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Abstract

In this paper, we consider asymptotic properties of the support vector machine
(SVM) in high-dimension, low-sample-size (HDLSS) settings. We show that the
hard-margin linear SVM holds a consistency property in which misclassification
rates tend to zero as the dimension goes to infinity under certain severe conditions.
We show that the SVM is very biased in HDLSS settings and its performance is
affected by the bias directly. In order to overcome such difficulties, we propose a
bias-corrected SVM (BC-SVM). We show that the BC-SVM gives preferable per-
formances in HDLSS settings. We also discuss the SVMs in multiclass HDLSS
settings. Finally, we check the performance of the classifiers in actual data analy-
ses.
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1. Introduction

High-dimension, low-sample-size (HDLSS) data situations occur in many ar-
eas of modern science such as genetic microarrays, medical imaging, text recog-
nition, finance, chemometrics, and so on. Suppose we have independent andd-
variate two populations,πi, i = 1, 2, having an unknown mean vectorµi and
unknown covariance matrixΣi (≥ O). We assume that tr(Σi)/d ∈ (0,∞) as
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d → ∞ for i = 1, 2. Here, for a function,f(·), “f(d) ∈ (0,∞) asd → ∞”
implies lim infd→∞ f(d) > 0 andlim supd→∞ f(d) < ∞. Let ∆ = ∥µ1 − µ2∥2,
where∥ · ∥ denotes the Euclidean norm. We assume thatlim supd→∞ ∆/d < ∞.
We have independent and identically distributed (i.i.d.) observations,xi1, ..., xini

,
from eachπi. We assumeni ≥ 2, i = 1, 2. Let x0 be an observation vector of an
individual belonging to one of the two populations.We assumex0 andxijs are
independent.Let N = n1 + n2.

In the HDLSS context, Hall et al. (2005), Marron et al. (2007) and Qiao et
al. (2010) considered distance weighted classifiers. Hall et al. (2008), Chan and
Hall (2009) and Aoshima and Yata (2014) considered distance-based classifiers.
In particular, Aoshima and Yata (2014) gave the misclassification rate adjusted
classifier for multiclass, high-dimensional data in which misclassification rates
are no more than specified thresholds. On the other hand, Aoshima and Yata
(2011, 2015a) considered geometric classifiers based on a geometric representa-
tion of HDLSS data. Ahn and Marron (2010) considered a classifier based on the
maximal data piling direction. Aoshima and Yata (2015b) considered quadratic
classifiers in general and discussed asymptotic properties and optimality of the
classifies under high-dimension, non-sparse settings. In particular, Aoshima and
Yata (2015b) showed that the misclassification rates tend to0 asd increases, i.e.,

e(i) → 0 asd → ∞ for i = 1, 2 (1)

under the non-sparsity such as∆ → ∞ asd → ∞, wheree(i) denotes the error
rate of misclassifying an individual fromπi into the other class. We call (1) “the
consistency property”. We note that a linear classifier can give such a preferable
performance under the non-sparsity. Also, such non-sparse situations often appear
in real high-dimensional data. See Aoshima and Yata (2015b) for the details.
Hence, in this paper, we focus on linear classifiers.

In the field of machine learning, there are many studies about the classification
in the context of supervised learning. A typical method is the support vector ma-
chine (SVM). The SVM has versatility and effectiveness both for low-dimensional
and high-dimensional data. See Vapnik (2000), Schölkopf and Smola (2002),
Hall et al. (2005), Hastie et al. (2009) and Qiao and Zhang (2015) for the
details. Even though the SVM is quite popular, its asymptotic properties seem to
have not been studied sufficiently. In this paper, we investigate asymptotic prop-
erties of the SVM for HDLSS data.

Now, let us use the following toy examples to see the performance of the hard-
margin linear SVM given by (5). We setN = 20 andd = 2s, s = 5, ..., 11.
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Independent pseudo random observations were generated fromπi : Nd(µi,Σi),
i = 1, 2. We setµ1 = 0 and µ2 = (1/3, ..., 1/3)T , so that∆ = d/9. We
considered three cases:

(a) (n1, n2) = (10, 10) andΣ1 = Σ2 = Id;
(b) (n1, n2) = (6, 14) andΣ1 = Σ2 = Id; and
(c) (n1, n2) = (10, 10), Σ1 = 0.6Id andΣ2 = 1.4Id,

whereId denotes thed-dimensional identity matrix. Note that∆ > |tr(Σ1)/n1 −
tr(Σ2)/n2| for (a) to (c). Then, from Theorem 1 in Hall et al. (2005), the classifier
should hold (1) for (a) to (c). We repeated 2000 times to confirm if the classifier
does (or does not) classifyx0 ∈ πi correctly and definedPir = 0 (or 1) accord-
ingly for eachπi (i = 1, 2). We calculated the error rates,e(i) =

∑2000
r=1 Pir/2000,

i = 1, 2. Also, we calculated the average error rate,e = {e(1) + e(2)}/2.
Their standard deviations are less than0.0112 from the fact that Var{e(i)} =
e(i){1 − e(i)}/2000 ≤ 1/8000. In Figure 1, we plottede(1), e(2) ande for (a)
to (c). We observe that the SVM gives a good performance asd increases for (a).
Contrary to expectations, it leads undesirable performances both for (b) and (c).
The error rates becomes small asd increases, however,e(1) ande(2) are quite
unbalanced. We discuss some theoretical reasons in Section 2.2.

In this paper, we investigate the SVM in the HDLSS context. In Section 2,
we show that the SVM holds (1) under certain severe conditions. We show that
the SVM is very biased in HDLSS settings and its performance is affected by the
bias directly. In order to overcome such difficulties, we propose a bias-corrected
SVM (BC-SVM) in Section 3. We show that the BC-SVM improves the SVM
even whennis orΣis are unbalanced as in (b) or (c) in Figure 1. In Section 4,
we check the performance of the BC-SVM by numerical simulations and use the
BC-SVM in actual data analyses. In Section 5, we discuss multiclass SVMs in
HDLSS settings.

2. SVM in HDLSS Settings

In this section, we give asymptotic properties of the SVM in HDLSS settings.
Since HDLSS data are linearly separable by a hyperplane, we consider the hard-
margin linear SVM.

2.1. Hard-margin linear SVM
We consider the following linear classifier:

y(x) = wT x + b, (2)
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Figure 1: The performance of the SVM given by (5) in HDLSS settings. The
left panel displayse(1), the right panel displayse(2) and the top panel displayse.
Their standard deviations are less than0.0112.

wherew is a weight vector andb is an intercept term. Let us write that(x1, ..., xN) =
(x11, ..., x1n1 ,x21, ..., x2n2). Let tj = −1 for j = 1, ..., n1 and tj = 1 for
j = n1 + 1, ..., N . The hard-margin SVM is defined by maximizing the small-
est distance of all observations to the separating hyperplane. The optimization
problem of the SVM can be written as follows:

argmin
w,b

1

2
∥w∥2 subject to tj(w

T xj + b) ≥ 1, j = 1, ..., N .

A Lagrangian formulation is given by

L(w, b; α) =
1

2
||w||2 −

N∑
j=1

αj{tj(wT xj + b) − 1},

whereα = (α1, ..., αN)T andαjs are Lagrange multipliers. By differentiating the
Lagrangian formulation with respect tow andb, we obtain the following condi-
tions:

w =
N∑

j=1

αjtjxj and
N∑

j=1

αjtj = 0.
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After substituting them intoL(w, b; α), we obtain the dual form:

L(α) =
N∑

j=1

αj −
1

2

N∑
j=1

N∑
k=1

αjαktjtkx
T
j xk. (3)

The optimization problem can be transformed into the following:

argmax
α

L(α)

subject to

αj ≥ 0, j = 1, ..., N, and
N∑

j=1

αjtj = 0. (4)

Let us write that

α̂ = (α̂1, ..., α̂N)T = argmax
α

L(α) subject to (4).

There exist somexjs satisfying thattjy(xj) = 1 (i.e., α̂j ̸= 0). Suchxjs are
called the support vector. Let̂S = {j|α̂j ̸= 0, j = 1, ..., N} andNŜ = #Ŝ,
where#A denotes the number of elements in a setA. The intercept term is given
by

b̂ =
1

NŜ

∑
j∈Ŝ

(
tj −

∑
k∈Ŝ

α̂ktkx
T
j xk

)
.

Then, the linear classifier in (2) is defined by

ŷ(x) =
∑
k∈Ŝ

α̂ktkx
T
k x + b̂. (5)

Finally, in the SVM, one classifiesx0 into π1 if ŷ(x0) < 0 and intoπ2 otherwise.
See Vapnik (2000) for the details.

2.2. Asymptotic properties of the SVM in the HDLSS context

In this section, we consider the case whend → ∞ while N is fixed. We
assume the following assumptions:

(A-i)
Var(∥xik − µi∥2)

∆2
→ 0 asd → ∞ for i = 1, 2;
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(A-ii)
tr(Σ2

i )

∆2
→ 0 asd → ∞ for i = 1, 2.

Note that Var(∥xik − µi∥2) = 2tr(Σ2
i ) whenπi is Gaussian, so that (A-i) and

(A-ii) are equivalent whenπis are Gaussian.

Lemma 1. Under (4), it holds that asd → ∞

L(α) =
N∑

j=1

αj−
∆

8

( N∑
j=1

αj

)2

{1+op(1)}−1

2

(
tr(Σ1)

n1∑
j=1

α2
j +tr(Σ2)

N∑
j=n1+1

α2
j

)
.

Let δ = tr(Σ1)/n1 + tr(Σ2)/n2 and∆∗ = ∆ + δ. Under the constraint that∑N
j=1 αj = C for a given positive constantC, we can claim that

max
α

{
− 1

2

(
tr(Σ1)

n1∑
j=1

α2
j + tr(Σ2)

N∑
j=n1+1

α2
j

)}
= −C2

8
δ (6)

whenα1 = · · · = αn1 = C/(2n1) andαn1+1 = · · · = αN = C/(2n2) under (4).
Then,by noting thatlim infd→∞{tr(Σi)/(∆ni)} > 0 for i = 1, 2, from Lemma 1
it holds that

max
α

L(α) = −∆∗

8

(
C − 4 + op(1)

∆∗

)2

{1 + op(1)} +
2 + op(1)

∆∗
(7)

for given C(> 0). Hence, by choosingC ≈ 4/∆∗, we have the maximum of
L(α) asymptotically.

Lemma 2. It holds that asd → ∞

α̂j =
2

∆∗n1

{1 + op(1)} for j = 1, ..., n1; and

α̂j =
2

∆∗n2

{1 + op(1)} for j = n1 + 1, ..., N.

Furthermore, it holds that asd → ∞

ŷ(x0) =
(−1)i∆

∆∗
+

tr(Σ1)/n1 − tr(Σ2)/n2

∆∗
+ op

( ∆

∆∗

)
whenx0 ∈ πi, i = 1, 2.
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Remark 1. From Lemma 2, all the data points are the support vectors under (A-i)
and (A-ii) in the HDLSS context. Ahn and Marron (2010) called this phenomenon
the “data piling”. See Sections 1 and 2 in Ahn and Marron (2010) for the details.

Let κ = tr(Σ1)/n1 − tr(Σ2)/n2. From Lemma 2, it holds that asd → ∞

∆∗

∆
ŷ(x0) = (−1)i +

κ

∆
+ op(1) (8)

whenx0 ∈ πi, i = 1, 2. Hence, “κ/∆” is the bias term of the (normalized) SVM.
We consider the following assumption:

(A-iii) lim sup
d→∞

|κ|
∆

< 1.

Theorem 1. Under (A-i) to (A-iii), the SVM holds (1).

Corollary 1. Under (A-i) and (A-ii), the SVM holds the following properties:

e(1) → 1 and e(2) → 0 asd → ∞ if lim inf
d→∞

κ

∆
> 1; and

e(1) → 0 and e(2) → 1 asd → ∞ if lim sup
d→∞

κ

∆
< −1.

Remark 2. For the SVM, Hall et al. (2005) and Qiao and Zhang (2015) also
showed (1) and the results in Corollary 1 under different conditions. We empha-
size that (A-i), (A-ii) and (A-iii) are milder than their conditions. Moreover, we
can evaluate the bias of the SVM by using (8).

We expect from (8) that, for sufficiently larged, e(1) and e(2) for the SVM
become small ande(1) (or e(2)) is larger thane(2) (or e(1)) if κ/∆ > 0 (or
κ/∆ < 0). Actually, in Figure 1, we observe thate(1) is larger thane(2) for (b) in
which κ/∆ = 6/7 ande(2) is larger thane(1) for (c) in whichκ/∆ = −18/25.
As for (a) in whichκ = 0, the SVM gives a preferable performance.

2.3. Asymptotic properties of the SVM when bothd andN tend to infinity

In this section, we give asymptotic properties of the SVM when bothd,N →
∞ while N/d → 0. One may considerN = O(log d) for example. We assume
the following assumptions:

(A-i’)
NVar(∥xik − µi∥2)

∆2
→ 0 asd, N → ∞ for i = 1, 2;
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(A-ii’)
N2tr(Σ2

i )

∆2
→ 0 asd,N → ∞ for i = 1, 2;

(A-iv) lim inf
d,N→∞

tr(Σi)

∆ni

> 0 for i = 1, 2.

Note that∆2/tr(Σ2
i ) = O(d) from the facts thatlim supd→∞ ∆/d < ∞ and

tr(Σi)/d ∈ (0,∞) asd → ∞ for i = 1, 2. Thus,N = o(d1/2) when (A-ii’) is
met.

Lemma 3. Under (A-i’), (A-ii’) and (A-iv), it holds that asd,N → ∞

ŷ(x0) =
(−1)i∆

∆∗
+

κ

∆∗
+ op

( ∆

∆∗

)
whenx0 ∈ πi for i = 1, 2.

Corollary 2. Under (A-i’), (A-ii’) and (A-iv), the SVM holds the following prop-
erties:

e(1) → 0 and e(2) → 0 asd,N → ∞ if lim sup
d,N→∞

|κ|
∆

< 1;

e(1) → 1 and e(2) → 0 asd,N → ∞ if lim inf
d,N→∞

κ

∆
> 1; and

e(1) → 0 and e(2) → 1 asd,N → ∞ if lim sup
d,N→∞

κ

∆
< −1.

3. Bias-Corrected SVM

As discussed in Section 2.2, iflim infd→∞ |κ|/∆ > 0, the SVM gives an unde-
sirable performance. From Corollary 1, iflim infd→∞ |κ|/∆ > 1, one should not
use the SVM. In order to overcome such difficulties, we consider a bias correction
of the SVM.

We estimateµi and Σi by xini
=

∑ni

j=1 xij/ni and Sini
=

∑ni

j=1(xij −
xini

)(xij −xini
)T /(ni − 1). We estimate∆∗ by ∆̂∗ = ∥x1n1 −x2n2∥2. Note that

E(∆̂∗) = ∆∗. Let κ̂ = tr(S1n1)/n1 − tr(S2n2)/n2. Note thatE(κ̂) = κ. First, we
consider the case whend → ∞ while N is fixed.

Lemma 4. Under (A-i) and (A-ii), it holds that asd → ∞

κ̂

∆̂∗
=

κ

∆∗
+ op

( ∆

∆∗

)
.
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Now, we define the bias-corrected SVM (BC-SVM) by

ŷBC(x0) = ŷ(x0) −
κ̂

∆̂∗
, (9)

whereŷ(x0) is given by (5). In the BC-SVM, one classifiesx0 intoπ1 if ŷBC(x0) <
0 and intoπ2 otherwise.

By combining (8) with Lemma 4, under (A-i) and (A-ii), it holds that asd →
∞

∆∗

∆
ŷBC(x0) = (−1)i + op(1) (10)

whenx0 ∈ πi, i = 1, 2.

Theorem 2. Under (A-i) and (A-ii), the BC-SVM holds (1).

Remark 3. One should note that the BC-SVM has the consistency property with-
out (A-iii). Chan and Hall (2009) considered a different bias correction for the
SVM. They showed the consistency property under some stricter conditions than
(A-i) and (A-ii).

Remark 4. Aoshima and Yata (2014) considered the distance-based classifier as
follows: One classifies an individual intoπ1 if yAY (x0) < 0 and intoπ2 otherwise,
whereyAY (x0) = {x0 − (x1n1 + x2n2)/2}T (x2n2 − x1n1) − tr(S1n1)/(2n1) +
tr(S2n2)/(2n2). Then, from Theorem 1 in Aoshima and Yata (2014), under (A-ii),
it holds that asd → ∞

(2/∆)yAY (x0) = (−1)i + op(1)

whenx0 ∈ πi, i = 1, 2.

When bothd,N → ∞, we have the following result.

Corollary 3. Under (A-i’), (A-ii’) and (A-iv), it holds for the BC-SVM thate(i) →
0 asd,N → ∞ for i = 1, 2.

4. Performances of Bias-Corrected SVM

In this section, we check the performance of the BC-SVM both in numerical
simulations and actual data analyses.
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(a) (n1, n2) = (10, 10) andΣ1 = Σ2 = Id (i.e.,κ = 0)

(b) (n1, n2) = (6, 14) andΣ1 = Σ2 = Id (i.e.,κ/∆ = 6/7)

(c) (n1, n2) = (10, 10), Σ1 = 0.6Id andΣ2 = 1.4Id (i.e.,κ/∆ = −18/25)

Figure 2: The performance of the BC-SVM in HDLSS settings. The error rates
are denoted by the solid lines for (a), (b) and (c). The left panels displaye(1),
the middle panels displaye(2) and the right panels displaye. The corresponding
error rates by the SVM are denoted by the dashed lines.Their standard deviations
are less than0.0112.

4.1. Simulations

First, we checked the performance of the BC-SVM by using the toy examples
in Figure 1. Similar to Section 1, we calculated the error rates,e(1), e(2) ande,
by 2000 replications and plotted the results in Figure 2. We laide(1), e(2) ande
for the SVM by borrowing from Figure 1. As expected theoretically, we observe
that the BC-SVM gives preferable performances even for (b) and (c) in which
lim infd→∞ |κ|/∆ > 0.

Next, we compared the performance of the BC-SVM with the SVM in com-
plex settings. We setµ1 = 0, Σ1 = B(0.3|i−j|1/3

)B andΣ2 = B(0.4|i−j|1/3
)B,
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where
B = diag[{0.5 + 1/(d + 1)}1/2, ..., {0.5 + d/(d + 1)}1/2].

Note that tr(Σ1) = tr(Σ2) = d. We considered two cases:

µ2 = (1, ..., 1, 0, ..., 0,−1, ...,−1)T (= µα(t), say) whose firstt/2 elements are
1 and lastt/2 elements are−1 for a positive even numbert; and
µ2 = (t1/2/2, t1/2/2, 0, ..., 0,−t1/2/2,−t1/2/2)T (= µβ(t), say) whose first two
elements aret1/2/2 and last two elements are−t1/2/2 for a positive numbert.

Note that∆ = t both forµα(t) andµβ(t). We generatedxij − µi, i = 1, 2; j =
1, 2, ..., independently either from (I)Nd(0,Σi), i = 1, 2, or (II) a d-variatet-
distribution,td(Σi, 10), i = 1, 2, with mean zero, covariance matrixΣi and de-
grees of freedom 10. Note that (A-i) holds under (A-ii) for (I). Letd∗ = 2⌈d2/3/2⌉,
where⌈x⌉ denotes the smallest integer≥ x. We considered four cases:

(d) µ2 = µα(d∗), (n1, n2) = (5, 25) andd = 2s, s = 6, ..., 12, for (I);
(e)µ2 = µα(d∗), d = 1000 and(n1, n2) = (4s, 8s), s = 1, ..., 7, for (II);
(f) d = 1000, (n1, n2) = (10, 20) andµ2 = µα(2s), s = 1, ..., 7, for (II); and
(g) d = 1000, (n1, n2) = (10, 20) andµ2 = µβ(2s), s = 1, ..., 7, for (II).

Note that∆ = d∗ = o(d) and (A-ii) holds for (d) and (e) from the fact that
tr(Σ2

i ) = O(d), i = 1, 2. Also, note that (A-i) holds for (d). However, (A-i) does
not hold for (e) and (A-iii) does not hold both for (d) and (e). For (f) and (g), we
note that∆ = 2s, s = 1, ..., 7. Especially, (g) is a sparse case such that the only
four elements ofµ1 − µ2 are nonzero.Similar to Section 1, we calculated the
error rates,e(1), e(2) ande, by 2000 replications and plotted the results in Figure
3.

We observe that the SVM gives quite bad performances for (d) in Figure 3.
The main reason must be due to the bias term in the SVM. Note thatκ/∆ → ∞
asd → ∞ for (d). Thuse(1) becomes close to1 asd increases. See Corollary 1
for the details.Also, the SVM gives bad performances for (e) to (g) whennis are
small or∆ is small. This is becauseκ/∆ becomes large whennis are small or∆
is small. On the other hand, from Figures 2 and 3, the BC-SVM gives adequate
performances even whennis andΣis are unbalanced. The BC-SVM also gives a
better performance than the SVM even when∆ is small (or sparse).

4.2. Examples: Microarray data sets

First, we used colon cancer data with2000 (= d) genes given by Alon et
al. (1999) which consists ofπ1 : colon tumor (40 samples) andπ2 : normal
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(d) µ2 = µα(d∗) (∆ ≈ d2/3), (n1, n2) = (5, 25) andd = 2s, s = 6, ..., 12, for (I) Nd(0,Σi)

(e)µ2 = µα(d∗) (∆ ≈ d2/3), d = 1000 and(n1, n2) = (4s, 8s), s = 1, ..., 7, for (II) td(Σi, 10)

(f) d = 1000, (n1, n2) = (10, 20) andµ2 = µα(2s) (∆ = 2s), s = 1, ..., 7, for (II) td(Σi, 10)

(g) d = 1000, (n1, n2) = (10, 20) andµ2 = µβ(2s) (∆ = 2s), s = 1, ..., 7, for (II) td(Σi, 10)

Figure 3: The error rates of the BC-SVM and the SVM are denoted by the solid
lines and the dashed lines, respectively, for (d) to (g). The left panels display
e(1), the middle panels displaye(2) and the right panels displaye. Their standard
deviations are less than0.0112.
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colon (22 samples). We setn1 = n2 = 10. We randomly split the data sets
from (π1, π2) into training data sets of sizes(n1, n2) and test data sets of sizes
(40−n1, 22−n2). We constructed the BC-SVM and the SVM by using the training
data sets. We checked accuracy by using the test data set for eachπi and denoted
the misclassification rates bŷe(1)r and ê(2)r. We repeated this procedure 100
times and obtained̂e(1)r andê(2)r, r = 1, ..., 100, both for the BC-SVM and the
SVM. We had the average misclassification rates ase(1) (=

∑100
r=1 ê(1)r/100) =

0.16, e(2) (=
∑100

r=1 ê(2)r/100) = 0.166 ande (= {e(1) + e(2)}/2) = 0.163
for the BC-SVM, ande(1) = 0.158, e(2) = 0.161 ande = 0.159 for the SVM.
By using all the samples, we considered estimatingκ/∆. We setm1 = 40 and
m2 = 22. From Section 3.1 in Aoshima and Yata (2011), an unbiased estimator
of ∆ was given by∆̂(m) = ∥x1m1 − x2m2∥2 − tr(S1m1)/m1 − tr(S2m2)/m2. We
estimatedκ/∆ by

κ̂/∆ = {tr(S1m1)/n1 − tr(S2m2)/n2}/∆̂(m)

and hadκ̂/∆ = 0.003 for the 62 samples. In view of (9), we expect that the
BC-SVM is asymptotically equivalent to the SVM in such cases.We estimated
(tr(Σ1)/∆, tr(Σ2)/∆) by (tr(S1m1)/∆̂(m), tr(S2m2)/∆̂(m)) = (3.99, 3.959). It is
difficult to estimate the standard deviation of the average misclassification rate.
However, by noting that Var{e(i)}1/2 < Var{ê(i)r}1/2 = [e(i){1 − e(i)}/(mi −
ni)]

1/2, one may have an upper bound of the standard deviation fore(i) as

su(i) = [e(i){1 − e(i)}/(mi − ni)]
1/2,

so that{
∑2

i=1 su(i)
2/2}1/2 (= su, say) for e. For the BC-SVM,su(1) = 0.067,

su(2) = 0.107 andsu = 0.089. We summarized the results for variousnis in
Table 1.

Next, we used leukemia data with7129 (= d) genes given by Golub et al.
(1999) which consists ofπ1 : ALL (47 (= m1) samples) andπ2 : AML (25
(= m2) samples). We applied the BC-SVM and the SVM to the leukemia data

and summarized the results in Table 2.Whenn1 ̸= n2, |κ̂/∆| becomes large since
(tr(S1m1)/∆̂(m), tr(S2m2)/∆̂(m)) = (2.693, 2.785). As expected theoretically, we
observe that the BC-SVM gives adequate performances compared to the SVM
when|κ̂/∆| is not small.

Finally, we used myeloma data with12625 (= d) genes given by Tian et al.
(2003) which consists ofπ1 : patients without bone lesions (36(= m1) samples)
andπ2 : patients with bone lesions (137(= m2) samples). We applied the BC-
SVM and the SVM to the myeloma data and summarized the results in Table 3.
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Table 1: Average misclassification rates of the BC-SVM and the SVM, together

with κ̂/∆, for Alon et al. (1999)’s colon cancer data(d = 2000, m1 = 40 and
m2 = 22). For each case, the standard deviations ofe(1), e(2) ande are less than
su(1), su(2) andsu, respectively.

BC-SVM SVM

(n1, n2) e(1) e(2) e e(1) e(2) e κ̂/∆
(10, 5) 0.188 0.209 0.198 0.122 0.309 0.215 −0.393
(10, 10) 0.16 0.166 0.163 0.158 0.161 0.159 0.003
(10, 15) 0.184 0.156 0.17 0.206 0.134 0.17 0.135
(20, 5) 0.164 0.249 0.206 0.082 0.475 0.278 −0.592
(20, 10) 0.141 0.177 0.159 0.116 0.23 0.173 −0.196
(20, 15) 0.142 0.167 0.154 0.133 0.181 0.157 −0.064
(30, 5) 0.144 0.302 0.223 0.083 0.566 0.324 −0.659
(30, 10) 0.12 0.236 0.178 0.108 0.318 0.213 −0.263
(30, 15) 0.115 0.203 0.159 0.1 0.263 0.181 −0.131

Whenn1 andn2 are unbalanced, the SVM gives a very bad performance. This is
because∆ in such cases is not sufficiently large since(tr(Σ1)/∆, tr(Σ2)/∆) ≈
(tr(S1m1)/∆̂(m), tr(S2m2)/∆̂(m)) = (33.69, 33.53), so thatκ/∆ becomes too large

whenn1 ̸= n2. Especially whenκ̂/∆ > 1, e(1) of the SVM is too large. See
Corollary 1 for the details. The BC-SVM also does not give a low error rate for
this data because∆ is not sufficiently large. However, the BC-SVM gives ade-
quate performances compared to the SVM especially whenκ̂/∆ > 1. Throughout
Sections 3 and 4, we recommend to use the BC-SVM rather than the SVM for
high-dimensional data.

5. Multiclass SVMs

In this section, we consider multiclass SVMs in HDLSS settings. We have
i.i.d. observations,xi1, ..., xini

, from eachπi (i = 1, ..., g), whereg ≥ 3 andπi

has ad-dimensional distribution with an unknown mean vectorµi and unknown
covariance matrixΣi (≥ O). We assumeni ≥ 2, i = 1, ..., g. Let ∆ij =
∥µi − µj∥2 for i, j = 1, ..., g; i ̸= j. We assume that tr(Σi)/d ∈ (0,∞) as
d → ∞ for i = 1, ..., g, andlim supd→∞ ∆ij/d < ∞ for i, j = 1, ..., g; i ̸= j. We

14



Table 2: Average misclassification rates of the BC-SVM and the SVM, together

with κ̂/∆, for Golub et al. (1999)’s leukemia data (d = 7129, m1 = 47 and
m2 = 25). For each case, the standard deviations ofe(1), e(2) ande are less than
su(1), su(2) andsu, respectively.

BC-SVM SVM

(n1, n2) e(1) e(2) e e(1) e(2) e κ̂/∆
(10, 5) 0.044 0.077 0.06 0.012 0.148 0.08 −0.288
(10, 10) 0.036 0.043 0.04 0.036 0.046 0.041 −0.009
(10, 20) 0.044 0.034 0.039 0.074 0.026 0.05 0.13
(20, 5) 0.031 0.067 0.049 0.004 0.199 0.102 −0.422
(20, 10) 0.019 0.051 0.035 0.011 0.071 0.041 −0.144
(20, 20) 0.028 0.046 0.037 0.028 0.046 0.037 −0.005
(40, 5) 0.017 0.102 0.059 0.0 0.297 0.149 −0.49
(40, 10) 0.016 0.047 0.031 0.003 0.091 0.047 −0.211
(40, 20) 0.011 0.03 0.021 0.006 0.032 0.019 −0.072

consider the one-versus-one approach (the max-wins rule). See Friedman (1996)
and Bishop (2006) for the details.Let Ng =

∑g
i=1 ni. First, we consider the case

whend → ∞ while Ng is fixed.We consider the following assumptions:

(B-i)
maxl=i,j Var(∥xlk − µl∥2)

∆2
ij

→ 0 asd → ∞ for i, j = 1, ..., g; i ̸= j;

(B-ii)
maxl=i,j tr(Σ2

l )

∆2
ij

→ 0 asd → ∞ for i, j = 1, ..., g; i ̸= j.

Let κij = tr(Σi)/ni − tr(Σj)/nj for i, j = 1, ..., g; i ̸= j. We consider the
following condition:

(B-iii) lim sup
d→∞

|κij|
∆ij

< 1 for i, j = 1, ..., g; i ̸= j.

From Theorem 1, for the one-versus-one approach by (5), we have the following
result.

Corollary 4. Under (B-i) to (B-iii), it holds for the multiclass SVM that

e(i) → 0 asd → ∞ for i = 1, ..., g. (11)
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Table 3:Average misclassification rates of the BC-SVM and the SVM, together

with κ̂/∆, for Tian et al. (2003)’s myeloma data (d = 12625, m1 = 36 and
m2 = 137). For each case, the standard deviations ofe(1), e(2) ande are less than
su(1), su(2) andsu, respectively.

BC-SVM SVM

(n1, n2) e(1) e(2) e e(1) e(2) e κ̂/∆
(10, 25) 0.367 0.307 0.337 0.787 0.059 0.423 2.028
(10, 50) 0.407 0.265 0.336 0.936 0.013 0.475 2.698
(10, 100) 0.501 0.193 0.347 0.993 0.003 0.498 3.034
(20, 25) 0.311 0.288 0.299 0.401 0.214 0.308 0.343
(20, 50) 0.343 0.25 0.296 0.646 0.085 0.365 1.014
(20, 100) 0.436 0.175 0.306 0.872 0.026 0.449 1.349
(30, 25) 0.303 0.288 0.296 0.25 0.341 0.295 −0.218
(30, 50) 0.33 0.26 0.295 0.467 0.162 0.314 0.452
(30, 100) 0.382 0.195 0.288 0.713 0.068 0.391 0.788

From Theorem 2, for the one-versus-one approach by (9), we have the follow-
ing result.

Corollary 5. Under (B-i) and (B-ii), the multiclass BC-SVM holds (11).

Note that the BC-SVM satisfies the consistency property without (B-iii). Thus
we recommend to use the BC-SVM in multiclass HDLSS settings.

Next, we consider the case when bothd,Ng → ∞ while Ng/d → 0. Similar
to Section 2.3 and Corollary 3, the multiclass SVMs have the consistency property
under some regularity conditions.

We checked the performance of the multiclass SVMs by using leukemia data
with 12582 (= d) genes given by Armstrong et al. (2002) which consists of
π1 : ALL (24 (= m1) samples),π2 : MLL (20 (= m2) samples) andπ3 :
AML (28 (= m3) samples). We applied the multiclass BC-SVM and SVM to
the leukemia and summarized the results in Table 4. We had(tr(S1m1)/∆̂12(m),

tr(S2m2)/∆̂12(m)) = (2.724, 3.213), (tr(S1m1)/∆̂13(m), tr(S3m3)/∆̂13(m)) = (0.738, 0.9)

and(tr(S2m2)/∆̂23(m), tr(S3m3)/∆̂23(m)) = (1.533, 1.585), where∆̂ij(m) = ∥ximi
−

xjmj
∥2 − tr(Simi

)/mi − tr(Sjmj
)/mj that is an unbiased estimator of∆ij. Thus

|κij/∆ij| must become large whenni ̸= nj. Actually, the multiclass BC-SVM
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Table 4:Average misclassification rates of the BC-SVM and the SVM for Arm-
strong et al. (2002)’s leukemia data (d = 12582, m1 = 24, m2 = 20 and
m3 = 28). For each case, the standard deviations ofe(i), i = 1, 2, 3, ande are
less thansu(i), i = 1, 2, 3, andsu = {

∑3
i=1 su(i)

2/3}1/2, respectively.

BC-SVM SVM
(n1, n2, n3) e(1) e(2) e(3) e e(1) e(2) e(3) e
(5, 5, 10) 0.085 0.089 0.071 0.082 0.069 0.118 0.06 0.082
(5, 5, 20) 0.103 0.087 0.07 0.087 0.089 0.135 0.053 0.092
(5, 10, 10) 0.049 0.06 0.066 0.058 0.095 0.047 0.066 0.069
(5, 10, 20) 0.044 0.068 0.064 0.059 0.088 0.06 0.06 0.069
(10, 5, 10) 0.051 0.077 0.063 0.064 0.021 0.143 0.049 0.071
(10, 5, 20) 0.051 0.073 0.061 0.062 0.018 0.148 0.044 0.07
(10, 10, 10) 0.028 0.056 0.063 0.049 0.025 0.059 0.064 0.049
(10, 10, 20) 0.031 0.051 0.071 0.051 0.03 0.058 0.065 0.051

gives adequate performances for all the cases.

Appendix A.

Throughout, letµ = µ1 − µ2 andµ∗ = (µ1 + µ2)/2.

Proof of Lemma 1.Under (A-ii), we have that asd → ∞

µTΣiµ/∆2 ≤ tr(Σ2
i )

1/2/∆ = o(1), i = 1, 2. (A.1)

Then, by using Chebyshev’s inequality, for anyτ > 0, under (A-ii), we have that

P (|(xj − µ∗)
T (xk − µ∗) − ∆/4| ≥ τ∆)

≤ (τ∆)−2E[{(xj − µ∗)
T (xk − µ∗) − ∆/4}2]

= O{tr(Σ2
1) + µTΣ1µ}/∆2 = o(1) for 1 ≤ j < k ≤ n1;

P (|(xj − µ∗)
T (xk − µ∗) − ∆/4| ≥ τ∆)

= O{tr(Σ2
2) + µTΣ2µ}/∆2 = o(1) for n1 + 1 ≤ j < k ≤ N ; and

P (|(xj − µ∗)
T (xk − µ∗) + ∆/4| ≥ τ∆)

= O{tr(Σ1Σ2) + µT (Σ1 + Σ2)µ}/∆2 = o(1)

for 1 ≤ j ≤ n1 andn1 + 1 ≤ k ≤ N (A.2)
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from the fact that tr(Σ1Σ2) ≤ {tr(Σ2
1)tr(Σ

2
2)}1/2. From (A.1), for anyτ > 0, we

have that

P (|∥xj − µ∗∥2 − ∆/4 − tr(Σ1)| ≥ τ∆)

= O{Var(∥x1j − µ1∥2) + µTΣ1µ}/∆2 = o(1) for j = 1, ..., n1; and

P (|∥xj − µ∗∥2 − ∆/4 − tr(Σ2)| ≥ τ∆) = o(1) for j = n1 + 1, ..., N (A.3)

under (A-i) and (A-ii). Here, subject to (4), we can write for (3) that

L(α) =
N∑

j=1

αj −
1

2

N∑
j=1

N∑
k=1

αjαktjtk(xj − µ∗)
T (xk − µ∗). (A.4)

Then, by noting thatαj ≥ 0 for all j subject to (4), from (A.2) and (A.3), we have
that

L(α) =
N∑

j=1

αj −
∆

8

( N∑
j=1

αj

)2

− 1

2

(
tr(Σ1)

n1∑
j=1

α2
j + tr(Σ2)

N∑
j=n1+1

α2
j

)
+ op

{
∆

( N∑
j=1

αj

)2}
(A.5)

subject to (4) under (A-i) and (A-ii). It concludes the result.

Proof of Lemma 2.By combining Lemma 1 with (6) and (7), we can claim the
first result.

WhenŜ = {1, ..., N}, by noting that
∑N

j=1 α̂jtj = 0, we have that

ŷ(x0) =
N∑

j=1

α̂jtj(xj − µ∗)
T (x0 − µ∗) +

N∑
j=1

α̂jtj(xj − µ∗)
T µ∗ + b̂

=
N∑

j=1

α̂jtj(xj − µ∗)
T (x0 − µ∗)

+
−n1 + n2

N
− 1

N

N∑
j=1

N∑
k=1

α̂ktk(xj − µ∗)
T (xk − µ∗). (A.6)
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From the first result of Lemma 2, (A.2) and (A.3), we have that asd → ∞

−n1 + n2

N
− 1

N

N∑
j=1

N∑
k=1

α̂ktk(xj − µ∗)
T (xk − µ∗)

=
−n1 + n2

N
+

(n1 − n2)∆

∆∗N
+ 2

tr(Σ1) − tr(Σ2)

∆∗N
+ op

( ∆

∆∗

)
=

−n1 + n2

N

( δ

∆∗

)
+ 2

tr(Σ1) − tr(Σ2)

∆∗N
+ op

( ∆

∆∗

)
=

tr(Σ1)/n1 − tr(Σ2)/n2

∆∗
+ op

( ∆

∆∗

)
(A.7)

under (A-i) and (A-ii). Similar to (A.2), under (A-ii), we obtain that(xj −
µ∗)

T (x0 − µ∗)/∆ = (−1)i+1/4 + op(1) for j = 1, ..., n1, and(xj − µ∗)
T (x0 −

µ∗)/∆ = (−1)i/4 + op(1) for j = n1 + 1, ..., N , whenx0 ∈ πi (i = 1, 2). Then,
from the first result of Lemma 2, under (A-i) and (A-ii), it holds that

N∑
j=1

α̂jtj(xj − µ∗)
T (x0 − µ∗) =

(−1)i∆

∆∗
+ op

( ∆

∆∗

)
(A.8)

whenx0 ∈ πi for i = 1, 2. By combining (A.6) with (A.7) and (A.8), we can
conclude the second result.

Proofs of Theorem 1 and Corollary 1.By using (8), the results are obtained straight-
forwardly.

Proof of Lemma 3.Similar to (A.2), under (A-ii’), from (A.1), we have that as
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d, N → ∞∑
1≤j<k≤n1

P (|(xj − µ1)
T (xk − µ1)| ≥ τ∆) = O

(n2
1tr(Σ

2
1)

∆2

)
= o(1);

∑
n1+1≤j<k≤N

P (|(xj − µ2)
T (xk − µ2)| ≥ τ∆) = O

(n2
2tr(Σ

2
2)

∆2

)
= o(1);

n1∑
j=1

N∑
k=n1+1

P (|(xj − µ1)
T (xk − µ2)| ≥ τ∆) = O

(n1n2tr(Σ1Σ2)

∆2

)
= o(1);

n1∑
j=1

P (|(xj − µ1)
T µ| ≥ τ∆) = O

(n1µ
TΣ1µ

∆2

)
= O

(n1tr(Σ
2
1)

1/2

∆

)
= o(1);

and
N∑

j=n1+1

P (|(xj − µ2)
T µ| ≥ τ∆) = O

(n2tr(Σ
2
2)

1/2

∆

)
= o(1)

for anyτ > 0. Then, under (A-ii’), we have that

(xj − µ∗)
T (xk − µ∗) = ∆{1 + op(1)}/4 for all 1 ≤ j < k ≤ n1;

(xj − µ∗)
T (xk − µ∗) = ∆{1 + op(1)}/4 for all n1 + 1 ≤ j < k ≤ N ; and

(xj − µ∗)
T (xk − µ∗) = −∆{1 + op(1)}/4

for all 1 ≤ j ≤ n1 andn1 + 1 ≤ k ≤ N. (A.9)

On the other hand, for anyτ > 0, we have that
∑n1

j=1 P (|∥xj − µ∗∥2 − ∆/4 −
tr(Σ1)| ≥ τ∆) = O{n1Var(∥x1j −µ1∥2)+n1µ

TΣ1µ}/∆2 = o(1) and
∑N

j=n1+1

P (|∥xj − µ∗∥2 − ∆/4 − tr(Σ2)| ≥ τ∆) = o(1) under (A-i’) and (A-ii’) as
d, N → ∞, so that

∥xj − µ∗∥2 = ∆{1 + op(1)}/4 + tr(Σ1) for all 1 ≤ j ≤ n1; and

∥xj − µ∗∥2 = ∆{1 + op(1)}/4 + tr(Σ2) for all n1 + 1 ≤ j ≤ N. (A.10)

Then, by combining (A.4) with (A.9) and (A.10), we have (A.5) asd,N → ∞,
subject to (4) under (A-i’) and (A-ii’). Similar to the proof of Lemma 2, by noting
(A-iv), we can conclude the result.

20



Proof of Lemma 4.We have that

∆̂∗ − ∆∗ =
2∑

i=1

ni∑
j=1

∥xij − µi∥2 − tr(Σi)

n2
i

+
2∑

i=1

ni∑
j ̸=k

(xij − µi)
T (xik − µi)

n2
i

+
2∑

i=1

(−1)i+1µT (xini
− µi) − 2(x1n1 − µ1)

T (x2n2 − µ2). (A.11)

Note thatE[{∥xij − µi∥2 − tr(Σi)}2] = o(∆2) asd → ∞ under (A-i) for alli, j.
Also, note thatE[{µT (xini

−µi)}2] = µTΣiµ/ni ≤ ∆tr(Σ2
i )

1/2/ni = o(∆2/ni)
as d → ∞ under (A-ii) for i = 1, 2. Then, from (A.11), we can claim that
E{(∆̂∗ − ∆∗)

2} = o(∆2) under (A-i) and (A-ii), so that̂∆∗ = ∆∗ + op(∆). On
the other hand, we have that

tr(Sini
) − tr(Σi) =

ni∑
j=1

∥xij − µi∥2 − tr(Σi)

ni

−
ni∑

j ̸=k

(xij − µi)
T (xik − µi)

ni(ni − 1)
.

Then, similar to∆̂∗, we can claim that tr(Sini
) = tr(Σi) + op(∆) for i = 1, 2,

under (A-i) and (A-ii), so that̂κ = κ + op(∆). Hence, by noting that|κ|/∆∗ ≤ 1,
we can claim the result.

Proof of Theorem 2.By using (10), the result is obtained straightforwardly.

Proofs of Corollaries 2 and 3.From Lemma 3, we have (8) asd,N → ∞ under
(A-i’), (A-ii’) and (A-iv). We note that Lemma 4 holds even whend,N → ∞.
Hence, from (8) and Lemma 4, we can claim the results.

Proofs of Corollaries 4 and 5.By using Theorems 1 and 2, the results are ob-
tained straightforwardly.
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