more
comprehensive experiments are presented in the next section).

Note that, for the minimization method, we have employed a modified Newton
method (Algorithm 2). Computations in Example 5.1 have been executed on a com-
puter algebra system Mathematica 6 with hardware floating-point arithmetic, while
those in Examples 5.2 and 5.3 have been executed on another computer algebra
system Maple 12 with Digits=10.

Example 5.1. This example is given by Karmarker and Lakshman [27], followed by
Kaltofen et al [26]. Let F(x),G(x) ∈ R[x] be

F(x) = x2 − 6x+ 5 = (x− 1)(x− 5),

G(x) = x2 − 6.3x+ 5.72 = (x− 1.1)(x− 5.2),

and find F̃(x), G̃(x) ∈ R[x] which have the GCD of degree 1, namely F̃(x) and G̃(x)
have one common zero.

Case 1: The leading coefficient can be perturbed. Applying Algorithm 3 to F and
G, with d = 1 and ε = 1.0× 10−8, after 7 iterations, we obtain the polynomials F̃
and G̃ as

F̃(x) = 0.985006x2 − 6.00294x+ 4.99942,

G̃(x) = 1.01495x2 − 6.29707x+ 5.72058,

with perturbations as ‖F̃− F‖22+ ‖G̃−G‖22 = 0.0004663065027 and the common zero
of F̃(x) and G̃(x) as x = 5.09890419203. In Kaltofen et al [26], the calculated pertur-
bations obtained is 0.0004663 with the common zero as x = 5.09890429. Karmarker

5.4 experiments 87

and Lakshman [27] only give an example without perturbations on the leading co-
efficients.

Case 2: The leading coefficient cannot be perturbed. Applying Algorithm 3 (pre-
serving monicity) with the same arguments as in Case 1, after 7 iterations, we obtain
the polynomials F̃ and G̃ as

F̃(x) = x2 − 6.07504x+ 4.98528,

G̃(x) = x2 − 6.22218x+ 5.73527,

with perturbations as ‖F̃− F‖22 + ‖G̃−G‖22 = 0.01213604416 and the common zero
of F̃(x) and G̃(x) as x = 5.0969464650. In Kaltofen et al [26], the calculated pertur-
bations obtained is 0.01213604583 with the common zero as x = 5.0969478. In Kar-
marker and Lakshman [27], the calculated perturbations obtained is 0.01213605293
with the common zero as x = 5.096939087.

The next examples, originally by Sanuki and Sasaki [42], are ill-conditioned ones
with the small or large leading coefficient GCD.

Example 5.2 (A small leading coefficient problem [42, Example 4]). Let F(x) and G(x)
be

F(x) = (x4 + x2 + x+ 1)(0.001x2 + x+ 1),

G(x) = (x3 + x2 + x+ 1)(0.001x2 + x+ 1).

Applying Algorithm 3 to F and G, with d = 2 and ε = 1.0× 10−8, after 1 iteration,
we obtain the polynomials F̃, G̃ and H as

F̃(x) ' F(x), G̃(x) ' G(x),

H(x) = 0.001x2 + 0.9999999936x+ 0.9999999936,

with ‖F̃− F‖22 + ‖G̃−G‖22 = 7.2× 10−23.

Example 5.3 (A big leading coefficient problem [42, Example 5]). Let F(x) and G(x)
be

F(x) = (x6 − 0.00001(0.8x5 + 3x4 − 4x3 − 4x2 − 5x+ 1)) ·C(x),

G(x) = (x5 + x4 + x3 − 0.1x2 + 1) ·C(x),

with C(x) = x2 + 0.001. Applying Algorithm 3 to F and G, with d = 2 and ε =

1.0× 10−8, after 1 iteration, we obtain the polynomials F̃, G̃ and H as

F̃(x) ' F(x), G̃(x) ' G(x),

H(x) = x2 + 1.548794164× 10−16x+ 0.001,

with ‖F̃− F‖22 + ‖G̃−G‖22 = 3.01× 10−28.

5.4 experiments
We have implemented our GPGCD method (Algorithm 3) on computer algebra
systems Mathematica and Maple, and carried out the following tests:

88 gpgcd: an iterative method for calculating approximate gcd

• Comparison of performance of the gradient-projection method (Algorithm 1)
and the modified Newton method (Algorithm 2) (Section 5.4.1),

• Comparison of performance of the GPGCD method with a method based on
the structured total least norm (STLN) method [25] (Section 5.4.2),

on randomly generated polynomials with approximate GCD. Note that, in the for-
mer test, we have tested only the case of the real coefficients, while, in the latter
case, we have tested both the cases of the real and the complex coefficients.

In the tests, we have generated random polynomials with GCD then added noise,
as follows. First, we have generated a pair of monic polynomials F0(x) and G0(x)
of degrees m and n, respectively, with the GCD of degree d. The GCD and the
prime parts of degrees m− d and n− d are generated as monic polynomials and
with random coefficients c ∈ [−10, 10] of floating-point numbers. For noise, we
have generated a pair of polynomials FN(x) and GN(x) of degrees m− 1 and n− 1,
respectively, with random coefficients as the same as for F0(x) and G0(x). Then, we
have defined a pair of test polynomials F(x) and G(x) as

F(x) = F0(x) +
eF

‖FN(x)‖2
FN(x), G(x) = G0(x) +

eG
‖GN(x)‖2

GN(x),

respectively, scaling the noise such that the 2-norm of the noise for F and G is equal
to eF and eG, respectively. In the present test, we set eF = eG = 0.1.

The tests have been carried out on Intel Core2 Duo Mobile Processor T7400 (in
Apple MacBook “Mid-2007” model) at 2.16 GHz with RAM 2GB, under MacOS X
10.5.

5.4.1 Comparison of the Gradient-Projection Method and the Modified Newton
Method

In this test, we have used an implementation on Mathematica and compared per-
formance of the gradient-projection method (Algorithm 1) and a modified Newton
method (Algorithm 2), only in the case of the real coefficients. For every exam-
ple, we have generated one random test polynomial as in the above, and we have
applied Algorithm 3 (preserving monicity) with u = 100 and ε = 1.0× 10−8.

Table 5.1 shows the result of the test: m and n denotes the degree of a tested pair
F and G, respectively, and d denotes the degree of approximate GCD; “Error” is the
perturbation

‖F̃− F‖22 + ‖G̃−G‖22, (5.50)

where “ae−b” denotes a× 10−b; “#Iterations” is the number of iterations; “Time”
is computing time in seconds. The columns with “Alg. 1” and “Alg. 2” are the data
for Algorithm 1 (the gradient-projection method) and Algorithm 2 (the modified
Newton method), respectively. Note that, the “Error” is a single column since both
algorithms give almost the same values in each examples.

We see that, in all the test cases, the number of iterations of the gradient-projection
method (Algorithm 1) is equal to 3, which is smaller than that of the modified New-
ton method (Algorithm 2) which is equal to 4. However, an iteration in Algorithm 1

includes solving a linear system at least twice: once in the projection step (Step 2)
and at least once in the restoration step (Step 3); whereas an iteration in Algorithm 2

includes that only once. Thus, total number of solving a linear system in Algo-
rithm 2 is about a half of that in Algorithm 1. Furthermore, computing time shows

5.4 experiments 89

Ex. m,n d Error #Iterations Time (sec.)
Alg. 1 Alg. 2 Alg. 1 Alg. 2

1 10, 10 5 7.65e−3 3 4 0.08 0.05
2 30, 30 10 3.10e−3 3 4 2.05 0.80
3 40, 40 20 3.60e−3 3 4 3.37 1.33
4 60, 60 30 7.27e−3 3 4 10.14 4.41
5 80, 80 40 5.24e−3 3 4 22.61 10.39
6 100, 100 50 4.92e−3 3 4 42.88 20.34

Table 5.1: Test results comparing the gradient-projection method and the modified Newton
method; see Section 5.4.1 for details.

that, although both implementations are rather inefficient because of elementary
implementations, a modified Newton method runs approximately twice as fast as
the gradient projection method. Therefore, we adopt Algorithm 2 as the method of
minimization in the GPGCD method (Algorithm 3).

5.4.2 Tests on Large Sets of Randomly-generated Polynomials

In this test, we have used our implementation on Maple and compared its perfor-
mance with a method based on the structured total least norm (STLN) method [25],
using their implementation, in the both cases of the real and the complex coeffi-
cients. In our implementation of Algorithm 3, we have chosen the modified New-
ton method (Algorithm 2) for minimization, while, in the STLN-based method, we
have used their procedure R˙con˙mulpoly and C˙con˙mulpoly, which calculates the
approximate GCD of several polynomials in R[x] and C[x], respectively. The tests
have been carried out on Maple 12 with Digits=15 executing hardware floating-
point arithmetic.

For every example, we have generated 100 random test polynomials as in the
above. In executing Algorithm 3, we set u = 200 and ε = 1.0 × 10−8; in
R˙con˙mulpoly and C˙con˙mulpoly, we set the tolerance e = 1.0× 10−8.

Tables 5.2 and 5.3 show the results of the test in the case of the real and the
complex coefficients, respectively: m and n denotes the degree of a pair F and
G, respectively, and d denotes the degree of approximate GCD. The columns with
“STLN” are the data for the STLN-based method, while “GPGCD” are the data for
the GPGCD method (Algorithm 3). In Table 5.2, “#Fail” is the number of “failed”
cases such as: in the STLN-based method, the number of iterations exceeds 50 times
(which is the built-in threshold in the program), while, in the GPGCD method, the
perturbation (5.50) exceeds 1 (note that, in the GPGCD method, all the iterations
have converged within far less than 200 times). Note that, in contrast to the test
case with the real coefficients, both the STLN-based and the GPGCD methods have
converged in all the test cases with the complex coefficients, within the number of
iterations above and sufficiently small amount of perturbations as approximately
equal to those shown as in Table 5.3. All the other data are the average over results
for the “not failed” cases: “Error”, “#Iterations” and “Time” are the same as those
in Table 5.1, respectively.

We see that, in the most of tests, both methods calculate approximate GCD with
almost the same amount of perturbations, while GPGCD method runs much faster
than STLN-based method by approximately from 10 to 30 times. On the other

90 gpgcd: an iterative method for calculating approximate gcd

Ex. m,n d #Fail Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD STLN GPGCD

1 10, 10 5 0 2 3.63e−3 3.67e−3 4.65 4.99 0.43 0.05
2 20, 20 10 0 4 4.37e−3 4.28e−3 4.97 4.78 1.33 0.09
3 30, 30 15 2 1 4.65e−3 4.64e−3 4.34 5.28 2.54 0.16
4 40, 40 20 0 0 4.73e−3 4.73e−3 4.28 4.54 4.41 0.23
5 50, 50 25 0 0 4.79e−3 4.79e−3 4.32 4.51 6.96 0.33
6 60, 60 30 0 0 4.82e−3 4.54e−3 4.27 4.45 10.44 0.45
7 70, 70 35 1 1 4.71e−3 4.71e−3 3.97 4.27 13.28 0.58
8 80, 80 40 0 2 4.77e−3 4.77e−3 4.06 4.34 17.96 0.78
9 90, 90 45 0 1 5.10e−3 4.94e−3 4.18 4.29 23.61 0.97

10 100, 100 50 1 0 4.82e−3 4.81e−3 4.11 4.56 29.87 1.28

Table 5.2: Test results for large sets of polynomials with approximate GCD, in the case of the
real coefficients; see Section 5.4.2 for details.

Ex. m,n d Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD

1 10, 10 5 3.72e−3 3.72e−3 4.48 4.43 1.79 0.15
2 20, 20 10 4.16e−3 4.16e−3 4.24 4.22 5.88 0.30
3 30, 30 15 4.33e−3 4.33e−3 4.54 4.48 14.29 0.58
4 40, 40 20 4.48e−3 4.48e−3 4.08 4.08 24.10 0.88
5 50, 50 25 4.63e−3 4.64e−3 4.05 4.12 39.19 1.36
6 60, 60 30 4.61e−3 4.61e−3 4.02 4.06 60.48 1.96
7 70, 70 35 4.82e−3 4.82e−3 3.90 4.02 84.51 2.66
8 80, 80 40 4.84e−3 4.84e−3 3.88 4.04 116.03 3.65
9 90, 90 45 4.79e−3 4.79e−3 3.85 4.01 151.27 4.66
10 100, 100 50 4.77e−3 4.78e−3 3.83 4.06 199.48 6.00

Table 5.3: Test results for large sets of polynomials with approximate GCD, in the case of the
complex coefficients; see Section 5.4.2 for details.

5.5 summary 91

hand, in some test cases with the real coefficients, the GPGCD method did not give
an answer with sufficiently small amount of perturbations.

Remark 5.1. In this experiment, we compare our implementation designed for prob-
lems of two univariate polynomials against theirs designed for multivariate multi-
polynomial problems with additional linear coefficient constraints. Kaltofen [24]
has reported that they have tested their implementation for real univariate polyno-
mials [26] on an example similar to ours with degree 100 and GCD degree 50, and
it took (on a ThinkPad of 1.8 GHz with RAM 1GB) 2 iterations and 9 seconds. This
result will give the reader some idea on efficiency of our method.

5.5 summary
We have proposed an iterative method, based on the modified Newton method
which is a generalization of the gradient-projection method, for calculating approx-
imate GCD of univariate polynomials with the real or the complex coefficients.

Our experiments have shown that our algorithm calculates approximate GCD
with perturbations as small as those calculated by methods based on the structured
total least norm (STLN) method, while our method has shown significantly better
performance over the STLN-based methods in its speed, by approximately up to
30 times, which seems to be sufficiently practical for inputs of low or moderate
degrees. Furthermore, by other examples, we have shown that our algorithm can
properly handle some ill-conditioned problems such as those with GCD containing
small or large leading coefficient. However, our experiments have also shown that
there are some cases with the real coefficients in which the GPGCD method did not
give an answer with sufficiently small amount of perturbations. Factors leading to
such phenomena is among our next topics for investigation.

Our result have shown that, in contrast to the STLN-based methods which uses
structure preserving feature for matrix computations, our simple method can achieve
accurate and efficient computation as or more than theirs in calculating approxi-
mate GCDs. This suggests that there are some opportunities for improvements of
efficiency in calculating approximate GCDs with optimization strategies.

For the future research, the followings are of interest.

• Convergence analysis of the minimizations: from both the theoretical and
experimental point of view, it is important and should be investigated thor-
oughly.

• Improvements on the efficiency: time complexity of our method depends on
the minimization, or solving a system of linear equations in each iteration.
Thus, analyzing the structure of matrices might improve the efficiency in solv-
ing a linear system.

• Comparison with other methods (approaches) for approximate GCD: from
various points of view such as accuracy, stability, efficiency, and so on, com-
parison of our methods with other methods will reveal advantages and draw-
backs of our method in more detail.

Other topics, such as generalization of our method to several input polynomials,
are also among our next problems.

B I B L I O G R A P H Y

[1] O. Aberth. “Iteration Methods for Finding all Zeros of a Polynomial Simulta-
neously”. In: Math. Comput. 27 (1973), pp. 339–344. doi: 10.1090/S0025-5718-
1973-0329236-7 (Cited on page 6).

[2] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia: SIAM, 1999.
isbn: 0-89871-447-8 (paperback). doi: 10 . 1137 / 1 . 9780898719604 (Cited on
page 40).

[3] A. C. Bartlett, C. V. Hollot, and Huang Lin. “Root locations of an entire poly-
tope of polynomials: it suffices to check the edges”. In: Math. Control Signals
Systems 1.1 (1988), pp. 61–71. issn: 0932-4194. doi: 10.1007/BF02551236 (Cited
on page 29).

[4] B. Beckermann and G. Labahn. “A fast and numerically stable Euclidean-like
algorithm for detecting relatively prime numerical polynomials”. In: J. Sym-
bolic Comput. 26.6 (1998). Symbolic numeric algebra for polynomials, pp. 691–
714. issn: 0747-7171. doi: 10.1006/jsco.1998.0235 (Cited on page 69).

[5] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry. Vol. 36. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)]. Translated from the 1987 French original, Revised by
the authors. Berlin: Springer-Verlag, 1998, pp. x+430. isbn: 3-540-64663-9. doi:
10.1007/978-3-662-03718-8 (Cited on page 47).

[6] W. S. Brown and J. F. Traub. “On Euclid’s Algorithm and the Theory of Sub-
resultants”. In: J. ACM 18.4 (1971), pp. 505–514. doi: 10.1145/321662.321665
(Cited on pages 37, 45, 49).

[7] P. Chin, R. M. Corless, and G. F. Corliss. “Optimization strategies for the ap-
proximate GCD problem”. In: Proceedings of the 1998 International Symposium
on Symbolic and Algebraic Computation. ACM, 1998, 228–235 (electronic). doi:
10.1145/281508.281622 (Cited on page 69).

[8] H. Cohen. A Course in Computational Algebraic Number Theory. Vol. 138. Grad-
uate Texts in Mathematics. Berlin: Springer-Verlag, 1993. doi: 10.1007/978-3-
662-02945-9 (Cited on pages 30, 31).

[9] G. E. Collins. “Subresultants and Reduced Polynomial Remainder Sequences”.
In: J. ACM 14.1 (1967), pp. 128–142. doi: 10.1145/321371.321381 (Cited on
page 45).

[10] R. M. Corless, S. M. Watt, and L. Zhi. “QR factoring to compute the GCD
of univariate approximate polynomials”. In: IEEE Trans. Signal Process. 52.12

(2004), pp. 3394–3402. issn: 1053-587X. doi: 10.1109/TSP.2004.837413 (Cited
on page 69).

[11] R. M. Corless et al. “The Singular Value Decomposition for Polynomial Sys-
tems”. In: Proceedings of the 1995 International Symposium on Symbolic and Alge-
braic Computation. ACM, 1995, pp. 195–207. doi: 10.1145/220346.220371 (Cited
on pages 67, 69).

93

https://doi.org/10.1090/S0025-5718-1973-0329236-7
https://doi.org/10.1090/S0025-5718-1973-0329236-7
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1007/BF02551236
https://doi.org/10.1006/jsco.1998.0235
https://doi.org/10.1007/978-3-662-03718-8
https://doi.org/10.1145/321662.321665
https://doi.org/10.1145/281508.281622
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1145/321371.321381
https://doi.org/10.1109/TSP.2004.837413
https://doi.org/10.1145/220346.220371

94 bibliography

[12] James W. Demmel. Applied numerical linear algebra. Philadelphia, PA: Society
for Industrial and Applied Mathematics (SIAM), 1997, pp. xii+419. isbn: 0-
89871-389-7. doi: 10.1137/1.9781611971446 (Cited on page 80).

[13] G. M. Diaz-Toca and L. Gonzalez-Vega. “Barnett’s theorems about the great-
est common divisor of several univariate polynomials through Bezout-like
matrices”. In: J. Symbolic Comput. 34.1 (2002), pp. 59–81. issn: 0747-7171. doi:
10.1006/jsco.2002.0542 (Cited on page 67).

[14] L. Ducos. “Optimizations of the subresultant algorithm”. In: J. Pure Appl. Al-
gebra 145.2 (2000), pp. 149–163. doi: 10.1016/S0022-4049(98)00081-4 (Cited on
page 67).

[15] E. Durand. Solutions Numériques des Équations Algébriques, Tome I. Paris: Mas-
son, 1960 (Cited on page 5).

[16] I. Z. Emiris, A. Galligo, and H. Lombardi. “Certified approximate univariate
GCDs”. In: J. Pure Appl. Algebra 117/118 (1997). Algorithms for algebra (Eind-
hoven, 1996), pp. 229–251. issn: 0022-4049. doi: 10.1016/S0022-4049(97)00013-
3 (Cited on pages 67, 69).

[17] I. Z. Emiris and B. Mourrain, eds. Proceedings of the Workshop on Symbolic-
Numeric Algebra for Polynomials (SNAP ’96). INRIA Sophia-Antipolis, France,
1996. url: http://www-sop.inria.fr/galaad/conf/1996/snap.html (Cited on
page 1).

[18] P. P. Fraigniaud. “The Durand-Kerner Polynomials Roots-finding Method in
case of Multiple Roots”. In: BIT 31.1 (1991), pp. 112–123. issn: 0006-3835. doi:
10.1007/BF01952788 (Cited on page 12).

[19] J. von zur Gathen and T. Lücking. “Subresultants revisited”. In: Theoret. Com-
put. Sci. 297.1-3 (2003). Latin American theoretical informatics (Punta del Este,
2000), pp. 199–239. issn: 0304-3975. doi: 10 . 1016/S0304 - 3975(02) 00639 - 4

(Cited on page 46).

[20] G. H. Golub and C. F. Van Loan. Matrix Computations. Third. The Johns Hop-
kins University Press, 1996 (Cited on page 66).

[21] N. J. Higham. Accuracy and stability of numerical algorithms. Second. Philadel-
phia: SIAM, 2002, pp. xxx+680. isbn: 0-89871-521-0. doi: 10.1137/1.9780898718027
(Cited on pages 39, 40).

[22] M. Iri. Numerical Analysis (in Japanese). Tokyo: Asakura Publishing Co., 1981

(Cited on pages 5, 12, 28).

[23] H. Kai and H. Sekigawa, eds. Proceedings of the 2009 International Workshop
on Symbolic-Numeric Computation (SNC ’09). Kyoto, Japan: ACM, 2009. isbn:
978-1-60558-664-9. doi: 10.1145/1577190 (Cited on page 1).

[24] E. Kaltofen. Private communication. 2009 (Cited on page 91).

[25] E. Kaltofen, Z. Yang, and L. Zhi. “Approximate greatest common divisors of
several polynomials with linearly constrained coefficients and singular poly-
nomials”. In: Proceedings of the 2006 International Symposium on Symbolic and
Algebraic Computation. Genoa, Italy: ACM, 2006, pp. 169–176. isbn: 1-59593-
276-3. doi: 10.1145/1145768.1145799 (Cited on pages 69, 88, 89).

https://doi.org/10.1137/1.9781611971446
https://doi.org/10.1006/jsco.2002.0542
https://doi.org/10.1016/S0022-4049(98)00081-4
https://doi.org/10.1016/S0022-4049(97)00013-3
https://doi.org/10.1016/S0022-4049(97)00013-3
http://www-sop.inria.fr/galaad/conf/1996/snap.html
https://doi.org/10.1007/BF01952788
https://doi.org/10.1016/S0304-3975(02)00639-4
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/1577190
https://doi.org/10.1145/1145768.1145799

bibliography 95

[26] E. Kaltofen, Z. Yang, and L. Zhi. “Structured Low Rank Approximation of a
Sylvester Matrix”. In: Symbolic-Numeric Computation. Ed. by D. Wang and L.
Zhi. Trends in Mathematics. Birkhäuser, 2007, pp. 69–83. doi: 10.1007/978-3-
7643-7984-1 5 (Cited on pages 69, 86, 87, 91).

[27] N. K. Karmarkar and Y. N. Lakshman. “On approximate GCDs of univariate
polynomials”. In: J. Symbolic Comput. 26.6 (1998). Symbolic numeric algebra
for polynomials, pp. 653–666. issn: 0747-7171. doi: 10.1006/jsco.1998.0232
(Cited on pages 69, 86, 87).

[28] I. O. Kerner. “Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von
Polynomen”. In: Numer. Math. 8 (1966), pp. 290–294. doi: 10.1007/BF02162564
(Cited on page 5).

[29] V. L. Kharitonov. “The asymptotic stability of the equilibrium state of a family
of systems of linear differential equations”. In: Differentsial ′nye Uravneniya
14.11 (1978), pp. 2086–2088, 2111. issn: 0374-0641. url: http://mi.mathnet.ru/

eng/de3556 (Cited on page 29).

[30] D. Knuth. The Art of Computer Programming. Third. Vol. 2: Seminumerical Al-
gorithms. Addison-Wesley, 1998 (Cited on page 45).

[31] H. Lombardi, M.-F. Roy, and M. S. El Din. “New Structure Theorem for Sub-
resultants”. In: J. Symbolic Comput. 29.4–5 (2000), pp. 663–690. doi: 10.1006/
jsco.1999.0322 (Cited on page 67).

[32] R. Loos. “Generalized Polynomial Remainder Sequences”. In: Computer Alge-
bra: Symbolic and Algebraic Computation. Ed. by B. Buchberger, G. E. Collins,
and R. Loos. Second. Springer-Verlag, 1983, pp. 115–137. doi: 10.1007/978-3-
7091-7551-4 9 (Cited on page 45).

[33] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Science.
New York: Springer-Verlag, 1993. doi: 10.1007/978-1-4612-4344-1 (Cited on
page 35).

[34] M. Natori. Numerical Analysis and its Applications (in Japanese). Tokyo: Corona
Publishing Co., 1990 (Cited on pages 5, 40).

[35] J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series
in Operations Research and Financial Engineering. New York: Springer, 2006,
pp. xxii+664. isbn: 978-0387-30303-1; 0-387-30303-0. doi: 10.1007/978-0-387-
40065-5 (Cited on page 74).

[36] N. Ohsako, H. Sugiura, and T. Torii. “A stable extended algorithm for generat-
ing polynomial remainder sequence (In Japanese)”. In: Trans. Japan Soc. Indus.
Appl. Math 7.3 (1997), pp. 227–255. doi: 10.11540/jsiamt.7.3 227 (Cited on
page 69).

[37] V. Y. Pan. “Computation of approximate polynomial GCDs and an extension”.
In: Inform. and Comput. 167.2 (2001), pp. 71–85. issn: 0890-5401. doi: 10.1006/
inco.2001.3032 (Cited on page 69).

[38] L. Pasquini and D. Trigiante. “A Globally Convergent Method for Simultane-
ously Finding Polynomial Roots”. In: Math. Comp. 44.169 (1985), pp. 135–149.
issn: 0025-5718. doi: 10.1090/S0025-5718-1985-0771036-6 (Cited on page 12).

[39] M. S. Petković, D. D. Herceg, and S. M. Ilić. Point Estimation Theory and its
Applications. Novi Sad: Institute of Mathematics, University of Novi Sad, 1997,
pp. vi+168. isbn: 86-7031-003-1 (Cited on page 5).

https://doi.org/10.1007/978-3-7643-7984-1_5
https://doi.org/10.1007/978-3-7643-7984-1_5
https://doi.org/10.1006/jsco.1998.0232
https://doi.org/10.1007/BF02162564
http://mi.mathnet.ru/eng/de3556
http://mi.mathnet.ru/eng/de3556
https://doi.org/10.1006/jsco.1999.0322
https://doi.org/10.1006/jsco.1999.0322
https://doi.org/10.1007/978-3-7091-7551-4_9
https://doi.org/10.1007/978-3-7091-7551-4_9
https://doi.org/10.1007/978-1-4612-4344-1
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.11540/jsiamt.7.3_227
https://doi.org/10.1006/inco.2001.3032
https://doi.org/10.1006/inco.2001.3032
https://doi.org/10.1090/S0025-5718-1985-0771036-6

96 bibliography

[40] J. B. Rosen. “The gradient projection method for nonlinear programming. II.
Nonlinear constraints”. In: J. Soc. Indust. Appl. Math. 9 (1961), pp. 514–532. doi:
10.1137/0109044 (Cited on pages 69, 74, 75).

[41] D. Rupprecht. “An algorithm for computing certified approximate GCD of n
univariate polynomials”. In: J. Pure Appl. Algebra 139 (1999), pp. 255–284. doi:
10.1016/S0022-4049(99)00014-6 (Cited on page 67).

[42] M. Sanuki and T. Sasaki. “Computing Approximate GCDs in Ill-conditioned
Cases”. In: SNC ’07: Proceedings of the 2007 International Workshop on Symbolic-
Numeric Computation. London, Ontario, Canada: ACM, 2007, pp. 170–179. isbn:
978-1-59593-744-5. doi: 10.1145/1277500.1277525 (Cited on pages 69, 87).

[43] T. Sasaki. “Approximate Algebraic Computation (in Japanese)”. In: Fundamen-
tal Theory of Numerical Analysis and Its Vicinity. RIMS Kokyuroku (Collection
of Research Reports) 676. Kyoto, Japan: Research Institute for Mathematical
Sciences, Kyoto University, 1988, pp. 307–319. url: https://hdl.handle.net/
2433/100955 (Cited on page 1).

[44] T. Sasaki. “Formula Manipulation System GAL”. In: Computing in High Energy
Physics ’91 (Tsukuba, 1991). Ed. by Y. Watase and F. Abe. Tokyo: Universal
Academy Press, 1991, pp. 383–389. isbn: 4-946443-09-6 (Cited on pages 16,
35).

[45] T. Sasaki and M-T. Noda. “Approximate Square-free Decomposition and Root-
finding of Ill-conditioned Algebraic Equations”. In: J. Inform. Process. 12.2
(1989), pp. 159–168. url: http : / / id . nii . ac . jp / 1001 / 00059783/ (Cited on
page 69).

[46] T. Sasaki and M. Sasaki. “Analysis of accuracy decreasing in polynomial re-
mainder sequence with floating-point number coefficients”. In: J. Inform. Pro-
cess. 12.4 (1989), 394–403 (1990). issn: 0387-6101. url: http://id.nii.ac.jp/1001/
00059769/ (Cited on page 43).

[47] T. Sasaki and A. Terui. “A Formula for Separating Small Roots of a Polyno-
mial”. In: ACM SIGSAM Bulletin 36.3 (2002), pp. 19–29. doi: 10.1145/603273.
603277 (Cited on page 32).

[48] A. Schönhage. “Quasi-gcd computations”. In: J. Complexity 1.1 (1985), pp. 118–
137. issn: 0885-064X. doi: 10.1016/0885-064X(85)90024-X (Cited on page 69).

[49] H. Sekigawa and K. Shirayanagi. “On the Location of Zeros of an Interval
Polynomial”. In: Symbolic-Numeric Computation. Ed. by D. Wang and L. Zhi.
Trends in Mathematics. Birkhäuser, 2007, pp. 167–184. doi: 10.1007/978- 3-
7643-7984-1 11 (Cited on page 29).

[50] H. Sekigawa and K. Shirayanagi. “On the Location of Zeros of an Interval
Polynomial (in Japanese)”. In: The Transactions of the Institute of Electronics,
Information and Communication Engineers. A J89-A.3 (2006), pp. 199–216 (Cited
on page 29).

[51] K. Shirayanagi and H. Sekigawa. “An Interval Method Based on Zero Rewrit-
ing and Its Application to Sturm’s Algorithm (in Japanese)”. In: Transactions
of the Institute of Electronics, Information and Communication Engineers A J80-A.5
(1997), pp. 791–802 (Cited on page 23).

https://doi.org/10.1137/0109044
https://doi.org/10.1016/S0022-4049(99)00014-6
https://doi.org/10.1145/1277500.1277525
https://hdl.handle.net/2433/100955
https://hdl.handle.net/2433/100955
http://id.nii.ac.jp/1001/00059783/
http://id.nii.ac.jp/1001/00059769/
http://id.nii.ac.jp/1001/00059769/
https://doi.org/10.1145/603273.603277
https://doi.org/10.1145/603273.603277
https://doi.org/10.1016/0885-064X(85)90024-X
https://doi.org/10.1007/978-3-7643-7984-1_11
https://doi.org/10.1007/978-3-7643-7984-1_11

bibliography 97

[52] B. T. Smith. “Error Bounds for Zeros of a Polynomial Based Upon Gerschgorin’s
Theorems”. In: J. ACM 17.4 (1970), pp. 661–674. doi: 10.1145/321607.321615
(Cited on pages 6, 23).

[53] T. Takagi. Lectures in Algebra (in Japanese, revised ed.) Tokyo: Kyōritsu Pub-
lishing Co., 1965 (Cited on page 7).

[54] K. Tanabe. “A geometric method in nonlinear programming”. In: J. Optim. The-
ory Appl. 30.2 (1980), pp. 181–210. issn: 0022-3239. doi: 10.1007/BF00934495
(Cited on pages 69, 74–76).

[55] A. Terui. “An Iterative Method for Calculating Approximate GCD of Univari-
ate Polynomials”. In: Proceedings of the 2009 International Symposium on Sym-
bolic and Algebraic Computation. Seoul, Korea: ACM Press, 2009, pp. 351–358.
doi: 10.1145/1576702.1576750 (Cited on pages 2, 69).

[56] A. Terui. “GPGCD, an Iterative Method for Calculating Approximate GCD of
Univariate Polynomials, with the Complex Coefficients”. In: Proceedings of the
Joint Conference of ASCM 2009 and MACIS 2009. Vol. 22. COE Lecture Note.
Faculty of Mathematics, Kyushu University, 2009, pp. 212–221. url: https :

//hdl.handle.net/2324/16844 (Cited on pages 2, 69).

[57] A. Terui. “Recursive polynomial remainder sequence and its subresultants”.
In: Journal of Algebra 320.2 (2008), pp. 633–659. doi: 10.1016/j.jalgebra.2007.12.
023 (Cited on pages 2, 45).

[58] A. Terui. “Recursive Polynomial Remainder Sequence and the Nested Subre-
sultants”. In: Computer Algebra in Scientific Computing (Proc. CASC 2005). Ed.
by V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov. Vol. 3718. Lecture Notes
in Computer Science. Springer, 2005, pp. 445–456. doi: 10.1007/11555964 38

(Cited on page 2).

[59] A. Terui. “Subresultants in Recursive Polynomial Remainder Sequence”. In:
Proc. The 6th International Workshop on Computer Algebra in Scientific Computing:
CASC 2003 (Passau, Germanay, September 20–26, 2003). Ed. by V.G. Ganzha, E.W.
Mayr, and E.V. Vorozhtsov. Garching, Germanay: Institute für Informatik,
Technische Universität München, 2003, pp. 363–375. url: http://wwwmayr.

in.tum.de/cgi-bin/openURL?debug=&genre=article&title=casc&volume=

2003&spage=363 (Cited on page 2).

[60] A. Terui and T. Sasaki. ““Approximate Zero-points” of Real Univariate Poly-
nomial with Large Error Terms”. In: IPSJ J. 41.4 (2000), pp. 974–989. url: http:
//id.nii.ac.jp/1001/00012339/ (Cited on pages 2, 23, 32).

[61] A. Terui and T. Sasaki. “Durand-Kerner Method for the Real Roots”. In: Japan
J. Indus. Appl. Math. 19.1 (2002), pp. 19–38. doi: 10.1007/BF03167446 (Cited
on pages 2, 5).

[62] D. Wang and L. Zhi, eds. Symbolic-Numeric Computation. Trends in Mathemat-
ics. Birkhäuser, 2007. isbn: 978-3-764-37983-4. doi: 10.1007/978-3-7643-7984-1
(Cited on page 1).

[63] S. M. Watt and J. Verschelde, eds. Proceedings of the 2007 International Workshop
on Symbolic-Numeric Computation (SNC ’07). London, Ontario, Canada: ACM,
2007. isbn: 978-1-59593-744-5. doi: 10.1145/1277500 (Cited on page 1).

https://doi.org/10.1145/321607.321615
https://doi.org/10.1007/BF00934495
https://doi.org/10.1145/1576702.1576750
https://hdl.handle.net/2324/16844
https://hdl.handle.net/2324/16844
https://doi.org/10.1016/j.jalgebra.2007.12.023
https://doi.org/10.1016/j.jalgebra.2007.12.023
https://doi.org/10.1007/11555964_38
http://wwwmayr.in.tum.de/cgi-bin/openURL?debug=&genre=article&title=casc&volume=2003&spage=363
http://wwwmayr.in.tum.de/cgi-bin/openURL?debug=&genre=article&title=casc&volume=2003&spage=363
http://wwwmayr.in.tum.de/cgi-bin/openURL?debug=&genre=article&title=casc&volume=2003&spage=363
http://id.nii.ac.jp/1001/00012339/
http://id.nii.ac.jp/1001/00012339/
https://doi.org/10.1007/BF03167446
https://doi.org/10.1007/978-3-7643-7984-1
https://doi.org/10.1145/1277500

98 bibliography

[64] T. Yamamoto, S. Kanno, and L. Atanassova. “Validated Computation of Poly-
nomial Zeros by the Durand-Kerner Method”. In: Topics in Validated Computa-
tions (Oldenburg, 1993). Amsterdam: North-Holland, 1994, pp. 27–53 (Cited
on page 5).

[65] C. J. Zarowski, X. Ma, and F. W. Fairman. “QR-factorization method for com-
puting the greatest common divisor of polynomials with inexact coefficients”.
In: IEEE Trans. Signal Process. 48.11 (2000), pp. 3042–3051. issn: 1053-587X. doi:
10.1109/78.875462 (Cited on page 69).

[66] Z. Zeng. The approximate GCD of inexact polynomials, Part I: a univariate algo-
rithm (Extended Abstract). preprint. 8 pages. 2004. url: http://www.neiu.edu/
∼zzeng/ (Cited on pages 69, 82).

[67] L. Zhi. “Displacement structure in computing approximate GCD of univari-
ate polynomials”. In: Computer mathematics: Proc. Six Asian Symposium on Com-
puter Mathematics (ASCM 2003). Vol. 10. Lecture Notes Ser. Comput. World Sci.
Publ., River Edge, NJ, 2003, pp. 288–298. doi: 10.1142/9789812704436 0024

(Cited on page 69).

https://doi.org/10.1109/78.875462
http://www.neiu.edu/~zzeng/
http://www.neiu.edu/~zzeng/
https://doi.org/10.1142/9789812704436_0024

	Front cover
	Title page
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgments
	Note to This Edition
	1 Introduction
	1.1 What is ''Symbolic-Numeric Algorithms''?
	1.2 Topics Discussed in This Work

	2 The Durand-Kerner Method for the Real Roots
	2.1 The DK Method and Smith's Theorem
	2.1.1 The DK Iteration Formula
	2.1.2 The Smith's Theorem
	2.1.3 Initial Values for a Real Polynomial

	2.2 The DK Method Calculating Only Real Roots
	2.2.1 Modification of the DK Formula
	2.2.2 Convergence Property
	2.2.3 Error Bound

	2.3 Computing Time Analysis
	2.3.1 DKA Method
	2.3.2 DKAreal Method
	2.3.3 DKreal Method

	2.4 Experiments
	2.4.1 Comparison in the General Case
	2.4.2 Usefulness in a Special Case
	2.4.3 Comparison with the Newton's Method and Weakness

	2.5 Summary

	3 ''Approximate Zero-points'' of Real Univariate Polynomial with Large Error Terms
	3.1 Approximate Polynomials and Approximate Real Zero-points
	3.1.1 The Existence Domain of Values of (x)
	3.1.2 Approximate Real Zero-points and their Existence Domains

	3.2 Bounding Existence Domains by Using the Smith's Theorem
	3.2.1 Single Zero-points
	3.2.2 Multiple or Close Zero-points

	3.3 Calculating the Number of Real Zero-points of a Real Approximate Polynomial
	3.3.1 Sufficient Condition for Fixing the Number of Real Zero-points
	3.3.2 Problem of Small Leading Coefficient in the Sturm Sequence

	3.4 Evaluating the Effects of Error Terms
	3.4.1 Evaluation of the Subresultant Determinant
	3.4.2 Utilization of Interval Arithmetic
	3.4.3 Backward Error Analysis for a Linear System
	3.4.4 Calculating Error Terms Parametrically

	3.5 Summary

	4 Recursive Polynomial Remainder Sequence and its Subresultants
	4.1 Recursive Polynomial Remainder Sequence (PRS)
	4.2 Subresultants for Recursive PRS
	4.2.1 Fundamental Theorem of Subresultants
	4.2.2 Recursive Subresultants

	4.3 Nested Subresultants
	4.4 Reduced Nested Subresultants
	4.5 Summary

	5 GPGCD: an Iterative Method for Calculating Approximate GCD of Univariate Polynomials
	5.1 Formulation of the Approximate GCD Problem
	5.1.1 The Real Coefficient Case
	5.1.2 The Complex Coefficient Case

	5.2 The Gradient-Projection Method and a Modified Newton Method
	5.2.1 The Gradient-Projection Method
	5.2.2 The Modified Newton Method

	5.3 The Algorithm for Approximate GCD
	5.3.1 Representation of the Jacobian Matrix
	5.3.2 Certifying the Rank of the Jacobian Matrix
	5.3.3 Setting the Initial Values
	5.3.4 Regarding the Minimization Problem as the Minimum Distance (Least Squares) Problem
	5.3.5 Calculating the Actual GCD and Correcting the Deformed Polynomials
	5.3.6 The Algorithm
	5.3.7 Preserving Monicity
	5.3.8 Examples

	5.4 Experiments
	5.4.1 Comparison of the Gradient-Projection Method and the Modified Newton Method
	5.4.2 Tests on Large Sets of Randomly-generated Polynomials

	5.5 Summary

	Bibliography

