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FELLER SEMIGROUPS WITH BOUNDARY CONDITIONS

Kazuaki TAIRA

ABsTrACT. This expository paper is devoted to the problem of construction of Feller
semigroups with Ventcel’ (Wentzell) boundary conditions for elliptic Waldenfels op-
erators. Intuitively our result may be stated as follows: We can construct a Feller
semigroup corresponding to such a diffusion phenomenon that a Markovian particle
moves both by jumps and continuously in the state space until it “dies” at which
time it reaches the set where the absorption phenomenon occurs.

Introduction and Results

Let D be a bounded, conver domain of Euclidean space R with smooth bound-
ary 0D; its closure D = D U 9D is an N-dimensional compact smooth manifold
with boundary.

oD

Figure 1

Let C(D) be the space of real-valued, continuous functions on D. We equip the

space C(D) with the topology of uniform convergence on the whole D; hence it is
a Banach space with the maximum norm

[ f]l = max | f(z)].
zeD

A strongly continuous semigroup {7} };>0 on the Banach space C(D) is called a
Feller semigroup on D if it is non-negative and contractive on C(D):

feCD),0<f<1 onD = 0<T,f<1 onD.
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It is known (cf. [Tal]) that if T} is a Feller semigroup on D, then there exists a
unique Markov transition function p; on D such that

T,f(z) = /5 pe(z, dy)f(y), e (D).

It can be shown that the function p; is the transition function of some strong
Markov process; hence the value p;(x, E') expresses the transition probability that
a Markovian particle starting at position x will be found in the set E at time t.

Furthermore, it is known (cf. [BCP], [SU], [Tal], [We]) that the infinitesimal
generator of a Feller semigroup {7}}:>¢ is described analytically by a Waldenfels
operator W and a Ventcel” boundary condition L, which we formulate precisely.

Let W be a second-order elliptic integro-differential operator with real coeffi-
cients such that

(0.1) Wu(zx) = Pu(z) 4+ S,u(x)
N 0%u N o
- ;1 ) g, ) +§bl(<ﬂ> 5o (@) + c(@)ul@)

where:

(1) a¥ € C°(RYN), a¥ = a’" and there exists a constant ag > 0 such that

N
Z a'(x)&&; > aplé)?, xRN, ¢ e RV,

1,j=1

(2) b € C=(RN).

(3)ce C®*(RM) and ¢ <0 in D.

(4) The integral kernel s(z,y) is the distribution kernel of a properly supported,
pseudo-differential operator S € Li‘o”(RN ), & > 0, which has the transmission
property with respect to D, and s(x,y) > 0 off the diagonal {(x,z): x € R} in
RY x RY. The measure dy is the Lebesgue measure on R*.

The operator W is called a second-order Waldenfels operator (cf. [BCP]). The
differential operator P is called a diffusion operator which describes analytically
a strong Markov process with continuous paths (diffusion process) in the interior
D. The operator S, is called a second-order Lévy operator which is supposed
to correspond to the jump phenomenon in the interior D; a Markovian particle
moves by jumps to a random point, chosen with kernel s(z,y), in the interior D.
Therefore, the Waldenfels operator W is supposed to correspond to such a diffusion
phenomenon that a Markovian particle moves both by jumps and continuously in
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the state space D (see Figure 2 below).

D

Figure 2

Let L be a second-order boundary condition such that we have, in terms of local
coordinates (z1,x2,...,TN_1),

(0.2)
Lu(z') = Qu(a’) + p(a") 3 (2") = 6(a")Wu(a") + Tu(z')

N-—1 y 62’& N-—1 . au
( 09(@) T (o) 1 Y ) O ) 4 (e
J =1 1

+ (/GD r(@' y) [u(y') —u(@’) = > (y —%)%(%') dy'

ou
(yj—xj)%j(f) dy | ,

where:

(1) The operator @ is a second-order degenerate elliptic differential operator on
0D with non-positive principal symbol. In other words the o/ are the compo-
nents of a smooth symmetric contravariant tensor of type (g) on 0D satisfying the
condition

N-1 N-1
> a(a)6¢ >0, &/ €0D, ¢ =) &du; € T (D).
ij=1 j=1

Here T7,(0D) is the cotangent space of 0D at z'.

1=~v€C*®0D) and v <0 on 0D.

€ C>*(0D) and p > 0 on OD.

€ C*>°(0D) and § > 0 on OD.

= (n1,n2,...,ny) is the unit interior normal to the boundary 9D.
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(6) The integral kernel r(x’,y’) is the distribution kernel of a pseudo-differential
operator R € Li_o’“ (0D), k1 > 0, and r(2’,3’) > 0 off the diagonal Agp =
{(z',2") : ' € 0D} in 0D x 0D. The density dy’ is a strictly positive density
on 0D.

(7) The integral kernel ¢(x,y) is the distribution kernel of a properly supported,
pseudo-differential operator T' € Li_o’” (RY), ko > 0, which has the transmission
property with respect to the boundary 0D, and t(x,y) > 0 off the diagonal {(x, z) :
r € RV} in RN x RV,

The boundary condition L is called a second-order Ventcel’ boundary condition.
The six terms of L

> aii 62;;]@') > B @),
), ) o), S W),
= ou
| v ) = ule) = 3205 =) )
N—-1 ou
[t ful) ) = 3 (5 = ) ()| dy
D j=1 J

are supposed to correspond to the diffusion along the boundary, the absorption
phenomenon, the reflection phenomenon, the viscosity phenomenon and the jump
phenomenon on the boundary and the inward jump phenomenon from the bound-
ary, respectively (see Figures 3 through 5 below).

This paper is devoted to the functional analytic approach to the problem of con-
struction of Feller semigroups with Ventcel” boundary conditions. More precisely,
we consider the following problem:

Problem. Conversely, given analytic data (W, L), can we construct a Feller semi-
group {Ti}>0 whose infinitesimal generator is characterized by (W, L) ¢

We shall only restrict ourselves to some aspects which have been discussed in
our papers [Tal] through [Ta5]. Our approach is distinguished by the extensive use
of the ideas and techniques characteristic of the recent developments in the theory
of partial differential equations. It focuses on the relationship between two interre-
lated subjects in analysis; Feller semigroups and elliptic boundary value problems,
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providing powerful methods for future research.

D D
oD oD
absorption reflection
Figure 3
D D
oD oD
diffusion along the boundary viscosity
Figure 4

jump into the interior jump on the boundary
Figure 5

We say that the boundary condition L is transversal on the boundary 0D if it
satisfies the condition

(0.3) /D t(z',y)dy = +oo if p(z') =4d(z') = 0.

The intuitive meaning of condition (0.3) is that a Markovian particle jumps away
“instantaneously” from the points &’ € 0D where neither reflection nor viscosity
phenomenon occurs (which is similar to the reflection phenomenon). The situation
may be represented schematically by Figure 6 below. Probabilistically, condition
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(0.3) means that every Markov process on the boundary 0D is the “trace” on 9D
of trajectories of some Markov process on the closure D = D U dD.

The next theorem asserts that there exists a Feller semigroup on D corresponding
to such a diffusion phenomenon that one of the reflection phenomenon, the viscosity
phenomenon and the inward jump phenomenon from the boundary occurs at each
point of the boundary 0D (cf. [Ta3, Theorem 1)):

Theorem 1. We define a linear operator 2 from the space C(D) into itself as
follows:

(a) The domain of definition D() of A is the set
(0.4) D) ={ue C(D): Wue C(D),Lu=0}.

(b) Au = Wu, u e D).
Here Wu and Lu are taken in the sense of distributions.

Assume that the boundary condition L is transversal on the boundary 0D. Then
the operator 2 generates a Feller semigroup {T;}1>0 on D.

oD

p

Figure 6

We remark that Theorem 1 was proved before by Taira [Tal, Theorem 10.1.3]
under some additional conditions, and also by Cancelier [Ca, Théoreme 3.2]). On
the other hand Takanobu and Watanabe [TW] proved a probabilistic version of
Theorem 1 in the case where the domain D is the half space RY (see [TW, Corol-

lary]).
Next we generalize Theorem 1 to the non-transversal case. To do so, we assume

that:

(H) There exists a second-order Ventcel’ boundary condition L, such that
Lu=mLy,u+ vyu,

where

(3') m € C>*(0D) and m > 0 on 9D,
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and the boundary condition L, is given in local coordinates (x1,z2,... ,xn—1) by
the formula

Lyu(x")
= Qula') + 7 22 (') — B YWu(a) + Tu
N-1 N-1
y 0%u —i ou
— _— / / /
2. >6x,-6a:j( )t 5(9«")6%(9«‘)
4,7=1 =1
— / au / < / /
) 5 (2) = o(z") Wu(z')
N-1 Su
| [ ra ) |~ ) = 3 (5 ) ()|
oD = 6(13'3
N-1
I / / 6“ /
b [ Hat) [uln) =~ ule) = 3 - ) @) dy |
and satisfies the transversality condition
(0.3") /f(:{:’,y)dy:—koo if 1(z") = 6(z") = 0.
D

We let
M={2'€dD: u(x") =4 = O,/ t(z',y) dy < oo}.
D

Then, by condition (0.3") it follows that
M = {z' € 9D : m(x") = 0},

since we have u(z') = m(2') w(x'), 6(2') = m(2") 6(2'), and t(z', y) = m(z') (2, y).
Hence we find that the boundary condition L is not transversal on dD.

Furthermore, we assume that:

(A) m(z") —y(2') > 0 on OD.

The intuitive meaning of conditions (H) and (A) is that a Markovian particle
does not stay on 0D for any period of time until it “dies” at the time when it reaches
the set M where the particle is definitely absorbed. We remark that condition (0.3)
is a special case of conditions (H) and (A) if we take m =1 and v = 0 on 9D.

Now we introduce a subspace of C'(D) which is associated with the boundary
condition L.

By condition (A), we find that the boundary condition

Lu=mL,u+~yu=0 ondD

includes the condition
u=0 on M.
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With this fact in mind, we let
Co(D\M)={ueC(D):u=0o0n M}.

The space Co(D \ M) is a closed subspace of C(D); hence it is a Banach space.
A strongly continuous semigroup {7%};>0 on the space Co(D \ M) is called a
Feller semigroup on D\ M if it is non-negative and contractive on Co(D \ M):

feCy(D\M),0<f<1lonD\M = 0<Tiyf<lonD\M.

We define a linear operator 27 from Co(D \ M) into itself as follows:
(a) The domain of definition D(20) of 20 is the set

(0.5) D) = {u € Co(D\ M) : Wu € Co(D\ M), Lu=0}.

(b) Wu = Wu, u € D(20).
The next theorem is a generalization of Theorem 1 to the non-transversal case
(cf. [Tab, Theorem 2]):

Theorem 2. Assume that conditions (A) and (H) are satisfied. Then the operator
20 defined by formula (0.5) generates a Feller semigroup {T;}1>0 on D\ M.

If T; is a Feller semigroup on D\ M, then there exists a unique Markov transition
function p; on D \ M such that

Tif(@) = [ mle.dn)f), 1€ oD\ M),
D\M

and further that p; is the transition function of some strong Markov process. On the
other hand, the intuitive meaning of conditions (A) and (H) is that the absorption
phenomenon occurs at each point of the set M = {2’ € 9D : p(z’) = §(z') =
0}. Therefore, Theorem 2 asserts that there exists a Feller semigroup on D \ M
corresponding to such a diffusion phenomenon that a Markovian particle moves
both by jumps and continuously in the state space D \ M until it “dies” at which
time it reaches the set M. The situation may be represented schematically by
Figure 7 below.

oD

M
Figure 7

We remark that Taira [Ta2] has proved Theorem 2 under the condition that
L, =9/0nand 6 = 0 on dD, by using the LP theory of pseudo-differential operators
(see [Ta2, Theorem 4]).
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1. Theory of Feller Semigroups

We give a brief description of basic definitions and results about a class of semi-
groups (Feller semigroups) associated with Markov processes which forms a func-
tional analytic background for the proof of Theorems 1 and 2. The results discussed
here are adapted from [Tal, Chapter 9.

1.1 Markov Transition Functions and Feller Semigroups. Let (K, p) be a
locally compact, separable metric space and B the o-algebra of all Borel sets in K.

A function p;(x, E), defined for all t > 0, x € K and FE € B, is called a (tem-
porally homogeneous) Markov transition function on K if it satisfies the following
four conditions:

(a) pt(x,-) is a non-negative measure on B and py(z, K) < 1 for each ¢t > 0 and
each r € K.

(b) p:(+, F) is a Borel measurable function for each ¢ > 0 and each F € B.

(c) po(x,{z}) =1 for each z € K.

(d) (The Chapman-Kolmogorov equation) For any ¢, s > 0, x € K and any
FE € B, we have

(11) peasla, ) = [ pilasdyi(y. D).

Here is an intuitive way of thinking about the above definition of a Markov transi-
tion function. The value p;(x, F) expresses the transition probability that a physical
particle starting at position x will be found in the set E at time ¢. Equation (1.1)
expresses the idea that a transition from the position x to the set E in time ¢ + s
is composed of a transition from x to some position y in time ¢, followed by a
transition from y to the set E in the remaining time s; the latter transition has
probability ps(y, E') which depends only on y (see Figure 8 below). Thus a particle
“starts afresh”; this property is called the Markov property.

t+s L
t Y
0 P
_______ Jra—
Figure 8

We add a point 0 to K as the point at infinity if K is not compact, and as an
isolated point if K is compact; so the space Ky = K U {0} is compact.
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Let C(K) be the space of real-valued, bounded continuous functions on K. The
space C(K) is a Banach space with the supremum norm

If1l = sup [f(z)].
rzeK

We say that a function f € C(K) converges to zero as x — 0 if, for each £ > 0,
there exists a compact subset E of K such that

|f(x)|<e, xze€K\E,

and we then write lim,_,5 f(x) = 0. We let

Co(K) = { £ € (1) s i () =0}

The space Cy(K) is a closed subspace of C'(K); hence it is a Banach space. Note
that Co(K) may be identified with C(K) if K is compact.
If we introduce a useful convention

Any real-valued function f on K is extended to the space Kg = K U {0}
by setting f(9) =0,

then the space Cp(K) may be identified with the subspace of C(Ky) which consists
of all functions f satisfying f(9) = 0:

Co(K) ={f € C(Kp) : f(9) = 0}.

Moreover, we can extend a Markov transition function p; on K to a Markov tran-
sition function p} on Kj as follows:

Pz, E)=p(z, E), xz€ K, FE€B;
Pi(x,{0}) =1 —pi(z, K), z€K;
pi(0,K) =0, pj(9,{0}) = 1.
Intuitively, this means that a Markovian particle moves in the space K until it
“dies” at which time it reaches the point 0; hence the point 0 is called the terminal
point.
Now we introduce some conditions on the measures p;(z, -) related to continuity

in x € K, for fixed t > 0.
A Markov transition function p; is called a Feller function if the function

TW@ZAM@@W@

is a continuous function of z € K whenever f is in C(K), that is, if we have

feCK) = T,f € C(K).
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In other words, the Feller property is equivalent to saying that the measures p;(x, -)
depend continuously on x € K in the usual weak topology, for every fixed t > 0.

We say that p; is a Cy-function if the space Cy(K) is an invariant subspace of
C(K) for the operators T;:

fe C()(K) — T;f € CO(K)

The Feller or Cy-property deals with continuity of a Markov transition function
pt(z, E) in z, and does not, by itself, have no concern with continuity in t. We
give a necessary and sufficient condition on p;(x, E') in order that its associated
operators {1} };>0 be strongly continuous in ¢ on the space Cp(K):

lim 7o f = Tif| =0, f € Co(K).

A Markov transition function p; on K is said to be wuniformly stochastically
continuous on K if the following condition is satisfied: For each € > 0 and each
compact £ C K, we have

lim sup [1 — pi(z, U-(2))] = 0,
t10 rxeFR

where U.(z) = {y € K : p(z,y) < €} is an e-neighborhood of x.
Then we have the following (see [Tal, Theorem 9.2.3]):

Theorem 1.1. Let p; be a Cy-transition function on K. Then the associated
operators {T}; }+>o0, defined by

(12) T,f(x) = /K pe(a, dy)f(y), | € Co(K),

is strongly continuous in t on Co(K) if and only if p; is uniformly stochastically
continuous on K and satisfies the following condition:

(L) For each s > 0 and each compact E C K, we have

lim sup pi(z, E)=0.
z—0 0<t<s

A family {7} }:>¢ of bounded linear operators acting on Cy(K) is called a Feller
semigroup on K if it satisfies the following three conditions:

(1) Tt+s :Tt 'TS, t, S Z 0, T() =1.
(ii) The family {7}} is strongly continuous in ¢ for ¢ > 0:

lin [T/~ Tofl| =0, f € Co(F).
(iii) The family {7}} is non-negative and contractive on Cy(K):
FeCyK),0<f<1 onK = 0<T,f<1 onK.

The next theorem gives a characterization of Feller semigroups in terms of
Markov transition functions (see [Tal, Theorem 9.2.6]):
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Theorem 1.2. If p; is a uniformly stochastically continuous Cy-transition function
on K and satisfies condition (L), then its associated operators {Ti}>0 form a Feller
semigroup on K.

Conversely, if {Ti}t>0 s a Feller semigroup on K, then there exists a uniformly
stochastically continuous Cy-transition p; on K, satisfying condition (L), such that
formula (1.2) holds.

1.2 Generation Theorems of Feller Semigroups. If {1}}:>¢ is a Feller semi-
group on K, we define its infinitesimal generator A by the formula

T _
(1.3) Ay = lim ~2— %
t10 t

provided that the limit (1.3) exists in the space Cy(K). More precisely, the gener-
ator A is a linear operator from the space Cy(K) into itself defined as follows.

(1) The domain D(A) of A is the set

D(A) = {u € Cy(K) : the limit (1.3) exists} .

(2) Au = limy)o T%=% y € D(A).

The next theorem is a version of the Hille-Yosida theorem adapted to the present
context (see [Tal, Theorem 9.3.1 and Corollary 9.3.2]):

Theorem 1.3. (i) Let {T}}>0 be a Feller semigroup on K and A its infinitesimal
generator. Then we have the following:

(a) The domain D(A) is everywhere dense in the space Cy(K).

(b) For each o > 0, the equation (al — A)u = f has a unique solution u in
D(A) for any f € Co(K). Hence, for each o > 0, the Green operator (ol — A)~1:
Co(K) — Co(K) can be defined by the formula

u=(al =AY, feCo(K)
(c) For each o > 0, the operator (ol — A)~1 is non-negative on the space Co(K):
feECHK), f>0 onK = (al —A)"'f>0 onkK.

(d) For each o > 0, the operator (ol — A)~! is bounded on the space Co(K) with
norm

_ 1

I(al —A)7H < ~.
o'

(ii) Conversely, if A is a linear operator from the space Co(K) into itself sat-

isfying condition (a) and if there is a constant ag > 0 such that, for all o > ap,

conditions (b) through (d) are satisfied, then the operator A is the infinitesimal

generator of some Feller semigroup {T;}i>0 on K.
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2. Proof of Theorem 1
We reduce the problem of construction of Feller semigroups to the problem of
unique solvability for the boundary value problem

(a —=W)u=f in D,
{(A—L)u:gp on 0D,

and then prove existence theorems for Feller semigroups. Here « is a positive

number and A is a non-negative number.
The idea of our approach is stated as follows (cf. [BCP], [SU], [Tal]).
(1) First, we consider the following Dirichlet problem:

{ (a —W)v=f inD,
vlap =0 on 0D.

The existence and uniqueness theorem for this problem is well established in the
framework of Holder spaces. We let

v=GYf.

The operator G, is the Green operator for the Dirichlet problem. Then it follows
that a function wu is a solution of the problem

” {(a—W)u:f in D,

Lu=0 on 0D

if and only if the function

w=u-—"v
is a solution of the problem
(a=W)w=0 in D,
Lw=—Lv=—LG%f on dD.

However, we know that every solution w of the equation
(a —=W)w=0 inD
can be expressed by means of a single layer potential in the following form:
w = Hy.

The operator H, is the harmonic operator for the Dirichlet problem. Thus, by
using the Green and harmonic operators we can reduce the study of problem (x)
to that of the equation

LH,) = —LG%f on 0D.

This is a generalization of the classical Fredholm integral equation.



17U KAZLZUAKL 1TAIRA

(2) Next we recall the notion of transmission property due to Boutet de Monvel
[Bo], which is a condition about symbols in the normal direction at the boundary.
If m e R, we let

To(RY) =the space of pseudo-differential operators in LTO(RﬂY ) which can

be extended to a pseudo-differential operator in LTO(RN ).

A pseudo-differential operator A € LTO(Rf ) is said to have the transmission prop-
erty with respect to the boundary RN~! if the restriction of A(u") to RY has a
smooth extension to RY for every u € C§°(RY), where u° is the extension of u to
RY by 0 outside Rﬂ\r] .

We remark that the notion of transmission property may be transferred to man-
ifolds with boundary. Indeed, if €2 is a relatively compact open subset of an N-
dimensional, paracompact smooth manifold M without boundary, then the notion
of transmission property can be extended to the class LTO(M ), upon using local
coordinate systems flattening out the boundary 0f2.

It is known (cf. [Ho], [RS]) that if T" € Li_o'” (RY) has the transmission property
with respect to the boundary 9D, then the operator

wCﬂ)H—>/;t@ﬂy)HA¢QDdy

is a classical, pseudo-differential operator of order 2 — ko on the boundary 0D.
Therefore, we find that the operator LH,, is the sum of a degenerate elliptic differ-
ential operator of second order and a classical pseudo-differential operator of order
2 — min(ky, Kk2).

(3) The next unique solvability theorem for pseudo-differential operators will
play an essential role in the construction of Feller semigroups (see [Ta3, Theorem
2.1)):

Theorem 2.1. Let T be a classical pseudo-differential operator of second order on
an n-dimensional compact smooth manifold M without boundary such that

T=P+S8,

where:

(a) The operator P is a second-order degenerate elliptic differential operator on
M with non-positive principal symbol, and P1 <0 on M.

(b) The operator S is a classical pseudo-differential operator of order 2 — K,
k > 0, on M and its distribution kernel s(x,y) is non-negative off the diagonal
Ay ={(z,x):x € M} in M x M.

(¢c) T1=P1+51<0 on M.

Then, for each integer k > 1, there exists a constant A = A(k) > 0 such that for
any f € Ck*9(M) we can find a function ¢ € C*T9(M) satisfying the equation

(T—X)p=f onM,
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and the estimate
H90||C’k+9(M) < Ck—l—e()\)HchkJre(M).

Here Ci10(X\) > 0 is a constant independent of f.

By applying Theorem 2.1 to our situation, we can show that if the boundary
condition L is transversal on the boundary 9D, then the operator LH,, is bijective
in the framework of Holder spaces. The crucial point in the proof is that we consider
the term 6(Wu|sp) of viscosity in the boundary condition

Lu = Lou — (5(WU‘3D)

as a term of “perturbation” of the boundary condition Lqu.
Therefore, we find that a unique solution u of problem (x) can be expressed as
follows:

(2.1) u=Gof—H, (LH;' (LG f)).

This formula allows us to verify that the operator 2, defined by formula (0.4),
satisfies conditions (a) through (d) in Theorem 1.3. Intuitively, formula (2.1) tells
us that if the boundary condition L is transversal on the boundary 0D, then we
can “piece together” a Markov process on the boundary dD with W-diffusion in
the interior D to construct a Markov process on the closure D = D U dD. The
situation may be represented schematically by Figure 9 below.

It seems that our method of construction of Feller semigroups is, in spirit, not
far removed from the probabilistic method of construction of diffusion processes by
means of Poisson point processes of Brownian excursions used by Watanabe [Wa].

" .
Y

Figure 9

3. Proof of Theorem 2

We explain the idea of the proof of Theorem 2.

(1) First, we remark that if condition (H) is satisfied, then the boundary condi-
tion L can be written in the following form:

Lu=mL,u+~vyu ondD,
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where the boundary condition L, is transversal on 0D. Hence, applying Theorem
1 to the boundary condition L, we can solve uniquely the following boundary value
problem:

(a—W)v=f inD,

L,v=0 on 0D.

We let
v==GLf.

The operator GY is the Green operator for the boundary condition L,. Then it
follows that a function w is a solution of the problem

(55) {(a—W)u:f in D,
*%
Lu=mL,u+~yu=0 ondD
if and only if the function
w=u-—"uv

is a solution of the problem

(a=W)w=0 in D,

Lw=—-Lv=—yv ondD.

Thus, as in the proof of Theorem 1 we can reduce the study of problem (xx) to
that of the equation

LH.,p = —LG"f = —yG%f on dD.

(2) By applying Theorem 2.1 as in the proof of Theorem 1, we can show that if
condition (A) is satisfied, then the operator LH,, is bijective in the framework of
Holder spaces.

Therefore, we find that a unique solution u of problem (#x*) can be expressed as
follows:

u=Gf—Hy (LH;" (LGYf)) .

This formula allows us to verify all the conditions of the generation theorem of
Feller semigroups (Theorem 1.3), especially the density of the domain D(20) in the
space Co(D \ M).

It is worth while pointing out that if we use instead of G% the Green operator
GY for the Dirichlet problem as in the proof of Theorem 1, our proof would break
down.

4. Open Problems

In this final section we give two open problems concerning the problem of con-
struction of Feller semigroups with boundary conditions.

(I) The first problem is to generalize Theorem 1 to the genuine non-transversal
case.

(IT) The second problem is to generalize Theorems 1 and 2 to the non-elliptic
case, that is, the case where the Waldenfels operator W is degenerate.
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For example, Taira [Ta4] treated the case where W is a second-order, degener-
ate elliptic differential operator such that we have, in terms of local coordinates

(3717"' 7~TN—17{'CN)7

0? 0? 0?
wo O <_+...+7).
ox3%; N 0x? ox%

Here k is a positive integer. Then Theorem 1 remains valid for this Waldenfels
operator W (see [Ta4, Main Theorem]).
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