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1 Introduction

Let D be a bounded domain in Euclidean space RN with smooth boundary ∂D and let C(D)
be the space of real-valued, continuous functions on the closure D = D∪∂D.

A strongly continuous semigroup {Tt}t≥0 on the Banach space C(D) is called a Feller
semigroup on D if it satisfies the condition

f ∈C(D), 0 ≤ f ≤ 1 on D =⇒ 0 ≤ Tt f ≤ 1 on D.

It is known (cf. [2], [5], [26]) that there corresponds to a Feller semigroup {Tt}t≥0 on D a
strong Markov process X on D whose transition function p(t,x,dy) satisfies the formula

Tt f (x) =
∫

D
f (y) p(t,x,dy) for all f ∈C(D), (1.1)

and further that, under certain continuity hypotheses concerning the transition function
p(t,x,dy) such as

lim
t↓0

∫
|y−x|>ε

p(t,x,dy) = 0 for all ε > 0 and x ∈ D, (1.2)
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the infinitesimal generator A of {Tt}t≥0 is described analytically as follows:
(i) Let x be a (fixed) point of the interior D of the domain. For every C2-function u ∈

D(A) of A, by expanding u(y)−u(x), we obtain from formulas (1.1) and (1.2) that

Au(x) (1.3)

= lim
t↓0

Ttu(x)−u(x)
t

= lim
t↓0

1
t

(∫
D

P(t,x,dy)u(y)−u(x)
)

= lim
t↓0

[
1
t

∫
D

P(t,x,dy)(u(y)−u(x))+
1
t

(∫
D

P(t,x,dy)−1
)

u(x)
]

= lim
t↓0

{
1
t

(∫
|y−|≤ε

P(t,x,dy)−1
)

u(x)

+
N

∑
i=1

1
t

∫
|y−|≤ε

(yi − xi)P(t,x,dy)
∂u
∂xi

(x)

+
N

∑
i, j=1

1
t

∫
|y−|≤ε

(yi − xi)(y j − x j)P(t,x,dy)
∂ 2u

∂xi∂x j
(x)

+ remainder terms

}

= c(x)u(x)+
N

∑
i=1

bi(x)
∂u
∂xi

(x)+
N

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
(x).

Here the limits

c(x) := lim
t↓0

1
t

(∫
|y−|≤ε

P(t,x,dy)−1
)
,

bi(x) := lim
t↓0

1
t

∫
|y−|≤ε

(yi − xi)P(t,x,dy),

ai j(x) := lim
t↓0

1
t

∫
|y−|≤ε

(yi − xi)(y j − x j)P(t,x,dy)

exist independently of sufficiently small ε > 0 and satisfy the conditions

1◦ c(x)≤ 0.
2◦ ai j(x) = a ji(x) and

N

∑
i, j=1

ai j(x)ξi ξ j ≥ 0 for all ξ = (ξ1,ξ2, . . . ,ξN) ∈ RN .

If we let

Au(x) :=
N

∑
i, j=1

ai j(x)
∂ 2u

∂xi∂x j
(x)+

N

∑
i=1

bi(x)
∂u
∂xi

(x)+ c(x)u(x), (1.4)

then we have, by formula (1.3),

Au(x) = Au(x) for every u ∈ D(A)∩C2(D). (1.5)
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(ii) Similarly, for a fixed point x′ of the boundary ∂D of the domain, by choosing a
system x = (x1,x2, . . . ,xN−1,xN) of local coordinates as x ∈ D if xN > 0 and x ∈ ∂D if
xN = 0, we then have the formula

Lu(x′) (1.6)

=
N−1

∑
i, j=1

α i j(x′)
∂ 2u

∂xi∂x j
(x′)+

N−1

∑
i=1

β i(x′)
∂u
∂xi

(x′)+ γ(x′)u(x′)

+µ(x′)
∂u
∂n

(x′)−δ (x′)Au(x′)

= 0 for every u ∈ D(A)∩C2(D).

Here:

1◦ α i j(x′) = α ji(x′) and

N−1

∑
i, j=1

α i j(x′)ξi ξ j ≥ 0 for all ξ ′ = (ξ1,ξ2, . . . ,ξN−1) ∈ RN−1.

2◦ γ(x′)≤ 0.
3◦ µ(x′)≥ 0.
4◦ δ (x′)≥ 0.
5◦ n is the unit inward normal to the boundary ∂D at x′.

The condition L is called a Ventcel’s boundary condition.
Probabilistically, the above result may be interpreted as follows. A Markovian particle in

the diffusion process (strong Markov process with continuous paths) X on D is governed by
the operator A in the interior D of the domain, and it obeys the condition L on the boundary
∂D of the domain. Note that the terms

N−1

∑
i, j=1

α i j(x′)
∂ 2

∂xi∂x j
+

N−1

∑
i=1

β i(x′)
∂

∂xi
,

γ(x′)u, µ(x′)
∂u
∂n

, δ (x′)Au

of L are supposed to correspond to the diffusion along the boundary, absorption, reflection
and viscosity phenomena, respectively.

Analytically, via the celebrated Hille–Yosida theorem in the theory of semigroups, it
may be interpreted as follows. A Feller semigroup {Tt}t≥0 on D is described by a degener-
ate elliptic differential operator A of second-order and a Ventcel’s boundary condition L if
the paths of its corresponding strong Markov process X are continuous. Hence we are re-
duced to the study of non-elliptic boundary value problems for (A,L) in the theory of partial
differential equations.

We are interested in the following:

Problem 1 Conversely, given analytic data (A,L), can we construct a Feller semigroup
{Tt}t≥0 on D ?

In the case N = 1, this problem is solved completely both from probabilistic and analytic
viewpoints by Feller [7], [8], Dynkin [4], Itô–McKean Jr. [14] and Ray [18]. So we shall
consider the multi-dimensional case N ≥ 2.
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In [19], Sato and Ueno studied the case when the operator A is elliptic on D and proved
that there exists a Feller semigroup {Tt}t≥0 on D if the boundary value problem{

(α −A)u = 0 in D,

(λ −L)u = φ on ∂D
(1.7)

is solvable for sufficiently many functions φ in C(∂D). Here α and λ are non-negative
parameters.

One main purpose of this paper is to generalize their results to the non-elliptic case
(Theorem 2.1 and Corollary 2.1). Intuitively, our non-ellipticity hypothesis concerning the
operator A is stated as follows (see hypothesis (H)):

A Markovian particle governed by the operator A (A-diffusion) diffuses (1.8)

everywhere in D and exits D = D∪∂D through any point of ∂D

in finite time.

The probabilistic meaning of the condition that the boundary value problem (1.7) is solvable
for sufficiently many functions φ in C(∂D) is that there exists a strong Markov process Y
(with discontinuous paths) on ∂D. So, by hypothesis (1.8) we can “piece out” the Markov
process Y with A-diffusion in the interior D to construct a strong Markov process X on
the closure D = D∪ ∂D and hence a Feller semigroup {Tt}t≥0 on D. This should seem to
be very close to a probabilistic method of construction of diffusion processes by Watanabe
[25].

On the other hand, in [2], Bony, Courrège and Priouret proved that, under the ellipticity
condition on the operator A, if either the matrix

(
α i j(x′)

)
is positive definite on ∂D or if(

α i j(x′)
)
≡ 0 and µ(x′)> 0 on ∂D, then there exists a Feller semigroup {Tt}t≥0 on D whose

infinitesimal generator A satisfies conditions (1.5) and (1.6). Intuitively, their results imply
that if either a Markovian particle diffuses everywhere along the boundary or if it reflects
always at the boundary, then there exists a Feller semigroup {Tt}t≥0 on D corresponding to
such a diffusion phenomenon.

In [21], the author generalized their results to the case where the matrix
(
α i j(x′)

)
is

non-negative definite on ∂D and µ(x′) ≥ 0 on ∂D, under some hypothesis concerning the
boundary condition L. However, the intuitive meaning of this hypothesis is not so clear from
the probabilistic viewpoint.

The other purpose of this paper is to prove that, under the ellipticity condition on the
operator A, if (Hypothesis (A))

A Markovian particle goes through the set M = {x′ ∈ ∂D : µ(x′) = 0}, (1.9)

where no reflection phenomenon occurs, in finite time,

then there exists a Feller semigroup {Tt}t≥0 on D corresponding to such a diffusion phe-
nomenon (Theorem 2.2), which is an improvement on the result of [21].

We sum up the contents of this paper briefly. In Section 2, we state general existence
theorems for Feller semigroups {Tt}t≥0 on D as Theorem 2.1 and Corollary 2.1 and further,
as a simple application of these results to the elliptic case, we state Theorem 2.2. In Section
7, we explain the reason why we confine ourselves to the elliptic case. The proofs of The-
orem 2.1 and Corollary 2.1 are based on versions of the Hille–Yosida theorem and they are
carried out in Section 4 just as in the elliptic case studied by Sato–Ueno [19] and by Bony–
Courrège–Priouret [2], if we use results of Stroock–Varadhan [20] on the Dirichlet problem
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for non-elliptic operators satisfying such hypothesis as (1.8) instead of classical results in
the elliptic case. Theorem 2.2 is proved in Section 5 by showing that, under the ellipticity
condition on the operator A, if such hypothesis as (1.9) is satisfied, then the boundary value
problem {

(α −A)u = 0 in D,

Lu = φ on ∂D
(∗)

has a unique solution u in C∞(D) for any φ ∈ C∞(∂D). Here α is a positive spectral pa-
rameter. As in [21], the proof of this unique and existence theorem for problem (∗) is based
on the maximum principle and versions of the a priori estimates used by Oleı̆nik–Radkevič
[17] and by Hörmander [13] in studying the hypoellipticity of pseudo-differential operators
with non-negative principal symbols. We make use of these estimates, on one hand, to prove
the regularity theorem for problem (∗) and, on the other hand, to show that problem (∗)
has index zero, by using a method essentially due to Agmon–Nirenberg [1]. By the regu-
larity theorem and the maximum principle, we have the uniqueness theorem and hence the
existence theorem for problem (∗), since problem (∗) has index zero. The fundamental a
priori estimates are proved separately in Section 6 because of the length of their proof. In
Section 3, we summarize basic results such as versions of the Hille–Yosida theorem in the
theory of semigroups, the uniqueness and existence theorem for the Dirichlet problem and
the maximum principle for non-elliptic operators from the probabilistic viewpoint, and an
interpretation of boundary conditions in terms of distributions.

A summary of this paper is given in [23].
The author would like to express his hearty thanks to Charles Rockland who kindly read

through the original version of this paper and suggested many revisions and corrections. He
is also indebted to Junjiro Noguchi for formulating hypothesis (A) in terms of differential
geometry.

2 Statement of results

We start by stating general existence theorems for Feller semigroups {Tt}t≥0 on D in terms
of boundary value problems for (A,L) in the case where the operator A is non-elliptic on
D. In the elliptic case, similar results are obtained by Sato–Ueno [19] and also by Bony–
Courrège–Priouret [2].

For the differential operator A given by formula (1.4), assume that there exists an open
subset G of RN , containing D, such that the coefficients of A satisfy the following conditions:

(1) ai j ∈C∞(G), ai j(x) = a ji(x) for all x ∈ G and 1 ≤ i, j ≤ N, and

N

∑
i, j=1

ai j(x)ξi ξ j ≥ 0 for all x ∈ G and ξ = (ξ1,ξ2, . . . ,ξN) ∈ RN . (2.1)

(2) bi ∈C∞(G) for 1 ≤ i ≤ N.
(3) c ∈C∞(G) and c(x)≤ 0 in D.

The fundamental hypothesis concerning the operator A is the following:

The Lie algebra L (X1,X2, . . . ,XN) over R generated by the vector fields (H)

Xi =
N

∑
j=1

ai j(x)
∂

∂x j
, 1 ≤ i ≤ N,
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over R has rank N at every point of D and the boundary ∂D is

non-characteristic with respect to the operator A, that is,
N

∑
i, j=1

ai j(x′)ni n j > 0 on ∂D.

Here n = (n1,n2, . . . ,nN) is the unit inward normal to the boundary ∂D at x′.
The intuitive meaning of hypothesis (H) is that a Markovian particle starting at any

point of D can diffuse everywhere in D and exit the closure D = D∪∂D through any point
of ∂D in finite time (cf. Remark 3.1). From the viewpoint of the theory of partial d1fferential
equations, the hypothesis that rankL (X11,X2, . . . ,XN) = N in D is a sufficient condition for
the operator A to be hypoelliptic in D (see [17]), while the hypothesis that

N

∑
i, j=1

ai j(x′)ni n j > 0 on ∂D

is a sufficient condition for the operator A to be partially hypoelliptic with respect to ∂D
([11]).

Assume that the coefficients of the Ventcel’s boundary condition L given by formula
(1.6) satisfy the following conditions:

(1) The α i j(x′) are the components of a C∞ symmetric contravariant tensor of type
(2

0

)
on

the boundary ∂D and

N

∑
i, j=1

α i j(x′)ξi ξ j ≥ 0 for all x′ ∈ ∂D and ξ ′ ∈ T ∗
x′ (∂D). (2.2)

Here T ∗
x′ (∂D) is the cotangent space of ∂D at x′.

(2) β i ∈C∞(∂D) for 1 ≤ i ≤ N −1.
(3) γ ∈C∞(∂D) and γ(x′)≤ 0 on ∂D.
(4) µ ∈C∞(∂D) and µ(x′)≥ 0 on ∂D.
(5) δ ∈C∞(∂D) and δ (x′)≥ 0 on ∂D.

In constructing a Feller semigroup {Tt}t≥0 on D, we shall make use of a class {Sα
t }t≥0

(α ≥ 0) of Feller semigroups on the boundary ∂D (cf. Remark 4.1). For this purpose, we
introduce the following:

Definition 2.1 A Ventcel’s boundary condition L is said to be transversal on the boundary
∂D if it satisfies the condition

µ(x′)+δ (x′)> 0 on ∂D. (2.3)

Intuitively, the transversality condition (2.3) implies that either reflection or viscosity phe-
nomenon occurs on the boundary ∂D.

By virtue of the transversality condition (2.3), we find that a Markovian particle starting
at any point of ∂D does not stay in the boundary ∂D all the time and enters the interior D
some time or other. Probabilistically, this means that a Markov process on ∂D is the “trace”
on the boundary of trajectories of a Markov process on D (see [24]).

First, we state the following:
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Theorem 2.1 Let the differential operator A satisfy conditions (2.1) and let the boundary
condition L satisfy conditions (2.2). Assume that hypothesis (H) is satisfied and that L is
transversal on ∂D, and further that the following two conditions are satisfied:

(I) (the existence) For some constants α ≥ 0 and λ ≥ 0, the boundary value problem{
(α −A)u = 0 in D,

(λ −L)u = φ on ∂D
(2.4)

has a solution u ∈C∞(D) for any φ ∈C∞(∂D).
(II) (the uniqueness) For some constant α > 0, we have the assertion

u ∈C(D), (α −A)u = 0 in D, Lu = 0 on ∂D

=⇒ u = 0 in D.

Then there exists a Feller semigroup {Tt}t≥0 on D whose infinitesimal generator A is char-
acterized as follows:

(a) The domain D(A) of A is the space

D(A) =
{

u ∈C(D) : Au ∈C(D), Lu = 0 on ∂D
}
. (2.5)

(b) Au = Au for every u ∈ D(A).

Remark 2.1 In Theorem 2.1, Au is taken in the sense of distributions and the boundary
condition Lu can be defined as a distribution on ∂D for u ∈C(D) such that Au ∈C(D), since
the boundary ∂D is non-characteristic with respect to the operator A (cf. Subsection 3.5).

In general, there is a close relationship between the uniqueness and regularity properties
of solutions of boundary value problems. Indeed, we shall obtain the following:

Corollary 2.1 Let A and L be as in Theorem 2.1. Assume that condition (I) and the following
condition (replacing condition (II)) are satisfied:

(III) (the regularity) For some constant α > 0, we have the assertion

u ∈C(D), (α −A)u = 0 in D, Lu ∈C∞(∂D)

=⇒ u ∈C∞(D).

Then there exists a Feller semigroup {Tt}t≥0 on D whose infinitesimal generator A satisfies
condition (2.5) and coincides with the minimal closed extension in C(D) of the restriction of
A to the space {u ∈C2(D) : Lu = 0 on ∂D}.

As a simple application of Corollary 2.1, we consider the case where the differential
operator A is elliptic on D, that is, there exists a constant c0 > 0 such that

N

∑
i, j=1

ai j(x)ξi ξ j ≥ c0 |ξ |2 for all x ∈ D and ξ = (ξ1,ξ2, . . . ,ξN) ∈ RN ,

since D is compact.
To state a hypothesis concerning the boundary condition L, we introduce some notation

and definitions.
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For the coefficients α i j(x′) of L, we let

Φ =
N−1

∑
i, j=1

α i j(x′)
∂

∂xi
⊗S

∂
∂x j

,

which lies in the space Γ (∂D,T (∂D)⊗S T (∂D)) of C∞ symmetric contravariant tensor
fields of type

(2
0

)
on ∂D. Here ⊗S stands for the symmetric tensor product. Denote by

Γ (∂D,T ∗(∂D)) and Γ (∂D,T (∂D)) the space of C∞ covariant vector fields and contravari-
ant vector fields on ∂D, respectively. Then, by making use of Φ , we can define a mapping

Ψ : Γ (∂D,T ∗(∂D))−→ Γ (∂D,T (∂D))

by the formula

Ψ(ζ ′) = Φ
(
ζ ′, ·
)

for every ζ ′ ∈ Γ (∂D,T ∗(∂D)).

In terms of a local coordinate x′ = (x1,x2, . . . ,xN−1) on ∂D, we have the formula

ζ ′ =
N−1

∑
i=1

ζi dxi 7−→
N−1

∑
i, j=1

α i j(x′)ζi
∂

∂x j
.

We let

Y = the image of Ψ
=
{

Ψ
(
ζ ′) : ζ ′ ∈ Γ (∂D,T ∗(∂D))

}
.

The fundamental hypothesis concerning the boundary condition L is the following:

The Lie algebra L (Y ) over R generated by Y has rank N −1 at every point (A)

of the set M = {x′ ∈ ∂D : µ(x′) = 0}.

The intuitive meaning of hypothesis (A) is that a Markovian particle starting at any point
of the set M, where no reflection phenomenon occurs, can exit M in finite time (cf. Remark
3.1).

Now we can state the main result, which is an improvement on [22, Théorème 1]:

Theorem 2.2 Assume that the differential operator A satisfies conditions (2.1) and the
boundary condition L satisfies conditions (2.2), respectively. If A is elliptic on D and if L
is transversal on ∂D and hypothesis (A) is satisfied, then we have the conclusion of Corol-
lary 2.1.

3 Theory of Feller semigroups

In this section, we summarize basic results such as versions of the Hille–Yosida theorem in
the theory of semigroups, the uniqueness and existence theorem for the Dirichlet problem
and the maximum principle for non-elliptic operators from the probabilistic viewpoint, and
an interpretation of boundary conditions in terms of distributions.
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3.1 Definition of a Feller semigroup

First, we give the precise definition of Feller semigroups (cf. [5]):.

Definition 3.1 Let K be a compact metric space and let C(K) be the space of real-valued,
continuous functions on K with norm

∥ f∥= max
x∈K

| f (x)|.

A family {Tt}t≥0 of bounded linear operators on C(K) is called a Feller semigroup on K if
it satisfies the following three conditions:

(i) Tt ·Ts = Tt+s for all t, s ≥ 0 and T0 = the identity.
(ii) {Tt} is strongly continuous in t on the interval [0,∞), that is,

lim
t↓0

∥Tt+s f −Ts f∥= 0 for every f ∈C(K) (0 < s < ∞).

(iii) {Tt} is non-negative and contractive on C(K), that is,

f ∈C(K), 0 ≤ f ≤ 1 on K =⇒ 0 ≤ Tt f ≤ 1 on K.

3.2 Generation theorems for Feller semigroups

We state versions of the Hille–Yosida theorem which will play a fundamental role in the
construction of Feller semigroups in Section 4 ([2], [10], [19], [27]):

Theorem 3.1 (Hille–Yosida) (i) Let {Tt}t≥0 be a Feller semigroup on D. Its infinitesimal
generator |math f rakA : C(D)→C(D) is defined by the formula

Au = lim
t↓0

Tt f − f
t

in C(D). (3.1)

Here the domain D(A) of A consists of all f ∈ C(D) for which the limit in formula (3.1)
exists.

Then the generator A satisfies the following conditions:

(a) The domain D(A) is dense in C(D).
(b) For each α > 0, the equation (α −A)u = f has a unique solution u ∈ C(D) for any

f ∈C(D). Hence, for each α > 0, the Green operator (α −A)−1 : C(D →C(D) can be
defined by the formula

u = (α −A)−1 f for every f ∈C(D).

(c) The operator (α −A)−1 for α > 0 is non-negative on C(D), that is,

f ∈C(D), f ≥ 0 on D =⇒ (α −A)−1 f ≥ 0 on D.

(d) The operator (α −A)−1 is bounded on C(D) with norm∥∥(α −A)−1∣∣≤ 1
α

for α > 0.
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(ii) Conversely, if A is a linear operator on C(D) satisfying condition (a) and if there
exists a constant α0 ≥ 0 such that conditions (b) through (d) hold true for all α > α0, then
A is the infinitesimal generator of a Feller semigroup {Tt}t≥0 on D.

Theorem 3.2 (Hille–Yosida–Ray) (i) Let B be a linear operator on the space C(∂D) sat-
isfying the following conditions:

(a) The domain D(B) is dense in C(∂D).
(b) If f ∈ D(B) takes a positive maximum on ∂D, then there exists a point x′ ∈ ∂D such that

f (x′) = maxx∈∂D f (x) and B f (x′)≤ 0.

Then the operator B is closable in C(∂D). Denote by B its minimal closed extension in
C(∂D).

(ii) Let B be a linear operator as in part (i). Assume that the following condition is
satisfied:

(c) For some α0 ≥ 0, the range R(α0 −B) of α0 −B is dense in C(∂D).

Then the minimal closed extension B of B is the infinitesimal generator of a Feller semigroup
{St}t≥0 on the boundary ∂D.

3.3 Probabilistic meaning of hypotheses (H) and (A)

As stated in Section 2, we shall construct a Feller semigroup {Tt}t≥0 on D by making use of
a class {Sα

t }t≥0 of Feller semigroups on ∂D, where α ≥ 0. In other words, we shall reduce
the problem of construction of Feller semigroups on the closure D to the same problem for
Feller semigroups on the boundary ∂D.

The following theorem allows us to realize this plan:

Theorem 3.3 Let the differential operator A satisfy (2.1) and hypothesis (H). For each α ≥
0, the Dirichlet problem {

(α −A)u = f in D,

u = ψ on ∂D
(D)

has a unique solution u ∈C(D) for any f ∈C(D) and any ψ ∈C(∂D).

Remark 3.1 We give a probabilistic interpretation of hypothesis (H). In [20], Stroock and
Varadhan showed that the diffusion process

ξ (t) = (ξ1(t),ξ2(t), . . . ,ξN(t))

which has
N−1

∑
i, j=1

α i j(x′)
∂ 2

∂xi∂x j
+

N−1

∑
i=1

β i(x′)
∂

∂xi

as differential generator, starting at a point x = (x1,x2, . . . ,xN) of D, can be approximated by
the function

ϕ(t) = (ϕ1(t),ϕ2(t), . . . ,ϕN(t))

defined by the formula

ϕi(t) = xi +2
∫ t

0

N

∑
j=1

ai j (ϕ(s))ψ j(s)ds (3.2)
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+
∫ t

0

(
bi (ϕ(s))−

N

∑
j=1

∂ai j

∂x j
(ϕ(s))

)
ds,

where
ψ(t) = (ψ1(t),ψ2(t), . . . ,ψN(t)) : [0,∞)−→ RN

is an arbitrary bounded measurable function, approximating an N-dimensional, standard
Brownian motion

B(t) = (B1(t),B2(t), . . . ,BN(t)) .

On the other hand, we have the following:

Theorem 3.4 (Chow) Let D be a domain in RN and let {Zi}r
i=1 be a system of real C∞

vector fields on D. If the Lie algebra L (Z1,Z2, . . . ,Zr) over R generated by the vector fields
{Zi} has rank N at a point x0 of D, then there exists a neighborhood U(x0) of x0 such that
every point x of U(x0) can be joined to x0 by a finite chain of trajectories of {±Zi}r

i=1.

Now, by choosing the functions ψ j(t) in formula (3.2) so large that the diffusion terms

N

∑
j=1

ai j(x)ψ j(t)

dominates the drift terms

bi(x)(ϕ(s))−
N

∑
j=1

∂ai j

∂x j
(x)

and by using Theorem 3.4 with

Zi :=
N

∑
j=1

ai j ∂
∂x j

, 1 ≤ i ≤ N,

we find that the probabilistic meaning of hypothesis (H) is that a Markovian particle starting
at any point x of D can diffuse everywhere in D and exit D = D∪ ∂D through any point of
∂D in finite time (cf. [20, Remark 5.2]).

Similarly, we find that the probabilistic meaning of hypothesis (A) is that a Markovian
particle starting at any point of the set M = {x′ ∈ ∂D : µ(x′) = 0}, where no reflection
phenomenon occurs, can exit M in finite time.

3.4 Maximum principles

We shall make use of the following maximum principle to verify condition (b) in Theo-
rem 3.2 and to prove the uniqueness theorem for problem (∗) in Section 4 and Section 5,
respectively ([16], [17]):

Theorem 3.5 Let the differential operator A satisfy conditions (2.1) and let α ≥ 0. If hy-
pothesis (H) is satisfied, then we have the assertions:

(i) (The strong maximum principle) If u ∈C2(D), (A−α)u ≥ 0 in D and if u takes a non-
negative maximum in D, then u is constant in D.
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(ii) (The Hopf boundary point lemma) If u ∈ C2(D)∩C(D), (A−α)u ≥ 0 in D and if u is
not constant in D and takes a non-negative maximum at a point x′0 of ∂D, then we have
the inequality

∂u
∂n

(x′0)< 0,

if u is differentiable at x′0.

Remark 3.2 Some important remarks are in order:

1◦ Stroock–Varadhan [20] revealed the underlying probabilistic mechanism of propagation
of the (nonnegative) maximum. Intuitively, their result may be stated as follows:
The maximum is propagated both in the positive and negative directions through the
trajectories of the diffusion vector fields

Xi =
N

∑
j=1

ai j(x)
∂

∂x j
, 1 ≤ i ≤ N,

and only in the positive direction through the trajectories of the drift vector field

X0 =
N

∑
i=1

(
bi −

N

∑
j=1

∂ai j

∂x j

)
∂

∂xi

(cf. formula (3.2)).
Hence, part (i) of Theorem 3.5 follows from this result and Theorem 3.4.

2◦ In view of the fact that the boundary ∂D is non-characteristic with respect to the operator
A, we can prove part (ii) of Theorem 3.5 just as in Oleı̆nik [16].

3.5 Trace theorems

In order to give a precise meaning for the boundary condition Lu in terms of distributions,
we need the following result, which follows easily from [11, Theorem 4.3.1 and Theorem
2.5.6].

Proposition 3.1 Assume that the boundary ∂D is non-characteristic with respect to the
differential operator A. Then, for every u ∈ L2(D) such that Au ∈ L2(D), we can define the
boundary value u|∂D as an element of H−1/2(∂D) and the normal derivative (∂u/∂n)|∂D
as an element of H−3/2(∂D), respectively. Furthermore, we have the inequality

|u|∂D|H−1/2(∂D)+

∣∣∣∣ ∂u
∂n

∣∣∣∣
H−3/2(∂D)

≤C
(
∥Au∥L2(D)+∥u∥L2(D)

)
,

with a constant C > 0 independent of u. Here Hs(∂D) is the Sobolev space of order s on the
boundary ∂D with norm | · |Hs(∂D).

Since C(D)⊂ L2(D), it follows from formula (1.6) and conditions (2.2) that the bound-
ary condition Lu can be defined as an element

Lu ∈ H−5/2(∂D)

for every u ∈C(D) such that Au ∈C(D).
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4 Construction of Feller semigroups

In this section we shall prove existence theorems for Feller semigroups on D.

4.1 Statement of main theorem

The basic result is the following theorem, from which we can easily obtain Theorem 2.1 and
Corollary 2.1.

Theorem 4.1 Let the differential operator A satisfy conditions (2.1) and let the boundary
condition L satisfy conditions (2.2). If hypothesis (H) is satisfied and if L is transversal on
∂D and condition (I) in Theorem 2.1 is satisfied, then there exists a Feller semigroup {Tt}t≥0
on D whose infinitesimal generator A is characterized as follows:

(a) The domain D(A) satisfies the condition

D(A)⊂
{

u ∈C(D) : Au ∈C(D), Lu = 0 on ∂D
}
. (4.1)

(b) Au = Au for every u ∈ D(A).

The proof of Theorem 4.1 is carried out just as in the case where the differential operator
A is elliptic on D, which is studied by Sato–Ueno [19], if we use Theorem 3.3, Theorem 3.5
and Proposition 3.1 instead of classical results on the Dirichlet problem (D) in the elliptic
case (see [15]). So we give only a sketch of the proof.

4.2 Green and harmonic operators for the Dirichlet problem

For the proof of Theorem 4.1, we prepare some lemmas.
(I) By Theorem 3.3, it follows that the Dirichlet problem (D) is uniquely solvable for

α ≥ 0. Hence we can define linear operators

G0
α : C(D)−→C(D) (Green operator),

Hα : C(∂D)−→C(D) (harmonic operator)

as follows. {
(α −A)G0

α f = f in D,

G0
α f = 0 on ∂D.

(4.2)

{
(α −A)Hα ψ = 0 in D,

Hα ψ = ψ on ∂D.
(4.3)

Then we have the following:

Lemma 4.1 (i) (a) The operator G0
α : C(D)→C(D) is non-negative and bounded for α ≥ 0.

Furthermore, we have the inequality∥∥G0
α
∥∥≤ 1

α
for all α > 0.
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(b) For any f ∈C(D), we have the assertion

lim
α→∞

α G0
α f (x) = f (x) for each x ∈ D.

Furthermore, if f |∂D = 0, then this convergence is uniform in x ∈ D.
(ii) The operator Hα : C(∂D)→C(D) is non-negative and bounded with norm

∥Hα∥ ≤ 1 for all α > 0.

This lemma follows from the probabilistic formulas for G0
α and Hα due to Stroock–

Varadhan [20].
Step (2): The following lemma shows that the operators Gα and Hα preserve regularity

up to the boundary:

Lemma 4.2 (i) The Green operator G0
α maps C∞(D) into itself for each α ≥ 0.

(ii) The harmonic operator Hα maps C∞(∂D) into C∞(D) for each α ≥ 0.

Proof First, it follows from Oleı̆nik–Radkevič [17, Theorem 2.6.2] that if the Lie algebra
L (X1,X2, . . . ,XN) has rank N at every point x of D, then the operator α −A is hypoelliptic
in D, that is,

u ∈ D ′(D), (α −A)u ∈C∞(D) =⇒ u ∈C∞(D).

Hence, by formulas (4.2) and (4.3) we have the following interior regularity properties:

f ∈C∞(D) =⇒ G0
α f ∈C∞(D), (4.4)

ψ ∈C(∂D) =⇒ Hα ψ ∈C∞(D), (4.5)

Furthermore, it follows from Hörmander [11, Corollary 4.3.1] that if the boundary ∂D is
non-characteristic with respect to A, then the operator α −A is partially hypoelliptic with
respect to ∂D, that is,

If (α −A)u in C∞(D) and the derivatives of u with respect to

the boundary variables are all continuous, then u ∈C∞(D).

Hence, Part (i) of the lemma follows from assertions (4.2) and (4.4) and Part (ii) of the
lemma follows from assertions (4.3) and (4.5), respectively.

The proof of Lemma 4.2 is complete.

Step (3): By Lemma 4.2, we can define linear operators

LG0
α : C(D)−→C(∂D),

LHα : C(∂D)−→C(∂D)

as follows.

(a) The domain D
(
LG0

α
)

is the space C∞(D):

D
(
LG0

α
)
=C∞(D).

(b) LG0
α f = L

(
G0

α f
)

for every f ∈ D
(
LG0

α
)
.

(c) The domain D(LHα) is the space C∞(∂D):

D(LHα) =C∞(∂D).
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(d) LHα ψ = L(Hα ψ) for every ψ ∈ D(LHα).

Then we have the following:

Lemma 4.3 (i) The operator LG0
α can be uniquely extended to a non-negative, bounded

linear operator
LG0

α : C(D)−→C(∂D)

for every α ≥ 0. The situation can be visualized in the following diagram:

C(D)
LG0

α−−−−→ C(∂D)x x
C∞(D) −−−−→

LG0
α

C∞(∂D)

(ii) The operator LHα has the minimal closed extension

LHα : C(∂D)−→C(∂D)

for every α ≥ 0. The situation can be visualized in the following diagram:

C(∂D)
LHα−−−−→ C(∂D)x x

C∞(∂D) −−−−→
LHα

C∞(∂D)

Proof Part (i) follows from the non-negativity of G0
α . Indeed, we have, by formulas (1.6)

and (4.2),

LG0
α f (x′) = δ (x′) f (x′)+µ(x′)

∂
∂n
(
LG0

α f
)
(x′)≥ 0

for every non-negative function f ∈C∞(D).

Part (ii) follows from an application of part (i) of Theorem 3.2 with

B := LHα ,

by using Theorem 3.5 to verify conditions (a) and (b) of Theorem 3.2, just as in the proofs
of [19, Lemma 4.2 and Corollary to Lemma 4.1].

The proof of Lemma 4.3 is complete. ⊓⊔

Step (4): By applying Proposition 3.1 to the operator A−α with α ≥ 0, we find that the
boundary condition L(Gα f ) for every f ∈∈ C(D) can be defined as a distribution on ∂D,
since Gα f satisfies formulas (4.2).

Similarly, the boundary condition L(Hα ψ) for every ψ ∈ C(∂D) can be defined as a
distribution on ∂D, since Hα ψ satisfies formulas (4.3).

The following lemma shows that the boundary operators L̃G0
α and L̃Hα thus defined are

an extension of the operators LGα and LHα , respectively:
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Lemma 4.4 Let α ≥ 0. Then we have the following assertions:

(i) If we define a linear operator

L̃G0
α : C(D)−→ D ′(∂D)

by the formula

L̃G0
α f = L

(
G0

α f
)

for every f ∈C(D),

then it follows that

LG0
α ⊂ L̃G0

α on C(D).

The situation can be visualized as follows:

C(D)
L̃G0

α−−−−→ D ′(∂D)x x
C(D) −−−−→

LG0
α

C(∂D)

(ii) Similarly, if we define a linear operator

L̃Hα : C(∂D)−→ D ′(∂D)

by the formula

L̃Hα ψ = L(Hα ψ) for every ψ ∈C(∂D),

then it follows that

LHα ⊂ L̃Hα on C(∂D).

The situation can be visualized as follows:

C(∂D)
L̃Hα−−−−→ D ′(∂D)x x

C(∂D) −−−−→
LHα

C(∂D)

Proof Part (i) follows from the boundedness of G0
α and an application of Proposition 3.1

with A := A−α , while Part (ii) follows from the boundedness of Hα and an application of
Proposition 3.1 with A := A−α . ⊓⊔
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4.3 Proof of Theorem 4.1

Now the proof can be carried out in the following way, just as in the proof of [19, Theorem
5.2].

Step 1: If condition (I) is satisfied, then the operator LHα is the infinitesimal generator
of a Feller semigroup {Sα

t }t≥0 on the boundary ∂D.
Step 2: If LHα generates a Feller semigroup {Sα

t }t≥0 on ∂D for some α ≥ 0, then the
operator LHβ generates a Feller semigroup {Sβ

t }t≥0 on ∂D for any β ≥ 0.
Step 3: If the boundary condition L is transversal on ∂D, then the operator LHα is em

bijective for any α > 0 and its inverse

LHα
−1 : C(∂D)−→C(∂D)

is non-positive and bounded.
Step 4: For any α > 0, we can define a linear operator

Gα : C(D)−→C(D)

by the formula

Gα f := G0
α f −Hα

(
LHα

−1
(

LG0
α f
))

for every f ∈C(D). (4.6)

Furthermore, we can define a linear operator

A : C(D)−→C(D)

as follows:

(a) The domain D(A) is the space

D(A) =
{

u ∈C(D) : Au ∈C(D), u|∂D ∈ D̃,Lu = 0
}
. (4.1)′

(b) Au = Au for every u ∈ D(A).

Here D̃ is the common domain of the operators {LHα}α≥0:

D̃ =
∩

α≥0

D
(
LHα

)
.

Then we have the formula

Gα = (α −A)−1 for every α > 0. (4.7)

Indeed, we assume that

u ∈ D(A),

(α −A)u = 0.

Then it follows from the uniqueness property of solutions of the Dirichlet problem (D) that
u can be written uniquely in the form

u = Hα (u|∂D) , u|∂D ∈ D̃,



18 Kazuaki Taira

and satisfies the condition

LHα (u|∂D) = Lu = 0 on ∂D.

Since the operator LHα is bijective for any α > 0, it follows that

u|∂D = 0.

so that
u = 0 in D.

This proves that the operator α −A is injective.
On the other hand, we find from formulas (4.2), (4.3) and Lemma 4.4 that, for any

f ∈C(D) the function u = Gα f , defined by formula (4.6), satisfies the conditions
(α −A)u = f in D,

u|∂D =−LHα
−1
(

LG0
α f
)
∈ D̃ = ∩α≥0D

(
LHα

)
,

Lu = 0 on ∂D.

This implies that u ∈ D(A) and that (α −A)u = f .
Consequently, we have proved the desired formula (4.7).
Step 5: In light of expression (4.6) of Gα = (α −A)−1, it follows that the operator

A, defined by (4.1)′, satisfies conditions (a) through (d) in Theorem 3.1. Hence it follows
from an application of part (ii) of the same theorem that the operator A is the infinitesimal
generator of a Feller semigroup {Tt}t≥0 on D.

The proof of Theorem 4.1 is complete. ⊓⊔

Remark 4.1 Note that, as is seen from expression (4.6), we constructed the Green operator
Gα = (α −A)−1 of a Feller semigroup {Tt}t≥0 on D for each α > 0, by making use of the
Green operator −LHα

−1 of a Feller semigroup {Sα
t }t≥0 on the boundary ∂D.

4.4 Proof of Theorem 2.1

By Theorem 4.1, it suffices to show that if conditions (I) and (II) are satisfied, then we have
the assertion

D(A) =
{

u ∈C(D) : Au ∈C(D), u|∂D ∈ D̃, Lu = 0 on ∂D
}

=
{

u ∈C(D) : Au ∈C(D), Lu = 0 on ∂D
}
.

Assume that 
u ∈C(D),

Au ∈C(D),

Lu = 0 on ∂D.

Then, by letting
w := u−Gα ((α −A)u) ,

we obtain from formulas (4.7) and (4.1)′ that{
(α −A)w = 0 in D,

Lw = 0 on ∂D,
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and hence from condition (II) with u := w that

w = 0 in D.

This implies that
u = Gα ((α −A)u) ∈ D(A).

The proof of Theorem 2.1 is complete. ⊓⊔

4.5 Proof of Corollary 2.1

Step 1: First, we show that conditions (I) and (III) imply condition (II).
Assume that 

u ∈C(D),

(α −A)u = 0 in D,

Lu = 0 on ∂D.

Then it follows from condition (Ill) that u ∈C∞(D) and hence from the uniqueness property
of solutions of the Dirichlet problem (D) that u can be written in the form

u = Hα (u|∂D) , u|∂F ∈ D(LHα)(=C∞(∂D))

and satisfies the condition

LHα (u|∂D) = Lu = 0 on ∂D. (4.8)

As stated in Step 3 in the proof of Theorem 4.1, if condition (I) is satisfied and the boundary
condition L is transversal on ∂D, then the minimal closed extension LHα in C(∂D) of LHα
is bijective for any α > 0.

Therefore, we have, by condition (4.8),

u|∂D = 0,

and so
u = 0 in D.

This proves that condition (II) is satisfied.
Step 2: Next we show that if condition (III) is satisfied, then we have the regularity

property
f ∈C∞(D) =⇒ Gα f ∈C∞(D). (4.9)

Let f ∈C∞(D). Then it follows from part (i) of Lemma 4.2 that

Gα f ∈C∞(D).

Furthermore, by letting
w := Hα

(
LHα

−1
(LG0

α f )
)
,

we obtain from formula (4.2) and part (ii) of Lemma 4.4 that{
(α −A)w = 0 in D,

Lw = LG0
α f ∈C∞(∂D) on ∂D,
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and hence from condition (III) with u := w that

w ∈C∞(D).

By formula (4.6) this proves that

Gα f = G0
α f −w ∈C∞(D).

Step 3: Finally, we show that the operator A, defined by formula (2.5), coincides with
the minimal closed extension in C(D) of the restriction of A to the space{

u ∈C2(D) : Lu = 0 on ∂D
}
.

For u ∈ D(A), choose a sequence { f j}∞
j=1 in C∞(D) such that

f j −→ (α −A)u in C(D) as j → ∞. (4.10)

If we let
u j = Gα f j,

then it follows from assertion (4.9) and formula (4.7) that
u j ∈C∞(D),

(α −A)u j = 0 in D,

Lu j = 0 on ∂D.

In particular, we have the assertion

u j ∈ D(A)∩C∞(D).

Furthermore, since the operator Gα : C(D)→C(D) is bounded, it follows from assertion
(4.10) and formula (4.7) that

u j = Gα f j −→ Gα(α −A)u = u in C(D) as j → ∞,

and hence that

Au j = αu j − f j −→ αu− (α −A)u = Au in C(D) as j → ∞.

Summing up, we have proved that

(u j,Au j)−→ (u,Au) in C(D)⊕C(D) as j → ∞.

Consequently, we obtain that

The graph of A := {(u,Au) : u ∈ D(}
= the closure in C(D)⊕C(D) of the graph{

u ∈C2(D) : Lu = 0 on ∂D
}
.

The proof of Corollary 2.1 is complete. ⊓⊔
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5 Existence, uniqueness and regularity theorem for problem (∗)

The purpose of this section is to prove the following existence, uniqueness and regularity
theorem for problem (∗). By virtue of Sobolev’s lemma, we find that conditions (I) and (III)
are satisfied. Hence, Theorem 2.2 follows from an application of Corollary 2.1.

Theorem 5.1 Let the differential operator A satisfy conditions (2.1) and let the boundary
condition L satisfy conditions (2.2). Assume that A is elliptic on D and further that L is
transversal on ∂D and that hypothesis (A) is satisfied. Then there exists a constant 0< κ ≤ 1
such that, for each constant α > 0 the boundary value problem{

(α −A)u = f in D,

Lu = φ on ∂D
(∗)

has a unique solution u ∈ Hs−2+κ(D) for any f ∈ Hs−2(D) and any φinHs−5/2(∂D), where
s ≥ 3.

Furthermore, for each constant α ≥ 0 we have the regularity property

u ∈ Ht(D), t ∈ R, (α −A)u ∈C∞(D), Lu ∈C∞(∂D) (5.1)

=⇒ u ∈C∞(D).

Here Hs(D) (resp. Hs(∂D)) denotes the Sobolev space of orders on D (resp. ∂D).

Proof The proof is essentially the same as that of [21, Théorème 4.1] except that we use
Lemma 5.1 and Lemma 5.2 below instead of [21, Lemme 4.6]. So we give only a sketch of
the proof.

Step (1): First, by using the Green operator Gα and the harmonic operator Hα of the
Dirichlet problem (D), we reduce the study of problem (∗) to that of the operator LHα on
the boundary ∂D.

It is well known (cf. [15]) that if the differential operator A is elliptic on D, then for a ;;i,
0 the Dirichlet problem (D) has a unique solution u ∈ Hs(D (s ;;i, 2) for any f ∈ Hs−2(D)
and φ ∈ (∂D). Hence we can define linear operators

G0
α : Hs−2(D)−→ Ht(D) (s ≥ 2),

Hα : Ht(∂D)−→ Ht(D) (t ∈ R)

by formulae (4.2) and (4.3), respectively.
Then we can easily obtain the following:

Proposition 5.1 Let A and L be as in Theorem 5.1 and let α ≥ 0. For given f ∈ Hs−2(D)
and φ ∈ Hs−5/2(∂D) with s ≥ 3, there exists a solution u ∈ Ht(D) of problem (∗) for t ≤ s
if and only if there exists a solution ψ ∈ Ht−1/2(∂D) of the equation:

LHα ψ = φ −LG0
α f on ∂D.

Furthermore, the solutions u and ψ are related to each other by the following relation:

u = Hα ψ +G0
α f . (5.2)
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By formula (4.3), we can write the operator LHα in the form

LHα ψ =
N−1

∑
i, j=1

α i j(x′)
∂ 2ψ

∂xi∂x j
+

N−1

∑
i=1

β i(x′)
∂ψ
∂xi

+ γ(x′)ψ (5.3)

+ µ(x′)
∂

∂n
(Hα ψ)

∣∣∣∣
∂D

−α δ (x′)ψ.

Hence we find (see [12]) that LHα is a second-order, pseudo-differential operator on the
boundary ∂D and further (see [21]) that its symbol is given by the formula[

−
N−1

∑
i, j=1

α i j(x′)ξiξ j

]
+

[
−µ(x′)

∣∣ξ ′∣∣+√
−1

N−1

∑
i=1

β i(x′)ξi

]
(5.4)

+ terms of order ≤ 0 depending on α.

Here |ξ ′| denotes the length of a covector ξ ′ = (ξ1,ξ2, . . . ,ξN−1) with respect to the Rie-
mannian metric induced on the boundary ∂D by the Riemannian metric (ai j) (the inverse
matrix of

(
ai j
)

of RN .
By virtue of the fact that LHα is a first-order, pseudo-differential operator on ∂D, we

can associate with problem (∗) a closed linear operator

L (α) : Hs−5/2+κ(∂D)−→ Hs−5/2(∂D)

as follows.

(a) The domain D(L (α)) is the space

D(L (α)) =
{

ψ ∈ Hs−5/2+κ(∂D) : LHα ψ ∈ Hs−5/2(∂D)
}
. (5.5)

(b) L (α)ψ = LHα ψ for every ψ ∈ D(L (α)).

Here κ > 0 is a constant and will be fixed later on (see Lemma 5.1 below).
Then it is easily seen from Proposition 5.1 with t := s− 2+ κ that the problems of

existence, uniqueness and regularity of solutions of problem (∗) are reduced to the same
problems for the operator T (α), respectively.

Step (2): Next we show that if hypothesis (A) is satisfied, then the operator LHα is
hypoelliptic on ∂D and further an a priori estimate holds true for LHα . This proves regularity
property (5.1) for problem (∗).

By formula (5.3), we can decompose the pseudo-differential operator LHα in the form

LHα = Qα +µ(x′)Πα . (5.6)

Here the operator

Qα : ψ 7−→
N−1

∑
i, j=1

α i j(x′)
∂ 2ψ

∂xi∂x j
+

N−1

∑
i=1

β i(x′)
∂ψ
∂xi

+(γ(x′)−αδ (x′))ψ

is a second-order, differential operator with non-positive principal symbol

−
N−1

∑
i, j=1

α i j(x′)ξiξ j ≤ 0 on the cotangent bundle T ∗(∂D),
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and the operator

Πα : ψ 7−→ ∂
∂n

(Hα ψ)

∣∣∣∣
∂D

is a classical pseudo-differential operator of first order with principal symbol

−
∣∣ξ ′∣∣ .

By considering µ(x′)Πα as a term of “perturbation” of Qα and by using the argument in
the proof of Oleı̆nik–Radkevič [17, Theorem 2.6.2] and Hörmander [13, Theorem 5.9], we
can prove the following:

Lemma 5.1 Let A and L be as in Theorem 5.1 and assume that hypothesis (A) is satisfied.
Then there exists a constant 0 < κ ≤ 1 such that, for each s ∈ R, we have the regularity
property

ψ ∈ D ′(∂D), LHα ψ ∈ Hs(∂D) =⇒ ψ ∈ Hs+κ(∂D). (5.7)

Furthermore, for any t < s+κ there exists a constant Cs.t > 0 such that the a priori estimate

|ψ|Hs+κ (∂D) ≤Cs,t

(
|(LHα)ψ|2Hs(∂D)+ |ψ|2Ht (∂D)

)
(5.8)

holds true.

Remark 5.1 The constant κ in the lemma can be chosen as follows:

κ

=

{
1 in a neighborhood of x′0 such that µ(x′0)> 0,
21−R(x′0 in a neighborhood of x′0 such that L (Y ) has rank N −1 at x′0.

Here R(x′0)≥ 1 is the length of L (Y ) at x′0 (cf. the proof of Proposition 6.2).

Lemma 5.1 is the essential step in the proof of Theorem 5.1 and will be proved in the
next Section 6 due to its length.

By virtue of Sobolev’s lemma, the regularity property (5.1) for problem (∗) follows
immediately from formula (5.2) and the regularity property (5.7).

Step (3): By the regularity property (5.1), it follows that any homogeneous solution of
problem (∗) is smooth up to the boundary. Hence the uniqueness theorem for problem (∗)
is an immediate consequence of the following maximum principle:

Proposition 5.2 (the maximum principle) Let the differential operator A satisfy condi-
tions (2.1) and let the boundary condition L satisfy conditions (2.2). If the hypothesis (H) is
satisfied and if L is transversal on ∂D, then we have, for each α > 0,

u ∈C2(D), (A−α)u ≥ 0 in D, Lu ≥ 0 on ∂D

=⇒ u ≤ 0 on D.

Proof If u is constant in D, then it follows that

0 ≤ (A−α)u = (c(x)−α)u in D,

and hence that u is non-positive constant in D, since c(x)≤ 0 in D and α > 0.



24 Kazuaki Taira

Thus we may assume that u is not constant in D. Assume, to the contrary, that

max
x∈D

u(x)> 0.

Then it follows from an application of Theorem 3.5 that there exists a point x′0 of ∂D such
that {

u(x′0) = maxx∈D u(x)> 0,
∂u
∂n (x

′
0)< 0.

Furthermore, we remark that{
∂u
∂xi

(x′0) = 0 for 1 ≤ i ≤ N −1,

Au(x′0)≥ αu(x′0)> 0,

and that
N−1

∑
i. j=1

α i j(x′0)
∂ 2u

∂xi∂x j
(x′0)≤ 0.

since the matrix
(
α i j(x)

)
is non-negative definite.

Hence we have, by conditions (2.2) and (2.3),

Lu(x′0)

=
N−1

∑
i. j=1

α i j(x′0)
∂ 2u

∂xi∂x j
(x′0)+ γ(x′0)u(x′0)+µ(x′0)

∂u
∂n

(x′0)−δ (x′0)Au(x′0)

≤ µ(x′0)
∂u
∂n

(x′0)−δ (x′0)Au(x′0)

< 0.

This contradicts the assumption that

Lu ≥ 0 on ∂D.

The proof of Proposition 5.2 is complete.

Step (4): Finally, we prove the existence theorem for problem (∗). For this purpose, we
make use of a method essentially due to Agmon–Nirenberg ([1], [15]). This is a technique
of treating a spectral parameter α as a second-order elliptic differential operator of an extra
variable y on the unit circle S, and relating the old problem to a new one with the additional
variable. Our presentation of this technique is due to Fujiwara [9].

Substep (4-i): By replacing the parameter α in problem (∗) by the differential operator

− ∂ 2

∂y2

on the unit circle S = R/Z, we consider the following boundary value problem:{(
− ∂ 2

∂y2 −A
)

ũ = f̃ in D×S,

Lũ = φ̃ on ∂D×S.
(∗̃)
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Then, roughly speaking, the most important relation between problem (∗) and problem
(∗̃) is stated as follows (see [22]):{

If the index of problem (∗̃) is finite, then the index of problem (∗)
is equal to zero for all α ≥ 0.

(5.9)

We formulate this assertion more precisely. Note (see [15]) that the Dirichlet problem{(
− ∂ 2

∂y2 −A
)

ũ = f̃ in D×S,

ũ = ψ̃ on ∂D×S
(D̃)

has a unique solution ũ in Hs(D×S) for any f̃ ∈ Hs−2(D×S) and any ψ̃ ∈ Hs−1/2(∂D×S),
where s ≥ 2.

Therefore, we can define linear operators

G̃ : Hs−2(D×S)−→ Hs(D×S), s ≥ 2,

H̃ : Ht−1/2(∂D×S)−→ Ht(D×S), t ∈ R

as follows. {(
− ∂ 2

∂y2 −A
)

G̃ f̃ = f̃ in D×S,

G̃ f̃ = 0 on ∂D×S.
(5.10)

{(
− ∂ 2

∂y2 −A
)

H̃ψ̃ = 0 in D×S,

H̃ψ̃ = ψ̃ on ∂D×S.
(5.11)

By formula (5.11), it follows that the operator LH̃ can be written in the form

LH̃ψ̃ (5.12)

=
N−1

∑
i, j=1

α i j(x′)
∂ 2ψ̃

∂xi∂x j
+

N−1

∑
i=1

β i(x′)
∂ψ̃
∂xi

+ γ(x′)ψ̃ + µ(x′)
∂

∂n

(
H̃ψ̃
)∣∣∣∣

∂D×S
+δ (x′)

∂ 2ψ̃
∂y2 .

Hence we find that LH̃ is a second-order, pseudo-differential operator on the boundary ∂D×
S with symbol[

−
N−1

∑
i, j=1

α i j(x′)ξiξ j −δ (x′)

]
(5.13)

+

[
−µ(x′)

√
|ξ ′|2 +η2 +

√
−1

N−1

∑
i=1

β i(x′)ξi +
√
−1

N−1

∑
i, j=1

∂α i j

∂x j
ξi

]
+ terms of order ≤ 0.

Here η is the dual variable of y in the cotangent bundle T ∗(S).
Therefore, we can associate with problem (∗̃) a closed linear operator

T̃ : Hs−5/2+κ(∂D×S)−→ Hs−5/2(∂D×S)

as follows:
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(a) The domain D
(
T̃
)

is the space

D
(
T̃
)
=
{

ψ̃ ∈ Hs−5/2+κ(∂D×S) :
(

LH̃
)

ψ̃ ∈ Hs−5/2(∂D×S)
}
. (5.14)

(b) T̃ ψ̃ =
(

LH̃
)

ψ̃ for every ψ̃ ∈ D
(
T̃
)

.

Then, as in problem (∗), it is easy to see that the study of problem (∗̃) is reduced to that of
the operator T̃ on the boundary ∂D×S.

Recall the following:

Definition 5.1 Let X and Y be Banach spaces and let T : X → Y be a closed linear operator
with domain D(T ). We say that the index of T is finite if the dimension of the kernel N(T )
of T is finite and if the range R(T ) of T is closed in Y and its codimension is also finite.
Then the index indT of T is defined by the formula

indT = dimN(T )− codimR(T ).

Now we can formulate assertion (5.9) precisely, by using the operators T (α) and T̃
defined by formulas (5.5) and (5.14), respectively:

If the index of T̃ is finite, then the index of T (α) is equal to zero. (5.9)′

The proof of assertion (5.9)′ is essentially a repetition of that of [22, Théorème], so we
may omit it.

In Step (3), we proved that if hypothesis (A) is satisfied, then the uniqueness theorem
for problem (∗) is valid for any α > 0, or equivalently,

dimN (T (α)) = 0 for any α > 0.

Thus, if we show that the index of T̃ is finite, then it follows from assertion (5.9)′ that

codimR(T (α)) = 0 for any α > 0,

and hence that the existence theorem for problem (∗) is valid for any α > 0.
Substep (4-ii): It remains to prove that if hypothesis (A) is satisfied, then the index of

T̃ is finite.
Step 1◦: First, by formula (5.12) we can express the pseudo-differential operator LH̃ in

the form
LH̃ = Q̃+µ(x′)Π̃ . (5.15)

Here:

(1) Q̃ is a second-order, differential operator

Q̃ =
N−1

∑
i, j=1

α i j(x′)
∂ 2

∂xi∂x j
+δ (x′)

∂ 2

∂y2 +
N−1

∑
i=1

β i(x′)
∂

∂xi
+ γ(x′)

with non-positive principal symbol

−
N−1

∑
i, j=1

α i j(x′)ξiξ j ≤ 0 on the cotangent bundle T ∗(∂D),
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(2) The operator

Π̃ : ψ̃ 7−→ ∂
∂n

(
H̃ψ̃
)∣∣∣∣

∂D×S

is a first-order, elliptic pseudo-differential operator with principal symbol

−
√
|ξ ′|2 +η2.

As in Section 2, we let

Φ̃ =
N−1

∑
i, j=1

α i j(x′)
∂

∂xi
⊗S

∂
∂x j

+δ (x′)
∂
∂y

⊗S
∂
∂y

,

and define a mapping

Ψ̃0 : Γ (∂D×S,T ∗(∂D×S))−→ Γ (∂D×S,T (∂D×S))

by the formula

Ψ̃0(ζ̃ ) = Φ̃
(

ζ̃ , ·
)

for every ζ̃ ∈ Γ (∂D×S,T ∗(∂D×S)).

Let p1 : ∂D×S −→ ∂D and p2 : ∂D×S −→ S be the projection on ∂D and S, respectively.
Then we can define a mapping

Ψ̃ : Γ (∂D,T ∗(∂D))×Γ (S,T ∗(S))−→ Γ (∂D×S,T (∂D×S))

by the formula

Ψ̃
(
ζ ′,σ ′)= Ψ̃0

(
p∗1ζ ′+ p∗2σ ′) for all (ζ ′,σ ′) ∈ Γ (∂D,T ∗(∂D))×Γ (S,T ∗(S)).

In terms of a local coordinate (x′,y) = (x1,x2, . . . ,xN−1,y) on the boundary ∂D×S, we have,
for ζ ′ = ∑N−1

i=1 ζi dxi and σ ′ = σ dy,

Ψ̃
(
ζ ′,σ ′)= N−1

∑
i, j=1

α i j(x′)ζi
∂

∂x j
+δ (x′)

∂
∂y

.

We let

Ỹ = the image of Ψ̃

=
{

Ψ̃(
(
ζ ′,σ ′) : ζ ′ ∈ Γ (∂D,T ∗(∂D)) , σ ′ ∈ Γ (S,T ∗(S))

}
.

By condition (2.3), we find that if hypothesis (A) is satisfied, then the following hypoth-
esis is satisfied:

(Ã) The Lie algebra L (Ỹ ) over R generated by Ỹ has rank N at every point of the set
M̃ = {(x′,y) ∈ ∂D×S : µ(x′) = 0}= M×S.

Hence, by considering µ(x′)Π̃ as a term of “perturbation” of Q̃ and by using the ar-
gument just in the proof of [17, Theorem 2.6.2] and [13, Theorem 5.9], we can obtain the
following result, analogous to Lemma 5.1:
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Lemma 5.2 Let A and L be as in Theorem 5.1. Assume that hypothesis (A) is satisfied, and
let κ be the same constant as in Lemma 5.1. Then, for each s ∈ R we have the regularity
property

ψ̃ ∈ D ′(∂D×S),
(

LH̃
)

ψ̃ ∈ Hs(∂D×S) (5.16)

=⇒ ψ̃ ∈ Hs+κ(∂D×S).

Furthermore, for any t < s+κ there exists a constant C̃s,t > 0 such that the a priori estimate

|ψ̃|Hs+κ (∂D×S) ≤ C̃s,t

(∣∣∣(LH̃
)

ψ̃
∣∣∣2
Hs(∂D×S)

+ |ψ̃|2Ht (∂D×S)

)
(5.17)

holds true.

As stated above, the proof of Lemma 5.2 is essentially the same as that of Lemma 5.1,
so we may omit it.

Step 2◦: To complete the proof, we need two lemmas. The first one is a version of
Peetre’s lemma (cf. [15]).

Lemma 5.3 (Peetre) Let X, Y and Z be Banach spaces such that X ⊂ Z with compact in-
jection and let T : X →Y be a closed linear operator with domain D(T ). Then the following
two conditions are equivalent:

(a) The kernel N(T ) of T is finite-dimensional and the range R(T ) of T is closed in Y .
(b) There exists a constant c > 0 such that the inequality

|x|X ≤ c(|T x|Y + |x|Z)

holds true for all x ∈ D(T ).

The second lemma characterizes the adjoint operator of ([22]):

Lemma 5.4 Define a linear operator

T̃ ∗
1 : H−s+5/2(∂D×S)−→ H−s+5/2−κ(∂D×S)

as follows:

(a) The domain D
(
T̃ ∗

1

)
is the space

D
(
T̃ ∗

1

)
=
{

φ̃ ∈ H−s+5/2(∂D×S) :
(

LH̃
)∗

φ̃ ∈ H−s+5/2−κ(∂D×S)
}
.

(b) T̃ ∗
1 φ̃ =

(
LH̃
)∗

φ̃ for every φ̃ ∈ D
(
T̃ ∗

1

)
.

Here
(

LH̃
)∗

is the formal adjoint of LH̃.
Then it follows that

T̃ ∗ ⊂ T̃ ∗
1 .



Semigroups and boundary value problems 29

Step 3◦: Now we are able to prove that the index of T̃ is finite.
By Rellich’s compactness theorem, it follows that the injection Hs(∂D×S)⊂Ht∂D×S)

is compact for t < s. Hence, by using Lemma 5.3 with

X := Hs−5/2+κ(∂D×S),

Y := Hs−5/2(∂D×S),

Z := Ht(∂D×S), t < s−5/2+κ,

T := T̃ ,

we obtain from estimate (5.17) with s := s−5/2 that dimN(T̃ )< ∞ and the range R(T̃ ) is
closed in Hs−5/2(∂D×S).

On the other hand, it follows from formula (5.13) that the symbol of the formal adjoint(
LH̃
)∗

is given by the formula[
−

N−1

∑
i, j=1

α i j(x′)ξiξ j −δ (x′)

]

+

[
−µ(x′)

√
|ξ ′|2 +η2 −

√
−1

N−1

∑
i=1

β i(x′)ξi +
√
−1

N−1

∑
i, j=1

∂α i j

∂x j
ξi

]
+ terms of order ≤ 0.

Hence, just as in the proof of Lemma 5.2, we can obtain the following results:

(a) For each s ∈ R, we have the regularity property

φ̃ ∈ D ′(∂D×S),
(

LH̃
)∗

φ̃ ∈ H−s+5/2−κ(∂D×S) (5.18)

=⇒ φ̃ ∈ H−s+5/2(∂D×S).

(b) For each t <−s+5/2, there exists a constant C̃∗
s,t > 0 such that the a priori estimate

|φ̃|H−s+5/2(∂D×S) (5.19)

≤ C̃∗
s,t

(∣∣∣(LH̃
)∗

φ̃
∣∣∣2
H−s+5/2−κ (∂D×S)

+ |φ̃|2Ht (∂D×S)

)
holds true.

Consequently, it follows from Lemma 5.4 and the regularity property (5.18) that

N
(
T̃ ∗
)
=
{

φ̃ ∈C∞(∂D×S) :
(

LH̃
)∗

= 0
}

and hence from estimate (5.19) that

codimR
(
T̃
)
= dimN

(
T̃ ∗
)
< ∞.

Indeed, it suffices to note that R
(
T̃
)

is closed in Hs−5/2(∂D×S) and further from Rellich’s

compactness theorem that the injection Hs−5/2(∂D× S) ⊂ Ht(∂D× S) is compact for t <
−s+5/2.

Summing up, we have proved that the index of T̃ is finite.
Now the proof of Theorem 5.1 is complete. ⊓⊔
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6 Fundamental a priori estimates

In this section we shall prove Lemma 5.1 which plays a fundamental role in the proof of
Theorem 4.1. We remark that the proof of Lemma 5.2 is essentially the same as that of
Lemma 5.1, as stated in Section 5.

The essential step in the proof is Proposition 6.2 below, which can be obtained by argu-
ing as in the proof of Oleı̆nik–Radkevič [17, Theorem 2.6.2] in a neighborhood of a point
x′0 such that µ(x′0) = 0 and by using Hörmander [13, Theorem 5.9] in a neighborhood of a
point x′0 such that µ(x′0)> 0.

6.1 Energy estimates

First, we prove the following energy estimate:

Proposition 6.1 Let A and L be as in Theorem 5.1 and let U be a coordinate patch of
the boundary ∂D with local coordinate x′ = (x1,x2, . . . ,xN−1). Then, for every compact set
K ⊂U and s ≥ 0 there exists a constant CK,s,t > 0 such that the energy estimate

N−1

∑
j=1

∣∣∣∣∣N−1

∑
i=1

α i j Diψ

∣∣∣∣∣
2

Hs(∂D)

+

∣∣∣∣∣ N−1

∑
k,ℓ=1

∂αkℓ

∂x j
Dk Dℓψ

∣∣∣∣∣
2

Hs−1(∂D)

 (6.1)

≤CK,s

(
|LHα ψ|2L2(∂D)+ |ψ|2H2s(∂D)

)
holds true for all ψ ∈C∞

0 (K). Here

D j =
1√
−1

∂
∂x j

, 1 ≤ j ≤ N −1.

The proof of Proposition 6.1 is carried out just as in the case where µ(x′) ≡ 0 on ∂D,
that is, LHα = Qα , if we consider µ(x′)Πα as a term of “perturbation” of Qα and by using
the following sharp Gårding inequality for µ(x′)Πα ([12]):

Lemma 6.1 (the sharp Gårding inequality) Let P be a properly supported, first-order
pseudo-differential operator in U ⊂ RN−1. Assume that its principal symbol p1(x′,ξ ′) is
non-negative when x′ ∈U and ξ ′ ∈ RN−1. Then, for every compact set K ⊂U there exists a
constant CK > 0 such that the inequality

Re
∫

RN−1
Pψ ·ψ dx′ ≥−CK

∫
RN−1

|ψ|2 dx′ (6.2)

holds true for all ψ ∈C∞
0 (K).

Proof (of Proposition 6.1) We remark that the case where LHα = Qα is studied in great
detail by Oleı̆nik–Radkevič [17]. We shall denote by C a generic positive constant depending
only on K.

We rewrite the differential operator Qα in formula (5.6) as follows:

Qα ψ =−
N−1

∑
i, j=1

D j
(
α i j(x′)Diψ

)
+

N−1

∑
i=1

(
N−1

∑
j=1

D jα i j(x′)+
√
−1β i(x′)

)
Diψ
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+
(
γ(x′)−α δ (x′)

)
ψ.

Then we have, by integration by parts,

Re(Qα ψ,ψ)L2(∂D) =−
N−1

∑
i, j=1

(
α i jDiψ,D jψ

)
L2(∂D)

+Re(hψ,ψ)L2(∂D) (6.3)

where h(x′) is some function in C∞(∂D). Hence it follows from formula (6.3) that

N−1

∑
i, j=1

(
α i jDiψ,D jψ

)
L2(∂D)

≤−Re(Qα ψ,ψ)L2(∂D)+C |ψ|2L2(∂D) . (6.4)

On the other hand, since µ(x′)Πα in formulaeq:5.6 is a first-order, pseudo-differential
operator with non-positive principal symbol

−µ(x′) |ξ ′| ≤ 0 on the cotangent bundle T ∗(∂D),

by applying Lemma 6.1 to −µ(x′)Πα we obtain that

0 ≤−Re(µ Πα ψ,ψ)L2(∂D)+C |ψ|2L2(∂D) . (6.5)

Hence it follows from inequalities (6.4) and (6.5) that

N−1

∑
i, j=1

(
α i jDiψ,D jψ

)
L2(∂D)

≤−Re(LHα ψ,ψ)L2(∂D)+C |ψ|2L2(∂D) . (6.6)

The desired estimate (6.1) follows from estimate (6.6) just as in the proof of Oleı̆nik–
Radkevič [17, Theorem 2.6.1].

The proof of Proposition 6.1 is complete. ⊓⊔

6.2 Local a priori estimates

Next we prove a local version of the a priori estimate (5.8).
For a pseudo-differential operator P with symbol p(x′,ξ ′), we shall denote by P( j)

and P( j) (1 ≤ j ≤ N − 1) pseudo-differential operators with symbols ∂ p(x′,ξ ′)/∂ξ j and
D j p(x′,ξ ′), respectively.

Proposition 6.2 Let A and L be as in Theorem 5.1. Assume that hypothesis (A) is satisfied.
Then, for any point x′0 of ∂D, we can find a neighborhood U(x′0) of x′0 such that:

For every compact set K ⊂ U(x′0), there exists a constant 0 < κ(K) ≤ 1 such that we
have, for any s ∈ R and t < s+κ ,

N−1

∑
j=1

(∣∣∣(LHα)
( j) ψ

∣∣∣2
Hs+κ/2(∂D)

+
∣∣∣(LHα)( j) ψ

∣∣∣2
Hs−1+κ/2(∂D)

)
+ |ψ|2Hs+κ (∂D) (6.7)

≤CK,s,t

(
|LHα ψ|2Hs(∂D)+ |ψ|2Ht (∂D)

)
, ψ ∈C∞

0 (K),

. with a constant CK,s,t > 0.
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Step (1): Before the proof, we formulate hypothesis (A) in terms of local coordinates.
(i) Let x′0 be a point of M = {x′ ∈ ∂D : µ(x′) = 0} and let U(x′0) be a coordinate patch

of x′0 with local coordinate x′ = (x1,x2, . . . ,xN−1). We let

Yj =
N−1

∑
j=1

α i j ∂
∂x j

for 1 ≤ j ≤ N −1.

Then it is clear that hypothesis (A) at x′0 is equivalent to the following:
(A)x′0

The Lie algebra L (Y1,Y2, . . . ,YN1) over R generated by the vector fields {Yi}N−1
i=1

has rank N −1 at x′0.
(ii) Furthermore, we can give a more useful formulation of hypothesis (A) in terms of

symbols of differential operators.
For any multi-index I = (i1, i2, . . . , ik) with 1 ≤ iℓ ≤ N −1 for 1 ≤ ℓ≤ k, we associate a

first-order differential operator

YI =
[
Yi1 ,
[
· · · ,

[
Yik−1 ,Yik

]]]
,

and denote by YI(x′,ξ ′) its symbol. Then it is also clear that hypothesis (A)x′0
is equivalent

to the following:
(A)′x′0

There exists an integer R(x′0)≥ 1 such that:

∑
|I|≤R(x′0)

∣∣YI(x′0,ξ ′)
∣∣> 0 for all ξ ′ ∈ RN−1 \{0}, (6.8)

where |I|= k for I = (i1, i2, . . . , ik).
Since the symbol YI(x′,ξ ′) is a positively homogeneous function of ξ ′ of first degree

and continuous with respect to x′ and ξ ′, we find from inequality (6.8) that hypothesis (A)
is equivalent to the following:

(A)′ For every point x′0 of the set M = {x′ ∈ ∂D : µ(x′) = 0}, we can find a neighborhood
U(x′0) of x′0 such that, for every compact set K ⊂U(x′0) there exist an integer R(K)≥ 1 and
a constant CK > 0 such that

1+ ∑
|I|≤R(x′0)

∣∣YI(x′,ξ ′)
∣∣2 ≥CK

(
1+ |ξ ′|2

)
for all x ∈ K and ξ ′ ∈ RN−1. (6.9)

Step (2): The proof of Proposition 6.2 is divided into three steps.
Substep (2-1): First, we obtain the following:

Lemma 6.2 Let U be a coordinate patch of the boundary ∂D. Then, for every compact set
K ⊂U, s ≥ 0 and k ≥ 1, there exists a constant CK,s,t > 0 such that the inequality

∑
|I|=k

|YIψ|2
Hs−1+21−k

(∂D)
≤CK,s,t

(
|LHα ψ|2L2(∂D)+ |ψ|2H2s(∂D)

)
(6.10)

holds true for all ψ ∈C∞
0 (K).

For k = 1, inequality (6.10) follows from inequality (6.1), and in the general case it is
proved by induction on k as in the proof of Oleı̆nik–Radkevič [17, Lemma 2.6.4].

Substep (2-2): Now we prove estimate (6.7) in the case where µ(x′0) = 0. We shall
denote by C a generic positive constant depending only on K, s and t.

As stated in Step (I), if hypothesis (A) is satisfied, then we can find a neighborhood
U(x′0) of x′0 such that:
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For every compact set K ⊂U(x′0) inequality (6.9) holds true with some integer R(K)≥ 1
and a constant CK > 0. Thus, by applying Oleı̆nik–Radkevič [17, Theorem 2.2.9] to the
differential operators YI , |I| ≤ R(K), we obtain that

|ψ|2Hs+1(∂D) ≤C

(
∑

|I|≤R(K)

|YIψ|2Hs(∂D)+ |ψ|2Hs(∂D)

)
,

and hence from inequality (6.10) with s := s+1−21−R(K) that

|ψ|2Hs+1(∂D) ≤C
(
|LHα ψ|2L2(∂D)+ |ψ|2

H2(s+1−21−R(K))(∂D)
+ |ψ|2Hs(∂D)

)
. (6.11)

We now choose
s := 21−R(K)−1,

and let
κ(K) := 21−R(K).

Then we note that

s ≤ 0,

0 < κ(K)≤ 1,

since 1 ≤ R(K)< ∞.
Therefore, by the well-known interpolation inequality (cf. Oleı̆nik–Radkevič [17, The-

orem 2.1.12]), we have, for t < κ(K),

|ψ|2Hκ (∂D) ≤C
(
|LHα ψ|2L2(∂D)+ |ψ|2Ht (∂D)

)
. (6.12)

Consequently, just as in the proof of Oleı̆nik–Radkevič [17, Theorem 2.6.2], we obtain
from inequalities (6.1) and (6.12) the desired estimate (6.7) in the case where µ(x′0) = 0.

Substep (2-3): Finally, we prove estimate (6.7) in the case where µ(x′0) > 0 by using
the following result due to Hörmander [13]:

Theorem 6.1 Let P be a properly supported, pseudo-differential operator in U ⊂ RN−1

of order m and denote by pm(x′,ξ ′) (resp. p′m−1(x
′,ξ ′)) its principal (resp. subprincipal)

symbol. Assume that the range of pm(x′,ξ ′) belongs to a closed angle Γ with opening < π
and that the range of −p′m−1(x

′,ξ ′) on the characteristic set

Σ =
{(

x′,ξ ′) ∈U ×
(
RN−1 \{0}

)
: pm(x′,ξ ′) = 0

}
belongs to another closed angle Γ ′ with Γ ∩Γ ′ = {0}.

Then the following two conditions are equivalent:

(a) For every compact set K ⊂U, s ∈ R and t < s+m−1, there exists a constant CK,s,t > 0
such that the inequality

|ψ|2Hs+m−1(RN−1) ≤CK,s,t

(
|Pψ|2Hs(RN−1)+ |ψ|2Ht (RN−1)

)
holds true for all ψ ∈C∞

0 (K).
(b) At every point (x′,ξ ′) of Σ , either p′m−1(x

′,ξ ′) ̸= 0 or else the Hamiltonian map of the
Hessian of pm is not nilpotent.
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By condition (2.2) and formula (5.4), we have the following:

(a) The principal symbol

p2(x′,ξ ′ =−
N−1

∑
i, j=1

α i j(x′)ξi ξ j

of LHα satisfies the condition

p2(x′,ξ ′)≤ 0 on T ∗(∂D)\{0}.

(b) The characteristic set Σ of LHα is given by the formula

Σ =

{
(x′,ξ ′) ∈ T ∗(∂D)\{0} :

N−1

∑
i, j=1

α i j(x′)ξi ξ j = 0

}
.

(c) The subprincipal symbol p′1(x
′,ξ ′) of LHα on Σ is equal to the following:

p′1(x
′,ξ ′) =−µ(x′)

∣∣ξ ′∣∣+√
−1

(
N−1

∑
j=1

β j(x′)xi j −
N−1

∑
i, j=1

∂α i j

∂x j
ξi

)
. (6.13)

In this way, we find that all the hypotheses of Theorem 6.1 are satisfied for the operator LHα .
Furthermore, if µ(x′0)> 0, then we can find a neighborhood U(x′0) of x′0 such that µ(x′)> 0
in U(x′0) and hence from condition (6.13)

p1(x′,ξ ′) ̸= 0 in U(x′0)×
(
RN−1 \{0}

)
.

Therefore, by applying Theorem 6.1 to LHα , we have, for every compact set K ⊂U(x′0),

|ψ|2H1(∂D) ≤C
(
|LHα ψ|2L2(∂D)+ |ψ|2Ht (∂D)

)
. (6.14)

Here t < 1.
Consequently, in the case where µ(x′0) > 0, the desired estimate (6.7) with κ(K) = 1

follows from inequalities (6.1) and (6.14) in the same way as the desired estimate (6.7) with
κ(K) = 21−R(K) follows from inequalities (6.1) and (6.12) in the case where µ(x′0) = 0.

The proof of Proposition 6.2 is complete. ⊓⊔

6.3 Two-parameter family of Sobolev norms

Before the proof of Lemma 5.1, we must introduce a two-parameter family of norms on the
boundary ∂D as in Hörmander [12] ([6], [17]).

(I) First, we introduce a two-parameter family of norms on the Sobolev spaces Hs(Rn).
If m > 0 and 0 < ρ < 1, we let

∥u∥2
H(s,m,ρ)(Rn)

=
1

(2π)n

∫
Rn

(
1+ |ξ |2

)s (
1+ |ρξ |2

)−m |û(ξ )|2dξ . (6.15)

We list two results which follow at once:

(1) For all u ∈ Hs−m(Rn), we have the inequalities

ρm∥u∥H(s,m,ρ)(Rn) ≤ ∥u∥Hs−m(Rn) ≤ ∥u∥H(s,m,ρ)(Rn),

that is, the norm ∥u∥H(s,m,ρ)(Rn) is equivalent to the norm ∥u∥Hs−m(Rn).
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(2) If u ∈ Hs(Rn), then we have the assertion

∥u∥H(s,m,ρ)(Rn) ↑ ∥u∥Hs(Rn) as ρ ↓ 0,

so that
∥u∥Hs(Rn) = sup

0<ρ<1
∥u∥H(s,m,ρ)(Rn).

This is an immediate consequence of the dominated convergence theorem.

The two-parameter family ∥ · ∥H(s,1,ρ)(Rn) of norms was introduced by Hörmander [11],
and was used to prove regularity theorems for linear partial differential equations. See also
Hörmander [12], Fediı̆ [6] and Oleı̆nik–Radkevič [17].

(II) Let s ∈ R, m > 0 and 0 < ρ < 1. In the Sobolev space Hs−m(∂D), we consider a
norm | · |H(s,m,ρ)(∂D) by the formula

|ψ|H(s,m,ρ)(∂D) = inf
ψ ′+ψ ′′=ψ

(
1

ρm

∣∣ψ ′∣∣
Hs−m(∂D)

+
∣∣ψ ′′∣∣

Hs(∂D)

)
. (6.16)

Then the above results are also true for the spaces Hs(∂D). More precisely, we have the
following results (cf. Hörmander [11], [12]):

(1) The norm |·|H(s,m,ρ)(∂D) increases as ρ ↓ 0, and we have the formula

|ψ|Hs(∂D) = sup
0<ρ<1

|ψ|(s,m,ρ)

if ψ ∈ Hs(∂D).
(2) The norm |·|H(s,m,ρ)(∂D) has locally an equivalent expression such as formula (6.15);

hence it is equivalent to the norm |·|Hs−m(∂D).

(III) We need two lemmas on the norms | · |H(s,m,ρ)(∂D), which can be proved just as in
the proof of [12, Theorem 1.4.9] in the case where m = 1. So we may omit their proofs.

The first lemma explains a motivation of introduction of the norms | · |H(s,m,ρ)(∂D):

Lemma 6.3 If there exists a constant C > 0, independent of ρ , such that

sup
0<ρ<1

|ψ|H(s,m,ρ)(∂D) ≤C for ψ ∈ H(s,m,ρ)(∂D),

then it follows that ψ ∈ Hs(∂D) and we have the inequality |ψ|Hs(∂D) ≤C.

The second lemma gives another expression for the norms | · |H(s,m,ρ)(∂D) via Friedrichs’
mollifiers. Let U be a coordinate patch of the boundary ∂D with local coordinate x′ =
(x1,x2, . . . ,xN−1) such that

U =
{∣∣x′∣∣< l

}
and let

K =
{∣∣x′∣∣< r

}
, 0 < r < l,

be a compact subset of U . Choose a (fixed) function χ ∈C∞
0 (U) such that

supp χ ⊂ {|x′|1− r} ,
χ̂(ξ ′) = O

(
|ξ ′|k

)
as |ξ ′| → 0, for an integer k ≥ 0,

χ̂(τξ ′) = 0 for all τ ∈ R only when ξ ′ = 0.
(6.17)
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For example, we may take
χ(x′) = ∆ k (θ(x′))

where θ(x′) is a function in C∞
0 (R

n−1) such that

θ̂(0) =
∫

Rn−1
θ(x′)dx′ ̸= 0.

Furthermore, we let

χε(x′) =
1

εN−1 χ
(

x′

ε

)
for 0 < ε < 1.

The next lemma gives another equivalent expression for the norm |ψ|H(s,m,ρ)(∂D) in terms
of the regularizations ψ ∗χε of ψ:

Lemma 6.4 Let U, K and χ(x′) be as above. Assume that the function χ(x′) satisfies condi-
tion (6.17) for k > s. Then, for any s1 ∈ R and t < s+s1−m, there exist constants Cs,s1,t > 0
and C′

s,s1,t > 0, independent of ρ , such that

|ψ|2H(s+s1 ,m,ρ)(∂D)
(6.18)

≤Cs,s1,t

(∫ 1

0
|ψ ∗χε |2Hs1 (∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

+ |ψ|2H(s+s1 ,m,ρ)(∂D)

)
≤C′

s,s1,t |ψ|2H(s+s1 ,m,ρ)(∂D)

for all ψ ∈ Hs+s1−m(∂D) with support in K.

6.4 Proof of Lemma 5.1

By Proposition 6.2, we can cover the boundary ∂D by a finite number of coordinate patches
{U j}d

j=1 in each of which estimate (6.7) holds true for all ψ ∈ C∞
0 (U j). Let {ψ j}d

j=1 be a
partition of unity subordinate to the covering {U j}d

j=1, and choose functions φ j ∈ C∞
0 (U j)

such that φ j ≡ 1 on suppψ j. We let

κ = min
1≤ j≤d

κ (suppφ j) .

Without loss of generality, we may assume that ψ ∈ Ht(∂D) for some t < s+κ . Thus,
in order to prove the lemma, it suffices to show that, for each ψ j we have the assertions

ψ jψ ∈ Ht(∂D), LHα ψ ∈ Hs(∂D) =⇒ ψ jψ ∈ Hs+κ(∂D). (5.7)′∣∣ψ jψ
∣∣2
Hs+κ (∂D)

≤C
(
|LHα ψ|2Hs(∂D)+

∣∣ψ jψ
∣∣2
Ht (∂D)

)
. (5.8)′

We shall denote by C a generic positive constant depending only on s and t. Now we
choose 0 < m < s+ κ − t for m in norm (6.15) and k = [s] + 1 for k in condition (6.17)
where [s] stands for the integral part of s. Then, by applying the first inequality of (6.18)
with s1 := κ to ψ := ψ jψ and further inequality (6.7) with s := 0 and t := t − s(< κ) to
ψ := (ψ jψ)∗χε , we obtain the inequality∣∣ψ jψ

∣∣2
H(s+κ,m,ρ)(∂D)

(6.19)
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≤C

(∫ 1

0

∣∣((ψ jψ)∗χε)
∣∣2
Hκ (∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

+
∣∣ψ jψ

∣∣2
Ht (∂D)

)

≤C

(∫ 1

0

∣∣LHα ((ψ jψ)∗χε)
∣∣2
L2(∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

+
∫ 1

0

∣∣((ψ jψ)∗χε)
∣∣2
Ht−s(∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

+
∣∣ψ jψ

∣∣2
Ht (∂D)

)
.

By using the second inequality of (6.18) and inequality (6.16) to estimate the second
term of the last inequality of (6.19), we have the inequality

∫ 1

0

∣∣((ψ jψ)∗χε)
∣∣2
Ht−s(∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

(6.20)

≤C
∣∣ψ jψ

∣∣2
H(t,m,ρ)(∂D)

≤C
∣∣ψ jψ

∣∣2
Ht (∂D)

.

Furthermore, in light of the pseudo locality for pseudo-differential operators, by arguing
as in the proof of Oleı̆nik–Radkevič [17, Theorem 2.4.2], we can estimate the first term of
the last inequality of (6.19) as follows (cf. [17, inequality (2.4.46)]):

∫ 1

0

∣∣LHα ((ψ jψ)∗χε)
∣∣2
L2(∂D)

(
1+

ρ2

ε2

)−m

ε−2s dε
ε

(6.21)

≤C
(
|LHα ψ|2Hs(∂D)+

∣∣ψ jψ
∣∣2
Ht (∂D)

)
.

Hence it follows from inequalities (6.19), (6.20) and (6.21) that

∣∣ψ jψ
∣∣2
H(s+κ,m,ρ)(∂D)

≤C
(
|LHα ψ|2Hs(∂D)+

∣∣ψ jψ
∣∣2
Ht (∂D)

)
.

Therefore, by virtue of Lemma 6.3, we obtain regularity property (5.7)|prime and estimate
(5.8)′.

The proof of Lemma 5.1 is complete. ⊓⊔

7 Concluding remark

In applying Corollary 2.1 we confined ourselves to the case where the differential operator
A is elliptic on D. The reason is that when the operator A satisfies only hypothesis (H) we do
not know whether the operator LHα written as formula (5.3), which played a fundamental
role in the proof of Theorem 5.1, is a pseudo-differential operator on the boundary or not.
It is an open problem to extend Theorem 2.2 to the case where the differential operator A
satisfies hypothesis (H).
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