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The entanglement Chern number, the Chern number for the entanglement Hamiltonian, is used to char-
acterize the Kane–Mele model, which is a typical model of the quantum spin Hall phase with time-reversal
symmetry. We first obtain the global phase diagram of the Kane–Mele model in terms of the entanglement
spin Chern number, which is defined by using a spin subspace as a subspace to be traced out in prepar-
ing the entanglement Hamiltonian. We further demonstrate the e↵ectiveness of the entanglement Chern
number without time-reversal symmetry by extending the Kane–Mele model to include the Zeeman term.
The numerical results confirm that the sum of the entanglement spin Chern number is equal to the Chern
number.

Symmetry enriches topological classification of mate-
rial phases.1) For free fermion systems, the fundamental
symmetries, i.e., time-reversal symmetry, charge conju-
gation symmetry, and chiral symmetry, are essential to
obtain the so-called periodic table of topological insula-
tors and superconductors.2–5) The classification has been
farther refined to include some crystalline point group
symmetries.6–8) In some cases, the physical and intu-
itive construction of topologically nontrivial phases with
higher symmetry is possible by assembling two or mul-
tiple copies of topologically nontrivial phases with lower
symmetry so that the symmetry of the assembled sys-
tem is restored. A typical example is a quantum spin Hall
(QSH) insulator with time-reversal symmetry.9,10) Phys-
ically, it is constructed by making each spin subsystem
(up and down) a quantum Hall state.11,12) The point is
that, even when the whole system has time-reversal sym-
metry, the symmetry is e↵ectively broken and the Chern
number is finite for each spin subspace.
The “entanglement” Chern number has recently been

introduced to characterize various topological ground
states.13) The entanglement Chern number is the Chern
number14–16) for the entanglement Hamiltonian, and the
entanglement Hamiltonian is constructed by tracing out
certain subspaces of a given system.17–19) This means
that the entanglement Chern number is suitable for ana-
lyzing the topological properties of a high-symmetry sys-
tem composed of multiple copies of lower-symmetry sys-
tems. That is, we can focus on a specific subsystem by
tracing out the others. For instance, if the up- or down-
spin sector is chosen as a subspace to be traced out, the
obtained entanglement Chern number, which we name
as the entanglement spin Chern number, should be useful
for characterizing the QSH state. It is worth noting that
the choice of the subspace is not limited to spin sectors
and that entanglement Chern number potentially has
wide applications. Also, the entanglement Chern number
can be defined regardless of the symmetry of the system
or the details of the Hamiltonian provided we can choose

a subsystem to be traced out.
In this paper, we first briefly explain the idea behind

the entanglement (spin) Chern number. Then, we extend
the arguments in Ref. 13 to cover the global phase dia-
gram of the Kane–Mele model, which is a typical model
for the QSH state. We also investigate the stability of the
entanglement spin Chern number against time-reversal
symmetry breaking by introducing the Zeeman term to
the Kane–Mele model. It is found that the sum of the
entanglement spin Chern numbers is equal to the Chern
number in the entire phase space. In addition, in the
strong spin-orbit coupling limit, a phase with a large (up
to three) magnitude of the Chern number is shown to
appear.

Let us first introduce the entanglement Chern num-
ber, which plays a key role in this paper. Briefly speak-
ing, the entanglement Chern number is the Chern num-
ber for the entanglement Hamiltonian. In order to de-
fine the entanglement Hamiltonian, we divide a given
system into two subsystems, say A and B. Then, the
entanglement Hamiltonian for this partition, HA, is de-
fined as e�HA = ⇢A ⌘ TrB⇢ with ⇢ ⌘ | ih |, where
| i and TrB denote the ground-state wave function and
the trace over subsystem B, respectively. The name “en-
tanglement” Hamiltonian originates from the fact that
information of the entanglement between A and B is en-
coded in ⇢A20) or equivalently in HA.

In general, a given Hamiltonian H =
P

i,j c
†
iHijcj and

a correlation matrix Cij ⌘ hc†i cji = Tr[⇢c†i cj ] are related
as21)

HT = ln[(1� C)/C]. (1)

Moreover, at zero temperature, the correlation matrix is
explicitly written as

Cij =
X

n: occupied

�⇤n(i)�n(j), (2)

where �n(i) is the eigenvector of H. Now, we define the
restricted correlation matrix CA by projecting C to sub-
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system A. Namely, the elements of CA are taken from
Cij with i and j in A. As in the general case of Eq. (1),
we have HT

A = ln[(1�CA)/CA], which gives a convenient
way to evaluate HA. In the following, we use the spec-
trum of CA to evaluate the spectrum of HA and call it
the “entanglement spectrum”.
When the considered partition into A and B retains

the translation symmetry of the original model, the mo-
mentum k also becomes a good quantum number for the
entanglement Hamiltonian. Then, the matrix to be ana-
lyzed becomes

CA(k) = PAP�(k)PA, (3)

where P�(k) =
P

n: occupied �̃
†
n(k)�̃n(k) is the projec-

tion operator to the occupied bands defined using the
Bloch wave function �̃†n(k) for nth band and PA is the
projection operator to the subsystem A. In this case,
we obtain a momentum-resolved entanglement Hamilto-
nian HA(k) as HT

A(k) = ln[(1 � CA(k))/CA(k)]. This
relation means that  ⇤

CA
(k) is an eigenvector of HA if

 CA(k) is an eigenvector of CA(k). Therefore, it is pos-
sible to define the (entanglement) Chern number by us-
ing the eigenvector  n(k) of CA(k), which is given as
a solution of CA(k) n(k) = ⇠n(k) n(k). The eigenval-
ues ⇠n(k) form a band structure, and the values of ⇠n(k)
are restricted in the range [0, 1]. If there is a finite gap
in the band structure of ⇠n(k), for example between the
lth and (l + 1)th bands, we can define the (nonabelian)
Berry connection Aµ(k) =  †(k)@µ (k) and the curva-
ture F

12

(k) = @
1

A
2

(k)�@
2

A
1

(k) for this gap. Here,  (k)
is the multiplet that consists of  n(k) for up to the lth
band. Using these expressions, the entanglement Chern
number is defined as

cA =
i

2⇡

Z
F
12

(k)d2k. (4)

Precise and e�cient evaluation of the Chern number is
made possible by using link variables.22)

The amount of information that can be extracted from
the entanglement Chern number crucially depends on the
partition. One possible choice is the partition into the
spin-up and spin-down sectors. The entanglement Chern
number defined with such a partition is named the en-
tanglement spin Chern number, and it is considered to
be useful for distinguishing the QSH insulator from or-
dinary insulators.13,19)

The Kane–Mele model is a typical model for QSH
states,10) whose Hamiltonian is explicitly written as

HKM = t
X

hiji

c†i cj + i�SO

X

hhijii

⌫ijc
†
i ŝ

zcj

+ i�R
X

hiji

c†i{s⇥ dij}zcj + �⌫
X

i

⇠ic
†
i ci (5)

using ci = t(ci," ci,#), where ci,� is the annihilation op-
erator of a spin-� electron at the ith site on the honey-
comb lattice and s denotes the spin operator. hiji and
hhijii denote summation over the nearest-neighbor and
the next-nearest-neighbor pairs of sites, respectively. The
first term is a nearest neighbor-hopping term on the hon-
eycomb lattice. The second term represents a spin-orbit

coupling that is essential for the QSH e↵ect in this model,
where ⌫ij takes ±1 depending on i and j. The third and
fourth terms are Rashba and staggered potential terms,
respectively. Here, d̂ is the direction vector from the ith
site to the jth site and ⇠i = ±1. The Kane–Mele model
is a four-band model where the four degrees of freedom
originate from two sublattices and two spins. When we
consider the entanglement spin Chern number, the en-
tanglement Hamiltonian gives two bands, since two de-
grees of freedom are traced out. Thus, the entanglement
spin Chern number is well defined if the entanglement
bands are nondegenerate within the whole Brillouin zone.

The Kane–Mele model has time-reversal symmetry
and is characterized by the Z

2

topological invariant.
Namely, the Z

2

invariant distinguishes the QSH state and
the ordinary insulating state. Naively, the QSH phase
can be understood as a state where spin-up and -down
electrons have finite Chern numbers with opposite signs.
Then, as we have noted in the introduction, it is expected
that the entanglement spin Chern number has an ability
to detect QSH states, since it is defined so that the fo-
cus is on either the up- or down-spin sector. Hereafter,
we use the symbol e-Ch-� to represent the entanglement
spin Chern number for the case that spin-�̄ is traced
out. Figure 1 shows the phase diagram of the Kane–Mele
model in the �⌫–�R plane determined by the numer-
ically obtained entanglement spin Chern number. The
QSH phase, which appears for small �⌫ and �R, is char-
acterized by (e-Ch-", e-Ch-#)=(1,�1), whereas the ordi-
nary insulating phase is characterized by (e-Ch-", e-Ch-
#)=(0,0). The entanglement spin Chern number changes
when the energy gap closes at the K- and K’-pointis in
the Brillouin zone, and it is confirmed that the obtained
phase diagram is equivalent to the one determined with
the Z

2

invariant. It should be emphasized that when �R
is finite, the spin-up and -down sectors are mixed by the
Rashba e↵ect, and the system is no longer a mere collec-
tion of independent subsystems, although the topological
classification by the entanglement spin Chern number is
still valid.
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Fig. 1. (Color online) Phase diagram of the Kane–Mele model

determined by the entanglement spin Chern numbers (e-Ch-", e-
Ch-#) as a function of �⌫ and �R for t = 1 and �SO = 0.06 as
in Ref. 9. (e-Ch-", e-Ch-#)= (1, �1) and (0, 0) correspond to the

QSH phase and the ordinary insulator phase, respectively.
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Next, we break the time-reversal symmetry by intro-
ducing the Zeeman term

HZ = �B
0

X

i

c†i (n · s) ci (6)

into the Kane–Mele model. A possible way to realize this
situation is to place the honeycomb lattice on a ferromag-
netic substrate.23) Because of the time-reversal symme-
try breaking, the Z

2

number becomes ill-defined, while
the entanglement spin Chern number is still well-defined.
In addition, the Chern number can be finite owing to
the time-reversal symmetry breaking. In this paper, we
choose the vector n so that its direction is perpendicular
to the plane. In the following, we determine the phase di-
agram of the Kane–Mele model with the Zeeman term by
making use of the Chern number and the entanglement
spin Chern number.
Figure 2 shows the phase diagrams determined by the

Chern number and the entanglement spin Chern num-
ber. In Fig. 2(a), there are phases with the Chern num-
bers 0, 1, and 2. In order to observe a change in the
integer topological invariant, the band gap should be
closed somewhere in the Brillouin zone. On the red (blue)
lines in the phase diagram, the gap of the energy band
closes at the K-point (K’-point). When the gap of the
energy band closes at this point, the gap of the entan-
glement spectrum with the spin partition also closes at
the same point. Typically, the Chern number changes by
1 (or �1) across the gap-closing line. However, there are
exceptions, namely, there are lines dividing the phases
with the Chern numbers 0 and 2, which will be discussed
later. If the Zeeman term is turned o↵, the Chern num-
ber should be zero on the entire phase space, although
there are several gap-closing lines in the phase space. The
Zeeman term induces a split of the gap-closing line into
two gap-closing lines due to the inequivalence between
the K-point and K’-point, and a finite Chern number is
observed in the region surrounded by the lines.
A basically identical phase diagram can be obtained

by using the entanglement spin Chern numbers. The
phases with the Chern numbers 1 and 2 correspond to
the phases with (e-Ch-", e-Ch-#)=(1,0) and (1,1), respec-
tively. The phase with the Chern number 0 is somewhat
special, i.e., it corresponds to (e-Ch-", e-Ch-#)=(0,0) and
(1,�1). That is, two phases with the same Chern number
are sometimes distinguished by the entanglement Chern
number. Whether the distinction between the (0,0) and
(1,�1) states is meaningful even without time-reversal
symmetry is an interesting future subject. It is worth
noting that the sum rule, a rule that the Chern number
is the sum of e-Ch-" and e-Ch-#, holds in this case.
Let us consider the case of a large spin-orbit cou-

pling. In this case, the energy dispersion is semimetallic
i.e., the hole and electron bands overlap in the energy
space.24) However, provided the “direct gap” is always
finite over the entire Brillouin zone, the Chern number is
well-defined, and the phase diagram determined by the
Chern number is depicted in Fig. 3. In this case, novel
phases with a negative Chern number are revealed. On
the red (blue) lines in the phase diagram, the gap of the
energy band closes at the K-point (K’-point), as in the
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Fig. 2. (Color online) Phase diagram determined by (a) Chern

number and by (b) entanglement spin Chern number (e-Ch-", e-
Ch-#). In both cases �SO/t = 0.06 and B0 = 2�SO. The red (blue)

line denotes the boundary of the phases where the gap of the energy
band closes at the K-point (K’-point).

small spin-orbit coupling limit. On the other hand, on the
purple (green) lines, the energy band closes at a point on
the �-K (�-K’). On these lines, the gap of the entangle-
ment spectrum with the spin partition also closes at a
point where the energy band closes. Reflecting the three
fold rotational symmetry, three Dirac cones appear in the
energy dispersion of the system on the purple and green
line. A single Dirac cone contributes a value of ±1/2 to
the Chern number;25) thus, the Chern number changes
by 3 across the purple and green lines.

In the small spin-orbit coupling limit (�so ⌧ t), the
purple (green) line becomes much closer to the red (blue)
line. Then, the phases with a negative Chern number
become invisible. This explains the existence of phase
boundaries with the Chern numbers 0 and 2 in Fig. 2.
Each of them is actually a pair of boundaries where one
divides the phases with Chern numbers 2 and �1 and the
other divides the phases with Chern numbers �1 and 0.

In the phases with a negative Chern number, the en-
tanglement spin Chern number is undefined since the
entanglement spectrum is gapless. We have shown the
entanglement spectrum in Fig. 4 for the gapless case
(�R,�⌫) = (2.7�SO, 1.0�SO). In this parameter region
of negative Chern numbers, the spectrum of the entan-
glement Hamiltonian is always gapless. This gap-closing
momentum is continuously shifted and becomes gapped
at the phase boundaries specified by the green lines in
Fig. 3. This phenomenon occurs for the system regardless
of the value of �SO. This implies that the spin partition is
not suitable for this model in the parameter region. Ex-
cept in the region with a negative Chern number, there
is again correspondence between the entanglement Chern
number and the Chern number, i.e., the sum rule holds
as in the case of �so ⌧ t.

To summarize, we demonstrated that the entangle-
ment Chern number is useful for characterizing the QSH
states in the case of time-reversal invariance and the non-
conservative of sz. The results are consistent with the
characterization by the Z

2

invariant. Next we found a
case in which phases with the same Chern number result
in a di↵erent entanglement spin Chern number even in
the case of broken time-reversal symmetry, for instance,
the states with (e-Ch-", e-Ch-#)=(0, 0) and (1, �1) as
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Fig. 3. (Color online) (a) Phase diagram for �SO = 0.6t and
B0 = 2�SO. The Chern number and the entanglement spin Chern

numbers (e-Ch-", e-Ch-#) are indicated in each phase. (b) Mag-
nified view of the phase diagram. The symbol “U” denotes the
region where the entanglement Chern number is undefined since

the entanglement spectrum is gapless (see Fig. 4).

in Fig. 2. Investigating the significance of this di↵erence
is an important future issue. Another important finding
of this paper is the sum rule that the sum of the entan-
glement Chern numbers is equal to the original Chern
number. Although this sum rule is empirical, it is ideal
to have a solid theoretical explanation. The sum rule
also applies to the case without time-reversal symmetry.
In addition, when the time-reversal symmetry is broken,
we find a finite region in the phase diagram where the
entanglement spin Chern number is undefined owing to
the gap closing in the entanglement spectrum, despite the
fact that the gap in the energy dispersion remains finite.
We should clarify whether this phenomenon is physical or
is an artifact caused by an unsuitable choice of the parti-
tion. Generally, the entanglement Chern number depends
on the partition. Therefore, one needs to use the most
suitable partition to obtain the topological properties of
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Fig. 4. (Color online) Spin-up entanglement spectrum with
�SO = 0.6t, B0 = 2�SO, and (�R,�⌫) = (2.7�SO, 1.0�SO), which

correspond to the black star in Fig. 3(b). (Inset) First Brillouin
zone. The gap is closed at the three points indicated by “⇥”.

a many-body ground state. It reminds us of the order pa-
rameters for describing the phase transitions, which are
crucially important for choosing a suitable partition.

There are also many variants of the entanglement
Chern number, i.e., we can apply not only the spin par-
tition but also the orbital partition, the sublattice parti-
tion, the layer-by-layer partition,26) and so on. Thus, the
concept of the entanglement Chern number introduces
many types of topological invariants. It is an interesting
task to give intuitive understanding of the known topo-
logical phases and to explore new phases by making use
of the entanglement Chern number.
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