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Orders Exhibited by Ensemble of Headless Spins Preferring Twisted Alignment:
Phase Diagram of Extended Maier–Saupe Model on Simple Cubic Lattice
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The effect of the preference for nonparallel alignment without a preferred twist sense of neighboring headless spins
is examined through computer simulations on extended Maier–Saupe models on the simple cubic lattice with/without
next-nearest-neighbor interactions. Phase diagrams containing four phases are constructed for a varying degree of the
preference for the local twist and for a strength of the next-nearest-neighbor interaction. It is shown that the preference
for the local twist brings about not only the instability for the nematic (uniaxial) order but also that for a spatial order
to reduce the frustration arising from the local twist. The next-nearest-neighbor interaction can produce even a weak
spatial order of local chirality. The results are discussed in relation to the formation of a liquid crystalline gyroid phase
and chiral phases in ensembles consisting of antispindle molecules that are axially symmetric and achiral.

1. Introduction
Spin systems have served as representative models for

studying phase transitions and critical phenomena. By refer-
ring to the exchange interaction between (quantum) spins on
neighboring atoms, usually, interaction between spins, i and j,
are expressed as −Ji jsi · s j, and the spontaneous magnetization
⟨s⟩, where ⟨·⟩ indicates the average over the system, is used as
an order parameter to characterize the order (for a ferroic in-
teraction, Ji j > 0). However, if a spin is headless, i.e., has no
distinction between its head and tail, the spontaneous magne-
tization has no meaning. In this case, the so-called nematic or-
der parameter ⟨P2(cos θ)⟩ becomes important, where P2(·) and
θ are the second-order Legendre polynomial and an angle be-
tween a spin orientation and the uniaxial axis, respectively. By
virtue of its functional form (see Appendix), a simple mean-
field theory can be constructed if the following interaction is
assumed for neighboring spins,

V(θ) = −V0P2(cos θi j) (1)

with V0 > 0 and θi j is the angle between two spins, i and
j. This mean-field theory is known as the Maier–Saupe the-
ory1) of nematic liquid crystals, which is the most simple liq-
uid crystal with only the orientational order of molecules. As
a spin model, the Maier–Saupe model on lattices is a kind
of Heisenberg model of headless spins. The model on a sim-
ple cubic lattice exhibits a first-order transition between the
disordered (isotropic) and the uniaxially ordered (nematic)
phases,2, 3) in accordance with Landau’s thermodynamic phe-
nomenology of phase transitions.4)

In this study, the effect of preference for the twisted align-
ment between neighboring spins is investigated by extending
the Maier–Saupe model.1) Various extensions of the model
have already been attempted in the field of liquid crystals
such as the inclusion of a higher even-order Legendre poly-
nomial in the intermolecular potential to see its possible ef-
fects (while keeping the parallel alignment most stable),5) or
the inclusion of an odd-order term [e.g., P1(cos θ)] to describe
the formation of a cholesteric (chiral nematic) phase consist-
ing of chiral molecules.6) Differently from these, the exten-
sion in this study is made so as to express the twist without a

preferred twist sense (handedness), considering recent exper-
imental reports of chiral phases formed by seemingly achi-
ral molecules.7–10) Although it may be difficult to rational-
ize such extension for traditional spin systems, the extension
gives a hint for understanding exotic liquid crystalline phases
through an intuitive mapping between the property of the in-
teraction potential and the molecular shape. An extension of
the XY-model, which is similar in some sense, has recently
been studied11, 12) while having main interests on not chang-
ing the direction of the preferred orientation but increasing
the number of preferred orientations. It is, however, difficult
to discuss in comparison with real liquid crystals because of
not only the reduced degree of freedom but also the presence
of the distinction between the head and the tail of a treated
spin, although qualitatively similar phase diagrams were pro-
posed.

In this paper, a phase diagram of a model capable of ex-
pressing preferences to a twisted alignment of neighboring
headless spins is reported for a lattice model with nearest-
neighbor interaction. An effect of next-nearest-neighbor in-
teraction is also studied. It is attempted to deduce insights
on real liquid crystalline systems from the simulation results.
This paper is organized as follows: in Sec. 2, we describe the
model and simulation procedures. The results of simulations,
phase transitions, and orders established are described in de-
tail separately for without (Sec. 3.1), and with (Sec. 3.2) pos-
itive or negative next-nearest-neighbor interactions. Simula-
tion results are summarized in Sec. 4.1. A discussion is given
on real liquid crystalline systems in Sec. 4.2, and Conclusion
follows.

2. Model and Simulation Procedure
Headless spins are assumed to sit on lattice sites of a simple

cubic lattice with a lattice spacing of unity. The preference
for the twisted alignment without a preferred twist sense for
neighboring spins is expressed by the following interaction
between the nearest neighbors (0 ≤ r ≤ 1):

v(θ) =
V(θ)
V0
= −
[
(1 − r)P2(cos θ) − r

7
3

P4(cos θ)
]
. (2)
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Fig. 1. Potential function v(θ) [= V(θ)/V0] as a function of r (solid and dot-
ted curves alternately by a step of ∆r = 0.1). The dot-dashed curve represents
v(θ) with r = rc (= 9

79 ).

Here, P4(·) is the 4th-order Legendre polynomial. The factor
7
3 in the second term is a normalization for the perfect or-
der driven solely by it (r = 1, see Appendix). The change in
the shape of interaction potential [Eq. (2)] is shown in Fig. 1.
The θmin that minimizes v(θ) grows from 0 in r ≤ rc =

9
79

to arctan(2/
√

3) < π
2 at r = 1. A finite θmin means that the

interaction is not ferroic. Since two senses of twist (left and
right) are energetically equivalent, some alternate order may
be expected on the simple cubic lattice. The hump of potential
at θ = 0, which may serve as a measure of a temperature of
phase transition(s) owing to its emergence, grows as a func-
tion of r for r > rc, as shown in Fig. 2.

The effect of the next-nearest-neighbor interaction is also
examined for limited cases assuming

VNNN(θ)
V0

= −vNNNP2(cos θ). (3)

Monte Carlo simulations were performed using the
Metropolis algorithm.13) The size of the ensembles was L3

with L = 30, 40, 50, or 60. The smallest size was mainly used
while confirming its consistency with fewer results of larger
ensembles including temperature variation. Models taking
the next-nearest-neighbor interaction into account required a
larger L. Indeed, the comparison among the results up to L =
60 was necessary to obtain the reliable result for vNNN = 0.05.
The cyclic boundary condition was imposed on ensembles.
A trial orientation of a molecule without the distinction of
the head and tail is uniformly generated at each step. At each
temperature, 20000 steps, each of which consists of L3 trials,
were used to calculate equilibrium (averaged) quantities after
50000 equilibration steps. The attainment of equilibrium was
confirmed through coincidences among equilibrium quanti-
ties starting from various initial configurations. Note that de-
tailed analyses on transition behaviors such as the precise lo-
cation of the transition and critical behaviors are not made
in this study because these are beyond the present scope. An
idea on the temperature steps used in simulations can be ob-
tained from the result with the next-nearest-neighbor inter-
action (Fig. 7). In this paper, the temperature is measured in
terms of energy, i.e., kB = 1, and all extensive quantities such
as the averaged energy ⟨E⟩ and the heat capacity C are given
for a single spin. Although C can be calculated both from the
fluctuation of energy, C = (⟨E2⟩ − ⟨E⟩2)T−2, and as a tem-
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Fig. 2. (Color online) Phase diagram of extended Maier–Saupe model on
simple cubic lattice as a function of r (vNNN = 0). SB phases possess both
uniaxial and alternate orders. Solid line, first-order phase transition driven by
nematic instability; dotted line, second-order phase transition with alternate
twist order. The dot-dashed line indicates the height of the energy hump at
θNN = 0 in the nearest-neighbor interaction [Eq. (2)].

perature derivative of the energy, C = d⟨E⟩/dT , those via the
latter are depicted in this paper because of their smoothness,
which is preferable for detecting tiny anomalies.

Since the system considered is symmetric concerning the
uniform rotation of spins, the simulation results will be given
after spins are uniformly rotated so as to align the princi-
pal axis of the largest component of the tensor nematic or-
der parameter, i.e., the so-called “director” of the nematic or-
der, along the z-axis. Hereafter, the θ without subscripts is
used to denote the angle between the spin and the nematic
director (z-axis). The nematic order parameter is represented
as ⟨P2(cos θ)⟩, accordingly. On the other hand, the subscript
“NN” represents nearest neighbors. The average of angles be-
tween nearest neighbors is written as ⟨P2(cos θNN)⟩.

To obtain the information on possible spatial orders, a
“diatomic molecule” consisting of two point scatters (bond
length being 0.2 in the unit of the lattice spacing) was put
at each lattice point according to the simulated spin config-
uration. A “structure factor”, which is a Fourier component
inherent in a configuration, was then calculated. All structure
factors reported in this paper were calculated on the basis of
the respective snapshot and not averaged over snapshots.

3. Results
3.1 Case without next-nearest-neighbor interaction

Simulations of models without the next-nearest-neighbor
interaction (vNNN = 0) were comprehensively performed over
the entire range of r. The r’s simulations performed can be
read from the phase diagram (Fig. 2), which seemingly con-
tains five phases. The selected results of temperature depen-
dences of the nematic order parameters are shown in Fig. 3.
The phase diagram is divided into four regions depending on
r. These are described separately.

3.1.1 Region I: r ≤ rc

In this region, the perfect nematic order (θmin = 0) is re-
alized at T = 0. The lattice Maier–Saupe model was already
studied in the literature.2, 3) The present result with r = 0 com-
pletely coincides with the reported results: The disordered
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Fig. 3. Temperature dependences of nematic order parameter ⟨P2(cos θ)⟩
for selected values of r (vNNN = 0). Dependences are drawn by curves
(solid, dotted or dot-dashed) for clarity although simulations were done rather
sparsely in reality.

phase (corresponding to the isotropic liquid) changes to the
uniaxialy ordered (nematic) phase at Tdu ≈ 1.12V0 on cooling.
The phase transition is of first order as theoretically revealed
on the basis of the asymmetry between positive and nega-
tive nematic order parameters.4) The order of this disordered-
uniaxial transition remains the same even in r ≥ rc. In prac-
tice, however, it was difficult to see the symptoms of hystere-
sis arising from the first-order nature of the transition.

With increasing r from 0, the interaction potential be-
comes shallower. The transition temperature monotonically
decreases (Fig. 2). The growth of the nematic order on low-
ering temperature becomes weaker as seen for r = rc in Fig.
3.

The heat capacity C at low temperatures reflects the exci-
tation spectrum. Note that only the potential energy is taken
into calculation in the present treatment. A single classical
harmonic oscillator contributes not by 1 including the kinetic
energy contribution of 1

2 but only by 1
2 , accordingly. Since a

spin has two degrees of freedom, the limiting value of the heat
capacity (at T = 0) is the unity in this region2) except for the
close vicinity of rc, where the effective force constants of the
restoring force on spins (the second derivative of the interac-
tion by the angle) vanishes. At r = rc, the numerical derivative
yields C = 1

2 , which is the magnitude expected for two clas-
sical oscillators each with a quartic (not quadratic) potential
function.

3.1.2 Region II: rc < r ≲ 0.38
Once r exceeds rc, an energy hump emerges at θNN = 0 in

the interaction (Eq. 2). The distribution of the angle between
neighboring spins, θNN, changes qualitatively from those with
the maximum at θNN = 0 for r ≤ rc. Indeed, the ensemble av-
erage ⟨cos2 θNN⟩ always has a similar magnitude to cos2 θmin
with small anomalies at phase transitions. Such a change,
however, does not necessarily accompany any phase transi-
tions.

Because of the hump at θNN = 0, the perfect nematic order
cannot be the ground state of the system for r > rc. A phase
transition occurs at a lower temperature as seen as a kink in
the temperature dependence of the nematic order parameter
in Fig. 3 for r = 0.2 (at TuSB ≈ 0.10V0) and r = 0.3 (at
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Fig. 4. (Color online) Temperature variation of structure factor along (hhh)
at r = 0.2 (vNNN = 0). (a) whole temperature region (∆T = 0.1V0), (b) details
at low temperatures (∆T = 0.02V0). On cooling below a lower transition
(TuSB ≈ 0.105V0), superlattice components (h = k + 1

2 , k = 0, 1, 2...) grow in
the SB1phase.

Fig. 5. (Color online) Projection of 15 even-numbered layers in snapshots
on the xy-plane in an 11× 11–region for r = 0.2, vNNN = 0 at T = 0.02V0 (in
SB1 phase ). Different colors of segments (molecules) distinguish layers they
belong to.

TuSB ≈ 0.28V0).
To obtain some information of the change in the order,

structure factors were examined. The disordered and uniaxial
phases give only Bragg peaks arising from the lattice prop-
erties of the model. Upon the lower transition, superlattice
components appear only in {hhh} directions shown in Fig.
4. Their locations, {hhh} with h = k + 1

2 , k = 0, 1, 2..., in-
dicate that some structural order corresponding to the “rock
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Fig. 6. Low-temperature (limiting) values of averages of various cos2 θ

values as a function of r (vNNN = 0). Open circle, ⟨cos2 θ⟩0 =

(2⟨P2(cos θ)⟩0 +1)/3; plus sign, ⟨cos2 θNN⟩0; cross, ⟨cos2 θ⟩0 ±
√
⟨∆ cos2 θ⟩0,

where ⟨∆ cos2 θ⟩0 = ⟨cos4 θ⟩0 − ⟨cos2 θ⟩20. The solid curve represents
cos2 θmin, where θmin gives the minimum of v(θ).

salt” structure emerges upon the transition. Namely, a spa-
tial order with the alternation exists in the low-temperature
phase as in alloys such as brass, a classical example of order-
disorder transition. Hereafter, the phase is specified as the SB1
phase. An example of a snapshot of the simulation ensemble
in the SB1 phase is shown in Fig. 5. The existence of the al-
ternate order is clearly visible. In Fig. 6, limiting values of
averages of some “cos2 θ”s at T = 0 are plotted as a func-
tion of r. That of the angles between the uniaxial axis and the
molecular figure axis, ⟨cos2 θ⟩0, lies on neither cos2 θmin nor
cos2(θmin/2), which is expected if two types of sites are related
by a mirror symmetry. When the standard deviation of cos2 θ,
i.e.,
√
⟨∆ cos2 θ⟩0, is added to and subtracted from ⟨cos2 θ⟩0,

the results, ⟨cos2 θ⟩0 ±
√
⟨∆ cos2 θ⟩0, lie on the line of perfect

nematic order (⟨cos2 θ⟩ = 1) and that of cos2 θmin. This in-
dicates that one half of spins on one type of sites (“ordered”
sites) tend to orient themselves perfectly along the uniaxial
axis whereas the other half on the other type of sites (“disor-
dered” sites) are inclined by θmin from the axis at T = 0. This
state certainly has the minimum energy with macroscopic de-
generacy. There is no mechanism to order the orientation of
spins on the latter type of sites because the interaction works
only between nearest neighbors. That is, there remains the ro-
tational degrees of freedom around the uniaxial axis (z) for
spins on the disordered sites. There is a zero-energy mode in
this ground state, accordingly. Reflecting the existence of this
mode, the heat capacity C in the lowest temperature region is
3
4 [= 1

2 (1+ 1
2 )] in contrast to 1 in the uniaxial phase for r < rc.

The temperature of the phase transition between the uni-
axial and the SB1 phases increases with r. It is reasonable to
assume that the transition emerges at rc because of the emer-
gence of the hump at θNN = 0. Figure 2 indicates that the
thermal energy at the transition temperature is of the same
order as but lower than the energy hump at θNN = 0 in the
interaction (Eq. 2). Two phase boundaries (one between the
disordered and uniaxial phases and the other between the uni-
axial and SB1 phases) encounter at around r ≈ 0.38.

3.1.3 Region IIIa: 0.38 ≲ r ≲ 0.5
In this region, two phase transitions still occur on cooling

from the disordered phase. However, the upper transition ac-
companies not only the evolvement of the small nematic order
parameter but also the appearance of superlattice components
corresponding to the rock salt structure while the lower tran-
sition does an appreciable growth in the nematic order pa-
rameter as seen in Fig. 3 for r = 0.4. The connectivity of
phase boundaries and the limiting ⟨cos2 θ⟩0, etc. suggest that
the phase realized at the lowest temperatures is the SB1 phase.
The phase between two transitions is qualitatively the same as
the SB1 phase with respects to a finite nematic order param-
eter and a spatial order of rock salt type. However, it is to be
distinguished from the SB1 phase because there is a transi-
tion boundary to the SB1 phase. It is thus called an alternate
phase while paying attention to the presence of the spatial or-
der. With the increase in r, starting from the “quadlple” point,
the temperature of the upper transition between the disordered
and alternate phases gradually increases whereas that of the
lower transition between the alternate and SB1 phases rapidly
decreases. The lower boundary reaches nearly the T = 0 line
at slightly larger than 0.5 in r. Indeed, the transition tempera-
ture at r = 0.5 is located at around TaSB ≈ 0.001V0, which is
the lowest temperature studied. The temperature dependences
of quantities such as ⟨cos2 θ⟩ cannot be extrapolated to reason-
able values expected from results of r , 0.5 (r ≥ rc) as shown
in Fig. 6. It is unclear at present whether the SB1 phase really
vanishes around r ≈ 0.5.

3.1.4 Region IIIb: 0.5 ≲ r
In this region, two phase transitions occur on cooling from

the disordered phase similarly to Region IIIa. The transition
at a higher temperature is certainly that from the disordered
phase to the alternate phase. As for the lowest temperature
phase, considering the distinct jump in the nematic order pa-
rameter and limiting values such as ⟨cos2 θ⟩0 and C = 3

4 , it
can be said that the phase is quite similar to the SB1 phase
in Regions II and IIIb. The phase is called the SB2 phase,
accordingly. The temperatures of two phase transitions grad-
ually increase with the increase in r.

3.2 Case with next-nearest-neighbor interaction
Even if we assume only the steric effect (see Fig. 14), the

interaction between not only the nearest but also the next-
nearest-neighbors is expected to work in real nonlattice sys-
tems. Considering the steric effect, the antiferroic interaction,
which prefers the continuous twist in one direction as in the
gyroid phase (Fig. 13), is more probable than the ferroic one
preferring the zigzag arrangement in one dimension. In this
study, however, both types of the next-nearest-neighbor in-
teraction are treated. Simulations were performed only for
r = 0.2 and vNNN = ±0.05, which is one order of magnitude
smaller than the interaction between nearest neighbors in the
sense zNNN|vNNN|/zNN =

1
10 with zNN = 6 and zNNN = 12 (z

being the numbers of interacting spins).
In the alternate order (in the alternate, SB1 or SB2 phase),

the spins involved in the next-nearest-neighbor interaction sit
on equivalent sites. For example, they are on either the or-
dered or disordered sites in SB phases. Considering the small-
ness of |vNNN|, here, we focus on its effect in the SB1 phase

4



J. Phys. Soc. Jpn. DRAFT

1.0

0.5

0.0

<
P

2
(c

o
s

)>

2 3 4 5 6
0.01

2 3 4 5 6
0.1

2 3 4 5 6
1

T / V0

5

4

3

2

1

0

C
ap

p

r = 0.2
v = –0.05

Fig. 7. Temperature dependence of nematic order parameter ⟨P2(cos θ)⟩
and apparent heat capacity Capp = d⟨E⟩/dT obtained by numerical differ-
entiation of energy for r = 0.2 and vNNN = −0.05.

at sufficiently low temperatures. Then, vNNN between spins
on the disordered sites works as the interaction to induce the
orientational order among them. If the presence of spins on
the ordered sites is ignored, the problem can be regarded as
a three-dimensional XY-model, which is known to exhibit a
phase transition.14) Note that the distinction between the head
and the tail of spins “revives” in this mapping (because of
0 < θmin <

π
2 ) despite its absence for the original spins. How-

ever, the transitions induced by the next nearest neighbor in-
teraction are not those purely understood within the context
of the three-dimensional XY-model because of the presence
of molecules on the ordered sites. Moreover, the effects of
vNNN differ depending on its sign as described below.

3.2.1 Negative next-nearest-neighbor interaction:
vNNN = −0.05

A negative vNNN is basically different from the positive one
because it perturbs the perfect order of molecules on the or-
dered sites without it. It is difficult to construct intuitively the
ground state that is fully ordered in some sense.

The temperature dependence of the nematic order parame-
ter is shown in Fig. 7. The two phase transitions correspond-
ing to those in cases with r > rc and vNNN = 0 can be clearly
recognized at Tdu ≈ 0.685V0 and TuSB ≈ 0.125V0. Note that
the former is decreased while the latter is increased. These are
based on the fact that the negative vNNN destroys the nematic
order. Besides, there is a tiny anomaly around T ≈ 0.024V0.
The apparent heat capacities obtained by the numerical differ-
entiation of the average energy (Fig. 7) exhibit a pronounced
anomaly there. It is thus concluded that an additional phase
transition is induced by the next-nearest-neighbor interaction.

To obtain insights about the order appearing at the phase
transition at the lowest temperature, putting the importance in
a chiral order in the three-dimensional XY-model in mind,14)

the distribution of the following local chirality is examined:

χlocal,i =
1
4

∑
j∈NN′

[
(r j − ri) × ω j

]
z
, (4)

where the sum runs over four nearest neighbors with the com-
mon z-coordinate. r j and ω j = (x j, y j, z j) (z j ≥ 0) are respec-
tively the position and unit vector expressing the orientation
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Fig. 8. (Color online) Distribution of local chirality χlocal estimated from
respective snapshots for r = 0.2 and vNNN = −0.05 in disordered phase (T =
V0, dot-dashed curve), uniaxial phase (T = 0.5V0, dotted curve), SB1 phase
(T = 0.05V0, broken curve), and chiral-segregation phase (T = 0.005V0,
solid curve).
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Fig. 9. (Color online) Temperature variation of structure factor along (h0h)
at r = 0.2 and vNNN = −0.05. Strong Bragg peaks are omitted for clarity.

of the j-th spin, and [·]z the z component (along the uniaxial
axis of the nematic order) of the vector [·] . The distribution
functions of χlocal are shown in Fig. 8 at selected temperatures
corresponding to different phases. Although the distribution
function is symmetric in all phases, distinct peaks (around
χlocal ≈ 0.24) appear in addition to the central peak in the low-
est temperature phase. In this respect, the growth of the local
chirality is characteristic of the phase. This form of distribu-
tion can be rationalized by considering the existence of two
types of sites (ordered and disordered sites in the SB1 phase).
Namely, the “disordered” sites predominantly contribute to
the central peak whereas the ordered sites contribute to the
two outer peaks owing to the twist of molecules on the neigh-
boring “disordered” sites.

The local chirality forms a weak spatial order as evidenced
by the appearance of additional superlattice components at
{h0h}with h = k+ 1

2 (k = 0, 1, 2, ...) (Fig. 9), which is different
from those observed in the alternate and SB phases. The sys-
tem is now biaxial. However, these data are still insufficient to
have an idea concerning the spatial order of the lowest tem-
perature phase. Indeed, the distribution of the local chirality
exhibits appreciable broadness even at the lowest temperature
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Fig. 10. (Color online) Spatial distribution of local chirality χlocal according to respective snapshots for r = 0.2 and vNNN = −0.05 in disordered phase
(T = V0), uniaxial phase (T = 0.5V0), SB1 phase (T = 0.05V0), and chiral-segregation phase (T = 0.005V0). The red and green colors are different in the sign
of χlocal with |χlocal | > 0.15.

studied (T = 0.002V0). Note that the distribution should con-
sist of “spikes” if the spatial order is perfect (perfect crystal).
Thus, an idea is looked for snapshots. The snapshots of simu-
lations are shown as spatial distributions of the local chirality
in Fig. 10, where the threshold is set as |χlocal| > 0.15 con-
sidering the dip in the distribution in the lowest temperature
phase. Note that a slight shift in the threshold does not al-
ter the impression of the spatial distribution. As clearly seen,
the distributions of respective handedness (colors) are random
in disordered, uniaxial, and SB1 phases, whereas linear and
parallel alignments are recognized in the lowest temperature
phase. The lowest temperature phase with negative vNNN is
thus characterized as a chiral-segregation phase.

Heat capacities at low temperatures are estimated as ca. 0.5
between T = 0.002V0 and 0.01V0, which is half of that of the
normal “ordered” state and suggests some special situation in
the chiral-segregation phase. However, neither the qualitative
description of the order nor mechanisms for its emergence can
be suggested at present.

3.2.2 Positive next-nearest-neighbor interaction:
vNNN = 0.05

A positive vNNN aligns next-nearest-neighbors. The perfect
order of spins on the ordered sites in the SB1 phase is compat-
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Fig. 11. Phase diagram of extended Maier–Saupe model on cubic lattice as
a function of vNNN (r = 0.2). The SB phase possesses both uniaxial (U) and
alternate (A) orders. CS and LC stand for “chiral-segregation” and “locally
chiral,” respectively. Two upper phase boundaries are linearly drawn while
those at lowest temperatures are drawn assuming Ttrs ∝ |vNNN |.

ible with it. Thus, we can naı̈vely imagine the configuration
in the ground state with the minimum energy: perfect align-
ments of spins on two types of sites with the θmin as the angle
between them. If, in this limiting situation (at T = 0), the bi-
sector of the angle is aligned along one of the unit vectors of
the cubic lattice, two sites become equivalent in the sense that
they are related by some symmetry operation. However, the
result of the simulation is quite complicated and difficult to
rationalize intuitively.

Simulations for vNNN = 0.05 indicated the occurrences of
two similar phase transitions to those in the case of vNNN =

−0.05. Their temperatures are Tdu ≈ 0.78V0 for the transition
between disordered and uniaxial phases, and TuSB ≈ 0.082V0
for that between the uniaxial and SB1 phases. The shifts
of these transitions from the case without the next-nearest-
neighbor interaction are almost the same in their absolute
magnitude but opposite in sign in comparison with the case
of vNNN = −0.05. This supports the reasoning for the shifts
given for vNNN = −0.05. Thus, we can write the dependences
as dTdu/dvNNN ≈ 0.95 and dTuSB/dvNNN ≈ −0.43. The phase
diagram against vNNN at r = 0.2 is shown in Fig. 11.

In the low-temperature region, the behavior is rather myste-
rious. The temperature dependences of the nematic order pa-
rameter and apparent heat capacity are shown in Fig. 12. Two
characteristic temperatures are clearly identified in the heat
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Fig. 12. Temperature dependence of nematic order parameter ⟨P2(cos θ)⟩
and apparent heat capacity Capp = d⟨E⟩/dT obtained by numerical differen-
tiation of energy for r = 0.2 and vNNN = 0.05.
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capacity at T ≈ 0.048V0 and 0.030V0. Alhough it suggests
the existence of two phase transitions, no symptom of a new
spatial order was identified in structure factors although the
local chirality [Eq. (4)] below the higher transition tempera-
ture (T ≈ 0.048V0) exhibits similar distributions to the case of
vNNN = −0.05 shown in Fig. 8. Furthermore, inspections over
snapshots at very low temperatures (down to T = 0.001V0)
indicate that the degree of the orientational order of the spins
on the ordered sites is not so high, or rather lower than that
shown in Fig. 5. The detailed characterization of the orders at
low temperatures is left for a future work.

Heat capacities at low temperatures are estimated as ca.
0.25 between T = 0.002V0 and 0.01V0, which is only a quar-
ter of that of an “ordered” state with two degrees of free-
dom (described by a harmonic oscillator for each) per spin.
The difference in the low-temperature heat capacity between
vNNN = ±0.05 clearly indicates that the lowest temperature
phases are significantly different from each other. Concerning
the small heat capacity, two possibilities can be suggested.
One is that there is zero-energy mode(s) as in the case of
the SB1 phase without the next-nearest-neighbor interaction,
while the other is that the system is in a glassy state below
some temperature. The fact that larger systems (up to L = 60)
were necessary to assure the consistency of the simulation re-
sults might be a symptom of the latter possibility.

4. Discussion
4.1 Summary and implication of simulation results

In this study, Monte Carlo simulations were performed on
extended Maier–Saupe models [Eqs. (2) and (3)] on a simple
cubic lattice in order to see the effects of the local preference
for the nonparallel (twisted) alignment of neighboring head-
less spins while retaining their axial symmetry. The simula-
tions revealed the presence of two types of instabilities (ten-
dency to a respective order) depending on the degree of the
preference if only the nearest neighbor interaction is taken
into account. The weak next-nearest-neighbor interaction in-
duces other instabilities with different spatial orders depend-
ing on its sign.

The tendency to the uniaxial (nematic) order brings about
a first-order phase transition while a continuous transition re-
sults from that to the alternate order, which appears to resolve
the frustration in the local twists. Two instabilities behave al-
most independently. The phase sequence on cooling is thus
either disordered→ uniaxial→ uniaxial and alternate (SB) or
disordered→ alternate→ SB. It may be sufficiently interest-
ing by itself that a simple interaction between nearest neigh-
bors can bring about two successive phase transitions upon
temperature variation.

The nature of the transition between the disordered and uni-
axial (nematic) phases is protected by the symmetry property
of the primary order parameter,4) i.e., the nematic order pa-
rameter. As long as the perfect order is preferred in the inter-
action (r ≤ rc and vNNN = 0), the magnitude of the order pa-
rameter in the ground state is trivially unity while its temper-
ature dependence is not universal but dependent on the shape
of the interaction. Even those convex downward are possible.

Once a hump at the parallel alignment emerges in the in-
teraction, the local arrangement between neighbors becomes
a twisted one at a sufficiently low temperature (depending on
the potential). A crossover between the locally twisted and

parallel alignments occurs upon temperature variation, but it
does not necessarily accompany a phase transition.

The ground state with the uniaxial and alternate order (SB
phase) without the next-nearest-neighbor interaction is of the
rock salt structure consisting of two kinds of sites (ordered
and disordered). At T = 0, spins on the ordered sites exhibit
a perfect uniaxial order while those on the disordered sites
are uniformly distributed around the uniaxial axis defined by
the former with the tilt angle determined by the interaction
preferring the local twist. This order has the macroscopic de-
generacy. It is noteworthy that this ground state configuration
is possible as long as the lattice structure is bipartite, i.e., con-
tains only even-membered loops of interaction paths. Thus,
this type of alternate arrangement is expected to be always
the ground state irrespective of lattice structures fulfilling the
bipartite property. Studies on non-bipartite lattices such as a
triangular lattice in the two-dimension are interesting and will
be explored in the future.

The weak next-nearest-neighbor interaction affects almost
linearly the temperatures of the upper two phase transitions.
The effect can be rationalized by considering its effect on the
stability of the uniaxial (nematic) phase. The next-nearest-
neighbor interaction, irrespective of its sign, induces another
phase transition from the SB phase to a phase showing a lo-
cal chiral order retaining the macroscopic achirality. It implies
that the presence of only a nearest neighbor interaction is in-
sufficient to induce a chiral order even if locally. The local
chiral order induced by the next-nearest-neighbor interaction
forms a weak spatial order if the next-nearest-neighbor inter-
action does not favor the nematic order (vNNN < 0). The re-
sultant spatial periodicity seems commensurate with the un-
derlying periodicity of the lattice. Considering helical orders
in magnetism where the relative magnitude of interactions be-
tween nearest and next-nearest-neighbors governs the period-
icity of helical order,15) studies varying vNNN are interesting.
The local chiral order does not hold the net chirality but con-
tains two types of linear domains (chains) of opposing local
chiralities with equal amounts. This suggests that the pref-
erence for the twisted arrangement is insufficient to stabilize
any chiral phase. It is however noteworthy concerning issues
of the chirality and its spatial order that we cannot rule out the
possibility that a higher degree of some chiral order is sup-
pressed in the present simulations owing to the finite size ef-
fects suffered from the periodic boundary condition imposed.

4.2 Implication on real liquid crystalline systems
A computational work performed in this study has revealed

the effects of the preference for locally twisted arrangements
and phase diagrams with/without the next-nearest-neighbor
interaction on lattice models. Here, putting these results in
mind, we make comments on real systems where no lattice
exists inherently.

Recently, an increasing number of exotic phases has been
reported for compounds, which are seemingly rodlike in a
broad sense. A gyroid phase is a representative example of
such phases.16) The present authors17) have experimentally
revealed for a mesogenic series of compounds that, on av-
erage, the orientations of neighboring molecules are continu-
ously twisted along bars of two interwoven jungle gyms with
opposing handedness, as shown in Fig. 13. Other examples
of exotic phases include another cubic phase with chirality
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Fig. 13. (Color online) Unit cell of the gyroid phase, based on the X-ray re-
sult.17) Two jungle gyms are embedded in two subspaces separated by the gy-
roid surface, a triply periodic minimal surface. Molecules are arranged along
rods of jungle gyms with continuous twists with opposing senses. The “ex-
pected” molecular arrangement is drawn between two neighboring junctions
in a subspace.

and chiral liquid.7–10, 18) Many researchers in the materials de-
velopment field have intuitively suggested a possible cause
of the formation of such phases: An antispindle shape (see
Fig. 14) originating from the thermal excitation of conforma-
tional disorder of terminal alkyl chain(s) attached to meso-
genic molecules causes severe packing frustration.19) In this
context, the change in the interaction function expressed by
Eq. (2) can intuitively be correlated to that in the molecular
shape as in Fig. 14. That is, the antispindle molecular shape is
correlated with r > rc.

The effect of the preference for twisted arrangement is, at
least in low temperatures, not negligible even if it is weak. It
is consequently better to imagine always twisted alignment
for close neighbors. Then, we must accept the emergence
of an additional degree of freedom, i.e., the sense (handed-
ness) of twist. At this point, we can point out the similarity
between the supposed situation and the model of an ensem-
ble of entities in a single-particle potential that is symmetri-
cal with double wells. If the degree of the antispindle shape
becomes large, the free choice of the twist sense is prohib-
ited by the next-nearest-neighbor interaction. That is, the in-
teraction works between particles. Such systems consisting
of interacting particles are known to undergo a phase transi-
tion to a symmetry-broken state on cooling.20, 21) Indeed, we
have found, in the lattice models, the alternate order to reduce
the frustration originating in the local twists. We thus sug-
gest that ensembles of molecules with an antispindle shape
with some sufficient degree will exhibit a phase sequence, on
cooling, such as isotropic liquid (IL)→ nematic liquid crystal
→ symmetry-broken phase concerning the twist, even if they
have no lattice structure inside.

The simulations indicated that no spatial order concerning
the local chirality occurs without the next-nearest-neighbor
interaction, whereas a spatially linear segregation of the lo-
cal chirality may be induced with it. It is thus interesting to
remember the gyroid phase (Fig. 13). The gyroid phase is
the bicontinuous cubic phase most widely observed16) in soft
matter ranging from polymers with a cell constant in microm-
eter scale22) to thermotropic and lyotropic liquid crystals with
that in nanometer scale.23, 24) The two subspaces divided by

c

r
r

Fig. 14. (Color online) Image of the geometrical change (from spindle to
antispindle via cylinder) for a nonpolar molecule with the axial symmetry. rc
[= 9

79 for the potential expressed by Eq. (2)] is a threshold for twist.

the gyroid surface are physically equivalent, but have oppos-
ing handedness, as evidenced by the direct observation under
electron microscopy.25) The molecular arrangement in the gy-
roid phase exhibited by a series of thermotropic mesogens has
recently been revealed to be continuously twisted through-
out the space, as schematically shown in Fig. 13.17) The twist
sense of the molecular arrangement on a jungle gym is oppos-
ing in two subspaces, accordingly. Because of their ubiquitous
presence, some mechanisms have been suggested to rational-
ize the formation of the gyroid phase.16, 26–31) Note that they
are mostly independent and do not interfere with one another,
leading to a possibility of their cooperation to stabilize real
gyroid phases. Thus, if we once accept such mechanisms, it is
possible to imagine a virtual lattice structure on jungle gyms.
This prompted us to discuss gyroid phases on the basis of the
present simulation results. Since the linear segregation of do-
mains with opposing local chirality with equal volumes is an
important feature of the gyroid phase, it is plausible that this
might come from the antispindle shape of molecules assum-
ing the presence of some next-nearest-neighbor interaction,
as naı̈vely and rather widely assumed.19) Since constituting
molecules are seemingly achiral in real systems, it is prefer-
able for molecules to have the same volume for opposing
twists. This is guaranteed in the gyroid phase. The equal pref-
erence for the two handedness of twisted molecular arrange-
ment is therefore identified as another microscopic origin of
the superior stability of the gyroid phase, in addition to the
factors previously identified by existing treatments.16, 26–31) It
is noteworthy that the achiral space group P21/c, which is the
most efficient for dense packing32) and observed most often
for usual crystals of achiral molecules,33) shares, with the gy-
roid case, the local chiral arrangement with equal frequencies
for opposing handedness.

According to the simulation results, a phase exhibiting net
chirality is not formed although the nanosegregation of lo-
cal chirality may be induced. This suggests that the chirality
of a molecule itself is necessary for such phases. Recently,
the chiral “Im3m phase” and optically active isotropic liquid,
both made of seemingly and dynamically achiral molecules,
were reported.7–10, 18) On the basis of the present results, we
suggest that the flexibility of molecules (twisting degrees of
freedom around single bonds) and a resulting adaptive chiral-
ity responding to the environment play an important role in
the formation of such chiral phases, as naı̈vely assumed with-
out reasoning by the authors of previous reports.7–9)
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5. Conclusions
The effect of the preference for nonparallel alignments of

neighboring headless spins is examined by naı̈vely extending
the Maier–Saupe model on a simple cubic lattice. In addition
to the disordered and uniaxial (nematic) phases covered by
the Maier–Saupe theory, the appearance of symmetry-broken
phases concerning the local twist is suggested if only a nearest
neighbor interaction is taken into account. Weak next-nearest-
neighbor interaction induces other instabilities but with a dif-
ferent spatial order depending on its sign. In particular, a pos-
sible segregation of the local chirality is demonstrated.

A discussion on real liquid crystalline systems assuming
the mapping of interaction potential on molecular shape leads
to the finding that the twisted local arrangement and the
equality of the volume of two handedness arising from the
achirality of constituting molecules just fit the gyroid phase,
which is the most often observed among cubic liquid crys-
tals. Although the geometrical frustration due to the antispin-
dle shape of molecules has intuitively been suggested to be a
cause for the formation of cubic liquid crystals, the present
results provide a strong support for the idea. Furthermore,
this finding also provides a microscopic cause for the abun-
dance of the gyroid phase in nature. It is also suggested that
the molecular flexibility enabling the adaptive chirality plays
an important role in the formation of phases with net chirality.
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Appendix
The preference for twisted alignment (θ = π2 ) of interacting

spins can be treated within the (mean-field) Maier–Saupe the-
ory by assuming V0 < 0 in potential function with the form of
Eq. (1). This is briefly described together with the mean field
treatment for the case of r = 1.

The Maier–Saupe theory assumes that the interaction be-
tween neighboring spins is proportional to Pl(cos θi, j). The
addition theorem for spherical harmonics Ylm(θ, ϕ),

Pl(cos θi, j) =
4π

2l + 1

l∑
m=−l

Ylm(θi, ϕi)Y∗lm(θ j, ϕ j),

enables us to put

Pl(cos θi, j) = Pl(cos θi)Pl(cos θ j)

as far as the discussion is limited to axially symmetric systems
consisting of (axially symmetric) spins (after averaging over
ϕ). Since the interaction is approximated by a bilinear product
of functions of a variable assigned to a single spin, we request

VMF(θ) = σz0V(θ)

using an order parameter σ with z0 being the number of inter-
acting molecules as usual. Now, the intermolecular potential
is modified as

V(θ)
V0
= aPl(cos θ)

using an adjustable parameter a. Since VMF(θ) = z0V(θ)
should hold at T = 0, σ is to converge to unity with T → 0.

The order parameter σ is defined as

σ = sgn(V0)

∫ π
0 aPl(cos θ) exp[−βVMF(θ)] sin θdθ∫ π

0 exp[−βVMF(θ)] sin θdθ
. (A·1)

Note that this definition always yields positive σ. According
to this definition, σ = sgn(V0)aPl(cos θmin) at T = 0 with θmin
that minimizes V(θ). Thus, it is necessary to put

a = sgn(V0)
1

Pl(cos θmin)
.

Since θmin differs depending on the sign of V0, a should be
chosen depending on the sign of V0. Setting with l = 2,
V0 > 0, and a = 1 corresponds to the original Maier–Saupe
theory.1)

For the antinematic order with the negative nematic order
parameter with l = 2 (θmin =

π
2 ), a = 2 is necessary. The

numerical solution of Eq. (A·1) yields a single phase transi-
tion around T ≈ 0.80z0V0 between the disordered (isotropic)
phase and the uniaxial (nematic) phase with a negative ne-
matic order parameter ⟨P2(cos θ)⟩ = −σ2 < 0. The transition
temperature normalized by aV0 is nearly twice as high as that
in the case of V0 > 0 (TNI ≈ 0.22z0V0 ). Since the orienta-
tional freedom with θ = π2 does not accompany any energetic
cost, the heat capacity at T = 0 is 1

2 , in contrast to 1 in the
case of positive V0.

Similarly, in the case of r = 1 [Eq. (2)], a = 7
3 is necessary.

The numerical solution of Eq. (A·1) in this case yields a single
phase transition around T ≈ 0.60z0V0.

Note that both estimates for θmin , 0 (V0 < 0 and l = 2,
and r = 1) are much higher than the transition tempera-
tures obtained in the simulation, although the estimate of the
transition temperature is fairly good for r = 0 [TNI (= Tdu)
≈ 0.22z0V0 with z0 = 6].
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