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For various two dimensional lattices such as honeycomb, kagome, and square-octagon, the gauge conventions (string
gauge) realizing minimum magnetic fluxes that are consistent with the lattice periodicity are explicitly given. Then, the
many-body interactions of the lattice fermions are projected into the Hofstadter bands to form pseudopotentials. By
using these pseudopotentials, the degenerate many-body ground states are numerically obtained. We further formulate a
scheme to calculate the Chern number of the ground state multiplet by using these pseudopotentials. For the filling factor
of the lowest Landau level, ν = 1/3, a simple scaling form of the energy gap is numerially obtained, and the ground state
is unique except for the three-fold topological degeneracy. This is a quantum liquid, which can be a lattice analogue of
the Laughlin state. For the ν = 1/2 case, the validity of the composite fermion picture is discussed in relation to the
existence of the Fermi surface. The effects of disorder are also described.

Recent studies have revealed that topology provides a so-
phisticated view on certain classes of materials. The integer
quantum Hall (IQH) effect,1) which is the quantization of
the Hall conductance of two-dimensional electrons in strong
magnetic field, is explained by the topological index, i.e.,
Chern number.2) Notably, intensive studies, conducted in this
decade, have revealed that “a certain class” is actually very
wide, if the idea of topology is augmented by the notion
of symmetry. Indeed, for noninteracting fermions, an explo-
ration with various symmetries (and space dimensions) leads
to a “periodic table” for gapped states containing many kinds
of topologically nontrivial states,3–6) such as a quantum spin
Hall state with time reversal symmetry.7)

However, symmetry and dimensionality are not the only di-
rections to search for novel quantum phases. That is, the in-
corporation of electron-electron correlation effects in topolog-
ical phases is an also important issue. The fractional quantum
Hall (FQH) effect8) is a typical example of topologically non-
trivial gapped quantum liquid in which the electron-electron
interaction plays an essential role. The characteristics of the
FQH state is well captured by the wave function proposed
by Laughlin,9) and the FQH state is highly distinct from that
of free fermions.10) Besides, the composite fermion picture
provides a perspective on the correlated electron system.11)

The FQH phase can be specified by the Chern number,12)

which involves the twisted boundary condition for its defini-
tion; however, as the electron-electron interaction is essential,
the explicit computation of the Chern number is not trivial.

In this letter, several types of lattice models in strong mag-
netic field are considered to discuss the electron-electron in-
teraction effects. The physics of lattice models,13, 14) related to
the FQH system, has been studied in the context of fractional
Chern insulators,15–18) where the external magnetic field is ab-
sent. Instead, here, we examine lattice models in the external
magnetic field. We consider six types of lattices: square, Lieb,
square-octagon, triangular, honeycomb, and kagome lattices,
and perform numerical analysis on these models. In order to
reduce the computational cost related to the electron-electron

correlation, we project states to the lowest Landau level (LL),
and treat the interaction exactly within the projected space. It
enables us to evaluate the Chern number explicitly for reason-
ably large systems. Then, the topological degeneracy and non-
vanishing Chern number are calculated for an electron filling
factor ν = 1/3, signaling the FQH states in the lattice models.
In addition, we discuss how the energy spectrum depends on
the underlying Bravais lattice. Furthermore, we also consider
ν = 1/2 state and discuss their consistence with the Fermi liq-
uid states. In the following paragraphs, we first describe our
numerical method, and then explain the details of the results.

Let us begin by introducing the creation-annihilation op-
erators projected onto a band, which plays a key role in this
paper. We consider a system with interacting spin-polarized
electrons in a uniform magnetic field on several types of lat-
tices, whose Hamiltonian is written as H = Hkin + Hint. The
magnetic field is taken into account by using the Peierls phase
in the kinetic term as Hkin =

∑
〈i, j〉 teiφi, j c†i c j, where i and j are

the labels of the sites, t is a hopping parameter, and c†i (ci) is
the creation (annihilation) operator on site i. Note that 〈i, j〉
indicates the summation over the nearest neighbor pairs of
the sites. Hereafter, we set t = −1 for all lattice structures that
are considered. The Peierls phase φi j is determined so that
an electron traveling around a closed path acquires a proper
phase factor corresponding to the magnetic flux threading that
path.

In the calculation, the string gauge19) is employed. Ex-
amples of φi j assigned by the string gauge for each lattice
model are shown in Fig. 1. After choosing a unit cell, we
set an origin S for the strings at an appropriate place in the
cell, and draw arrows (strings) to each unit cell from the
origin S . To construct a phase φi j = 2πφni j, where ni j is
the number of strings that intersect the link i j (the orienta-
tion is taken into account), the strength of the magnetic field
per unit cell, except for the one with the origin S , is mea-
sured by φ in units of the flux quantum. With a uniform mag-
netic flux, we get e−i2πφ(NxNy−1) = ei2πφ in Nx × Ny unit cells.
(Nx unit cells in one direction and Ny unit cells in another
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direction.) It restricts the magnetic flux to φ = Nφ/(NxNy)
with Nφ = 1, 2, · · · ,NxNy, where Nφ corresponds to the total
magnetic flux. In the cases of square-octagon, triangular, and
kagome lattices in a uniform magnetic field, it is necessary
to utilize the strings that transfer the magnetic flux between
separated regions in a unit cell, as shown by the red arrows in
Figs. 1(c), (d) and (f). For example, the addition of strings as-
sociated with δφ in Fig. 1(c) realizes a uniform magnetic field
as long as (φ − δφ)/S oc = δφ/S sq, where S oc(sq) is the area of
the octagon (square) in the lattice.

For the interaction term, we focus on the nearest neighbor
interaction, that is, we use Hint =

∑
〈i, j〉 Vc†i c†jc jci, where V is

the strength of the electron-electron interaction. In general, it
is difficult to solve an interacting electron problem using full
information of the entire Hilbert space. Therefore, we need to
project the operators into a space spanned by a specific band.
The lattice model with φ ≡ p/q (p, q: relatively prime) has αq
single-electron bands, where α is the number of sites in a unit
cell with periodic boundary condition. Thus, when the system
is put on the Nx × Ny lattices, the number of states per band is
obtained as (αNxNy)/(αq) = NxNy/q. For p � q, the energies
between the lowest and the p-th bands form the LL in the
large q limit. Therefore “the lowest Landau level” is defined
as a group of these states, and we focus on the projection to
this LL with the Landau degeneracy (NxNy/q) × p = Nφ.

A multiplet is numerically constructed using the eigenvec-
tors belonging to the lowest LL as ψ = (ψ1, ψ2, · · · , ψNφ

),
and the projected creation operator is defined as c̃†i = (c†P)i,
where P = ψψ†, c† = (c†1, c

†

2, · · · , c
†

Nsite
) and Nsite =

αNxNy.20, 21) By using these projected creation operators, the
Hamiltonian is projected into the lowest LL by replacing c†i , ci

with c̃†i , c̃i. Since we have {c̃†i , c̃ j} , δi j and {c̃†i , c̃
†

j } = {c̃i, c̃ j} =

0, the canonical anticommutation relations are no longer satis-
fied, and therefore, the ordering of fermions is important. The
Hamiltonian is used in the form of a semi-positive definite as

H̃int =
∑
〈i, j〉

Vc̃†i c̃†j c̃ jc̃i =
∑

k,l,m,n

Vklmnd†k d†l dmdn. (1)

Here, Vklmn =
∑
<i, j> V(ψk)∗i (ψl)∗j(ψm) j(ψn)i, the summation

over k, l,m, n is restricted to the states on the lowest LL, and
d†k is the creation operator of the state k as d†k = c†ψk. Here,
we choose V such that the typical energy scale of the electron-
electron interaction is much larger than the energy width of
the lowest LL, and consider only the interaction term. To di-
agonalize H̃int for the many-electron states, we need the ma-
trix element using |Ψi〉 = d†i1 · · · d

†

iNe
|0〉 as the basis for the

Ne-electron system.
We first calculate the energy spectra at the LL filling ν =

Ne/Nφ = 1/3 and 1/2, especially focusing on the gap above
a ground state multiplet. Here, if m is the minimum inte-
ger satisfying (Ẽm+1 − Ẽ1)/(VρELG) > 10−3, where Ẽi is the
i-th eigenvalue of H̃int, ELG is the Landau gap of the non-
interacting case and ρ = Ne/Nsite, we define the first m states
as the m-fold degenerate ground states.

In Fig. 2(a), the energy gaps of the systems with N × N
square and triangular lattices are plotted as functions of φ =

Nφ/N2. Since the energy scale is described by the Landau gap
of the non-interacting case ELG and

∑
<i, j> nin j ∼

∑
<i, j> ρ

2 ∼

ρ, the energy gap ∆Ẽ is scaled by VρELG. The results in
Fig. 2(a) show that the scaling law ∆Ẽ ∝ VρELG is valid in
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Fig. 1. (Color online) Sketches of 3 × 3 (a) square, (b) Lieb, (c) square-
octagon, (d) triangular, (e) honeycomb and (f) kagome lattices with the string
gauge under periodic boundary condition.

the wide range of φ, regardless of the lattice types. Since the
Landau gap ELG and ρ = (Ne/αNφ)φ are proportional to φ,
Fig. 2(a) indicates the relation ∆Ẽ ∝ φ2 ∝ ρ2, which means
that the excitations are local at both ν = 1/3 and 1/2.

The difference between ν = 1/3 and 1/2 becomes clear
when we consider the dependence of energy gaps on the Lan-
dau degeneracy Nφ. The numerically obtained 1/Nφ depen-
dence of the energy gaps is shown in Figs. 2(b) and (c),
where we consider six types of lattice structures: square, Lieb,
square-octagon, triangular, honeycomb, and kagome. The first
three have square Bravais lattice while the last three have
hexagonal Bravais lattice. Here, the systems with φ = 1/Nφ

on the Nφ × Nφ lattices are considered. Note that the scaling
found in Fig. 2(a) is independent of φ. In Figs. 2(b) and (c), the
energy gaps behave similarly as a function of 1/Nφ if the un-
derlying Bravais lattice is the same. In addition, Fig. 2(b) indi-
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Fig. 2. (Color online) Scaled energy gaps as functions of (a) the magnetic
flux φ and (b,c) the inverse of Landau degeneracy 1/Nφ. The results are dis-
played for 5 electrons on square lattices (S.L.) and triangular lattices (T.L.)
at ν = 1/3 and 1/2 in (a). The table in (c) represents the degeneracies of the
ground states at ν = 1/2 for the square Bravais lattice and the hexagonal one.

cates the finite energy gap in the large Nφ limit, which is con-
sistent with the Laughlin state as a ground state for ν = 1/3.
On the other hand, for ν = 1/2, their 1/Nφ dependence is
clearly different from that for ν = 1/3 and can be consistent
with the gap closing behavior.

Another important quantity that characterizes the differ-
ence between the odd-denominator filling fractions (e.g. ν =

1/3) and the even-denominator ones (e.g. ν = 1/2) is the de-
generacy of the ground state. The ground states for ν = 1/3
are always accompanied by the three-fold topological degen-
eracy.22) This feature holds irrespective of the lattice type,
which is explained by the translation of the center-of-mass.

In contrast, the degeneracy of the ground states at ν = 1/2
has no such universal feature. The ground state degeneracy for
ν = 1/2 is shown in the inset table in Fig. 2(c). The degener-
acy is always even, which is supported by the center-of-mass
translation, and depends on the number of electrons and the
underlying Bravais lattice. The many-electron system having
interactions in a magnetic field with ν = 1/2 is mapped to
the Fermi liquid with composite fermions.11, 23) Without any
magnetic field, there is a Q-fold rotational symmetry around
the origin in the band structure, when the considered lattice
type has the square Bravais lattice (Q=4) or the hexagonal
one (Q=6). Thus, as long as N1 = N2 and the system is not
too small, the ground state of the many-electron state forms a
close shell and the total momentum is zero, when the number
of electrons is 1 + Qn, (n: integer). In fact, in the table in Fig.
2(c), the ground states have no degeneracy for Ne = 1 + Qn, if
we ignore the factor of two given by the center-of-mass trans-
lational symmetry (Ne =5 and 9 for the square Bravais lattice
and Ne = 7 for the hexagonal one). Besides, the trend seen in
Fig. 2(c) is that the energy gaps of the ground state forming
a close shell are larger than those of the other states. These
observations are consistent with the existence of the Fermi
surface of the composite fermions.

As we have seen, the ground state at ν = 1/3 has a
three-fold topological degeneracy. Then according to the Niu-
Thouless-Wu formula,12) the Hall conductance is given by
σxy = e2

h
C
m , where C = 1

2πi

∫
T 2 Tr F, F = d A + A2, and

A is the non-Abelian Berry connection,24) which is given

by the ground state multiplet Φ = (|G1〉, . . . , |Gm〉) as A =

Φ†dΦ.25, 26) Here, |Gi〉 are the ground states with m-fold topo-
logical degeneracy (〈Gi|G j〉 = δi j). The domain of integration
T 2 is a parameter space given by the twisted boundary con-
dition. We evaluate the Hall conductance by computing the
Chern number explicitly using the ground state multiplet.

To obtain the Chern number, we impose a twisted bound-
ary condition as c†(nx+Nx,ny,s) = eiθx c†(nx,ny,s) and c†(nx,ny+Ny,s) =

eiθy c†(nx,ny,s), where (nx, ny, s) is the site index (nx ∈ {1, · · · ,Nx},
ny ∈ {1, · · · ,Ny}, s ∈ {1, · · · , α}). The eigenvectors of the low-
est LL ψk’s depend on θ = (θx, θy) through the dependence of
Hkin(θ), which causes a modification on the projected interac-
tion Hamiltonian as

H̃int(θ) =
∑

k,l,m,n

Vklmn(θ)d†k (θ)d†l (θ)dm(θ)dn(θ), (2)

where d†k (θ) = c†ψk(θ).
By diagonalizing H̃int(θ), we obtain an m-component ground

state multiplet as Φ(θ) = (|G1(θ)〉, |G2(θ)〉, . . . , |Gm(θ)〉),
where |Gi(θ)〉’s are the m-fold degenerate ground states of H̃int
satisfying 〈Gi|G j〉 = δi j. By using this multiplet, the Chern
number is evaluated by applying the method proposed in
ref. 27. A U(1) link variable on a discretized link in the param-
eter space is defined as Uµ(θl) = 1

Nµ(θl)
det[Φ†(θl)Φ(θl + ∆µ)],

where ∆µ represents the displacement in the direction µ = x, y
at θl and Nµ(θl) = | det[Φ†(θl)Φ(θl + ∆µ)]|. As seen from the
definition, the link variables require the computation of the
overlap between the ground states at θl and θl + ∆µ.

When H̃int(θ) is diagonalized by the orthonormal basis
Ψ(θ) = (|Ψ1(θ)〉, |Ψ2(θ)〉, · · · , |ΨND (θ)〉) (ND = Nφ

CNe ), the
eigenvalue equation h̃int(θ)ui(θ) = Ẽi(θ)ui(θ), where h̃int =

Ψ(θ)†H̃int(θ)Ψ(θ), is given and the ground state is expressed
as

|Gk(θ)〉 = Ψ(θ)uk(θ), (3)

where Ẽk(θ) is one of the energies of the ground state mul-
tiplet. Using this expression, the overlap between the states
with different boundary conditions, θ and θ′, is given by

〈Gk(θ)|Gl(θ′)〉 = u†Gk
(θ)O(θ, θ′)uGl (θ

′), (4)

O(θ, θ′) = Ψ†(θ)Ψ(θ′). (5)

The (i, j) element of O(θ, θ′) is expressed as Oi j(θ, θ′) =

det[ψ̃i(θ)†ψ̃ j(θ′)], where ψ̃i(θ) = (ψi1 (θ), · · · , ψiNe
(θ)).28)

After obtaining the link variable in the above way, the lat-
tice Berry curvature is defined as

F̃12(θl) = Log[U1(θl)U2(θl + ∆1)U−1
1 (θl + ∆2)U−1

2 (θl)] (6)

and −π < F̃12(θl)/i ≤ π. The function Log means taking the
principle branch of the logarithm. By definition, F̃12(θl) is in-
variant under the U(m) gauge transformation Φ(θ)→ Φ′(θ) =

Φ(θ)ω(θ). Now, the Chern number on the lattice is given as

C̃ =
1

2πi

∑
l

F̃12(θl), (7)

where the summation is taken over all the mesh points in the
parameter space. It is guaranteed that C̃ is always integral and
becomes exact in the limit of the fine mesh.

We diagonalize h̃int(θ) for ν = 1/3 and its energy Ẽi(θ) is
plotted as shown in Fig. 3(a). There is no level crossing be-
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Fig. 3. (Color online) (a)The eigenvalue of H̃int at ν = 1/3 against θx for
θy = 0. The system with 12 × 12 square lattices for φ = 1/12 is considered.
The ground state is accompanied with the 3-fold degeneracy in arbitrary pa-
rameters θ and well separated from the first excited states. (b)The eigenvalue
of H̃int + H̃imp at ν = 1/3 under the periodic boundary condition against the
strength of random potential W. The system with 9 × 9 square lattices for
φ = 1/9 is considered and we set V = 1. The Chern numbers are expressed
by the color of plots.

tween the ground state multiplet with the three-fold topolog-
ical degeneracy and excited states. For ν = 1/3, the Chern
number of the ground state multiplet is 1. This means that the
quantized Hall conductance is e2/3h. On the other hand, the
other excited states have 3n-fold (n : integer) degeneracy and
the Chern number is n, which indicates that the average of the
Hall conductance is written as 〈σxy〉 = e2/3h for any temper-
ature. At ν = 1/2, as mentioned previously, the degeneracy of
the ground states is generically 2n (n : integer). In this case,
the Chern number of the ground state multiplet is n. In gen-
eral, the Hall conductance specified by the Chern number of
the ground state multiplet for the filling factor ν is evaluated
as νe2/h.

We also investigate the effects of disorder. We limit our-
selves to the cases where the disorder potential is sufficiently
small compared with the Landau gap, which allows us to dis-
cuss the impurity effects within the states projected to the low-
est LL. We define the projected impurity potential as

H̃imp =
∑

i

wic̃
†

i c̃i, (8)

where wi = W fi is the site potential at a site i, fi represents
uniform random numbers between [−1/2, 1/2], and W is the
strength of the random potential. In Fig. 3(b), the energy spec-
trum of H̃int + H̃imp (for θ = 0) is plotted against W with
the Chern number indicated using different colors. In gen-
eral, the topological degeneracy is lifted by the disorder in
any value of θ, and therefore, the Chern numbers can be in-
dividually assigned to each lifted state.29) More specifically,
the three-component ground state multiplet is split into three
states, where one state carries a Chern number of 1, while the
other two carry 0. This is topological stability. Furthermore,
the numerical results suggest that the state with the lowest en-
ergy is always trivial in terms of the Chern number, which im-
plies that the Hall conductance is zero when the temperature
is smaller than the small energy gap within the lifted ground
state multiplet.

To summarize, we construct the Peierls phase by using
the string gauge for various types of lattices and analyze the
many-electron states by using the Hamiltonian projected to

the lowest LL. By diagonalizing the pseudopotential, a sim-
ple scaling form of the energy gap is obtained. The results for
ν = 1/3 indicate that the ground states accompanied by three-

fold topological degeneracy are consistent with the Laughlin
state. On the other hand, the degeneracy of the ground state
for ν = 1/2 depends on the type of lattice structure, which is
discussed in terms of the composite fermion picture using the
existence of the Fermi surface. We further formulate a method
to compute the Chern number of the ground state multiplet us-
ing the pseudopotential. This method is applied to the lattice
analogue of the Laughlin state and the effects of disorder are
discussed with the Chern number.
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