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Tumor-associated macrophages (TAMs) and regulatory T  cells (Tregs) are significant 
components of the microenvironment of solid tumors in the majority of cancers. TAMs 
sequentially develop from monocytes into functional macrophages. In each differenti-
ation stage, TAMs obtain various immunosuppressive functions to maintain the tumor 
microenvironment (e.g., expression of immune checkpoint molecules, production of 
Treg-related chemokines and cytokines, production of arginase I). Although the main 
population of TAMs is immunosuppressive M2 macrophages, TAMs can be modulated 
into M1-type macrophages in each differential stage, leading to the suppression of tumor 
growth. Because the administration of certain drugs or stromal factors can stimulate 
TAMs to produce specific chemokines, leading to the recruitment of various tumor- 
infiltrating lymphocytes, TAMs can serve as targets for cancer immunotherapy. In this 
review, we discuss the differentiation, activation, and immunosuppressive function of 
TAMs, as well as their benefits in cancer immunotherapy.

Keywords: tumor-associated macrophages, immunosuppression, M2 polarization, chemokines, angiogenetic 
factors, regulatory T cells

iNTRODUCTiON

Tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) are significant components 
of the tumor microenvironment (1, 2). TAMs express immune checkpoint modulators [e.g., B7 fam-
ily, B7-homolog family including programmed death ligand 1 (PD-L1)] (3) that directly suppress 
activated T cells. In addition, TAMs produce various chemokines that attract other immunosup-
pressive cells such as Tregs, myeloid-derived suppressor cells (MDSCs), and type 2 helper (Th2) 
T cells, which maintain the immunosuppressive factors of the tumor microenvironment (1, 2, 4). 
Moreover, TAMs also produce matrix metalloproteinases (MMPs), which play critical roles in tissue 
remodeling associated with various physiological processes such as morphogenesis, angiogenesis, 
tissue repair, local invasion, and metastasis (1, 5, 6). TAMs have been detected in various skin cancers 
such as melanoma, squamous cell carcinoma (SCC), extramammary Paget’s disease (EMPD), Merkel 
cell carcinoma, basal cell carcinoma, and mycosis fungoides (MFs) (1, 2, 7–15) (Table 1). Because the  
stromal factor on each cancer stem cell is an important factor for TAM stimulation, leading to 
the induction of specific TAM phenotypes, investigating the immunomodulatory stromal cells in  
the tumor microenvironment is important for establishing the appropriate immunotherapy for each 
type of cancer (1, 8, 9, 16, 17). In addition, it may be possible to repolarize TAMs into anti-tumor 
macrophages, such as M1-phenotype macrophages, to suppress tumor progression by modifying 
the profiles of tumor-infiltrating lymphocytes (TILs) (7, 18, 19). Thus, TAMs could be a target for 
immunotherapy in skin cancers (1, 2). In this review, we discuss the differentiation, activation, and 
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FigURe 1 | Differentiation of M2-polarized tumor-associated macrophages. 
The multiple steps of the development of monocytes into fully functional 
macrophages.

TAble 1 | Tumor-associated macrophages in skin cancer: mouse and human models.

Cancer species Mouse (reference) Human (reference) Depletion Reprogrammed biomarkers

Malignant melanoma (3, 7, 13, 19, 20, 22, 39, 51, 62, 63, 64, 65) (7, 35, 59, 60) (13, 65) (5, 19, 20, 22, 35, 39) (3, 59, 60, 61)
Cutaneous squamous cell carcinoma (23, 24, 32) (11, 12, 34) (23) (24, 32) (11, 12)
Merkel cell carcinoma – (14, 36) (14, 36)
Extramammary Paget’s disease – (8, 17) (17) (8)
Basal cell carcinoma (26) (15) (26) (15)
Dermatofibrosarcoma protuberans – (5) (5)
Cutaneous T cell lymphoma (25) (9, 18, 28, 29, 30, 31, 57) (25) (18, 57) (9, 28, 29, 30)
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immunosuppressive function of TAMs, as well as their benefit in 
cancer immunotherapy.

DiFFeReNTiATiON AND ACTivATiON  
OF TAMs iN TUMORS

Tumor-associated macrophages are characterized by their 
heterogeneity and plasticity, as they can be functionally repro-
grammed to polarized phenotypes by exposure to cancer-related 
factors, stromal factors, infections, or even drug interventions 
(1, 2, 7, 9, 11, 17, 19). Because TAMs sequentially differentiate 
from monocytes into functional macrophages through multiple 
steps, they have heterogeneity and plasticity in cancer (Figure 1). 
Monocytes recruited from the circulation differentiate into tissue 
macrophages by macrophage colony-stimulating factor (M-CSF), 
and are primed with several cytokines such as interferon 
gamma (IFN-γ), interleukin 4 (IL-4), and IL-13 (2). Thereafter, 
macrophages change their functional phenotype in response to 
environmental factors or even tumor-derived protein stimulation 
(2, 8, 17). In skin cancer, for example, targeting the M-CSF recep-
tor with anti-CSF short interfering RNA (siCD115) in TAMs led 
to modulation of the TIL profile, resulting in growth suppression 
of B16 melanoma in vivo (20). In the second phase of priming, 
type I IFN (IFN-α, IFN-β) and type II IFN (IFN-γ) modulate 
the production of chemokines from TAMs, suggesting that these 
cytokines repolarize TAMs in several skin cancers (7, 18). Cancer 
stromal factors such as soluble receptor activator of nuclear factor 
kappa-B ligand (RANKL) derived from cancer cells could be a 
third mode of stimulation that activates mature M2 macrophages 
to produce a series of chemokines that recruit immunosuppres-
sive cells such as Tregs and Th2, leading to maintenance of the 
tumor microenvironment (8, 10, 17). These reports suggest that 
each of these three differentiation steps could serve as a target for 
immunotherapies.

ROleS OF TAMs iN MAiNTAiNiNg  
THe iMMUNOSUPPReSSive 
MiCROeNviRONMeNT

Chemokines from TAMs Determine  
the immunological Microenvironment  
in Tumors
Chemokines play crucial roles in determining the profiles of TILs 
in the tumor microenvironment, and the profiles of chemokines 

from TAMs are determined by stromal factors of each skin cancer 
(1). For example, immune cells in the tumor microenvironment 
determine the aggressiveness of melanoma (21). In metastatic 
melanoma, periostin (POSTN) is expressed in the region sur-
rounding melanoma cell nests in metastatic melanoma lesions 
that develop at the wound site (16). In addition, TAMs are promi-
nent in the tumor stroma in melanoma (7, 19, 22), and POSTN 
stimulates CD163+ macrophages to produce several specific 
cytokines including Treg-related chemokines [chemokine ligand 
17 (CCL17), CCL22] (9). Because CCL17 and CCL22 from 
TAMs attracts Tregs to the tumor site in melanoma (7, 21, 22), 
repolarization of TAMs by immunomodulatory reagents such as 
IFN-β and imiquimod are useful for suppressing tumor growth 
in melanoma (7, 22). The downregulation of CCL22 production 
was also observed in B16F10 melanoma mouse treated with 
classical cytotoxic anti-melanoma drugs such as dacarbazine, 
nimustine hydrochloride, and vincristine, all of which have been 
used in the adjuvant setting for advanced melanoma for the 
last 30 years (19). Other reports have suggested that a series of 
chemokines (CCL17, CXCL10, CCL4, and IL-8) in cerebrospinal 
fluid may be useful for predicting brain metastasis in melanoma 
patients (21). Together, these reports suggest the significance of 
chemokines from TAMs that can be induced by POSTN in the 
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tumor stroma to induce melanoma-specific TILs in patients with 
melanoma.

Tumor-associated macrophages in non-melanoma skin can-
cer also secrete an array of chemokines in lesional skin to regulate 
the tumor microenvironment (1). In EMPD, for example, solu-
ble RANKL released by Paget cells increases the production of 
CCL5, CCL17, and CXCL10 from RANK+ M2 polarized TAMs  
(8, 10, 17), suggesting that Paget cells can determine the immu-
nological microenvironment by the stimulation of TAMs. The 
results of this study led to the hypothesis that denosumab, a full 
human monoclonal antibody for RANKL, has therapeutic effects 
in invasive EMPD. In cutaneous squamous cell carcinoma (cSCC), 
according to its heterogeneity of differentiation of cancer cells, 
TAMs in cSCC heterogeneously polarized from M1 to M2 (11). 
Indeed, Petterson et al. (11) reported that CD163+ TAMs not only 
express CCL18 (11), an M2 chemokine involved in remodeling of 
the tumor microenvironment but are also colocalized with phos-
phorylated signal transducer and activator of transcription 1 (11), 
suggesting the heterogeneous activation states of TAMs. Although 
the exact stimulator of cSCC is unknown, the depletion of TAMs 
such as antibody-mediated depletion (e.g., anti-CSF1R Ab)  
or bisphosphonate could be a useful therapy for unresectable 
cSCC (23–26).

Not only solid tumors but also hematopoietic malignancies 
in the skin contain CD163+ TAMs (25, 27–29), which produce 
chemokines that direct to specific anatomic sites to form metas-
tases (25). Indeed recently, Wu et al. (9) used a human xenograft 
CTCL cell model to demonstrate that chemokines from TAMs 
play crucial roles in tumor formation in MF lesions. In another 
report, it was shown that the cancer stroma of MF containing 
POSTN and IL-4 might stimulate TAMs to produce chemokines 
that correlate with tumor formation in MF (25), and that 
chemokines from TAMs can be modified by immunomodula-
tory agents such as IFN-α and IFN-γ, leading to their therapeutic 
effects (18). Furthermore, CCL18 produced by TAMs in MF at the 
invasive margin of the tumor promote the recruitment of CTCL 
cells, leading to cancer progression (30). These reports suggest 
the significance of chemokines from TAMs for the development 
of CTCL.

Direct Suppressive Function of TAMs
Immunomodulatory costimulatory molecules, such as B7 
homologs, play representative roles in the direct cell-mediated 
suppressive mechanism of TAMs. Recently, several reports have 
suggested that the expression of PD-L1 (also known as B7H1) 
in TAMs is necessary for antigen-specific tolerance induction  
(1, 3, 31) in tumor-bearing hosts. For example, the expression 
of PD-L1 on TAMs is augmented by autocrine IL-10 from 
M2-polarized TAMs stimulated by specific antigens (31). 
Another report showed that the decrease of IL-10 in MDSCs led 
to the downregulation of PD-L1 expression in MDSC in a mouse 
melanoma model (3). Linde et  al. (32) reported that IL-10-
polarized TAMs into M2 phenotypes in the presence of IL-4 
and vascular endothelial growth factor A (VEGF-A) in cSCC. 
These reports suggest that IL-10 upregulates PD-L1 expression 
on TAMs, inducing immunosuppression in the tumor micro-
environment in the skin. Arginase 1 is one of the key factors 

for the suppressive function of TAMs. Its expression is widely 
detected in immature and functional M2 macrophages (1, 8, 17), 
leading to suppression of T cell activity by l-arginine catabolism 
(33). Indeed, CD163+ TAMs expresses arginase 1 in several skin 
cancers such as EMPD and SCC (8, 34). More recently, Pico 
de Coaña et  al. (35) reported the additional immunomodula-
tory effects of ipilimumab on granulocytic MDSCs, which are 
circulating macrophages in tumor-bearing hosts, suggesting the 
crosstalk between Tregs and granulocytic MDSCs through the 
CTLA4/B7 homolog pathway and the significance of the direct 
suppressive function of TAMs (35).

Angiogenetic Factors from TAMs
Tumor-associated macrophages produce angiogenetic factors 
such as VEGF, platelet-derived growth factor, and transforming 
growth factor β, or by expressing MMPs to induce neovascu-
larization (10, 28, 32, 36–38). Linde et  al. (32) reported that 
VEGF-A augments the recruitment of TAMs at a tumor site by 
promoting neovascularization in a mouse skin tumor model 
(32). In a human skin cancer model, Werchau et al. (36) reported 
that VEGF-C expressed by TAMs contributes to lymphangi-
ogenesis and the progression of Merkel cell carcinoma (36). In 
angiosarcoma, TAMs express MMP9, which might be a target 
for amino bisphosphonate (37). Another report suggested that 
inhibition of the VEGF/VEGF receptor pathway inhibits M2 
polarization in TAMs, leading to reduced vascular density and 
tumor growth in MCA205 mouse sarcoma (38). In addition, 
more recently, Yamada et  al. (39) reported that the expression 
of MGF-E8 on mesenchymal stromal cells plays crucial roles in 
inducing M2 macrophage polarization, leading to suppression 
of tumor growth by the reduction of VEGF expression in TAMs 
in B16F10 melanoma. These reports indicate the significance 
of VEGF produced by M2 macrophages in tumor progression, 
and show that both VEGF and MMPs are key markers for M2 
macrophages in skin cancers (11, 40, 41). For example, in a 
melanoma model, osteopontin signaling promoted macrophage 
recruitment by the secretion of prostaglandin E2 and MMP-9 
from TAMs, leading to angiogenesis and tumor progression (41). 
These reports suggest that MMPs play crucial roles in tumor 
progression. MMPs can also be produced by TAMs upon stimula-
tion of stromal proteins in skin cancer (9, 10). For example, the 
stimulation of POSTN augments the production of MMP1 and 
MMP12 from monocyte-derived immature M2 macrophages 
(9). Because POSTN is abundant in the tumor stroma of MF and 
dermatofibrosarcoma protuberans (DFSP) (5, 9), and because 
substantial numbers of CD163+ TAMs have been detected in the 
POSTN-rich area in the lesional skin of skin tumors (5, 9), the 
production of MMP1 and MMP12 is prominent in the lesional 
skin of MF and DFSP. Notably, as reported by Livtinov et al. (42), 
among the MMPs, only MMP12 is a risk factor for CTCL progres-
sion, as determined by transcriptional profiling (42). RANKL is 
expressed in skin cancers of apocrine origin such as EMPD and 
apocrine carcinoma (8, 37), and is released in its soluble form. 
Because monocyte-derived M2 macrophages produce MMP1 
and MMP25 by RANKL stimulation, TAMs in skin cancer of apo-
crine origin produce MMP1 and MMP25 at the tumor site (37). 
These reports suggest that TAMs stimulated by tumor stromal 
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factors play roles in the carcinogenesis of these skin cancers, and 
might be targets for molecular-targeted therapy in the future.

CliNiCAl beNeFiTS OF TAMs

The effects of Anticancer Drug for TAMs
Because TAMs comprise the immunosuppressive microenviron-
ment at the tumor site, they may be optimal therapeutic targets 
in cancer (1, 2, 4, 43–46). For example, Rogers et al. (44) reported 
the immunomodulatory effects of bisphosphonate on TAMs in 
patients with breast and prostate cancers upon the repolarization 
of TAMs into tumoricidal macrophages (44). More recently, sev-
eral reports have also focused on the immunomodulatory effects 
of chemotherapeutic reagents on TAMs (19, 47, 48). For example, 
a non-cytotoxic dose of paclitaxel decreased MDSCs and even 
blocked the immunosuppressive potential of MDSCs in a mouse 
melanoma model (47). More recently, Fujimura et al. (19) reported 
the immunomodulatory effects of cytotoxic anti-melanoma 
drugs, dacarbazine, nimustine hydrochloride, and vincristine, on 
TAMs both in vitro and in vivo by inhibition of STAT3 signals 
(19). The authors concluded that their immunomodulatory effects 
could explain their antitumor effects in postoperative melanoma 
patients. Peplomycin administered through a superficial tempo-
ral artery using an intravascular indwelling catheter, which can 
cause dose-independent interstitial pneumonia (49), decreased 
the number of TAMs and Tregs in cSCC on the lips, leading to 
an increase in the number of immunoreactive cells at the tumor 
sites (50), and possible autoimmune-like interstitial pneumonia  
(49, 50). More recently, not only cytotoxic chemotherapeutic 
drugs but also low molecular weight compounds were reported 
to co-localize with TAMs at tumor sites. Indeed, Hu-Lieskovan 
et al. (13) reported that single-agent dabrafenib increased TAMs 
and Tregs in melanoma, which decreased with the addition of 
trametinib, leading to the synergistic effects of immune check-
points inhibitors with dabrafenib and trametinib combination 
therapy. In another report, the anti-macrophage receptor with col-
lagenous structure was reported to polarize TAMs into proinflam-
matory phenotypes to induce anti-melanoma immune response 
in B16 melanomas (51). In addition, Gordon et al. (52) reported 
that inhibition of PD-1/PD-L1 in  vivo increased macrophage 
phagocytosis, reduced tumor growth, and prolonged the survival 
of macrophages. In another report, increasing expression levels of 
PD-L1 in TAMs, 2 months after the administration of anti-PD-1 
Abs in patients with advanced melanoma, was correlated with the 
response to immunotherapy (53), suggesting that PD-L1 expres-
sion in TAMs could be a biomarker that predicts the effectiveness 
of anti-PD-1 Ab therapy. Because the anti-PD-1 Abs nivolumab 
and pembrolizumab are widely used to treat advanced cancer, 
including melanoma (53), one target of anti-PD-1 Abs in patients 
with advanced melanoma could be an immunomodulatory effect 
on TAM, which, in turn, might be correlated with both their effec-
tiveness and the development of adverse events. TAMs produce 
not only chemokines that directly recruit immunosuppressive 
cells to the tumor microenvironment but also produce cytokines 
that stimulate other stromal cells such as fibroblasts to produce 
chemokines (54, 55). Indeed, Young et  al. (54) reported that 
IL-1β from TAMs stimulate fibroblasts to produce CXCR2 ligand, 

which plays crucial roles in recruiting granulocytic MDSCs to 
tumor sites (55, 56). The authors concluded that CXCR2 agonists 
in combination with anti-CD115 Abs could suppress B16F10 
melanoma in vivo by inhibiting the recruitment of granulocytic 
MDSCs and depletion of immature TAMs (56). Interestingly, the 
antihuman CD115 Ab, emactuzumab, decreased the number of 
CD163+ CD206+ M2 macrophages in patients with melanoma 
by depleting immature TAMs before the IL-4 stimulation phase 
(57). Together, these reports suggest that anti-CXCR2 agonists in 
combination with emactuzumab might induce the antimelanoma 
immune response by reducing the number of M2 polarized TAMs. 
These reports suggest the significance of assessing the effects of 
chemotherapeutic drugs on TAMs (13, 19, 47, 49, 50).

TAMs as a biomarker for Disease Activity 
and Adverse events
As described above, because TAMs produce tumor-specific 
chemokines by the stimulation of stromal factors, chemokines 
might serve as biomarkers that reflect disease activity. For example, 
TAMs produced CCL18 in the lesional skin of CTCL (26), which 
reflect disease severity and prognosis (58). Immunomodulatory 
reagents such as IFNs and imiquimod reduce CCL22 from TAMs, 
leading to the therapeutic effects of them in mouse B16F10 mela-
noma models (7, 22). CCL5, which induces Th2 cells from naive 
T cells (59), reflects the cancer stage and disease progression in 
gastric cancers (60). Another TAM-associated factor, sCD163, 
could be a useful biomarker for cancer treatment, as it is an activa-
tion marker for CD163+ tissue macrophages that is present in the 
serum as a result of proteolytic shedding (61). Serum sCD163 
levels increase in autoimmune diseases such as atherosclerosis, 
rheumatoid arthritis, moyamoya disease, pemphigus vulgaris, 
and bullous pemphigoid (62–64), and reflect disease activity (61). 
Therefore, as we previously reported, sCD163 is a possible marker 
for predicting immune-related adverse events caused by immune 
checkpoints inhibitors (64, 65). These reports suggested that the 
production derived from TAMs could be a biomarker for cancer 
treatment in the future.

CONClUDiNg ReMARKS

Although several studies have suggested that high numbers of 
TAMs in tumor-bearing individuals are associated with a poor 
prognosis, making them useful as prognostic markers in cancer, 
further studies are needed to quantify their impact in different 
cancers.
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