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The energetics and electronic structures of large fullerenes included within

[n]cycloparaphenylenes ([n]CPPs) are investigated using density functional theory. We

observe that the large fullerenes included within the [n]CPP ([n]CPP⊃Cn, where n =76 and

78) are energetically stable and the inclusion reactions are exothermic for the [n]CPP with

a diameter of 1.49 nm or larger. Owing to quantum confinement of the electronic states of

the guest fullerene molecules by the host [n]CPP, [n]CPP⊃C60 possess a staggered electronic

structure near the energy gap between the highest occupied and the lowest unoccupied states,

leading to a narrower energy gap than that of fullerenes and CPP. We also demonstrate that

the electron states associated with the fullerene exhibit an upward shift upon inclusion owing

to the quantum confinement effect on the π states of fullerenes by the CPP.

1. Introduction

The electronic structures of nanoscale carbon materials depend on their size, local net-

work geometry, dimensionality, and boundary condition. Nanocarbon materials consisting of

only hexagonal rings exhibit a symmetric electronic structure in their π electron states with re-

spect to the Fermi level. Hydrocarbon molecules intrinsically possess a moderate energy gap

between the highest occupied and the lowest unoccupied states, which basically decreases and

asymptotically approaches zero with a larger π electron network.1–3) Graphene is the infinite

version of an sp2 nanocarbon material, so it is a zero gap semiconductor with pairs of linear

dispersion bands at the Fermi level.4–6) By imposing boundary conditions on the hexagonal

covalent networks of C atoms, sp2 C atoms can form versatile nanoscale network materi-

als, leading to the sponge,7–11) tubular,12–15) and hollow cage16–22) structures. These nanoscale

network materials exhibit interesting variations in their electronic structures near the Fermi
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level. A tubular form of sp2 C atoms, carbon nanotubes, can exhibit electronic structures

ranging from a semiconductor to metal depending on their chirality and diameter.13–15) The

electronic structures of fullerenes are sensitive to their cage size and network topology,18–22)

although their π electron states can be characterized by a spherical harmonica owing to their

approximately spherical distributions of electrons on the cages.21)

Condensed phases consisting of these nanocarbon materials are also fascinating materi-

als that exhibit further variations in their physical properties which are differet from a sim-

ple extrapolation of the sum of each constituent. Fullerenes form close packed structures in

their condensed phases, where the molecules are weakly or tightly bound to each other de-

pending on the synthesis conditions.23–26) Solid C60 can either be semiconductors or metals

depending on the mutual molecular arrangements and intermolecular binding forms. Carbon

nanotubes also form condensed phases, where the structures are characterized by a bundle of

nanotubes owing to their tubular structure.27–29) In the condensed phases, the bundles possess

a tiny energy band gap owing to the weak intertube interactions, even though the bundles

solely consist of metallic nanotubes. In addition to the homogeneous condensed phases of

these nanocarbon materials, they can construct heterogeneous condensed structures by as-

sembling appropriate constituent units, leading to hierarchical condensed phases with mixed

dimensionality. Fullerenes can be encapsulated in the inner spacing of nanotubes, resulting

in nanoscale peapods that exhibit unusual electronic structures.30–34)

Recently, interesting molecular complexes have been synthesized by mixing cyclohydro-

carbon molecules and fullerenes. C60 is included in the inner spacings of cycloparaphenylene

(CPP) and cyclochrysenylene as molecular inclusion complexes with a Saturn-like shape.35, 36)

In addition to C60, C70 also forms similar complexes with CPP.37) These facts imply that a fur-

ther structural variation of such inclusion complexes is expected by choosing an appropriate

combination of fullerene and cyclohydrocarbon molecules. The electronic structure variation

of these constituent nanocarbon molecules makes the complexes exhibit unique electronic

structures. Thus, in this paper, we aim to investigate the energetics and electronic structures

of the inclusion complexes of large fullerenes, C76
38) and C78,39, 40) and [n]CPP, exhibiting un-

usual electronic structures, using density functional theory. Our calculations showed that the

electronic structure of the inclusion complexes depends not only on the constituents but also

on their mutual arrangements. We also found that the stability of the complexes is insensitive

to the molecular species but is rather determined by the spacing between fullerene and CPP.
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Fig. 1. Top and side views of optimized structures of (a) [11]CPP⊃C76(D2) and (b) [11]CPP⊃C78(C′2v). The

dark gray, light gray, and white circles denote C atoms belonging to fullerenes, C atoms belonging to [11]CPP,

and H atoms, respectively.
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2. Calculation methods and structural model

All geometric and electronic structures of the inclusion complexes consisting of large

fullerenes and CPP were conducted using density functional theory41, 42) implemented in the

STATE program package.43) For describing the exchange-correlation potential among the in-

teracting electrons, we used the local density approximation,44, 45) which allowed us to under-

take a qualitative discussion on the geometries and the energetics of the molecular complexes

bound through weak inter unit interactions. We used ultrasoft pseudopotentials generated by

the Vanderbilt scheme to describe the interaction between the valence electron and atomic ion

containing nuclei and core electrons.46) The valence wave function and deficit charge density

were expanded by the plane wave basis set with cutoff energies of 25 and 225 Ry, respec-

tively. To investigate the energetics and electronic structure of an isolated inclusion complex,

we adopted the super cell of a large cubic cell with a length parameter of 41.57Å. Brillouin-

zone integration was performed with the Γ point sampling. The atomic structure was fully

optimized until the force acting on each atom was less than 5 mRy/Å. In this work, we fo-

cussed on two large fullerenes, C76(D2d) and C78(C′2v), as the guest molecules for the [n]CPP.

These two fullerenes have been experimentally synthesized and extracted from soot. To in-

vestigate the effects of the interunit spacing on the electronic and geometric structures of the

inclusion complexes, we considered [10]CPP, [11]CPP, and [12]CPP as the host molecule,

which consist of 10, 11, and 12 phenyl groups, respectively. These CPP have a staggered ar-

rangement of phenyl groups as their stable conformations. In all complexes, fullerenes were

located at the center of CPP. For estimating the inclusion energy of fullerenes in [11]CPP, we

assume the reaction coordinate along the molecular axis of [11]CPP, which is normal to the

CPP ring. During the calculation along the reaction coordinate, internal atomic coordinates

are fixed, because the force acting on each atom is smaller than the force cutoff. The forma-

tion energy ∆E is also evaluated by ∆E=Ecomp-Efull-ECPP where Ecomp, Efull, and ECPP are the

total energies of inclusion complex, isolated fullerene, and [11]CPP, respectively.

3. Result and discussion

Figure 2 is the inclusion energy of fullerenes in CPP as a function of the diameter of CPP.

The inclusion energy was evaluated by the reaction: fullerene + [n]CPP→ [n]CPP⊃Cn+∆E.

The inclusion energy was sensitive to the diameter of CPP but insensitive to the encapsulated

fullerene species, because of the similar diameters of C76 and C78. The calculated inclusion

energies were 0.32, -1.22, -0.78, 0.19, -1.22, and -0.74 eV for [10]CPP⊃C76, [11]CPP⊃C76,

[12]CPP⊃C76, [10]CPP⊃C78, [11]CPP⊃C78, and [12]CPP⊃C78, respectively. For C76 and
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Fig. 2. The inclusion energy of fullerenes in [n]CPP as a function of the diameter of CPP. Crosses and trian-

gles denote the inclusion energy for C76 and C78, respectively.

C78, the inclusion reactions were exothermic for [11]CPP and [12]CPP and endothermic for

[10]CPP. The inner space of [10]CPP was insufficient to accommodate these fullerenes. Un-

der the inclusion structure, the space between the fullerenes and [10]CPP was 2.92 Å. In

contrast, for the [11]CPP, the interunit spacing was 3.14 Å, which led to the largest energy

gain upon the inclusion of fullerene.

It is worth investigating the inclusion process of fullerene in [11]CPP for providing a

theoretical insight into the reaction. Figure 3 shows the energy potential surfaces along the

molecular axis of [11]CPP for C76 and C78 fullerenes. The potential surfaces monotonically
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Table I. The calculated inclusion energy of C76 and C78 fullerenes in [n]CPP.

[n]CPP C76 C78

10 0.32 0.19

11 -1.22 -1.22

12 -0.78 -0.74

(a) (b)

Fig. 3. The potential energy surfaces along the [11]CPP axis for (a) C76 and (b) C78.

decreased with approaching the inner spacing of [11]CPP. Thus, the inclusion reactions of

C76 and C78 fullerenes in [11]CPP did not exhibit any reaction barriers, so that the inclusion

complexes of the fullerenes and [11]CPP could be spontaneously synthesized by a simple

mixing under the appropriate experimental conditions. By carefully checking the potential

surface around the energy minima, the energy potential exhibited unusual features because of

the asymmetric geometric structures of C76 and C78 fullerenes with respect to [11]CPP. The

asymmetries cause a dislodgment of the energy minima from the center of mass of [11]CPP.

The minima were dislodged from the center of [11]CPP by -0.2 and -0.6Å along the reaction

coordinate for C76 and C78 fullerenes, respectively. Note that the dislodgement was sensitive

to the molecular arrangement of included fullerenes owing to their low symmetry cages.

Thus, the various metastable molecular conformations of fullerenes in CPP are expected to
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observed depending on the experimental conditions.

Figure 4 shows the electronic energy level of the inclusion compounds of the large

fullerene and [11]CPP together with that of an isolated fullerene and [11]CPP. We also show

the squared wave functions of the highest occupied (HO) and the lowest unoccupied (LU)

states. Since C76(D2d) and C78(C′2v) fullerenes possess a deep LU state, the complexes exhibit

interesting electronic structures near the Fermi level. The HO and LU states of the inclusion

complexes exhibited staggered structures, where the HO and LU states were distributed on

CPP and fullerene, respectively. According to the staggered electronic structure near the gap,

the energy gap between HO and LU states (HO-LU gap) of the inclusion complexes was nar-

rower than that of the isolated constituent unit. For the [11]CPP⊃C76, the HO-LU gap was

0.903 eV, which is narrower than those of C76 and [11]CPP by 1.076 and 2.152 eV, respec-

tively. For the [11]CPP⊃C78, the HO-LU gap was 0.688 eV, which is narrower than those of

C78 and [11]CPP by 0.744 and 2.152 eV, respectively.

We further investigated the electronic structure modulation in terms of the inner spacing

of CPP by changing the CPP species. Figure 5 shows the energy values of the electronic states

associated with the fullerene and CPP around the HO-LU gap. The inclusion of fullerenes in

CPP caused an upward shift of the HO and LU states of fullerenes. Furthermore, by decreas-

ing the diameter of CPP, the HO and LU states monotonically shifted upward. The upward

shift strongly depended on the spacing of CPP, so that the decrease of the CPP diameter

caused a monotonic upward shift of the HO and LU states upon the inclusion. In contrast,

the electronic states associated with the CPP exhibited different characteristics to those of

the fullerenes. The LU states of [10]CPP and [11]CPP shifted downward upon inclusion of

fullerene, while the LU state of [12]CPP and HO states of all CPP were insensitive to the

inclusion.

Since the energy potential surfaces gradually decreased with approaching the center of

the CPP, the electronic structure was also expected to be modulated upon the encapsulation

process (Fig. 6). The HO and LU states of fullerene were sensitive to the fullerene position.

The energies of the HO and LU states gradually decreased with separation from the center of

CPP and asymptotically approached those of the isolated value at the fullerene position of z =

8 Å. However, the HO and LU states of [11]CPP slightly shifted downward with approaching

the center of [11]CPP. The downward shift of the states upon the inclusion was 0.1 eV. These

facts indicated that the inner space of the CPP intrinsically caused the modulation of the

electronic states of the included guest molecules, which depended on the spacing between

fullerene and CPP.
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Fig. 4. The electronic energy level of HO and LU states of (a) [11]CPP⊃C76, (b) [11]CPP⊃C78, (c) [11]CPP,

(d) C76, and (e) C78.
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C76 C78

(a) (b)

Fig. 5. The electronic energy levels associated with the HO and LU states of (a) C76 and [n]CPP in the inclu-

sion complex and (b) C78 and [n]CPP in the inclusion complex. Circles, squares, triangles, inverted triangles,

dashed line, and dotted line denote the HO of fullerenes in the complex, LU state of fullerenes in the complex,

HO state of [n]CPP in the complex, LU state of [n]CPP in the complex, the HO state of the isolated [n]CPP, and

LU state of the isolated [n]CPP, respectively. The HO and LU states of the isolated fullerenes are depicted on

the right side of each panel.

To provide theoretical insight into the microscopic mechanism of the electronic structure

modulation mentioned above, we investigated the modulation of the electrostatic potential

∆V upon fullerene inclusion into [11]CPP [Figs. 7(a) and 7(b)]. The potential modulation

was evaluated by ∆V = Vcomp − Vfull − VCPP, where Vcomp, Vfull, and VCPP are the electrostatic

potentials of inclusion complex, isolated fullerene, and [11]CPP, respectively. The electro-

static potential inside the [11]CPP exhibited an upward shift upon inclusion of the fullerene.

This upward shift of the electrostatic potential was ascribed to the confinement effect on the

electronic state of the fullerene included in [11]CPP. We also investigated charge redistribu-

tion upon the inclusion [Figs. 7(c) and 7(d)]. Upon the inclusion, the electron decreases at the

vicinity of covalent network, while it increases in the space between fullerenes and [11]CPP.

In addition to the vacuum spacing, the electron distribution also increases at the polar re-

gions of included fullerenes. Thus the results imply that the inner space of the [11]CPP was

insufficient to render the π electron distribution of C76 and C78 fullerenes.
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(a) (b)

Fig. 6. The electronic energy levels associated with the HO and LU states of (a) C76 and [11]CPP in the

form of [11]CPP⊃C76 and (b) C78 and [11]CPP in the form of [11]CPP⊃C78 as a function of the fullerene

position along the molecular axis of [11]CPP. Circles, squares, triangles, inverted triangles, short dashed line,

long dashed line, dotted-dashed line, and dotted line denote the HO of fullerenes in the complex, LU state of

fullerenes in the complex, HO state of [11]CPP in the complex, LU state of [11]CPP in the complex, the HO

state of the isolated fullerene, LU state of the isolated fullerene, the HO state of the isolated [11]CPP, and LU

state of the isolated [11]CPP, respectively.

4. Summary

We studied the energetics and electronic structures of the carbon inclusion compounds,

[n]CPP⊃C76 and [n]CPP⊃C78, where n = 10 ∼ 12, by first-principles total energy calcula-

tions based on density functional theory. Our calculations showed that the inclusion reactions

of C76 and C78 fullerenes within [n]CPP were exothermic for n ≥ 11, and were endothermic

for [10]CPP. The inclusion energy strongly depended on the diameter of the [n]CPP. The

largest inclusion energy was found to be 1.2 eV per fullerene for [11]CPP, irrespective of the

fullerene species studied here. The potential energy landscape along the inclusion reaction of

fullerene did not possess any energy barrier, indicating that the fullerene molecule was spon-

taneously included within the inner space of [11]CPP. The electronic structure near the gap of

these complexes exhibited interesting properties. The deep LU state of the fullerene molecule

caused a staggered electronic structure near the HO-LU gap of the inclusion complexes. The

10/14



J. Phys. Soc. Jpn.

HO and LU states were distributed on CPP and fullerene, respectively. We also found that the

energy level associated with the fullerene was sensitive to the inner space of CPP. The energy

levels monotonically increased with the decreasing diameter of CPP, in accordance with the

quantum confinement effect by the CPP ring.
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(a) (b)

Fig. 7. Contour plot of the electrostatic potential modulation upon the inclusion of (a) C76 and (b) C78 in

[11]CPP. Blue and yellow regions indicate the region where the potential energy decreases and increases, re-

spectively, upon the inclusion. The charge redistribution upon the inclusion of (c) C76 and (d) C78 in [11]CPP.

Blue and yellow regions indicate the region where the electrons decreases and increases, respectively, upon the

fullerene inclusion.
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