FULL PAPER

Photo-induced hydrophilicity of brookite TiO_2 prepared by hydrothermal conversion from Mg_2TiO_4

Mitsuyoshi MACHIDA¹, Mariko KOBAYASHI¹ and Yoshikazu SUZUKI^{1,2,†}

¹Graduate School of Pure and Applied Sciences, University of Tsukuba, 1–1–1 Tennodai, Ibaraki 305–8573, Japan ²Faculty of Pure and Applied Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan

Super-hydrophilic titanium dioxide (TiO₂) photocatalysts with some *mild* oxidizing ability are favorable for the self-cleaning applications on plastic films. In this study, we have focused on brookite TiO₂ for such purposes. Brookite TiO₂ powders were synthesized by the hydrothermal conversion method using Mg₂TiO₄ as a precursor. Mg₂TiO₄ (1g) and 1 M HCl (30 mL) were put into a polytetrafluoroethylene (PTFE)-lined autoclave. The hydrothermal conversion was conducted at 110–150°C for 24 h. The photocatalytic oxidizing properties of brookite TiO₂/silicone films on glass substrates, prepared by the flow-coating method, were measured by methylene blue decomposition, and the photo-induced hydrophilicizing properties were evaluated using the contact angle of water under UV irradiation. The brookite TiO₂/silicone film prepared from the sample treated at 150°C exhibited well-balanced properties for self-cleaning applications.

©2018 The Ceramic Society of Japan. All rights reserved.

Key-words : Titanium dioxide, Brookite, Hydrothermal conversion, Mg₂TiO₄, Photocatalytic activity, Oxidizing property, Photo-induced hydrophilicity

[Received August 25, 2017; Accepted October 23, 2017]

1. Introduction

Titanium dioxide (TiO₂) has three naturally occurring polymorphs, i.e., anatase, rutile and brookite.^{1)–3)} Another very rare polymorph, bronze-type TiO₂ [TiO₂ (B)], is also naturally yielded.⁴⁾ Among these TiO₂ polymorphs, rutile and anatase TiO₂ are widely used for practical applications since they are easily synthesized and cost-effective. Thermally stable rutile TiO₂ is applied for white pigments, whereas thermally metastable anatase TiO₂ is applied for photocatalysts as well as for ingredients of various titanates. TiO₂ photocatalysts, particularly the anatase phase, have useful functions as for hydrogen production,^{5)–7)} oxidizing decomposition of organic compounds,^{8)–10)} antibacteria,^{11)–13)} photo-induced hydrophilicity (self-cleaning) and others.^{14)–17)}

In 1998–1999, Machida et al. focused on the selfcleaning functions of anatase TiO_2 and developed an anatase TiO_2/SiO_2 composite system with excellent hydrophilicity, even under dark conditions.¹⁸⁾ More recently, Machida et al.¹⁹⁾ have also reported on a long-term field testing of self-cleaning functions using anatase TiO_2/SiO_2 composite film; silicone resin with the hardening temperature of ~120°C was used as the SiO₂ precursor since a polyethylene-terephthalate (PET) film covering on a window-glass panel was used as the substrate. Despite the excellent hydrophilicity of the anatase TiO_2/SiO_2 composite film, the strong oxidizing ability of anatase TiO_2 also accelerated the formation of CaSO₄ from Ca²⁺ ions and SO_x gas in air, resulting in undesirable white precipitates on the PET-film-coated window glass.¹⁹

Here, we propose that TiO₂ with somewhat *milder* oxidizing ability maintaining hydrophilicity, perhaps brookite, is more suitable for the self-cleaning applications on plastic films. Brookite TiO₂ has a band-gap of \sim 3.0 eV, which is comparable to that of rutile TiO_2 . Brookite TiO_2 is metastable, much like anatase TiO2, but it is more difficult to synthesize than anatase.²⁰⁾ The literature on the synthesis of brookite TiO₂ is relatively limited. Ohtani et al.²¹⁾ reported the preparation of brookite and brookite/rutile TiO₂ mixture by air oxidation of TiCl₃ in an aqueous HCl solution. Pottier et al.²²⁾ reported the synthesis of brookite and brookite/rutile TiO₂ by pyrolysis of TiCl₄ in concentrated HCl solutions. Zheng et al.²³⁾ reported the preparation of brookite TiO_2 from $Ti(SO_4)_2$ and $TiCl_4$ as precursors under hydrothermal conditions. The hydrothermal temperatures of brookite formation from Ti(SO₄)₂ and TiCl₄ were \geq 250 and \geq 200°C, respectively. Tomita et al.²⁴⁾ successfully prepared single-phase brookite TiO₂ by hydrothermal treatment of (NH₄)₆[Ti₄(C₂H₂O₃)₄(C₂H₃O₃)₂- $(O_2)_4O_2$ · 4H₂O complex. This precursor is particularly effective for obtaining single-phase brookite TiO2, but synthesis of the precursor requires torturous multi-step reactions.

Recently, Kozawa et al.²⁵⁾ have developed an alternative

[†] Corresponding author: Y. Suzuki; E-mail: suzuki@ims. tsukuba.ac.jp

route to preparation of brookite TiO_2 involving hydrothermal conversion method from Mg₂TiO₄. Hydrothermal conversion of Mg₂TiO₄ to brookite TiO₂ proceeded in 1 M HCl solution as low as at 100°C.²⁵⁾ A simple solid state reaction at 1250°C was used to synthesize the Mg₂TiO₄ precursor. The authors evaluated some photocatalytic activities of the synthesized brookite (i.e., the oxidizing ability of benzyl alcohol), but the photo-induced hydrophilicity (self-cleaning) has not yet been reported.

The purpose of the present study is to achieve a balance between oxidizing and hydrophilicizing abilities of TiO_2 photocatalyst. Super-hydrophilic photocatalysts with a *mild* oxidizing ability have been achieved by brookite TiO_2 . Brookite TiO_2 powders were synthesized by hydrothermal conversion of Mg₂TiO₄ and their photocatalytic activities, especially their photo-induced hydrophilicity, were investigated.

2. Experimental procedures

2.1 Synthesis of brookite TiO₂ by hydrothermal conversion

Brookite TiO₂ powders were synthesized by hydrothermal conversion using Mg₂TiO₄ as a precursor (i.e. Kozawa method),²⁵⁾ as shown in **Fig. 1**. At first, Mg₂TiO₄ powder was synthesized by a solid-state reaction between MgCO₃ (basic) [or more precisely, hydromagnesite, Mg₅-(CO₃)₄(OH)₂·4H₂O] and anatase TiO₂ powders (both 99.9% purity, Kojundo Chemical Laboratory Co., Ltd.). Prior to weighing, TG–DTA analysis (up to 1000°C, DTA-50, Shimadzu) was conducted on the MgCO₃ (basic) powder to determine the weight-loss during the heating.

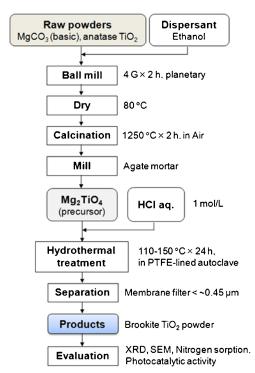


Fig. 1. Schematic flow of the synthetic procedure of brookite TiO_2 .

With compositional calibration using the TG–DTA results, $MgCO_3$ (basic) and TiO_2 powders (Mg:Ti = 2:1 in molar ratio) were planetary ball-milled (acceleration: 4G, Pulversette 6, Fritsch) with ZrO_2 balls in ethanol for 2h. The mixed slurries were vacuum dried, and the dried powders were placed in an oven at 80°C for 1 h. The mixed powder was calcined in an alumina crucible at 1250°C for 2 h in air.

The synthesized Mg₂TiO₄ powder (1 g) and 1 mol/L HCl (30 mL) were put into an autoclave with a polytetra-fluoroethylene inner container (50 mL of inner volume, HU-50, San-Ai Kagaku Co. Ltd.). Hydrothermal conversion was conducted at 110–150°C for 24 h in a static condition. The resulting products (i.e., brookite TiO₂ powders) were collected using membrane filters (opening: \sim 0.45 µm), washed with distilled water and then dried at 80°C.

2.2 Materials characterization

The constituent phases of the samples were analyzed by X-ray diffraction (XRD, Multiflex, Cu-K_{α}, 40 kV and 40 mA, Rigaku) at a scanning rate of 4 °/min in the 2 θ range of 10–70°. The microstructure of the Mg₂TiO₄ and brookite TiO₂ powders was observed by scanning electron microscopy (SEM, SU-70, Hitachi High-Technologies). The nitrogen adsorption/desorption isotherms at 77 K of brookite TiO₂ powders were measured using a gas sorption analyzer (Autosorb-3-AG, Quantachrome).

2.3 Thin film preparation

Coating suspensions were prepared with brookite powders and silicone binder (N-103X, Colcoat Co. Ltd.) with the weight ratio of TiO₂:silicone = 1:1. The solid contents of the coating suspensions were adjusted to 2.5 wt % by adding ethanol. The brookite/silicone suspensions were coated on slide glass (S1214, Matsunami Glass Ind., Ltd.) using the flow-coating method. The coated glass samples were cured at 80°C to obtain hard thin films. As references, P25 TiO₂ (Nippon Aerosil)/silicone film and silicone-only film were also prepared by the flow-coating method.

2.4 Measurement of photocatalytic activities

Photocatalytic methylene blue (MB) decomposition was evaluated as an oxidizing ability test. Thin film samples were soaked in 20 µmol/L MB aqueous solution for 16 h and dried for 1 h at room temperature. The starting absorbance at 664 nm (Abs_0) was measured using a UV– Vis spectrophotometer (UV-1280, Shimadzu) before UV irradiation. The surface of the thin film was UV irradiated with 20-W BLB fluorescent light (FL20SBL-B, NEC Corp) until the UV intensity (300–410 nm) reached 0.95 mW/cm² (measured by C9536-01/H9958-01, Hamamatsu Photonics K. K.). The intermediate and ending absorbances (Abs_1) were measured in the same way after 24 h. The decomposition rate (ΔAbs) was calculated by the following equation:

$$\Delta Abs = Abs_{\rm t} - Abs_0 \tag{1}$$

As concerns the hydrophilic properties, the contact angle of water on the surface of the thin film was measured using a contact angle meter (CA-X150, Kyowa Interface Science Co., Ltd.) 30 s after the water-dropping with a microsyringe to the surface, while irradiating the surface of the thin film with UV rays for 48 h with a 20-W BLB fluorescent light until the UV intensity (300–410 nm) reached 0.95 mW/cm².

3. Results and discussion

3.1 Phase analysis

Figure 2 shows the XRD patterns of the powders before and after hydrothermal treatment. The powder before hydrothermal treatment consisted of single-phase Mg₂TiO₄, as shown in Fig. 2(a). After hydrothermal treatment, the products became brookite TiO₂ with a minor rutile component of TiO₂, as shown in Figs. 2(b)–2(d), which is in good agreement with the literature.²⁵⁾ The shapes of the XRD profiles suggest that the crystallinity of the obtained brookite phase increased with increases in the hydrothermal temperature.

The weight fractions of brookite and rutile TiO_2 can be estimated from the following empirical equation proposed by Zhang and Banfield:^{26),27)}

$$W_{\rm B} = \frac{2.721A_{\rm B}}{A_{\rm R} + 2.721A_{\rm B}} \tag{2}$$

where $W_{\rm B}$ represents the weight fraction of brookite, and $A_{\rm B}$ and $A_{\rm R}$ represent the integrated intensities of the peaks of brookite 121 and rutile 110, respectively. **Table 1**

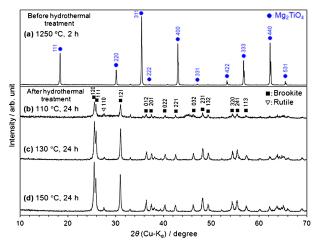


Fig. 2. XRD patterns of the samples (a) before hydrothermal treatment and (b)–(d) after hydrothermal treatment: (b) at 110° C for 24 h, (c) at 130° C for 24 h, and (d) at 150° C for 24 h.

Table 1. Weights fraction of brookite and rutile TiO_2 estimated from XRD integrated intensities

Hydrothermal conditions	Brookite (wt%)	Rutile (wt %)
110°C, 24 h	94.2	5.8
130°C, 24 h	96.8	3.2
150°C, 24 h	97.2	2.8

summarizes the weight fractions of the brookite and rutile TiO_2 phases estimated from the XRD integrated intensities. Although we should note the possibility of remnant amorphous TiO_2 and anatase TiO_2 , based on the current XRD analyses, the hydrothermal conversion method yielded ~94 and ~97% brookite at 110 and 150°C, respectively. Considering the ease of processing, these values are sufficiently high for potential applications.

3.2 Microstructure

Figures 3(a) and 3(b) show the microstructure of the Mg₂TiO₄ powder, i.e., before hydrothermal treatment. Due to the solid-state synthesis, the Mg₂TiO₄ powder consisted of angular particles (ca. 1-3 µm in diameter) with irregular shapes and smooth surfaces, similar to those observed in the previous report.²⁵⁾ After hydrothermal treatment at 110°C for 24 h, the macroscopic shapes of the product were nearly unchanged from those of the initial Mg₂TiO₄ [Fig. 3(c)]. Judging from the broad XRD pattern, however, these micrometer-sized particles were thought to be composed of aggregates of much finer brookite TiO₂ nanoparticles. A large number of minute particles (ca. 50-100 nm) was deposited on the micrometer-sized particles, moreover, and some pores were observed on a part of these [Fig. 3(d)]. As is explained by Kozawa et al.,²⁵⁾ these pores were likely formed by the serious lattice shrinkage (57%) from Mg₂TiO₄ (601 Å³) into brookite TiO_2 (257 Å³) during the following reaction under hydrothermal conditions:

 $Mg_{2}TiO_{4} + 4HCl$ $\rightarrow TiO_{2} + 2MgCl_{2} \text{ (soluble in water)} + 2H_{2}O$

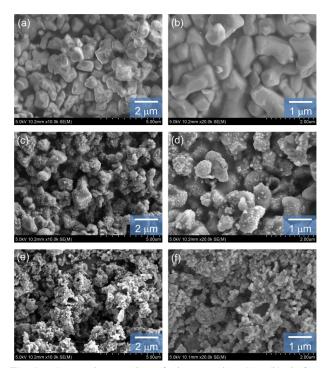


Fig. 3. SEM photographs of the samples (a), (b) before hydrothermal treatment, and (c), (d) after hydrothermal treatment: (c), (d) at 110° C for 24 h, and (e), (f) at 150° C for 24 h.

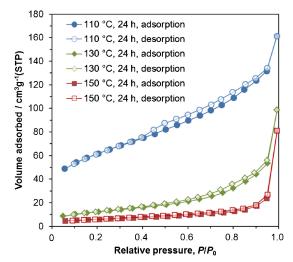


Fig. 4. Nitrogen adsorption/desorption isotherms of brookite TiO₂ powders obtained by hydrothermal conversion.

After hydrothermal treatment at 150° C for 24 h, the initial macroscopic shapes of Mg₂TiO₄ tended to collapse [Fig. 3(e)], and brookite TiO₂ particles typically became 50–200 nm in diameter [Fig. 3(f)], and started to become facetted (also see in Fig. S1).

3.3 Nitrogen sorption analyses

Figure 4 presents the N₂ adsorption/desorption isotherms for the brookite TiO₂ powders. Judging from the IUPAC type-IV hysteresis loop, the powder obtained from the treatment at 110°C contained mesopores. The specific surface area calculated by the BET method using the adsorption isotherm was relatively large, $207 \text{ m}^2/\text{g}$. From the BJH analysis of the desorption curve, the diameter of the mesopores was estimated at 3.5 nm in diameter. The powder obtained from the treatment at 150°C contained almost no mesopores, and its surface area was relatively small, $20.6 \text{ m}^2/\text{g}$.

3.4 Photocatalytic methylene blue (MB) decomposition

Figure 5 shows the MB decomposition rates as a function of UV irradiation time for the thin film samples composed of TiO₂/silicone. As expected, P25 TiO₂ (anatase:rutile ~ 4:1)/silicone film showed the highest oxidizing ability. The brookite TiO₂/silicone film prepared from the powder treated at 150°C showed the second highest oxidizing ability (nearly half of that of P25 TiO₂). The oxidizing ability of the brookite TiO₂/silicone film prepared from the powder treated at 110°C decreased to nearly half of that of prepared from the powder treated at 110°C decreased to nearly half of that of prepared from the powder treated at 150°C. Although the 110°C sample had higher specific surface area than 150°C sample, its lower crystallinity as well as the inaccessibility in its inner surfaces though mesopore channels presumably led to the lower photocatalytic activity.

3.5 Photo-induced hydrophilicity

Figure 6 presents the water contact angle as a function

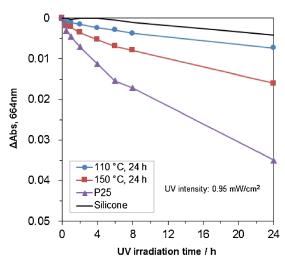


Fig. 5. Methylene blue (solid-state) decomposition under UV irradiation of brookite TiO_2 thin films prepared from synthesized brookite TiO_2 powders. P25 TiO_2 film and silicone-only film were also measured as references.

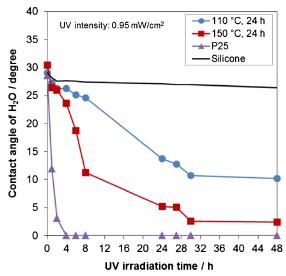


Fig. 6. Contact angles of water under UV irradiation of brookite TiO_2 thin films prepared from brookite TiO_2 powders obtained by hydrothermal treatment. P25 TiO_2 film and silicone-only film were also measured as references.

of UV irradiation time for the thin film samples composed of TiO₂/silicone. The thin film sample with silicone-only (as a controlled sample) showed almost no change in the water contact angle under UV irradiation. The contact angle of water for the film composed of TiO₂ treated at 150°C became super-hydrophilic, with a contact angle such as <5°, with about 24 h UV irradiation. In the film containing TiO₂ treated at 110°C, on the other hand the contact angle of water decreased to ~10°, even when the film was irradiated with UV rays for 48 h.

The XRD results suggest that the crystallinity of brookite hydrothermally treated at 150° C is higher than that treated at 110° C. In general, photocatalytic activity increases with increases in the crystallinity of TiO₂. Hence, it is considered that the contact angle of water with the film composed of brookite TiO_2 treated at 150°C decreased more quickly than that at 110°C, and the final contact angle also became lower.

The contact angle of water for the film composed of Aerosil P25 became $<5^{\circ}$ within 2 h of UV irradiation. This result indicates that the photocatalytic activity of anatase/ rutile TiO₂ is remarkably higher than that of the brookite TiO₂ prepared in this study. As proposed in the introduction, we consider the repression of photocatalytic oxidizing ability and preservation of photo-induced hydrophilic ability to be key factors for self-cleaning applications. These results suggest that the oxidizing ability can be controlled by using brookite TiO₂ while maintaining the hydrophilic ability.

4. Conclusions

Here brookite TiO_2 powders were synthesized from Mg_2TiO_4 by hydrothermal conversion. The photocatalytic oxidizing ability and the photo-induced hydrophilicity were evaluated under UV irradiation. These evaluations led to the following conclusions:

- (1) About 94% brookite TiO₂ powders with a minor rutile TiO₂ component were obtained by hydrothermal conversion at 110°C, and 97% at 150°C. SEM observation indicated that hydrothermal conversion proceeded with little change of the macroscopic morphology of precursor grains at a lower temperature, but the morphology tended to collapse at a higher temperature. The brookite TiO₂ powder obtained with the treatment at 110°C was composed of aggregated nanoparticles with a mesoporous structure (pore size: 3.5 nm in diameter) and had a relatively large specific surface area of $207 \text{ m}^2/\text{g}$. The powder obtained with the treatment at 150°C was composed of facetted (well-crystalized) submicronsized particles without mesopores and with a small specific surface area of $20.6 \text{ m}^2/\text{g}$.
- (2) As expected, brookite TiO₂ showed a *mild* oxidizing ability while maintaining hydrophilicity. For the photocatalytic oxidization (methylene blue decomposition under UV irradiation), the decomposition rates of the brookite TiO₂ films prepared from powders treated at 110°C and 150°C were about 1/4 and 1/2 those of P-25 TiO₂ film. In the measurement of photo-induced hydrophilicity, the contact angle of water for the film composed of TiO₂ treated at 150°C became super-hydrophilic with about 24 h UV irradiation. Super-hydrophilic brookite TiO₂ films with a mild oxidizing ability can be considered favorable for use in plastic-film-coated window glass for a self-cleaning function.

Acknowledgments A part of this work was supported by JSPS KAKENHI Grant Number JP16H04212 for Basic Research: Category B, and Joint Research Project of JWRI, Osaka University. The authors wish to thank Prof. Takahiro Kozawa of JWRI for his helpful discussions. Dr. Peter E. D. Morgan and an anonymous reviser kindly checked the English.

References

- J. F. Banfield, B. L. Bischoff and M. A. Anderson, *Chem. Geol.*, 110, 211–231 (1993).
- D. Dambournet, I. Belharouak and K. Amine, *Chem. Mater.*, 22, 1173–1179 (2010).
- Z. G. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. H. Wang, J. Zhang, G. Graff and J. Liu, *J. Power Sources*, 192, 588–598 (2009).
- J. F. Banfield, D. R. Veblen and D. J. Smith, Am. Mineral., 76, 343–353 (1991).
- A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn., 44, 1148–1150 (1971).
- B. Ohtani, Y. Ogawa and S. Nishimoto, J. Phys. Chem. B, 101, 3746–3752 (1997).
- 7) T. Sreethawong, Y. Suzuki and S. Yoshikawa, C. R. Chim., 9, 307–314 (2006).
- T. N. Obee and R. T. Brown, *Environ. Sci. Technol.*, 29, 1223–1231 (1995).
- 9) T. Ohno, K. Tokieda, S. Higashida and M. Matsumura, *Appl. Catal. A-Gen.*, **244**, 383–391 (2003).
- M. Andersson, L. Österlund, S. Ljungström and A. Palmqvist, *J. Phys. Chem. B*, **106**, 10674–10679 (2002).
- S.-Y. Kwak, S. H. Kim and S. S. Kim, *Environ. Sci. Technol.*, 35, 2388–2394 (2001).
- 12) M. Machida, K. Norimoto and T. Kimura, J. Am. Ceram. Soc., 88, 95–100 (2005).
- A. Kubacka, M. Ferrer, A. Martínez-Arias and M. Fernández-García, *Appl. Catal. B-Environ.*, 84, 87–93 (2008).
- S. Banerjee, D. D. Dionysiou and S. C. Pillai, *Appl. Catal. B-Environ.*, 176, 396–428 (2015).
- S. Permpoon, M. Fallet, G. Berthome, B. Baroux, J. C. Joud and M. Langlet, *J. Sol-Gel Sci. Technol.*, 35, 127– 136 (2005).
- 16) S. M. Kim, I. In and S. Y. Park, Surf. Coat. Tech., 294, 75–82 (2016).
- E. Quagliarini, F. Bondioli, G. B. Goffredo, A. Licciulli and P. Munafo, J. Cult. Herit., 14, 1–7 (2013).
- M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto and A. Fujishima, J. Mater. Sci., 34, 2569–2574 (1999).
- 19) M. Machida, K. Norimoto and M. Yamamoto, J. Ceram. Soc. Jpn., 125, 168–174 (2017).
- A. D. Paola, M. Bellardita and L. Palmisano, *Catalysis*, 3, 36–73 (2013).
- B. Ohtani, J. Hanada, S. Nishimoto and T. Kagaya, *Chem. Phys. Lett.*, **120**, 292–294 (1985).
- 22) A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles and J. P. Jolivet, *J. Mater. Chem.*, 11, 1116–1121 (2001).
- 23) Y. Zheng, E. Shi, S. Cui, W. Li and X. Hu, J. Mater. Sci. Lett., 19, 1445–1448 (2000).
- 24) K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura and M. Kakihana, *Angew. Chem. Int. Edit.*, 45, 2378–2381 (2006).
- 25) T. Kozawa, H. Hattori, S. Ogo, Y. Ide and Y. Suzuki, J. Mater. Sci., 48, 7969–7973 (2013).
- 26) H. Zhang and J. F. Banfield, J. Phys. Chem. B, 104, 3481–3487 (2000).
- H. Xu and L. Zhang, J. Phys. Chem. C, 113, 1785–1790 (2009).