タッピングゲームと Beat Alignment Testを

用いた聴覚障害者の音楽リズム認知に関する
研究

筑波大学

図書館情報メディア研究科
2017年3月
狩野 直哉

目次

1 はじめに 1
1.1 聴覚障害 1
1.2 音楽の中のリズム 3
1.3 音楽ゲームによるトレーニング 4
1.4 タッピングゲームの短期的学習効果 5
1.5 リズム認知難易度 5
1.6 本研究の目的と実験概要 6
2 長期実験 7
2.1 方法 7
2.2 結果 10
2.3 考察 16
3 難易度実験 18
3.1 方法 18
3.2 結果 21
3.3 考察 32
4 まとめ 35
謝辞 36
参考文献 37
付録 40
A 付録：難易度実験での全被験者のタップのプロット 40
B 付録例 2 50

表目次

1.1 聴覚障害の程度に関する分類 1
2.1 ビートタッピングで用いた刺激 9
2.2 トレーニング区間ごとのタッピングゲームのプレイ時間の概算 15
3.1 被験者の情報 19
3.2 実験で使用したリズムパターン 20
3.3 重畳条件の分散分析（ F 値） 26
3.4 重畳条件の分散分析（主観難易度） 28

図目次

1.1 オージオグラムの一例（参考文献［28］より引用） 2
1.2 オージオグラムの概形による分類（参考文献［35］より引用） 3
1.3 タッピングゲームの画面 5
2.1 被験者 S1 の等間隔タッピング 12 試行における ITI の変遷 10
2.2 被験者 S 2 の等間隔タッピング 12 試行における ITI の変遷 11
2.3 被験者 S3 の等間隔タッピング 12 試行における ITI の変遷 11
2.4 被験者 S4 の等間隔タッピング 12 試行における ITI の変遷 12
2.5 等間隔タッピングで被験者が叩いた ITI（Preferred ITI）のヒストグラム 12
2.6 ビートタッピングにおける F 値平均の変遷 13
2.7 ビートパーセプションにおける平均正答率の変遷 14
2.8 ビートパーセプションにおける刺激パターンごとの全被験者平均正答率 15
3.1 リズムパターン例：1000100010101000 20
3.2 リズムパターンの複雑さによる F 値平均 22
3.3 アクセント有無による F 値平均 23
3.4 各種重畳条件ごとの F 値平均 24
3.5 リズムパターンの複雑さ×条件のすべての組み合わせにおける全被験者 F 値平均 25
3.6 リズムパターンの複雑さ×条件のすべての組み合わせにおける全被験者主観難易度平均 27
3.7 リズムパターンのみ条件での全刺激に対する相対位相のヒストグラム 29
3.8 アクセント条件での全刺激に対する相対位相のヒストグラム 30
3.9 被験者 S5 の各条件での相対位相のヒストグラム 31
3.10 被験者 S3 のリズムパターンのみ条件での相対位相のヒストグラム 31
3.11 被験者 S6 のリズムパターンのみ条件での相対位相のヒストグラム 32
3.12 被験者 S7 のリズムパターンのみ条件での相対位相のヒストグラム 32
A． 1 難易度実験での被験者 S1 のタッピング 41
A． 2 難易度実験での被験者 S2 のタッピング 42
A． 3 難易度実験での被験者 S3 のタッピング 43
A． 4 難易度実験での被験者 S4 のタッピング 44
A． 5 難易度実験での被験者 S5 のタッピング 45
A． 6 難易度実験での被験者 S6 のタッピング 46
A． 7 難易度実験での被験者 S7 のタッピング 47
A． 8 難易度実験での被験者 S8 のタッピング 48
A． 9 難易度実験での被験者 S 9 のタッピング 49
B． 1 被験者 S1 の各条件での相対位相のヒストグラム 50
B． 2 被験者 S2 の各条件での相対位相のヒストグラム 51
B． 3 被験者 S3 の各条件での相対位相のヒストグラム 51
B． 4 被験者 S4の各条件での相対位相のヒストグラム 52
B． 5 被験者 S5 の各条件での相対位相のヒストグラム 52
B． 6 被験者 S6 の各条件での相対位相のヒストグラム 53
B． 7 被験者 S7 の各条件での相対位相のヒストグラム 53
B． 8 被験者 S8 の各条件での相対位相のヒストグラム 54
B． 9 被験者 S 9 の各条件での相対位相のヒストグラム 54
B． 10 被験者 S1 のリズムパターンのみ条件での相対位相のヒストグラム 55
B． 11 被験者 S 2 のリズムパターンのみ条件での相対位相のヒストグラム 55
B． 12 被験者 S3 のリズムパターンのみ条件での相対位相のヒストグラム 55
B． 13 被験者 S 4 のリズムパターンのみ条件での相対位相のヒストグラム 56
B． 14 被験者 S5 のリズムパターンのみ条件での相対位相のヒストグラム 56
B． 15 被験者 S6 のリズムパターンのみ条件での相対位相のヒストグラム 56
B． 16 被験者 S7 のリズムパターンのみ条件での相対位相のヒストグラム 57
B． 17 被験者 S8 のリズムパターンのみ条件での相対位相のヒストグラム 57
B． 18 被験者 S9 のリズムパターンのみ条件での相対位相のヒストグラム 57

1 はじめに

聴覚障害者が音楽を受け入れ，有効活用できることは，様々な分野での研究において示唆されてい る $[4,7,26,36,37]$ 。また，聴覚障害者の半数以上は音楽を積極的に楽しんでいることが複数のアンケート調査から分かっている $[10,23,30]$ 。彼らは，単に音楽を聴取する以外にも，カラオケ，音楽ゲーム，ダンス や楽器演奏など，様々な形で音楽と深く関わっている［23］．一方で，音楽聴取に不安を感じている聴覚障害者もいる。自分の聴いている音楽が健聴者と同じではない可能性を考えたり，カラオケで「入りが分から ない」と焦ることもある。
音楽を楽しみ，より自信を持って楽しみたいという聴覚障害者に向けた音楽トレーニングは有用である。先行研究において，聴覚障害者に向けた音楽トレーニングの可能性を調査したもの［22］や，実際のトレー ニングを提案しているもの $[8,11]$ がある。これらの研究は，聴覚障害者がトレーニングを通じて音高の知覚や楽器の音色の聴き分けの能力を向上させることが可能であることを示唆している。

本研究では，音楽において重要な要素の一つであるリズムに着目し，聴覚障害者を対象として二つの実験 をおこなった。「長期実験」では，リズム認知能力向上のためのトレーニングの実現可能性の検討を主な目的とし，長期的に聴覚障害者にトレーニングを意図した音楽ゲーム（タッピングゲーム）をプレイしても らった。「難易度実験」では，聴覚障害者が音楽を聴く際にリズムを認知しやすい曲・しづらい曲があるこ とに着目し，その難易度基準を調査した。また，双方の実験において，聴覚障害者のリズム認知能力を計測 するために，Iversen らの考案した Beat Alignment Test［17］に基づいたシステムを使用した。

1.1 聴覚障害

聴覚障害には種類，程度があり，個人差が大きいものである。
聴覚障害の程度について，WHO による分類＊1を示す（表 1．1）。

表 1．1：聴覚障害の程度に関する分類

分類	平均聴力レベル	聞こえ
障害なし	$0-25 \mathrm{~dB}$	ささやき声を聴き取ることができる
軽度難聴	$26-40 \mathrm{~dB}$	1 メートルの距離で普通の聞き取りが可能
中度難聴	$41-60 \mathrm{~dB}$	1 メートルの距離で大きな声での聞き取りが可能
高度難聴	$61-80 \mathrm{~dB}$	良い方の耳へ叫ばれた言葉が聞き取りが可能
重度難聴	$81 \mathrm{~dB}-$	音声言語の受容が困難

この表で，平均聴カレベル $H_{\text {mean }}$ は，以下の式によって求められる。

$$
\begin{equation*}
H_{\text {mean }}=\left(H_{500 \mathrm{~Hz}}+H_{1000 \mathrm{~Hz}} * 2+H_{2000 \mathrm{~Hz}}\right) / 4 \tag{1}
\end{equation*}
$$

$H_{500 \mathrm{~Hz}}, H_{1000 \mathrm{~Hz}}, H_{2000 \mathrm{~Hz}}$ はそれぞれ，オージオメーターで計測した $500 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 2000 \mathrm{~Hz}$ の音の

[^0]聴力レベル＊2を指す。この計算方法は 4 分法と呼ばれる。 1000 Hz 前後の周波数は音声の認識に重要であ るため，会話の能力を重視した計測方法である。本研究では主として高度難聴あるいはそれよりも重い聴覚障害者を対象とする。
聴力はオージオメーターによって測られ，その結果はオージオグラムというグラフで示される。オージ オグラムの一例を参考文献［28］から引用して図1．1に示す。
（dB）

1252505001 K 2 K 4 K 8 K周波数（ Hz ）

図 1．1：オージオグラムの一例（参考文献［28］より引用）

オージオグラムは，横軸は周波数，縦軸は聴力レベル（dB HL）を表している。下の方が聴力が低いこ とを表す。プロットが 2 ラインあるのは，それぞれ右耳と左耳を示している。

こういったオージオグラムの概形による聴覚障害の分類も可能である。参考文献［35］から引用して図 1.2 に示す。

[^1]

図 1．2：オージオグラムの概形による分類（参考文献［35］より引用）

どのような概形であるかは個人によって異なるため，同じ平均聴力レベルであっても聞こえは全く異な る可能性がある。

また，補聴器や人工内耳によっても聞こえは変わる。補聴器は一般に，周囲の音をマイクロホンで拾い，増幅して耳元のスピーカーで流すという構造をしている。この増幅の過程で音情報の一部が失われること や，増幅しても聞き取り不可能な周波数帯が人によって存在しうるため，補聴器装用者であっても聴力は完全に補償されるわけではない。また，人工内耳は，内耳に電極を埋め込み，音を直接的に電気信号に変換す る。人工内耳の性質上，電極の個数が限られるため周波数分解能が著しく低下すること，また，内耳の一部 にしか電極を埋め込めないために，周波数の対応関係が健聴者と異なること（例えば，和音や不協和音の区別が困難となる）が特徴である。

1.2 音楽の中のリズム

リズムは，メロディや音色などと同様に，音楽における重要な要素の一つである。音楽の要素を知覚し理解することは，音楽を楽しむために重要なことであり，特にリズムを認知することは，楽器演奏やダンスな どの音楽活動への支えともなる，また，聴覚障害者は，リズムを重要な手がかりとして音楽を同定すること が分かっている $[12,19]$ 。一方で，多くのろう学校では，音楽の授業でリズムの理解を促すことを困難だと していることが判明している［29］．このような状況から，リズムを理解する能力のトレーニングは聴覚障害者にとって有意義であると考える。

「リズムを理解する能力」といっても，その計測方法は定まっていない。聴覚障害者を対象とした計測方法に限っても，多くの研究者が異なる方法を提案してきた $[2,3,13,16,21,38]$ ．しかし，これらの手法は，「単旋律のリズムパターンに対しての弁別•同定」などのような，実験のために作られた音を用いての，基礎的なリズム能力の計測にとどまっている。実際の音楽はさらに複雑である。音楽からリズムを理解する ためには，複雑に重畳された音の中から，リズムを強く表す音を選択的に聴取た上でリズムを認知する能力 が求められる。聴覚障害者は，シンプルなタスクにおいては比較的リズムを理解できるものの，実際の音楽聴取に求められるような複雑なタスクではリズムを理解することが困難である［19］．

音楽におけるリズムの理解には，聴取しながら「拍」を認知することが重要であると考える。拍とは音楽

の「タイミングのよりどころとなる時間の単位＊3」であり，音楽に合わせた手拍子や，指揮者の手の動きに見られるような，音楽の基本的な等間隔のリズム構造である。従って，音楽を聴きながら拍を認知できるか否かを，本研究におけるリズム能力の指標とし，この能力のことを「リズム認知能力」と呼ぶ．
リズム認知能力を計測するための方法として主に「タッピング」による計測を採用する。タッピングと は，「一定のリズムにしたがって継続的に入力デバイスをタップする」という行為を指し，リズムに関する研究において広く用いられている［33］．音楽へのタッピングによってリズム認知能力を計測した先行研究 から，健聴者は音楽へのタッピングを非常に容易におこなえる $[9,17]$ 一方で，聴覚障害者の場合，平均聴 カレベルや音楽経験によっては，音楽へのタッピングが困難である者も多くいる $[25]$ ことが分かっている。

本研究では，後述する二つの実験において，Iversen らが開発した Beat Alignment Test［17］を用いて リズム認知能力の計測を行う。Beat Alignment Test は 4 つのサブテストからなり， 3 つ目のサブテスト （ビートタッピング）が，音楽に合わせたタッピングである。

1.3 音楽ゲームによるトレーニング

ゲーミフィケーション（非ゲーム的なコンテクストにゲームデザインの要素を使用すること［5］）は，学習やトレーニングの効率を向上させることが知られている。ゲームには使用者の内発的動機づけ（プレイ自体やプレイに伴う技能の向上による動機づけ）を促進させる効果があり，学習やトレーニングの効能を向上させる［20］．ゲーミフィケーションを適用したトレーニングは広い分野で研究されており，認知的な能力を対象としたトレーニングの効果向上も報告されている $[18,39]$ 。本研究で扱うリズム認知能力も，その ような認知能力と同種のものであると考え，リズム認知能力のトレーニングを，ゲーミフィケーションを適用しておこなうこととした。

リズム認知能力をトレーニングするためのゲームを開発するに際して，商用の音楽ゲーム（beatmania IIDX，太鼓の達人，Guitar Hero など）を参考とする。一般に，多くの音楽ゲームは，「音楽を聴きながら，画面に可視化されるリズムに合わせて何らかの操作を行う」という形式をとっている。この形式において， ゲームで好成績を獲得するためにはリズム認知能力が必須である。このようなゲームを繰り返してプレイ することがリズム認知能力の向上に寄与する可能性は十分に考えられる。また，音楽ゲームでは音楽を集中して聴くことが求められるため，普段の聴取では得られない気づきを与える可能性もある。

以上のような考えのもと，我々は一般的な音楽ゲームに共通する要素を採用した「タッピングゲーム」 を開発し，本研究で用いることとした。一般的な音楽ゲームの共通要素だけを使用していることから，こ のゲームのトレーニング効果を検証することで，他の多くの音楽ゲームの効果も同時に検証することがで きる。

タッピングゲームの画面を図 1.3 に載せる。

[^2]

図 1．3：タッピングゲームの画面

画面に表示されるリズム情報を頼りにしながら，音楽に合わせて指定の場所をタッチパネルでタップす るゲームである。正しいタイミングで正しい場所をタップできれば得点が入り，プレイヤーは高得点を取 ることを目標とする。

1.4 タッピングゲームの短期的学習効果

我々が以前行った実験では，聴覚障害者がタッピングゲームをプレイすると短期的には学習効果が生じ ることが分かった［24］．すなわち，ゲームのプレイ直前でリズムを聴き取れなかった楽曲が，プレイ直後 ではリズムを聴き取れるようになった。この短期的な学習効果は，タッピングゲームの特徴である「可視化 されたリズムの表示（視覚手がかり）」に起因することが確認された。つまり，単に同じ楽曲を繰り返し聴 いてリズムを覚える，というわけではなく，ゲームのプレイがリズム認知能力を向上させたことを示唆して いる。ただし，短期的と称しているように，ゲームのプレイの直前と直後，かつ同じ楽曲に対して，という限定的なリズム認知能力の向上を示したにすぎない。

よって本研究では，タッピングゲームが，長期的に，様々な楽曲に応用可能なリズム認知能力のトレーニ ングに足りうるか，という点を検討するための実験をおこなった。言い換えれば，短期的な実験で観測され た学習効果が，長期的に定着するものであるかを検証する実験である。この実験を本稿では「長期実験」と呼び，第 2 節で記述する。また，長期実験を通して，タッピングゲームの改善を試みたほか，聴覚障害者の リズムに関する能力の基礎データの収集もおこなった。

1.5 リズム認知難易度

一般に，トレーニングは適切な難易度の設定を要する。この考え方は元々は発達心理学における「発達の最近接領域［40］」と呼ばれる，「段階的な問題解決が子供の発達を促進する」という説に基づくものである。 このような，段階的な問題解決，すなわちタスクの難易度の最適化が，発達だけでなく，トレーニングや学習過程全般にも有効であることが指摘されている［34］．

また，先述の短期的な学習効果を検証する実験［24］では，「楽曲の難易度」がリズム認知能力の向上に大 きく影響することが分かった。すなわち，「リズムを認知しやすい楽曲」において，ゲームのプレイ後にリ ズム認知が容易となる傾向が強かった。しかし，短期的な実験では，難易度の基準を，聴覚障害者らの証言と，実験実施者の主観で決定していたため，リズムを認知しやすい楽曲の基準が明確には定まっていな

かった。

以上のような背景から，リズム認知能力のトレーニングにおいて，楽曲ごとのリズム認知の難易度基準を策定することは重要であると考える。したがって，音楽のどのような要素がリズム聴覚障害者の認知難易度に影響を与えるかを検討するための実験をおこなった。この実験のことを「難易度実験」と呼び，第 3 節 で記述する。

1.6 本研究の目的と実験概要

本研究では，聴覚障害者のリズム認知能力についての知見を深めるために， 2 つの実験をおこなった。
1 つ目の「長期実験」では，タッピングゲームの長期的なリズム認知能力向上効果を検討する実験であ り，第2節で詳述する。また，長期実験では，副次的に，実験を通してタッピングゲームの改善を試みたほ か，聴覚障害者のリズムに関する基礎データの収集もおこなった。

2 つ目の「難易度実験」では，音楽のどのような要素が，聴覚障害者のリズム認知難易度に影響を与える かを検討するための実験であり，第3節で詳述する。

2 長期実験

2.1 方法

我々の開発したタッピングゲームが，聴覚障害者のリズム認知能力を向上させるかを調べるために，長期的な実験をおこなった。

実験はトレーニングパートとテストパートに分かれる。トレーニングパートではタッピングゲームをプ レイし，テストパートでリズム認知能力の確認を行う。トレーニングパートは一回につき 1 ヶ月程度であ り，それを計 5 回，間を空けずに行った。テストパートは 1 回 20 分程度のテストであり，実験の開始前 （トレーニング未実施時），および各トレーニングパートの終了時に実施した。計 6 回実施したテストパー トの結果を比較することにより，リズム認知能力の変化を検証した。
また，実験を通して，聴覚障害者のリズムに関する能力の分析も行った。実験の主目的はリズム認知能力 の変化を検証することであるものの，それ以外の基礎データの収集も以後の研究において有用であると考 え，これを副次的に調べることとした。
実験期間中，タッピングゲームに関して被験者に意見聴取を行い，トレーニングパートの境目ごとにタッ ピングゲームのアップデートをおこなった。詳細は以下のトレーニングパート・テストパートの項目で述 べる。

また，実験終了後には，主観評価アンケートをおこなった。

2．1．1 被験者

実験には 4 名の聴覚障害者が参加した。以下では，被験者をそれぞれ S $1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4$ と呼称する。いず れも 20 歳から 21 歳の大学生であり， S 2 は平均聴力レベル 76 dB ，他 3 人は 100 dB 以上の聴力損失を持 つ．いずれの被験者も言語獲得前に聴力を損失している。被験者 S 1 は片耳に人工内耳を装用しており，そ の他の被験者は実験中に補聴器を装用していた。

2．1．2 トレーニングパート

トレーニングパートでは，タッピングゲームをインストールしたタブレット端末（Surface Pro 3， Windows8．1）を被験者に貸し，操作方法を説明した上で各自自由にプレイしてもらった。こちらからプレ イ時間•頻度などの指定はしなかった。

タッピングゲームの基本的なインターフェースは，第1．3項で述べた通り，「画面に表示されるリズム情報を頼りにしながら，音楽に合わせて指定の場所をタップする」というゲームである。ただし，実験で使用 したタッピングゲームは以下の 3 つのモードを用意した。
－「難しい」モード
音楽の様々なリズムに合わせて 4 つの箇所をタップする（図 1．3）。
－「シンプル」モード
音楽の拍に合わせて 1 つの箇所をタップする。
－「テスト」モード
画面のリズム可視化情報を非表示にして，音楽の拍をタップする．すなわち，後述するテストパート の「ビートタッピング」と同様。

また，実験中は，被験者に適宜意見を募り，アップデートをおこなった．実際におこなったアップデート

の例を以下に挙げる。

- モードの見直し，「難しい」モードは途中から廃止し，「テスト」モードを途中から追加した。
- タップしたときのフィードバック音の有無の設定。
- ハイスコアの保存，高得点をとった楽曲への印づけ．
- 「テスト」モードのプレイ後に，拍とタップを時間軸に沿って可視化表示するフィードバックの追加。
- ユーザーインターフェース・画面デザインの変更．画面エフェクトの追加．
- 楽曲の追加．

タッピングゲームに使用した音楽はJ－POP を中心に，テストパートでは使用しない楽曲を 30 曲程度を用意し，そのうちの 20 秒－ 40 秒程度を抽出したものを使用した．

2．1．3 テストパート

テストパートでは，被験者のリズム認知能力のテストを行う。テストには，Iversen らの開発した Beat Alignment Test［17］（以下，BAT）を使用した。システム自体はオリジナルのBAT のままであるが，使用 する刺激は変更した。
BAT は以下の 4 つのサブテストによって構成される。
1．等間隔タッピング
何も聞かずに，自分の叩きやすいテンポで，等間隔のタッピングを行う（ 15 秒間， 2 回）。
2．メトロノームタッピング
等間隔で短い音が鳴る刺激（メトロノーム）を聴きながら，それに合わせたタッピングを行う。
3．ビートタッピング
音楽を聴きながら，その拍に合わせてタッピングを行う。
4．ビートパーセプション
音楽とメトロノームが同時に鳴るのを聴いて，メトロノームが音楽の拍に合っているかどうかを 2択で判断する。

2．1．4 テストパートの刺激

テストパートは毎回同じ刺激を使用した。ただし，テストパートの 3 回目からは，収集データを増加さ せるために，ビートタッピング・ビートパーセプションにおいて刺激を追加した。

メトロノームタッピングでは， $100 \mathrm{msec}, 1000 \mathrm{~Hz}$ の正弦波が等間隔で鳴る音列（こういった音列のこと を本稿ではメトロノームと呼ぶ）を使用した。ここでは，音と音の間隔（Inter－Onset Interval：IOI）が $400 \mathrm{msec}, 550 \mathrm{msec}, 700 \mathrm{msec}$ の 3 種類のメトロノームを使用した。いずれの刺激も全体で 15 秒の長さと した。なお，実験前に事前にそれぞれの被験者について， 1000 Hz の正弦波を検知できることは確認済みで ある。

ビートタッピングで使用した刺激を表2．1に記載する。刺激のうち半分はオリジナルのBAT［17］のもの を使用し，残りの半分は日本の楽曲を使用した。刺激はそれぞれ，楽曲中の一部分を 15 秒 25 秒程度を抽出した。テストパートで使用した楽曲はすべて，トレーニングパートで使用した楽曲とは異なるものであ る。また，テストパートの 3 回目から刺激を追加した。1回目から使用した刺激は番号1－8 であり，9－12 は追加した刺激である。

表 2．1：ビートタッピングで用いた刺激

番号	楽曲名	アーティスト	パーセプション
1	となりのトトロ	井上あずみ	使用
2	Super Scooter Happy	きゃりーぱみゅぱみゅ（カバー）	
3	眠り姫	SEKAI NO OWARI	
4	乱れ髪	美空ひばり	使用
5	Hard to Handle	Black Crowes	使用
6	Panama		
7	Tuxedo junction	Van Halen	Glenn Miller
8	Richard Rogers Waltzes	Boston Pops	使用
9	Howl’s Moving Castle	久石譲	
10	いろは	ゴスペラーズ	使用
11	Superman	Boston Pops	使用
12	Stompin＇at the savoy	Benny Goodman	

ビートパーセプションでは，ビートタッピングで使用した楽曲のうち半分の 6 楽曲を使用した（表 2.1 パーセプションの列）。それぞれの楽曲に対して，以下の 4 つのパターンのメトロノームを用意した。

- On Beat：楽曲の拍と同一タイミング．
- Tempo Error：楽曲の拍よりテンポが 10% 速い，または遅い。
- Phase Error：楽曲とテンポは同一だがタイミングが拍から $1 / 4$ 拍分ズレている．
- Syncopation：楽曲とテンポは同一だがタイミングが拍から $1 / 2$ 拍分ズレている。すなわち，シンコ ペーションのタイミングで鳴る．

6 楽曲と 4 つのメトロノームのパターンについて，すべての組み合わせで刺激を作成し，計 24 個の刺激 を用意した。On Beat のパターンは「音楽の拍に合っている」刺激であり，Tempo Error，Phase Error， Syncopation はいずれも「音楽の拍に合っていない」刺激とした。

2．1．5 アンケート

実験終了後には被験者に対して実験全体へのアンケートをおこなった。アンケート項目を以下に示す。
1．タッピングゲームは音楽聴取のためのトレーニングに有効だと思いましたか？
2．タッピングゲームをプレイすることで，自分の音楽聴取能力やリズム感が向上したと思いますか？
3．タッピングゲームをプレイすることで，普段音楽を聴くときの聴き方が変わりましたか？また，変 わったのであればどのように変わりましたか？

4．タッピングゲームの改善点を自由に記述してください。
5．その他，実験全体への意見や感想などがあれば記述してください。

2.2 結果

2．2．1 等間隔タッピング

等間隔タッピングでは，テストパートの回数間の比較は意味をなさないため（また，比較しても差はな かったため），すべての回をまとめて分析した。すなわち，6回のテストパート×各 2 回の等間隔タッピン グ× 4 名の被験者，計 48 データを， 4 名の被験者が 12 回ずつ等間隔タッピングを行ったものとみなす。

それぞれの等間隔タッピングでの，タップとタップの間の時間（Inter－Tap Interval：ITI）の変遷を，各被験者 12 試行に対して図示したものを以下（被験者 S1：図 2．1，被験者 S2：図 2．2，被験者 S3：図 2.3 ，被験者 S4：図 2．4，）に示す。縦軸が ITI であり，横軸は何個目の ITI であるかを指し，一本の線が等間隔 タッピング 1 試行を表す。線が水平に近ければ一定間隔を維持できているということである。全体的な傾向として，ごく一部の試行を覗いて多くは一定間隔を維持できており，かつ多くの試行が $I T I=0.5$ 付近 に集中している。

図 2．1：被験者 S1 の等間隔タッピング 12 試行における ITI の変遷

図 2．2：被験者 S2 の等間隔タッピング 12 試行におけるITI の変遷

図 2．3：被験者 S3 の等間隔タッピング 12 試行における ITI の変遷

図 2．4：被験者 S4 の等間隔タッピング 12 試行における ITI の変遷

それぞれの等間隔タッピングにおけるITIの平均を，その試行で被験者が叩いた ITI の代表値（代表 ITI）としたときの，計 48 試行における代表 ITI のヒストグラムを図 2.5 に示す。図から，被験者らは多 くの試行で $I T I=0.5$ 付近でタッピングをおこなったことが分かる。

図 2．5：等間隔タッピングで被験者が吅いた ITI（Preferred ITI）のヒストグラム

2．2．2 メトロノームタッピング

メトロノームタッピングでは全被験者，概ねメトロノームに合わせたタッピングが行えていたため，分析 は割愛する。

2．2．3 ビートタッピング

ビートタッピングでは，その試行がどのぐらい上手くできたか（どのぐらい音楽のリズムを認知できてい たか）を， F 値（F－Measure）という指標を使って表す。 F 値は我々の以前の研究［24］でも用いた指標で あり， F 値が 1 に近ければリズムを認知できていることを示す。

F 値は以下の式で定義する。
適合率 P：全タップ中の正確に叩けたタップの割合
再現率 R ：全拍中の正確に叩かれた拍の割合

$$
F \text {-Measure }=\frac{2 \cdot P \cdot R}{P+R}
$$

ここで，「正確に叩けた」とは，拍と拍の間隔を IBI（Inter－Beat Interval）としたとき，拍の前後 $I B I / 4$ の区間にタップがある場合を指す。また，$P=R=0$ である場合は F－Measure $=0$ とする．
テストパートの回ごとの，全刺激に対する F 値の平均の変遷を図 2.6 に示す。図の横軸がテストパート （BAT）の回数であり，縦軸が F 値を表す。被験者を色で分けている．

図 2．6：ビートタッピングにおける F 値平均の変遷

2．2．4 ビートパーセプション

ビートパーセプションでは，正答率を指標とした。ただし， 2 択であるのでチャンスレベルは 0.5 であ る．すなわち，解答が分からずランダムに答えた場合，正答率は 0.5 付近となる。

テストパートの回ごとの，全刺激に対する平均正答率の変遷を図 2.7 に示す。図の横軸がテストパート （BAT）の回数であり，縦軸が正答率を表す。被験者を色で分けている。

図 2．7：ビートパーセプションにおける平均正答率の変遷

刺激のパターン（On Beat，Tempo Error，Phase Error，Syncopation）ごとの正答率（全被験者平均） を図 2.8 に示す。各棒の色の濃さはテストパートの回数を示している。

図 2．8：ビートパーセプションにおける刺激パターンごとの全被験者平均正答率

2．2．5 タッピングゲームのプレイ時間

5 回あるトレーニングパートそれぞれについて，各被験者のタッピングゲームのプレイ時間の概算を表 2.2 に示す。各行は各被験者を表し，各列はトレーニング区間の回数を表す。プレイ時間はタッピングゲー ムのログから算出した。メニュー画面や単に起動しているだけの時間は含まず，純粋に音楽を聴きながら タッピングを行っていた時間である。また，これら概算は 1 つのトレーニング区間（1ヶ月前後）での合計 であるが，実際には 1 ヶ月のうちの数日に集中してプレイする傾向が見られた。

表 2．2：トレーニング区間ごとのタッピングゲームのプレイ時間の概算

	1 回目	2 回目	3 回目	4 回目	5 回目
S1	1 分	0 分	23 分	5 分	50 分
S2	18 分	3 分	16 分	11 分	42 分
S3	0 分	43 分	33 分	13 分	31 分
S4	5 分	15 分	21 分	19 分	18 分

2．2．6 アンケート結果

アンケートに対する回答を要約して記載する。
アンケート項目（1）「タッピングゲームは音楽聴取のためのトレーニングに有効だと思いましたか？」に ついては，4名中 3 名が「思う」と答え， 1 名が「わからない」と答えた。

アンケート項目（2）「タッピングゲームをプレイすることで，自分の音楽聴取能力やリズム感が向上した と思いますか？」は 4 名全員が「わからない」と答えた。

アンケート項目（3）「タッピングゲームをプレイすることで，普段音楽を聴くときの聴き方が変わりまし たか？また，変わったのであればどのように変わりましたか？」については，4名中 2 名が「変わった」と答えた。その内訳は「カラオケでリズムを意識すると歌いやすくなったと思うときがあった」というもの と，「楽器音がなにかを集中して聴くようになった」というものであった。
アンケート項目（4）と（5）では，様々な意見が出たので，その一部を記載する，タッピングゲームに対し てはインターフェースやデザインに関する意見が複数あったほか，「振動や光を使えば面白そう」という提案，「継続できる魅力が足りていない」という意見があった。テストパートに対する意見として，「メトロ ノームの音（ 1000 Hz の正弦波）が音楽と混ざると聴き取りづらい」という意見などがあった。

2.3 考察

2．3．1 リズム認知能力の変化

音楽のリズム認知能力は，BAT のビートタッピングおよびビートパーセプションの結果から判断する。図 2．6，図 2.7 を見ると， F 値，正答率いずれも回による変動はあるものの，ランダムに起こりうる誤差の範囲であり，学習曲線のような傾向は見られず，リズム認知能力に変化はなかったと考えられる。

リズム認知能力に変化がなかった第一の理由として考えられるのは，プレイ時間の不足である（表 2．2）。当然，学習時間が少なければ学習は生じない。

また，被験者 S 2 については初めから高い成績を出しているため，天井効果により学習の確認ができな かった。被験者 S 2 にとってはテストパートが簡単すぎたが，他の 3 名においては適切あるいは難しかった ということである．聴覚障害者といっても，個人個人の聴取能力の違いは大きく，それを考慮したテストに すべきである。

アンケート項目（1）（2）の結果から，被験者らは，タッピングゲームは効果がありそうだと感じたものの，実際に自分に効果があったとは感じていないものと推察される。ただし，アンケート項目（3）では 2 名が普段の音楽聴取への影響を答えており，リズム認知能力の目に見えた向上まではいかずとも，タッピングゲー ムによる意識の変化があったことが示唆される。
総じて，実験を通してリズム認知能力の変化は観測されなかったものの，主要な理由はプレイ時間の不足 など，実験デザインの不備によるものであり，アンケート結果なども加味すれば，タッピングゲームの長期的なトレーニング効果が完全に否定されたものではないと考える。

2．3．2 実験デザインの改善

リズム認知能力の向上が見られなかった第一の原因は，プレイ時間の不足であると考える。
適切な学習時間を確保するためには，実験の方法や教示を見直すことが必要である。例えば，トレーニ ングパートも，テストパートと同様，実験実施者が立ち会って決められた時間おこなう方法などが考えら れる。

ただし，本来望ましいのは，被験者の自由意志でプレイしたいと思えるようなゲームを開発することであ る。アンケートでも 1 名から「継続できる魅力が足りていない」と指摘されている。そもそもゲーミフィ ケーションが有効である理由の一つは，楽しいから継続できるという点であり，本実験でプレイ時間が少な かったのはゲームの面白さが足りなかったためと考えるのが自然である。

トレーニングパートが 1 回 1 ヶ月，かつそれを 5 回という期間設定にも見直しの余地がある。本実験で は，被験者の意見を取り入れながらタッピングゲームをアップデートしていく，ということを試みたため，

トレーニングパートが長くなってしまったが，効果の検証を主目的とするのであればもう少し短い方がよ いだろう。例えば，タスクが異なるため参考程度ではあるが，聴覚障害者の楽器音識別のトレーニングを行った先行研究［8］ではトレーニング期間を計 5 週間と設定しており，実際には 3 週間程度で十分な学習が見られたとしている。

アンケートではテストパートでのメトロノームの音色への意見があった。メトロノームの音色は 1000 Hz の正弦波であり，単独であれば聞こえるとのことだったが，音楽と同時に流れると音楽に埋もれて分かりづ らくなるとのことである。聴覚障害は個人個人によって，例えば「高音が聴き取りづらい」など周波数帯に よって聞き取りやすさが異なるため，その点を十分に考慮した刺激の選定が求められる。

2．3．3 等間隔タッピングにおける Preferred ITI

先行研究によれば，健聴者の Preferred tempo（等間隔タッピングによって測られる，最も自然に感じる テンポ）は120BPM 前後に集中する［27］．120BPM は ITI に換算すると 500 msec であり，本実験での結果（図 2．5）と同様の傾向である。また，図 2．1，図 2．2，図 2．3，図 2.4 から，いずれの被験者も，ほとん どの試行において， 1 つの試行中に大きくITI が変動することは無かった。このことから，いずれの被験者 も一定のテンポをキープする能力があることが示唆される。
これら結果から，等間隔タッピングにおいては健聴者•聴覚障害者で同様の傾向があると考えられる．先行研究［27］で，120BPM は人間の歩行のテンポに近いことが指摘されていたように，等間隔タッピングの ようなテンポ生成・テンポ維持に必要な機構は，聴力とは無関係に発達するものであると推察される。

今回の実験では被験者が 4 名と少なかったため，より被験者を増やして検討することが望まれる。

2．3．4 ビートパーセプションにおける刺激パターン

ビートパーセプションでは，刺激のパターンごとの正答率を調べた（図 2．8）。テストパートの回数によ る変化はほとんど確認できないものの，全体的な傾向としてパターンごとの違いが見られた。音楽の拍に合っている刺激（On Beat）を「合っている」と正答できた割合は比較的高い傾向があった。一方で，音楽 の拍に合っていない刺激に関しては，Tempo Error，Phase Error，Syncopation いずれのパターンにも正答率に差が見られなかった。

Iversen らによるビートパーセプションの実験［17］では，健聴者 30 名を対象として，On Beat，Tempo Error，Phase Error の正答率を比較している。健聴者においては，On Beat の正答率が高いことは我々の実験同様であったが，Tempo Error に比較して Phase Error の正答率が優位に低い点が我々の実験結果と異なった。

また，Syncopationの刺激は，Tempo Error，Phase Error に比較して自然に感じるリズムであるため，正答率が低くなると予想していたが，実際には差が見られなかった。

以上の結果は，今回の実験は被験者が 4 名と少ないため，あくまでこういう傾向があるかもしれないと いう程度のものである。しかし，被験者を増やして健聴者との比較をおこなえば，より明確に傾向が見え，新たな知見が得られるのではないかと考える。

3 難易度実験

3.1 方法

3．1．1 目的

難易度実験では，聴覚障害者にとって，音楽のどういった要素が，リズム認知の難易度に影響を与えるか を調べる。

聴覚障害者にとって，音楽のリズムを認知することは困難である場合が多い。しかし，その困難さの度合 いは，音楽によって大きく異なっている。すなわち，楽曲によって「リズムが分かりやすい曲」「リズムが分かりづらい曲」が存在するということである．

先述の長期実験に先だって実施された短期的な学習効果の検証実験（第1．4節参照）では，「ドラムの音 のリズムパターンの複雑さ」と「ドラムの音の相対的な大きさ」をリズム認知の難易度基準とした。これ は，予備実験での聴覚障害者らの証言に基づいた基準であり，結果を見ても妥当であった。しかし，その実験では，難易度を二段階，すなわち「リズムが複雑かつドラム音が大きい」と「リズムが単純かつドラム音 が小さい」の 2 グループとしたものであり，リズムパターンの複雑さと，音の相対的な大きさ，どちらの要因が（あるいは両方が）影響を与えたのかは判明しなかった。さらに，先行研究では，リズムの理解にはア クセントの知覚が大きく関わっていることが指摘されている［31］．
以上のような背景から，本研究では次の仮説を立てる。
音楽を聴きながらリズム認知をするとき，その楽曲の拍節構造を明確に指し示す音（ドラム等）に注目す るものとした場合，楽曲のリズム認知の難易度は，以下の 3 つに集約する。
－注目する音のリズムパターンの複雑さ
例えば， 4 分音符のみで構成されるリズムパターンと， 3 連符や 16 分音符が入り交じる複雑なりズ ムパターンであれば，後者の方がリズム認知が困難である。
－注目する音のアクセント
例えば，ドラムであれば小節の頭（1 拍目）にシンバルの音があったり，表拍にバスドラムの音があ る，ということが多い。また，演奏者が演奏表情をつけた結果，拍の部分の音が大きくなることもあ る。このような音色や音量の違い（アクセント）はリズム認知に貢献すると考えられる。
－注目する音をマスクする音（重畳音）の相対的な強さ例えば，注目する音がドラムだった場合に，ギターやベースといったドラム以外の音が鳴っている と，ドラムの音が相対的にかき消されてドラムの音に注目することが難しくなり，リズム認知の困難 さにつながる。

従って，以上の 3 要素をパラメータとする刺激を作成し実験に用いる。刺激は人工的に作った無機質な ものであるが，上述の考え方より，音楽を抽象化した音であると捉えることができる。

3．1．2 手続き

実験では，被験者が刺激を聴きながら，刺激の拍に合わせて継続的にタップする，という試行（タッピン グ）をおこなう。実験で使用したプログラムは，第2節の長期実験で使用した Beat Alignment Test のサ ブテストであるビートタッピングに基づいたものである．

被験者は椅子に座り，スピーカーから出力される音を聴きながら，机上にあるタブレット型 $\mathrm{PC}^{* 4}$ のタッ チパネルを用いてタッピングをおこなった。

各刺激へのタッピングの直後には，今の刺激がどのぐらい難しかったかを5段階評価（1：とても簡単－ 5：とても難しい）でキーボードから入力してもらった。この評価のことを，本節では「主観難易度」と呼ぶ，

実験は筑波技術大学天久保キャンパスの 615 教室で実施した。実験実施時の教室の暗騒音は 31.7 dBA － 34.0 dBA 程度であった。被験者それぞれに実験前にスピーカーの音量調節をしてもらった結果，実験で使用した音（強いホワイトノイズ重畳音；後述）を流しているときの等価騒音レベルは，被験者の耳元付近で $48.1 \mathrm{dBA}-64.9 \mathrm{dBA}$ 程度であった。

実験終了後，被験者には平均聴力レベルや音楽経験などを尋ねるアンケートに答えてもらった。

3．1．3 被験者

実験には筑波技術大学の聴覚障害学生 9 名（21－25歳，男性 6 名，女性 3 名）が参加した。被験者それぞ れに関する情報をまとめたものを表3．1に記載する。表のそれぞれの項目は，実験後のアンケートにより聴取したものである．特に平均聴力レベルは被験者の記憶による自己申告であるため，必ずしも正確な値で はない可能性があることを付記しておく，また，「音楽を聴く頻度」は「1：まったく聴かない－5：とてもよ く聴く」の5段階である。

表 3．1：被験者の情報

番号	障害発症年齢	平均聴力 レベル	平均聴力レベ ルの計測時期	補聴器 の使用	$\begin{aligned} & \text { 人 工 } \\ & \text { 内耳 } \end{aligned}$	音楽を聴 く頻度	音楽経験
S1	0 歳	70dB	2015 年	使用多	無し	5	$\begin{aligned} & \hline \text { ピアノ (エレク } \\ & \text { トーン) } 12 \text { 年 } \end{aligned}$
S2	0 歳	83 dB	2012 年	使用多	無し	5	和太鼓3年
S3	0 歳	110 dB		使用多	無し	4	太鼓 8 年，ピアノ 10 年
S4	0 歳	120 dB	1－2 歳の頃	使用し ない	有り	2	$\begin{aligned} & \text { ピアノ (4 歳~小 } \\ & \text { 学生) } \end{aligned}$
S5	8 歳	95 dB	2016 年	使用多	無し	5	ピアノ（7歳～12歳）
S6	2 歳	90 dB	2016 年	使用多	無し	5	無し
S7	0 歳	85 dB	2016 年	使用多	無し	4	音楽ゲーム
S8	13 歳	90 dB	2015 年	使用多	無し	4	ピアノ（6歳～12歳）
S9	0 歳	65 dB	2014年	使用多	無し	5	ピアノ（6 歳～18歳）

3．1．4 刺激

刺激は，一定のリズムパターンが繰り返して鳴り続ける音である。

[^3]実験で使用したリズムパターン 9 種類を表 3.2 に示す。

表 3．2：実験で使用したリズムパターン

リズムパターン	複雑さ	Category
1000100010101000	簡単（easy）	1
1000101110011000	簡単（easy）	1
1110100011101000	簡単（easy）	1
1011011110101000	普通（medium）	5
1110100101011000	普通（medium）	5
1010100100101000	普通（medium）	5
1001101000110100	難しい（difficult）	9
1101001110101100	難しい（difficult）	7
1111001001001000	難しい（difficult）	9

リズムパターンは， $4 / 4$ 小節で 16 分音符を最小単位とした音列 1 小節分とした。上記の図では，リズム パターンを， 1 と 0 を並べたバイナリ列で表現している。この音列は，各バイナリが時間の最小単位を表 し， 1 のタイミングでは音が鳴り， 0 のタイミングでは音が鳴らないことを意味する。例えば，リズムパ ターン「1000100010101000」は，楽譜による表記では図 3.1 に相当する。バイナリ 16 個からなる列のう ち， $1,5,9,11$ 個目のバイナリのタイミングが，タップするべき拍である．

図 3．1：リズムパターン例：1000100010101000

リズムパターンは，複雑さを 3 段階に分け，それぞれ 3 つのリズムパターンを用意した。リズムパター ンの複雑さの基準にはPovel \＆Essens による指標［31］を使用した。表3．2のCategory 列に，Povel \＆ Essens によるカテゴリ分けを表記している．基本的に，数値が高いほど複雑であるとしている。また，同様の指標を用いて，拍のあいまいさ（拍とシンコペーションの混同など）が生じないようにしている＊5．

それぞれのリズムパターンについて，6小節繰り返した音源を刺激とした。テンポは110BPM－130BPM のいずれかであり，刺激の再生前にランダムに決定される。リズムパターンの音には広い帯域の音を含む楽器音として，RWC 楽器音データベース［15］からスネアドラムの音（431SD3N3）を使用した。

また，各リズムパターンに対して，以下の 6 つの条件を当てはめた刺激を使用した。それぞれの条件の括弧内の名称は，以降の節での図表中で用いる。

[^4]－リズムパターンのみ（normal）
リズムパターンのみの刺激である。
－アクセント（accented）
リズムパターンのみであるが，アクセントがつく，すなわち，拍の部分にある音は大きく，その他の音は小さくなる．
－重畳あり・ノイズ・弱い（noise＿weak）
リズムパターンの他に，刺激全体を通じて弱いホワイトノイズが鳴り続ける。
－重畳あり・ハーモニック・弱い（harmonic＿weak）
リズムパターンの他に，刺激全体を通じて弱い矩形波の和音が鳴り続ける。
－重畳あり・ノイズ・強い（noise＿strong）
リズムパターンの他に，刺激全体を通じて強いホワイトノイズが鳴り続ける。
－重畳あり・ハーモニック・強い（harmonic＿strong）
リズムパターンの他に，刺激全体を通じて強い矩形波の和音が鳴り続ける。
重畳音は，ノイズとハーモニックの 2 種類を用意した。ノイズはホワイトノイズであり，ハーモニック は $\mathrm{C} 2, \mathrm{E} 3, \mathrm{G} 4, \mathrm{C} 6, \mathrm{E} 7, \mathrm{G} 8$ の矩形波を重ね合わせた和音である。いずれも，リズムパターンの音であるス ネアドラムと同様，広い周波数帯域を含む音として選定した。

重畳音の大きさは，音の心理量であるラウドネスレベルを基準に調整した．noise＿weak，harmonic＿weak条件における重畳音のラウドネスレベルはそれぞれ 78．80phon，78．74phonに，noise＿strong，har－ monic＿strong 条件における重畳音のラウドネスレベルはそれぞれ 85．78phon，85．76phon に調整した。一方で，リズムパターンの音は 84．05phon とした。accented 条件ではアクセントのある部分の音は 86.68 phon ，アクセントのついていない部分の音は 75.96 phon とした。

なお，ラウドネスの計測には Loudness Toolbox＊6を用いて，重畳音については ANSI S3．4－2007 のアル ゴリズム［1］を，リズムパターンの音については Glasberg \＆Moore のアルゴリズム［14］を使用した。

刺激について要約すると， 9 種類のリズムパターンに対して， 6 つの条件（リズムパターンのみ，アクセ ント，各種重畳）を当てはめ，計 54 個の刺激を用いたことになる。

3.2 結果

難易度実験での結果について記述する。各被験者のタップを時間軸に沿ってプロットした図を付録 A に掲載する。

本節では，被験者 9 人全員の結果をまとめて分析した全体的な結果を「 F 値」および「主観難易度」の指標により示す。さらに，被験者間での違い，すなわち「個人差」を相対位相という指標を用いて示す。

3．2．1 F 値

リズム認知がどのぐらいできていたかの指標としては，長期実験のビートタッピングと同様に F 値 （F－Measure）を用いる．F 値の定義は長期実験の節の 2．2．3 項に記載している。
リズムパターンの複雑さごとの，全被験者，全条件の F 値平均を図 3.2 に示す。リズムパターンの複雑 さはそれぞれの間で有意な差が見られた（本項で後述）。

[^5]

㒺 3．2：リズムパターンの複雑さによる F 値平均

リズムパターンのみ（normal）条件，アクセントあり（accented）条件での，全被験者，全リズムパターン での F 値平均を図 3.3 に示す。アクセントの有無の間では有意傾向が見られた（本項で後述）。

図 3．3：アクセント有無による F 値平均

リズムパターンのみ（normal 条件，および各種重畳条件ごとの，全被験者，全リズムパターンでの F 値平均を図3．4に示す。重畳条件による違いは，少なくとも全被験者を対象とした全体的な分析では見られな かった。

図 3．4：各種重畳条件ごとの F 値平均

また，リズムパターンの複雑さと各条件の全組み合わせについての，全被験者の F 値平均を図 3.5 に示 す。縦軸が F 値，横軸が条件であり，色の濃さがリズムパターンの複雑さを示す。

図 3．5：リズムパターンの複雑さ×条件のすべての組み合わせにおける全被験者 F 値平均

ここで，「リズムパターンの複雑さ」，「アクセントの有無」，「重畳の有無と強さ」が，それぞれ F 値に影響を与えたかどうかを検定する。

本実験では，「条件」のなかに，アクセント有無の要因•重畳の要因，という二つの異なる要因があるた め，以下のように要因を分けての検定をおこなった。
－リズムパターンの複雑さ要因と，重畳要因の分析
リズムパターンのみ条件，および，重畳ありの 4 条件における F 値（被験者・リズムパターンの複雑さ・条件の 3 要因）に対する分散分析，およびポストホック検定．
－アクセントの有無要因の分析
リズムパターンのみ条件と，アクセント条件の比較。
リズムパターンの複雑さ要因と重畳要因に対しての分散分析の結果を表 3.3 に示す。被験者，リズムパ ターンの複雑さ，および，被験者とリズムパターンの複雑さの交互作用，リズムパターンの複雑さと条件 （重畳）の交互作用，の要因について有意差がみられた（ $p<0.05$ ）．その他の要因および交互作用について は有意傾向がみられた。

表 3．3：重畳条件の分散分析（F 値）

	Df	Sum Sq	Mean Sq	F Value	$\operatorname{Pr}(>\mathrm{F})$	
被験者	8	7.392	0.924	42.457	$<2.00 * 10^{-16}$	$* * *$
リズム複雑さ	2	1.527	0.7635	35.086	$2.85 * 10^{-14}$	$* * *$
条件（重畳）	4	0.182	0.0456	2.096	0.0816	.
被験者：リズム複雑さ	16	2.169	0.1355	6.228	$9.09 * 10^{-12}$	$* * *$
被験者：条件（重畳）	32	0.984	0.0307	1.413	0.0759	.
リズム複雑さ：条件（重畳）	8	0.401	0.0501	2.302	0.0211	$*$
被験者：リズム複雑さ：条件（重畳）	64	1.838	0.0287	1.32	0.0683	.
Residuals	270	5.876	0.0218			

また，F 値に対しての分散分析のあと，有意であった要因のうち，「リズムパターンの複雑さ」について のポストホック検定をおこなった。全被験者•全条件における F 値を対象として，ボンフェローニ法によ る補正をかけ，ウィルコクソンの符号順位検定による多重比較をおこなった。結果として，「難しい－簡単 （ $\left.p=1.1 * 10^{-08}\right)$ 」，「難しい－普通（ $\left.p=0.0059\right)$ 」，「難しい－簡単（ $\left.p=0.0173\right)$ 」いずれの組み合わ せにおいても有意差がみられた。

アクセントの有無要因については，全被験者•全リズムパターンにおける，リズムパターンのみ条件・ア クセント条件を対象として，ウィルコクソンの符号順位検定をおこなった。結果として，リズムパターンの み条件とアクセント条件の間で有意傾向（ $p=0.0527$ ）がみられた。

3．2．2 主観難易度

刺激へのタッピング直後に被験者に答えてもらった，「今の刺激がどの程度難しかったか」の 5 段階評価 （1：とても簡単－5：とてもむずかしい）の結果を記述する。

リズムパターンの複雑さ・条件の全組み合わせにおける全被験者の主観難易度の平均を図 3.6 に示す。縦軸が F 値，横軸が条件であり，色の濃さがリズムパターンの複雑さを示す。

図 3．6：リズムパターンの複雑さ×条件のすべての組み合わせにおける全被験者主観難易度平均

主観難易度に関しても，F 値同様に分散分析を以下の 2 回に分けておこなった。
－リズムパターンの複雑さ要因と，重畳要因の分析
リズムパターンのみ条件，および，重畳ありの 4 条件における主観難易度（被験者・リズムパターン の複雑さ・条件の 3 要因）に対する分散分析，およびポストホック検定。
－アクセントの有無要因の分析
リズムパターンのみ条件と，アクセント条件の比較。

重畳条件の分散分析の結果を表3．4に示す。被験者，リズムパターンの複雑さ，および，被験者とリズ ムパターンの複雑さの交互作用，被験者と条件（重畳）の交互作用，の要因について有意差がみられた （ $p<0.05$ ）．

表 3．4：重畳条件の分散分析（主観難易度）

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$	
被験者	8	310.27	38.78	58.829	$<2.00 * 10^{-16}$	$* * *$
リズム複雑さ	2	50.95	25.47	38.64	$1.75 * 10^{-15}$	$* * *$
条件（重畳）	4	4.78	1.19	1.811	0.127	
被験者：リズム複雑さ	16	38.43	2.4	3.643	$4.96 * 10^{-06}$	$* * *$
被験者：条件（重畳）	32	35.98	1.12	1.706	0.0129	$*$
リズム複雑さ：条件（重畳）	8	6.48	0.81	1.229	0.2818	
被験者：リズム複雑さ ：条件（重畳）	64	27.69	0.43	0.656	0.9775	
Residuals	270	178	0.66			

また，主観難易度に対しての分散分析のあと，有意であった要因のうち，「リズムパターンの複雑さ」に ついてのポストホック検定をおこなった。全被験者•全条件における主観難易度を対象として，ボンフェ ローニ法による補正をかけ，ウィルコクソンの符号順位検定による多重比較をおこなった。結果として，「難しい－簡単 $\left(p=2.6 * 10^{-10}\right)$ 」，「難しい－普通 $(p=0.00014)$ 」，「難しい－簡単（ $\left.p=0.00310\right)$ 」 いずれの組み合わせにおいても有意差がみられた。

アクセントの有無要因については，全被験者•全リズムパターンにおける，リズムパターンのみ条件・ア クセント条件を対象として，ウィルコクソンの符号順位検定をおこなった。結果として，リズムパターンの み条件とアクセント条件の間で有意差がみられた（ $p=0.008301$ ）。

3．2．3 相対位相

ここでは，Fujii らがタッピングの精度の指標として提案したRelative Phase［9］を用いた分析の結果を図示する．Rlative Phase（以後，本稿では相対位相と呼ぶ）は，刺激全体の中からどのタイミングでタッ プしたのか，ではなく，拍と拍の間の時間（Inter－Tap Interval）のうちどのタイミングでタップしたか，を示すものであり，本稿ではそのヒストグラムによってタップの傾向を見る。F値が「いかにリズム認知がで きているか」を表すのに対して，相対位相のヒストグラムは，タップの微妙なタイミングのズレや，被験者 ごとの傾向などに着目するのに適している。ここでは特に，各被験者ごとの個人差に着目するためにこの分析方法を用いる。

各被験者における，リズムパターンのみ条件での全刺激に対する相対位相のヒストグラムを図 3.7 に示 す。図中，角度は時間と対応しており，一周が拍と拍の間の時間に相当する。つまり， 0° が拍に対応し， 180° がシンコペーションのタイミングに対応する。ヒストグラムは 36 個の区間に分けた。半径はその区間でタップがおこった割合を示す。

また，図の下に付記してある数値はそれぞれ，SIarvが「拍への近さ」を，SIlrv および SIent がタップ の一貫性を示す指標である。SIarv $(-180<S I a r v \leq 180)$ が 0 に近ければ，拍に近いタップが多いこと を示し， $\operatorname{SIlrv}(0 \leq S I l r v \leq 1)$ と $\operatorname{SIent}(0 \leq S I e n t \leq 1)$ が高ければ一貫して近いタイミングでタップし ていることを意味する．算出方法は脚注に記述する．${ }^{* 7}$

[^6]

図 3．7：リズムパターンのみ条件での全刺激に対する相対位相のヒストグラム

リズムパターンのみ条件での相対位相のヒストグラムから，被験者 S1，S2 S5，S8，S9 はほとんど拍の周辺を一貫してタップしている一方で，S3，S6，S7 は拍以外のタイミングでのタップも一定数おこなってい ること，S4 はすべてのタイミングでほぼ同等にタップしていることが分かる。また，被験者 S $2, \mathrm{~S} 5, \mathrm{~S} 7$ ， S9 は拍よりも少し早いタイミング＊8でタップする傾向があった。

[^7]次に，各被験者における，アクセント条件での全刺激に対する相対位相のヒストグラムを図 3.8 に示す。

図 3．8：アクセント条件での全刺激に対する相対位相のヒストグラム

リズムパターンのみ条件と比較して，S3，S4，S6，S7 において拍周辺のタップが増加したことが，ヒス トグラムおよび一貫性の指標 SIlrv•SIent の増加から分かる。その他の被験者は，リズムパターンのみ条件，アクセント条件いずれでも正確なタッピングができていたため，天井効果により顕著な差は見られな かった。

また，以下では各被験者において，条件やリズムパターンの複雑さごとの相対位相のヒストグラムを見た際に，とりわけ顕著な特徴が見られたもののみを言及する。すべての被験者における条件・リズムパターン の複雑さごとの相対位相のヒストグラムは付録 B に掲載する。

被験者 S5 の，各条件での相対位相のヒストグラムを図 3.9 に示す。

図 3．9：被験者 S5 の各条件での相対位相のヒストグラム

被験者 S 5 は，ハーモニック音の重畳がある刺激に対して明確にタップの精度が下がっている。
被験者 $\mathrm{S} 3, \mathrm{~S} 6, ~ \mathrm{~S} 7$ それぞれについて，リズムパターンのみ条件での，リズムパターンの複雑さごとの相対位相のヒストグラムを図 3．10，3．11，3．12に示す。

Slarv $=1.562^{\circ}$
$\begin{array}{ll}\text { Sllirv } & =0.897\end{array}$
Slent $=0.404$

Slarv $=-28.696^{\circ}$
Sllrv $=0.783$
Sllrv $=0.783$

Slarv $=100.256^{\circ}$
Sllirv $=0.131$ Slent $=0.084$

図 3．10：被験者 S3 のリズムパターンのみ条件での相対位相のヒストグラム

図 3．11：被験者 S6 のリズムパターンのみ条件での相対位相のヒストグラム

図 3．12：被験者 S7 のリズムパターンのみ条件での相対位相のヒストグラム

被験者 $\mathrm{S} 3, \mathrm{~S} 6, \mathrm{~S} 7$ は，リズムパターンの複雑さによってタップの精度が左右される傾向が特に強かった。 なお，ここに載せた以外では，いずれの被験者も，重畳条件やリズムパターンの複雑さによってタップの精度が左右される傾向は顕著ではなかった。

3.3 考察

F 値および主観難易度のいずれの分析においても，「リズムパターンの複雑さ」は有意であり，かつ，「重畳の有無と強さ」は有意ではなかった。「アクセントの有無」に関しては，主観難易度は有意差があったが， F 値は有意傾向にとどまった。また，分散分析で「被験者」要因が有意であったこと，および相対位相の分析から，各被験者ごとに個人差が大きかったことが分かった。以下で，それぞれの要因，および個人差に関 する考察を記述する。

3．3．1 リズムパターンの複雑さ

リズムパターンの複雑さについては，F 値および主観難易度いずれも，分散分析において有意な要因であ り，ポストホック検定でも難易度間の有意差があった。すなわち，リズムパターンの複雑さが，リズム認知 の難易度に影響を与えていたといえる。

リズムパターンの複雑さがリズム認知に影響を与えたことは，健聴者を対象とした先行研究［31］と一致

する．Povel and Essens によれば，人間はリズム認知をする際に，脳内でリアルタイムに音列の周期パ ターンを解析しているとのことであり，その周期パターン解析には「アクセントのない音列にアクセントを感じる」ことが関わっている［31］という。すなわち，人間は，同じ音の音列に対して，（1）孤立する音，（2） 2 連続の音の 2 個めの音，（3） 3 連続以上の音の最初と最後の音，の 3 つにアクセントを感じるということ が分かっており［32］，その情報から周期パターンの解析をおこない，リズム認知をするということである。本実験で用いたリズムの複雑さの指標は上記の考え方に基づいて作られたものであることから，聴覚障害者であっても，健聴者同様に，アクセントのない音にアクセントを感じること，それをもとにしてリズム認知をおこなっていること，そして，そういった能力は聴力によらず獲得される，という可能性が示唆され た。ただし，本実験ではリズムパターンの複雑さを 3 段階に減らしたことや，アクセントのない音にアク セントを感じるかどうかというのはまた別の実験であるため，より確証を得るには更なる検証が望まれる。

3．3．2 アクセントの有無

アクセントの有無要因は，F 値については有意傾向（ $p=0.0527$ ）にとどまったが，主観難易度には有意差（ $p=0.008301$ ）が見られた。すなわち，主観的には，アクセントがある方が明確に簡単であったが，そ れが結果として現れる傾向は比較的少なかった，ということになる。
F 値が有意傾向にとどまったのは，基本的には， F 値が全体的に 1 に近かったことが理由であると考えら れる。 すなわち，F 値には天井効果があったために，アクセントの有無に関わらず高い F 値を獲得できた試行が多く，難易度差を客観的には観測できなかったということである。

一方で，被験者らの主観的な評価には，アクセントの有無が有意に影響を与えていた。すなわち，「リズ ム認知ができて，高い F 値を獲得できる」という刺激であっても「アクセントがある方が簡単」であると評価したものと考えられる。

以上を踏まえると，アクセントの有無がリズム認知の難易度に影響を与えていたといえる。

3．3．3 重畳の有無と強さ

重畳の有無と強さは， F 値および主観難易度いずれも，有意な要因ではなかった。
しかし，被験者ごとに見てみると，ほとんどの被験者は重畳の有無で明確な差が見られなかったのに対し て，S5 においてのみ重畳条件の刺激に対するタッピングの精度が下がっていた（図 3．9）．このことから，重畳音が難易度に影響を与えないというわけではない，と推察される。

また，S5 の場合，ノイズ重畳音よりも，ハーモニック重畳音で顕著にタッピングの精度が下がってい た。リズムパターンの音は，特定の基本周波数を持たないという意味ではノイズ重畳音と同種である。一方で，ハーモニック重畳音は特定の基本周波数を持つ音の和音によって構成されている．そのため，群化の法則［6］に従うのであれば，同種の音が混ざる場合の選択的な聴取が困難あると予想されるが，結果として は逆となった。なぜハーモニック重畳音で顕著にリズム認知が困難となったかは，現段階では不明ではあ るものの，この点に関しては，さらなる調査を進めれば，健聴者にはない特徴が見出される可能性がある。
また，主観難易度においては，被験者要因と重畳要因の交互作用において有意差が見られた（ $p=0.0129$ ）。 すなわち，全体的な傾向としては重畳の有無によって主観難易度は変わらなかったものの，被験者によって は，重畳音がある方がリズム認知が困難であると感じた，ということである。重畳音は，すなわち複数の音の中から聴きたい音に選択的に集中するというプロセスを伴う。健聴者では，この選択的な聴取（群化） を，特別な労力を用いずに行える（例：音楽のドラムの音だけを選択的に聴く等）が，聴覚障害者にとって は，選択的な聴取に対して意識的な努力を伴う可能性が，主観難易度の評価から示唆される。

以上から，重畳音は，全体的な結果としてリズム認知の難易度に与えた影響は少ないものの，個人によっ

ては影響を与えることが示唆された。
また，今回の実験では，重畳音の強さを，リズムパターンの音の強さと同程度にとどめた。さらに，重畳音を単一の音とし，常に一定の同じ音が流れ続けるようにした。しかし，実際の音楽では，複数の音が混じ り合い，それぞれの楽器音が異なるリズムパターンを持っているものである。今回の実験のような単純な重畳であれば，リズム認知への影響を与えなくても，実際の音楽のような複雑な重畳状況においてはリズム認知に影響を与える可能性はあると考える。

3．3．4 個人差•個人に着目した検討

上記の項目でも触れたが，結果には個人差が大きかった。
被験者毎のリズムパターンのみ条件での全刺激へのタッピングの一貫性（図 3．7）を見ると，被験者 S1， S2，S5，S8，S9は，概ねすべての刺激に対してリズム認知ができていたと考えられる。これらの被験者の平均聴力レベルの自己申告は，順に $70 \mathrm{~dB}, ~ 83 \mathrm{~dB}, 95 \mathrm{~dB}, 90 \mathrm{~dB}, 65 \mathrm{~dB}$ であった（表 3．1）。一方で，リズム認知のできない刺激がみられた被験者 $\mathrm{S} 3, \mathrm{~S} 4, \mathrm{~S} 6, \mathrm{~S} 7$ の平均聴力レベルは $110 \mathrm{~dB}, 120 \mathrm{~dB}, 90 \mathrm{~dB}, 85 \mathrm{~dB}$ で あった。

平均聴力レベルが近い範囲内にありながらも，S5とS8に比べて，S6と S7 はタッピングの一貫性が低 い傾向がある。これらの被験者を比較すると，被験者 S 5 と S 8 は言語獲得後（ 8 歳， 13 歳）の聴力損失で あり長期間の音楽経験を持つ一方で，S6と S7 は言語獲得前の聴力損失であり長期の音楽経験を持たない。音楽経験がリズム認知に影響を与えることは先行研究［25］の結果と一致した。しかしながら，聴力損失時期が与える影響はこれまでに調べられておらず，S5，S 8 と， $\mathrm{S} 6, ~ \mathrm{~S} 7$ のリズム認知能力の違いが，音楽経験 だけでなく聴力損失時期にも影響されているのかは不明である。推測としては，幼少期を健聴状態で音楽聴取をしながら過ごしたのであれば，その時点で健聴者同様のリズム認知能力が獲得されているというこ とは自然であり，聴力損失時期が影響されている可能性は高いと考える。
被験者 S3，S6，S7 はリズムパターンの複雑さ要因の影響を大きく受けていた（図 3．10，図 3．11，図 3．12）。 S6，S7 は先述の通りに音楽経験が無いことが原因とかんがえられるが，S3 は長期の音楽経験があった。S3 は生まれつきの聴力損失であり，かつ平均聴力レベルが 110 dB と，かなり重度の障害であることがその原因であると考えられる。ただし，「平均聴力レベルがリズム認知に影響を与える」といった場合に，二つの可能性が考えられる。1つ目は，聴力が低いことによりリズム認知が困難となる場合， 2 つ目は，聴力が低 いことによりリズム認知能力を「発達」させることが困難となる場合である。そして，長期の音楽経験を持 つ S3 が，複雑なリズムパターンの認知を困難としたということは，聴力の低さはリズム認知能力の「発達」に影響を与えうることを示唆している。また，その場合，聴力損失時期が遅ければ健聴者同様のリズム認知能力の発達がなされるという先述の説とも矛盾がない。以上については，「生まれつきの聴力損失かど うか」，「平均聴力レベルはどの程度か」，「音楽経験はどの程度か」という 3 つの要因を基準として，被験者 を増やした調査をおこなえばより確証が得られるだろう。

重畳音の有無と強さはS5に対してのみ影響があった（図 3．9）。また，S5 は重畳のない刺激に対してで あれば，リズムパターンの複雑さに依らずリズム認知ができていた。この結果は，リズム認知能力といって も，「複雑なリズムパターンから拍節構造を把握する能力」と「重畳する音の中から目的の音を選択的に聴取する能力」は独立であるということを示唆している。実践的には，聴覚障害者が音楽のリズム認知を困難 と感じている場合に，どちらの能力の不足による困難であるのか，というのを判断する必要がある。

4 まとめ

本稿では，聴覚障害者のリズム認知能力に関する検討として，2つの実験を行い，その結果を報告した。
1 つ目の「長期実験」では，タッピングゲームが聴覚障害者のリズム認知能力を向上させるかを調べるた めに，長期に渡りトレーニングとテストを繰り返す実験をおこなった。実験の結果，リズム認知能力の向上 は観測されなかったが，その原因はゲームのプレイ時間の不足が主な原因であったため，リズム認知能力の向上効果があるか否かを検証することができなかった。また，テストパートから副次的に得られた結果で は，聴覚障害者が「自然に感じるテンポ」が 120 BPM 前後であり，健聴者と同様であること，ビートパー セプションのテストでは，健聴者と異なる傾向がある可能性が示唆された。

2 つ目の「難易度実験」では，音楽のどのような要素が，聴覚障害者のリズム認知難易度に影響を与える かを調ベた。実験の結果，「リズムパターンの複雑さ」「アクセントの有無」が影響を与えることが分かっ た。また，「（リズムパターンに対して）重畳する音の有無と強さ」については，一部の被験者において強く影響を受けていたことから，個人によっては影響を与えることが分かった。重畳する音については，音色等 の影響もあることが判明し，実際の音楽のような複雑な重畳状況では，さらにリズム認知難易度に影響を与 えうることが示唆された。また，被験者 S 5 のケースから，これらの 3 つの要素それぞれに対する能力は独立である可能性が推察された。 さらに，結果には被験者らの個人差があらわれ，個人差については平均聴力 レベルや音楽経験だけでなく，聴力損失時期の影響もあることが示唆された。
今後の課題として，難易度実験で得られた知見から難易度基準を策定すること，さらにその難易度基準を適用したテストを考案し，それに基づいて長期実験をおこなうことが求められる。難易度実験では，特に重畳の有無•種類•強さに関して詳細な検討ができなかったため，新たな実験によりさらに細かく重畳がリズ ム認知難易度に与える影響について検討することも今後の課題である。

謝辞

指導教員である，筑波大学図書館情報メディア系の平賀譲先生，寺澤洋子先生，並びに，筑波大学図書館情報メディア系の松原正樹先生，筑波技術大学産業技術学部の平賀瑠美先生に深く感謝いたします。先生方には，私の力不足により多大な迷惑をかけてきたと思いますが，それでも熱心に指導・あるいは共同研究 をしていただき，大変心強かったです。

人と音の情報学研究室の同期•後輩の皆様には，研究について様々なアドバイスや意見を頂いたほか，あ らゆる面で支えとなってくれました。ありがとうございます。
実験に協力していただいた筑波技術大学の聴覚障害学生の皆様，研究への意見をくださり，データ提供と いう形で協力してくださった筑波大学附属病院の田淵先生，および研究に関わってくれた皆様に感謝いた します。
最後に，長い学生生活を通じて常に支援してくれた両親に心から感謝の意を表します。
本研究はJSPS 科研費 26780512,26282001 の助成を受けたものである。

参考文献

［1］ANSI，A．（2007）．S3．4－2007．Procedure for the Computation of Loudness of Steady Sounds． American National Standards Institute，New York．
［2］Darrow，A．A．（1979）．The beat reproduction response of subjects with normal and impaired hearing：An empirical comparison．J Music Ther，16（2），91－98．
［3］Darrow，A．A．（1984）．A comparison of rhythmic responsiveness in normal and hearing impaired children and an investigation of the relationship of rhythmic responsiveness to the suprasegmental aspects of speech perception．J Music Ther 21（2），48－66．
［4］Darrow，A．A．（2006）．The role of music in deaf culture：Deaf students＇perception of emotion in music．J Music Ther，43（1），2－15．
［5］Deterding，S．，Dixon，D．，Khaled，R．，\＆Nacke，L．（2011，September）．From game design ele－ ments to gamefulness：defining gamification．In Proceedings of the 15th international academic MindTrek conference：Envisioning future media environments（pp．9－15）．ACM．
［6］Deutsch，D．（1999）．Grouping mechanisms in music．The psychology of music， 28.
［7］Dikla，K．（2009）．The effect of music therapy on spontaneous communicative interactions of young children with cochlear implants．Ph．D thesis，Aalborg University，Denmark．
［8］Driscoll，V．D．（2012，November）．The effects of training on recognition of musical instruments by adults with cochlear implants．In Seminars in hearing（Vol．33，No．04，pp．410－418）．Thieme Medical Publishers．
［9］Fujii，S．，\＆Schlaug，G．（2013）．The Harvard Beat Assessment Test（H－BAT）：A battery for assessing beat perception and production and their dissociation．Front Hum Neurosci，7， 771.
［10］Gfeller，K．，Christ，A．，Knutson，et al．（2000）．Musical backgrounds，listening habits，and aesthetic enjoyment of adult cochlear implant recipients．J Am Acad Audiol，11，390－406．
［11］Gfeller，K．，Mehr，M．\＆Witt，S．（2001）．Aural rehabilitation of music perception and enjoyment of adult cochlear implant users．Journal of the Academy for Rehabilitative Audiology，34，17－27．
［12］Gfeller，K．，Turner，C．，Mehr，M．，Woodworth，G．，Fearn，R．，Knutson，J．F．，Witt，S．\＆Stordahl， J．（2002）．Recognition of familiar melodies by adult cochlear implant recipients and normal－ hearing adults．Cochlear implants international，3（1），29－53．
［13］Gfeller，K．，Woodworth，G．，Witt，S．，et al．（1997）．Perception of rhythmic and sequential pitch patterns by normally hearing adults and adult cochlear implant users．Ear Hear，18，252－260．
［14］Glasberg，B．R．，\＆Moore，B．C．（2002）．A model of loudness applicable to time－varying sounds． Journal of the Audio Engineering Society，50（5），331－342．
［15］後藤真孝，橋口博樹，西村拓一，\＆岡隆一．（2004）．RWC 研究用音楽データベース：研究目的で利用可能な著作権処理済み楽曲•楽器音データベース。情報処理学会論文誌，45（3），728－738．
［16］林田真志，\＆加藤靖佳．（2003）．聴覚障害児•者のリズム知覚•表出に及ぼす刺激呈示条件の効果：タッ ピング反応を指標として．特殊教育学研究，41（3），287－296．
［17］Iversen，J．R．，\＆Patel，A．D．（2008）．The Beat Alignment Test（BAT）．Proc．ICMPC2008， 465－468．
［18］Ke，F．（2009）．A qualitative meta－analysis of computer games as learning tools．Handbook of research on effective electronic gaming in education，1，1－32．
［19］Kong，Y．Y．，Cruz，R．，Jones，J．A．，\＆Zeng，F．G．（2004）．Music perception with temporal cues in acoustic and electric hearing．Ear and hearing，25（2），173－185．
［20］Lepper，M．R．（1988）．Motivational considerations in the study of instruction．Cognition and Iinstruction，5（4），289－309．
［21］Looi，V．，McDermott，H．，McKay，C．，\＆Hickson，L．（2008）．Music perception of cochlear implant users compared with that of hearing aid users．Ear and hearing，29（3），421－434．
［22］Looi，V．，\＆She，J．（2010）．Music perception of cochlear implant users：a questionnaire，and its implications for a music training program．International Journal of Audiology，49（2），116－128．
［23］松原正樹，Hansen，K．F．，寺澤洋子，\＆平賀瑠美．（2014）．聴覚障害学生を対象とした聴能向上のため の音楽トレーニングプロジェクト，研究報告音楽情報科学（MUS），2014（24），1－5．
［24］松原正樹，狩野直哉，寺澤洋子，\＆平賀瑠美．（2016）．聴覚障害者向けタッピングゲームにおける視覚手 がかりによるリズム認知の短期的学習効果．情報処理学会論文誌，57（5），1331－1340．
［25］Matsubara，M．，Terasawa，H．，\＆Hiraga，R．（2014，October）．The effect of musical experience on rhythm perception for hearing－impaired undergraduates．In 2014 IEEE International Conference on Systems，Man，and Cybernetics（SMC）（pp．1666－1669）．IEEE．
［26］Mitani，C．，Nakata，T．，Trehub，S．E．，et al．（2007）．Music recognition，music listening，and word recognition by deaf children with cochlear implants．Ear Hear，28（2），29－33．
［27］Moelants，D．（2002，July）．Preferred tempo reconsidered．In Proceedings of the 7th international conference on music perception and cognition（Vol．2002，pp．1－4）．
［28］小川仁，出口利定，\＆谷俊治．（1991）．聴覚障害の診断と指導．学苑社．
［29］太田康子，\＆加藤靖佳．（2001）。聾学校小学部における音楽教育について—音楽指導に関するアンケート調査をもとに．ろう教育科学，43（2），61－68．
［30］太田康子，\＆加藤靖佳．（2002）．聴覚障害生徒の音楽活動に関する実態調査．ろう教育科学，44（3）， 129－139．
［31］Povel，D．J．，\＆Essens，P．（1985）．Perception of temporal patterns．Music Perception：An Inter－ disciplinary Journal，2（4），411－440．
［32］Povel，D．J．，\＆Okkerman，H．（1981）．Accents in equitone sequences．Perception \＆Psychophysics， 30（6），565－572．
［33］Repp，B．H．（2005）．Sensorimotor synchronization：A review of the tapping literature．Psycho－ nomic Bull Rev，12（6），969－992．
［34］Sawyer，R．K．（Ed．）．（2005）．The Cambridge Hhandbook of the Llearning Ssciences．Cambridge University Press．
［35］鈴木篤郎．（1967）．難聴．金原出版．
［36］Torppa，R．，Faulkner，A．，Jarvikivi，J．J．，et al．（2010）．Acquisition of focus by normal hearing and cochlear implanted children：The role of musical experience．Proc．5th International Conference on Speech Prosody．
［37］Trehub，S．E．，Vongpaisal，T．，\＆Nakata，T．（2009）．Music in the lives of deaf children with cochlear implants．Ann New York Acad Sci，1169（1），534－542．
［38］Uys，M．，\＆Van Dijk，C．A．（2011）．Development of a music perception test for adult hearing－aid users．South African Journal for Communication Disorders，58（1），19－47．
［39］Vogel，J．J．，Vogel，D．S．，Cannon－Bowers，J．，Bowers，C．A．，Muse，K．，\＆Wright，M．（2006）．Com－
puter gaming and interactive simulations for learning：A meta－analysis．Journal of Educational Computing Research，34（3），229－243．
［40］Vygotsky，L．S．（1980）．Mind in Ssociety：The Ddevelopment of Hhigher Ppsychological Ppro－ cesses．Harvard university press．

付録

A 付録：難易度実験での全被験者のタップのプロット

ここでは，難易度実験における，全被験者の全刺激へのタップおよび正解の拍のタイミングを，被験者ご とに，時間軸に沿ってプロットした図を掲載する。
以下の図では，横軸が時間を表し，縦軸はリズムパターンを表す。縦軸のリズムパターンは，上から簡単 3 パターン，普通 3 パターン，難しい 3 パターンであり，表 3.2 と順序対応する。図の上部タイトルが条件 を表す。図中，灰色の点線が拍のタイミングを表し，白い円が被験者によるタップのタイミングを表す。実験では刺激のテンポが $110 \mathrm{BPM}-130 \mathrm{BPM}$ の間でランダムに異なっているため，本来は拍のタイミン グが揃うことはないが，この図では可視性のために，テンポを同一に正規化してプロットしている．
normal

図 A．1：難易度実験での被験者 S1 のタッピング
normal

e1					\bigcirc	¢	\bigcirc	－	－	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	\bigcirc		－		
e2				0	0	0	0	－	－	0	0	－	－	\bigcirc	－	－	－	－	0	－	－	－		
e3－	－	，		\bigcirc	\bigcirc	－	0	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc		
m1				Q	0	－	0	0	0	－	－	0	－	a	－	\bigcirc	0	\bigcirc	\bigcirc	－	0	0		
m2－	＋	，		0	－	0	0	－	－	－	－	－	－	0	\bigcirc	0	－	\bigcirc	－	0	0			
m3－		－	－								\bigcirc	\bigcirc			\bigcirc	－		－	\bigcirc					
d1	0	－ 0	－	0	\bigcirc	\bigcirc	0	－	\bigcirc	－	0	－	－											
d2－		1 ！	，	\bigcirc	0	\bigcirc	\bigcirc	－		\bigcirc			0	－	－	－	0	0	－	－	－	－		
d3－		，			\bigcirc				\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	\bigcirc	\bigcirc	－	\bigcirc	－	
	，				1					1														1
	0.0				0.2					0.4														1.0

図 A．2：難易度実験での被験者 S2 のタッピング
normal

e1－		\bigcirc	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	－	－	－	－	－	
e2	＇	，	－	\bigcirc	－	－	－	0	0	－	\bigcirc	－	－	0	－	－	－	0	－	0	\bigcirc	－	－	－	
e3－	，	\bigcirc	－	\bigcirc	0	－	－	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	\bigcirc	－	－	－	－	
m1－	＇		－	－	－	－	－	－	－	－	－	－	－	－	0	－	－	－	－	－	－	－	－	－	
m2－	，	－	－	\bigcirc	－	－	－	\bigcirc	－	－	－	－	－	－	－	－	－	－	－	0	－	－	－	\bigcirc	
m3－		0	－	－	－	－	－	－	－	－	－	－	－	－	－	0	\bigcirc	－	－	\bigcirc	\bigcirc	0	－	－	
d1	\bigcirc	－ 0	－	－	－	\bigcirc	－	－	－	－	－	－	－	－	－	－	－	a	－	－	－	－	－	－	
d2		－	－	－	－	－	－	－	－	－	－	－	0	－	－	－	－	－	\bigcirc	－	－	－	－	－	
d3－	－	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－	
	1					1									1					1					，
	0.0					0.2									0.6					0.8					1.0

図 A．3：難易度実験での被験者 S3 のタッピング
normal

accented

noise＿weak

noises＿trong

図 A．4：難易度実験での被験者 S4 のタッピング
normal

図 A．5：難易度実験での被験者 S5 のタッピング
normal

図 A．6：難易度実験での被験者 S 6 のタッピング

図 A．7：難易度実験での被験者 S7 のタッピング

図 A．8：難易度実験での被験者 S8 のタッピング

図 A．9：難易度実験での被験者 S9 のタッピング

B 付録例 2

ここでは，難易度実験における，全被験者の相対位相のヒストグラムを，条件ごと，およびリズムパター ンのみ条件でのリズムパターンの複雑さごとに出力した図を掲載する。

まずは，条件毎の相対位相のヒストグラムを掲載する。

図 B．1：被験者 S1 の各条件での相対位相のヒストグラム

図 B．2：被験者 S2 の各条件での相対位相のヒストグラム

図 B．3：被験者 S3 の各条件での相対位相のヒストグラム

図 B．4：被験者 S4の各条件での相対位相のヒストグラム

図 B．5：被験者 S5 の各条件での相対位相のヒストグラム

図 B．6：被験者 S6の各条件での相対位相のヒストグラム

図 B．7：被験者 S7 の各条件での相対位相のヒストグラム

図 B．8：被験者 S8 の各条件での相対位相のヒストグラム

図 B．9：被験者 S9 の各条件での相対位相のヒストグラム

次に，リズムパターンのみ条件での，リズムパターンの複雑さごとの相対位相のヒストグラムを記載 する。

図 B．10：被験者 S1 のリズムパターンのみ条件での相対位相のヒストグラム

Slarv $=-30.473^{\circ}$
Sllrv $=0.905$
SIIrv $=0.905$
Slent $=0.399$

Slarv $=-44.311^{\circ}$ Slliv $=0.845$

Slarv $=-53.853^{\circ}$ SIIrv $=0.659$ Slirv $=0.659$
Slent $=0.201$

図 B．11：被験者 S2 のリズムパターンのみ条件での相対位相のヒストグラム

図 B．12：被験者 S3 のリズムパターンのみ条件での相対位相のヒストグラム

図 B．13：被験者 S4 のリズムパターンのみ条件での相対位相のヒストグラム

Slarv $=-12.597^{\circ}$ Sllrv $=0.961$
SIent $=0.480$

Slarv $=-21.188^{\circ}$ SIIrv $=0.925$
Slent $=0.402$

図 B．14：被験者 S5 のリズムパターンのみ条件での相対位相のヒストグラム

Slarv $=2.304^{\circ}$
SIIrv $=0.610$
Slent $=0.230$

Slarv $=-17.358^{\circ}$ SIIrv $=0.301$ SIIrv $=0.301$
Slent $=0.105$

Slarv $=73.814^{\circ}$
SIIrv $=0.290$
SIIrv $=0.290$
Slent $=0.168$

図 B．15：被験者 S6 のリズムパターンのみ条件での相対位相のヒストグラム

図 B．16：被験者 S7 のリズムパターンのみ条件での相対位相のヒストグラム

Slarv $=7.722^{\circ}$
Sllrv $=0.955$
Slent $=0.486$
Slent $=0.486$

Slarv $=-8.682^{\circ}$
Sllrv $=0.957$
Slent $=0.470$

Slarv $=-2.262^{\circ}$
SIIrv $=0.950$
Slent $=0.461$

図 B．17：被験者 S8 のリズムパターンのみ条件での相対位相のヒストグラム

図 B．18：被験者 S9 のリズムパターンのみ条件での相対位相のヒストグラム

[^0]: ＊1 World Health Organisation（2008 年），http：／／copublications．greenfacts．org／en／hearing－loss－personal－music－player－ mp3／figtableboxes／table－4．htm，2017年1月10日閲覧

[^1]: ＊2聴力損失の度合い。各周波数での最小可聴閾値（検知できる音のうち最も小さな音）を正常な聴力と比べた差として示す。単位は dB HL。

[^2]: ${ }^{* 3}$ 日本音響学会．（2003）．新版音響用語辞典．

[^3]: ${ }^{* 4}$ Surface Pro 3；Windows 10

[^4]: ＊5例えば 1010101010101010 というリズムパターンは，拍とシンコペーションが同様の重みであり，開始点が分からなければ拍 とシンコペーションの区別がつかない。分析の単純化のためには，このようなあいまいさをなくすことが有効である．そのため に，unit が 4 であり location が $1,2,3,4$ のときそれぞれについての strength を計算し，location が 1 のときの strength が最小となるリズムパターンのみを使用することで，あいまいさを生じさせないようにした。用語は参考文献［31］を参照のこ と。

[^5]: ＊6 GENESIS－Loudness online；http：／／genesis－acoustics．com／en／loudness＿online－32．html

[^6]: ${ }^{* 7}$ Fujii らはこれらの指標を Synchronization Indices（SIs）と呼んでいる．
 タップーつ一つを，半径が 1 の円周上の 1 点を指すべクトルとして，対象となるすべてのタップに対応するベクトルを合成して，タップの総数で割る操作を行う。その操作の結果としてできた合成ベクトルの角度が SIarv（Angle of Resultant Vector），大きさがSIlrv（Synchronization Index；Length of Resultant Vector）である。

[^7]: また，相対位相のヒストグラムのエントロピーを $S E$ を，$S E=\sum_{i=1}^{M} p(i) \ln p(i)$ で算出する。ここで M はヒストグラム上 で確率（図の上では半径）が 0 でない区間の総数を示し，p（i）はその区間での確率を示す。SIent（entropy of relative－phase distribution）は，SIent $=\frac{1-S E}{\ln N}$ で算出される。ここで，N はヒストグラムの分割数（本稿では 36）である。つまりエン トロピーを 0－1 に正規化して， 1 に近いほど一貫性がある，という値に変換したものである．SIent は，SIlrv に比較して，拍 とシンコペーションのタップが同等に存在するような双峰性のあるヒストグラムを検知することに優れているが，本実験では そのような試行はあまり見られなかった。
 ＊8なお，先述の F 値は，相対位相のヒストグラムでいえば－ 90° から 90° を「正しい拍」としているため，これらの被験者も正し いタイミングでタップしていると判断されている．

