
Proton Beam Therapy for Pediatric Brain Tumor

Masashi Mizumoto,1 Yoshiko Oshiro,1,2 Tetsuya Yamamoto,3  

Hidehiro Kohzuki,3 and Hideyuki Sakurai1 

1Department of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan;  
2Department of Radiation Oncology, Tsukuba Medical Center Hospital,  

Tsukuba, Ibaraki, Japan;  
3Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract

Cancer is a major cause of childhood death, with central nervous system (CNS) neoplasms being the 
second most common pediatric malignancy, following hematological cancer. Treatment of pediatric CNS 
malignancies requires multimodal treatment using a combination of surgery, chemotherapy, and radio-
therapy, and advances in these treatments have given favorable results and longer survival. However, 
treatment-related toxicities have also occurred, particularly for radiotherapy, after which secondary can-
cer, reduced function of irradiated organs, and retarded growth are significant problems. Proton beam 
therapy (PBT) is a particle radiotherapy with excellent dose localization that permits treatment of liver 
and lung cancer by administration of a high dose to the tumor while minimizing damage to surrounding 
normal tissues. Thus, PBT has the potential advantages for pediatric cancer. In this context, we review the 
current knowledge on PBT for treatment of pediatric CNS malignancies.
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Introduction 

A total of 2,000 solid malignancies are newly diag-
nosed each year in Japan, and 800 of these tumors are 
indicated for radiotherapy1). Pediatric brain tumor is 
the most common among pediatric solid malignancies. 
Multimodal therapy is required for treatment of brain 
tumor, and radiotherapy plays an important role.2,3) 
Advances in multimodal therapy have improved the 
outcomes for pediatric brain tumor, but the long-term 
effects of radiotherapy have become significant problems. 
These effects include retardation of cognitive func-
tion, impairment of social adjustment, neuroendocrine 
disorder, growth impairment, acoustic disturbance, 
vascular disorder, and secondary cancer.4–6) 

A proton beam is categorized as low linear 
energy transfer (LET) radiation, similarly to photon 
radiotherapy, and has a similar relative biological 
effectiveness (RBE). The LET is a measure of energy 
transfer to matter from an ionizing particle travelling 
through the matter; it is closely related to energy 
per unit distance and provides an indication of ion-
induced damage. The RBE is defined as the ratio of 
the photon dose to the proton dose required to give 

the same biological effect under identical irradiation 
conditions. Proton beams used in clinical practice 
are normally considered to have an RBE of 1.1.7–9) 
That is, the biological effects of protons are similar to 
those of photons, with no apparent clinical advantage. 
Therefore, proton beam therapy (PBT) is generally 
thought to be applicable for most uses of photon 
radiotherapy. However, a proton beam has a sharp 
energy peak called the Bragg peak, which spreads out 
to cover the tumor volume (spread out of the Bragg 
Peak; SOBP). The energy before the peak is suppressed 
and the energy behind the peak is almost zero. This 
means that the dose to normal tissue around the 
tumor can be reduced in PBT compared to photon 
radiotherapy, and this is especially beneficial for a 
pediatric tumor or a tumor adjacent to normal tissue 
for which irradiation should be strictly avoided.10–13) 

Mizumoto et al. found a low rate of late toxicity 
using PBT for pediatric malignancies in studies 
performed in Japan.14,15) In a comparison of proton 
and photon radiotherapy for pediatric brain tumors, 
including low-grade glioma, ependymoma, crani-
opharyngioma, and medulloblastoma, Merchant  
et al. suggested that proton radiotherapy has consistent 
advantages in reducing the low and intermediate 
(0-40 Gy) dose areas.16) Also, a relatively small critical 
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normal organ, such as the cochlea and hypothalamus, 
can be preserved in PBT when not adjacent to the 
primary tumor volume. These advantages can result 
in preservation of intelligence, endocrine function, 
and hearing.16) Herein, we review the use of PBT for 
pediatric central nervous system (CNS)  tumors. For 
comparison with the results of standard radiotherapy, 
papers were mainly selected based on three recent 
reviews written on pediatric brain tumor.17–19) The 
outcomes of standard radiotherapy and PBT in articles 
are shown in Tables 1–5.

Glioma
Postoperative radiotherapy is essential for treat-

ment of high-grade glioma. However, the prognosis 
is very poor, despite use of combined modality 
therapies of surgery, radiotherapy, and chemotherapy. 
Macdonald et al. found a 5-year overall survival (OS) 
of only 24% in pediatric patients with high-grade 
glioma treated with photon radiotherapy of 59.4 
Gy in 33 fractions.20) 11 of 76 patients had Grade 
3 or 4 toxicities in CNS (Seizure, motor weakness, 
adventitial movement and ataxia).

In contrast, standalone surgery is curative for 
focal resectable low-grade glioma, and use of radio-
therapy for low-grade glioma is controversial. When 
complete resection is achieved, the 10-year OS of 
patients with low-grade glioma is 80-90%.21) However, 
unresectable tumors that develop in central locations 
such as the pons and optic pathways, and recurrent 
tumors requires multimodal therapy. In a phase II 
study of 78 pediatric patients with low- grade glioma 
treated with radiotherapy of 54 Gy in 30 fractions, 
Merchant et al. obtained 10-year OS and event-free 

Table 1  Treatment results of radiotherapy for pediatric glioma

Authors
(year)

Number 
of patients Follow-up Radiotherapy Additional treatment Result Late toxicity

Macdonald  
et al., 200520)

76 (HGA) -  
56 died

Photon; 
59.4 Gy,  
1.8 Gy / Fr 

Chemo before RT 
Randomly assigned 3 
protocols

5y-OS 24% 
5y-EFS 8%

11 had grade 
3 or 4 CNS 
toxicities.

Merchant  
et al., 200921)

78 (LGG) 89 months 
(28–137)

Photon;  
54.0 Gy,  
1.8 Gy / Fr

Chemo before RT (n = 25) 
Surgery (none 13, one 42, 
two 18, three 5)

5y-OS 98.5%, 
10y-OS 95.9% 
5y-EFS 87.4%, 
10y-EFS 74.3%

Vasculopathy 
4.8% (7y)

Hug et al.,
200224)

27 (LGG) 3.3 years 
(0.6–6.8)

Proton;  
55.2 GyE  
(50.4–63.0)  
1.8 GyE / Fr

25 of 27 were unresectable 
or residual disease

OS 85%  
LC 78%

Moyamoya 
disease: 1

Greenberger  
et al., 201425)

32 (LGG) 7.6 years 
(3.2–18.2)

Proton;  
52.2 GyE  
(48.6–54.0)

Chemo before RT (n = 16) 
Surgery (none 5, biopsy only 
6, one 17, two or more 4)

8y-OS 100% 
8y-PFS 82.8%

Vasculopathy: 2

Fr: fraction, HGA: high grade astrocytoma, LC: Local control, LGG: low grade glioma, 3 protocols: carboplatin/etoposide ifomide/
etoposide cyclophosmide/etoposide, y-EFS: year event free survival, y-OS: year overall survival, y-PFS: year progression free 
survival.

survival (EFS) of 95.9% and 74.3%, respectively, 
and the incidence of vasculopathy was 4.79% in a 
median follow-up period of 89 months.21) The inci-
dence of vasculopathy was higher for patients under  
5 years old. It was concluded that these results 
did not compromise disease control and that 
radiotherapy should be delayed in patients younger 
than 5 years old due to concerns of late treatment 
failure, vasculopathy, and secondary cancer. PBT 
may reduce the risk of these toxicities because 
of dosimetric advantages22,23) and normal tissue 
sparing in high dose areas can be achieved using 
proton beams. For example, in 7 patients with 
optic nerve glioma treated with PBT, Fuss et al. 
found that doses to the contralateral optic nerve, 
chiasm, pituitary, temporal lobe and frontal lobe 
were significantly reduced compared to those with 
photon radiotherapy.22) Merchant et al. have shown 
that PBT may preserve reading ability compared to 
photon radiotherapy.16)

Three retrospective studies have reported treat-
ment results using PBT for glioma. In 27 pediatric 
patients with low-grade glioma (mostly tumors that 
were unresectable or residual disease) Hug et al. 
found that PBT at a total dose of 50.4–63.0 GyE 
(median 55.2 GyE) resulted in OS of 85% and a 
local control rate of 78% in a follow-up period of 
3.3 years.24) One patient with associated neurofi-
bromatosis developed Moyamoya disease. Greenberger  
et al. showed that PBT at 48.6–54.0 GyE (median 
52.2 GyE) in 32 patients with low-grade glioma gave 
an 8-year OS of 100% and 8-year progression-free 
survival (PFS) of 82.8% over a mean follow-up 
period of 7.6 years.25) Vasculopathy occurred in  
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Table 2  Treatment results of radiotherapy for pediatric medulloblastoma/primitive neuroectodermal tumors (PNET)

Authors
(year)

Number of 
patients Follow-up Radiotherapy Additional 

treatment Result Late toxicity

Packer et al., 
200628)

379 
(Standard- 
Risk)

> 5 years Photon;  
CSI 23.4 Gy + Fossa 32.4 Gy 
1.8Gy / Fr

Chemotherapy 2 
regimens

5y-OS 86% 
5y-EFS 81%

46–51% (Grade 
3 or 4 CNS 
toxicity)

Merchant  
et al., 200829)

86 
(Standard- 
Risk)

5.1 years 
(0.4–9.6)

Photon; CSI  
23.4 Gy + Fossa 32.4 Gy  
1.8 Gy / Fr

Cyclophosphamide 
Cisplatin 
Vincristine

5y-EFS 
83.0% 5y-LC 
94.7%

-

Lannering  
et al., 201230)

340 
(Standard- 
Risk)

4.8 years 
(0.1–8.3)

Photon; CSI  
23.4 Gy + Fossa 30.6 Gy  
1.8 Gy / Fr, STRT  
CSI 36 Gy + Fossa 32 Gy  
1.0 Gy (twice per day, HFRT)

Cisplatin 
Lomustine 
Vincristine

5y-EFS 
77%(STRT), 
78%(HFRT) 
5y-OS 
87%(STRT), 
85%(HFRT) 

51 patients 
(Grade 3 or 4 
neurotoxicities)

Jimenez  
et al., 201331)

15  
(3 were 
PNET)

39 months 
(3–102)

Proton; CSI  
21.6 GyE  
Total 54 GyE, 1.8 GyE / Fr

Chemotherapy 13 of 15 
alive without 
recurrence

Grade 3 
ototoxicity; 2  
Grade 2 
endocriopathy; 3

Sethi et al., 
201432)

109 
(Standard 
74, High35)

38.8 
months 
(1.4–119.2)

Proton; CSI 23.4 GyE 
(18–36)  
Total 54 GyE, 1.8 GyE / Fr

Chemotherapy 16 
experienced 
relapse

-

Eaton et al., 
201633)

43 
(Standard- 
Risk)

6.2 years Photon;  
CSI 23.4 Gy  
Total 54–55.8 Gy

Vincristine/
cisplatin/ 
cyclophosphamide/ 
lomustine

6y-OS 87.6% 
6y-RFS 
76.5%

3 second 
malignancy

45 
(Standard-
Risk)

7.0 years Proton;  
CSI 23.4 Gy  
Total 54–55.8 Gy

Vincristine/
cisplatin/ 
cyclophosphamide/ 
lomustine

6y-OS 82.0% 
6y-RFS 
78.8%

No second 
malignancy

CSI: craniospinal irradiation, Fr: fraction, LC: Local control, 2 regimens: lomustine/cisplatin/vincristine or cyclophosphamide/
cisplatin/vincristine, y-EFS: year event free survival, y-OS: year overall survival, y-RFS: year recurrence free survival. 

2 patients (6.2%), but stabilization or improvement 
of visual acuity was achieved in 83% of patients at 
risk for radiation-induced injury to optic pathways. 
In preliminary results for PBT at a median total 
dose of 54 GyE in fractions of median 1.8 GyE in 
13 patients with low-grade glioma, Hauswald et al. 
found tumor progression in only one patient and 
no severe acute toxicity.26) These studies indicate 
that PBT has advantages for unresectable low-grade 
glioma due to avoidance of irradiation of critical 
tissues and reduced toxicities. At this time, late 
toxicity peculiar to proton beam therapy was not 
happened. And in-field vasculopathy was common 
late toxicity of PBT and photon radiotherapy.

Medulloblastoma
Medulloblastoma is a common malignant pedi-

atric brain tumor that arises in the posterior fossa. 
This tumor is characterized by its propensity for 
leptomeningeal spread. Therefore, medulloblastoma 
requires craniospinal irradiation (CSI), but this leads 
to late toxicities, including intelligence retardation, 
hormonal deficiency, short stature, and hearing 

loss.27) Therefore, in the 1990s, reduction of the CSI 
dose was encouraged, and the dose was reduced 
from 36 Gy to 23.4 Gy. The current commonly used 
dose-fractionation for medulloblastoma is CSI of 
23.4 Gy in 13 fractions followed by involved-field 
radiation therapy (posterior fossa boost) of 30.6 Gy 
in 17 fractions.28–30) Packer et al showed about half 
patients had grade 3–4 CNS late toxicities after long 
term follow-up.28) 

One prospective study and three retrospective 
studies have described treatment results using 
PBT for medulloblastoma. Jimenez et al. reported 
that 13 of 15 patients who received PBT (CSI 21.6 
GyE, total 54.0 GyE) were alive without recurrence 
after 39 months follow-up.31) 9 of 15 patients had 
measurable sensorineural hearing loss, including 2 
with grade 3 ototoxicity. And 3 patients had grade 
2 endocriopathy requiring hormone replacement.

Sethi et al. found that 93 of 109 patients who 
received PBT (CSI 23.4 GyE, total 54.0 GyE) were 
alive without recurrence after 38.8 months follow-
up.32) Both studies used a similar irradiated dose to 
that used in photon radiotherapy, and the outcomes 
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Table 4  Treatment results of radiotherapy for pediatric intracranial germinoma

Authors (year) Number 
of patients Follow-up Radiotherapy Additional 

treatment Result Late toxicity

Bamberg  
et al., 199974)

60 118 
months 
(30–180)

Photon; 
CSI 36 Gy + Focal 14 Gy  
(2 Gy / Fr)  
CSI 30 Gy + Focal 15 Gy 
(1.5 Gy / Fr)

RT alone 5y-OS 93.7% 
5y-EFS 
87.6%

23 patients 
had endocrine 
abnormality 
requiring 
hormone 
replacement.

Calaminus  
et al., 201370)

190 6 years 
(2.7–14)

Photon; 
CSI 24 Gy + Focal 16Gy 
(1.6 Gy / Fr)

RT alone 5y-OS 95% 
5y-PFS 97%

-

Photon; 
Focal 40 Gy (1.6 Gy / Fr)

ICE 5y-OS 96% 
5y-PFS 88%

-

Macdonald  
et al., 201177)

22 28 
months 
(30–180)

Proton; 
Total dose 30.6–57.6 GyE 
CSI/WVRT 19.5–35 GyE 
Focal 50.4 (n = 1) 
WVRT + Focal (n = 8) 
CSI + Focal (n = 13)

ICE for NGGCT (9/9) 
Platinum based 
chemo for GCT 
(11/13)

OS 100% 
PFS 95%

-

CSI: craniospinal irradiation, Fr: fraction, ICE: ifosfamide + carboplatin + etoposide, NGGCT: nongerminomatous germ cell 
tumor, y-EFS: year event free survival, y-OS: year overall survival, y-PFS: year progression free survival.

Table 3  Treatment results of radiotherapy for pediatric ependymoma

Authors 
(year)

Number of 
patients Follow-up Radiotherapy Additional 

treatment Result Late toxicity

Massimino  
et al., 200458)

63  
Grade 2; 43 
Grade 3; 20

5 years 
(1.5–9)

Photon; Hyperfractionated 
70.4 Gy, 1.1 Gy / Fr  
(Twice daily)  
54 Gy, 2 Gy / Fr  
(10 patients)

VEC for 
ED

5y-OS 82% (NED) 5y-PFS 
65% (NED) 5y-OS 61% (ED) 
5y-PFS (ED)

-

Merchant  
et al., 200959)

153 
Anaplastic; 
85

5.3 years 
(0.4–10.4)

Photon;  
59.4 Gy, 1.8 Gy / Fr  
54.0 Gy, 1.8 Gy / Fr  
(age < 18 months, with 
gross total resection)

Prior 
chemo  
(n = 32)

7y-OS 81.0%, 7y-PFS 
69.1%, 7y-LC 83.7% (All) 
7y-OS 71.8%, 7y-PFS 61.3% 
(anaplastic) 
7y-OS 89.4%, 7y-PFS 79.2% 
(differentiated) 
Brain stem necrosis 2.5%

4.07% (7y 
secondary 
malignancy 
rate) 2.5% 
(Brain stem 
necrosis)

Ares et al., 
201661)

50  
Anaplastic; 
46

3.6 years 
(0.7–9.5)

Proton;  
59.4 GyE,  
1.8–2.0 GyE / Fr (54–60)

Prior 
chemo  
(n = 43)

5y-OS 84%, 5y-LC 78% (All) 6% (> Grade 
3) Brain stem 
necrosis: 1 
Unilateral 
deafness: 2

Macdonald 
et al., 
201362,63)

70  
Anaplastic; 
33

3.8 years 
(1–11.7)

Proton;  
55.8 GyE,  
1.8 GyE / Fr (50.4–60.0)

Prior 
chemo  
(n = 21)

3y-OS 95%, 3y-PFS 76%, 3y-
LC 83% (All) 
3y-OS 97%, 3y-PFS 88% 
(GTR) 
3y-OS 90%, 3y-PFS 54% 
(STR)

2 patients 
need growth 
hormone 
replacement. 
No brain 
stem necrosis

ED: evidence of residual disease, Fr: fraction, NED: no evidence of residual disease, y-LC: year local control, y-OS: year overall 
survival, y-PFS: year progression free Survival, VEC: vincristine + etoposide + cyclophosphamide.

were good, although the follow-up period was still 
short. In a recent comparison of photon radiotherapy 
to PBT at a median dose of 23.4 Gy CSI followed 
by boost to a cumulative dose of 54.0 to 55.8 Gy, 
Eaton et al. found no significant difference in 6-year 
recurrence-free survival (RFS) (PBT 78.8% vs. photon 
76.5%) and 6-year OS (82.0% vs. 87.6%).33) 3 patients 

treated with photon radiation therapy developed a 
second malignancy, and no patients treated with 
protons developed a second malignancy.

The treatment volume of CSI is large and the risk 
of late toxicity and secondary cancer is higher than 
for other irradiation fields. Intracranial toxicities are 
a significant problem in whole brain irradiation and 
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posterior fossa boost, with intelligence retardation, 
hormonal deficiency and ototoxicity being common after 
irradiation for medulloblastoma. Walter et al. found 
that full scale intelligence quotient (FSIQ) declines 
by 3.7 points per year with a CSI dose of 36 Gy,34) 
and Ris et al. reported an intelligence quotient (IQ) 
loss of 4.2 points per year with a CSI dose of 23.4 
Gy,35) indicating that there may be no difference in the 
effects of CSI doses of 36 Gy and 23.4 Gy. However, 
using PBT, doses to critical intracranial structures 
such as the cochlea, temporal lobe, hippocampus, 
and hypothalamic-pituitary axis can be reduced, 
which preserves the function of these structures and 
maintains intelligence more effectively than photon 
radiotherapy.31,36–39) In a prospective phase II study of 
PBT in 59 patients with medulloblastoma, Yock et al. 
reported a hearing loss rate of 16% at 5 years, and an 
IQ loss of 1.5 points per year driven mostly by falls 
in processing speed and verbal comprehension.37) In a 
comparison of clinical outcomes of medulloblastoma 
between PBT and photon radiotherapy with a CSI dose 
of 23.4 Gy and a boost of 30.6 Gy, Eaton et al. found no 
significant difference in  RFS or OS between patients 
treated with protons vs. photons (6-year RFS: 78.8% 
vs. 76.5%, P = 0.948; 6-year OS 82.0% vs. 87.6%, P = 
0.285).33) The same group compared endocrine outcomes 

in 77 patients with medulloblastoma treated with 
chemotherapy and PBT (n = 40) or photon radiotherapy  
(n = 37), and found that PBT reduced the requirement 
for endocrine replacement therapy (55% vs. 78%, P =  
0.03).36) Moeller et al. found a 1-year high-grade ototox-
icity rate of 5% after PBT,40) and in 111 patients with 
medulloblastoma treated with PBT of ≥50 GyE, Giant-
soudi et al. found 5-year incidences of CNS injury of 
3.6% for any grade and 2.7% for grade 3 or more.41) In 
this study, 4 patients experienced symptomatic injury, 
but 3 of 4 received a whole posterior fossa boost. The 
risk of late injury in this study was similar to that 
reported for photon radiotherapy. Min et al evaluated 
the risk of alopecia after PBT for medulloblasoma.42) 
The skin dose was higher by proton beams compared 
to photon beams, because proton beams do not have 
a build-up effect. The threshold for alopecia treated 
with CSI was 21 GyE.42) Cochran et al. reported that 
the dose to the lens can be reduced using PBT for 
CSI, especially for patients under 10 years old.43)

There are many dose-volume histogram (DVH) 
analyses that indicate that PBT can reduce the risk 
of late toxicity and secondary cancer (Table 6).44–48) 
According to Zhang et al., the calculated total lifetime 
attributable risk for second cancer after PBT is much 
lower than that after photon radiotherapy, with a 

Table 5  Treatment results of radiotherapy for pediatric craniopharyngioma

Authors 
(year)

Number of 
patients Follow-up Radiotherapy Additional 

treatment Result Late toxicity

Merchant  
et al., 200679)

28 36.6 months 
(24.4–80.0)

Photon;  
54.0–55.8 Gy, 
1.8 Gy / Fr

Surgery (n = 27) 3y-PFS 90.3% -

Minniti  
et al., 200778)

39 40 months 
(3–88)

Photon;  
50 Gy / 30Fr,  
50 Gy / 33Fr,  
55 Gy / 33Fr

Surgery: 
Complete 2, 
Incomplete 34, 
Biopsy 3

3y-OS 100%,  
5y-OS 100% 
3y-PFS 97%, 
5y-PFS 92%

No second tumors

Klimo et al., 
201580)

97 9 years 
(0.7–19.0)

Photon;  
54 Gy / 30Fr

Surgery 5y-OS 98.9%, 
10y-OS 94.5% 
5y-PFS 94.1%, 
10y-PFS 87.8%

Vasculopathy: 1

Luu et al., 
200681)

16 60.2 months Proton;  
50.4–59.4 GyE,  
1.8 GyE / Fr

Surgery (all) RT 
(n = 1)

Local control 
14/15

Panhypopituitarism: 1  
Vascular accident: 1

Winkfield  
et al., 200982)

24 40.5 months 
(6–78)

Proton;  
52.2–54.0 GyE,  
1.8 GyE / Fr

Surgery (all) 4 
were biopsy

No local failure -

Bishop  
et al., 201483)

31 106 months IMRT;  
50.4–54.0 GyE,  
1.8 GyE / Fr

Surgery: Gross 
total (n = 1) 
Subtotal (n = 11), 
Other (n = 19)

3y-OS 96.8% 
3y-NFFS 96.4%

Hypothalamic 
obesity: 9

21 33 months Proton;  
50.4–54.0 GyE,  
1.8 GyE / Fr

Surgery: Gross 
total (n = 5) 
Subtotal (n = 9), 
Other (n = 7)

3y-OS 94.1% 
3y-NFFS 91.7%

Hypothalamic 
obesity: 4

Fr: fraction, y-NFFS: year nodular failure free survival, y-OS: year overall survival, y-PFS: year progression free survival. 
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Table 6  Dosimetric comparison and late toxicity of proton beam therapy

Authors (year) Patients Assessment strategy Result
Harrabi  
et al.,201623)

74 (LGG) 3D-CRT vs. PBT  
(RO; Optic nerve, Inner ear, Optic chiasm, 
Thalamus, Brain, Brain stem, etc)

PBT reduced the dose to risk organs (DVH 
analysis)

Merchant  
et al., 200816)

40 (OPG/CR/
MB /EP = 
10/10/10/10)

Photon vs. PBT  
(RO; Brain, Hypothalamus, Cochlea)

PBT reduced the dose to risk organs not 
adjacent to tumor. Functional preservation 
was expected (DVH analysis).

Brodin et al., 
201192)

10 (MB) 3D-CRT vs. IMPT  
Evaluate second cancer risk

IMPT plans compared favorably to photon 
radiotherapy (DVH analysis)

Zhang et al., 
201444)

17 (MB) Photon vs. Proton  
Evaluate risk of second cancer and 
cardiac mortality

PBT significantly reduced the risk of second 
cancer and cardiac mortality (DVH analysis)

Cochran  
et al., 200843)

39 (MB) Photon vs. Proton  
Evaluate dose to the lens

PBT significantly reduced the dose to the lens 
(DVH analysis)

Brodin et al., 
201438)

17 (MB) 3D-CRT vs. IMRT vs. Proton Evaluate the 
dose of Hippocampus

PBT significantly reduced the dose to the 
hippocampus (DVH analysis)

Howell  
et al., 201245)

18 (MB) Photon vs. Proton 
(RO; Liver, Heart, Lung, Thyroid, Kidney, 
Esophagus)

PBT reduced the dose to risk organs (DVH 
analysis)

Kuhlthan 
et al., 201293)

142 (MB/PNET 
50, EP 31, LGG 
20, other 41)

Evaluate health-related quality of life 
(HRQoL) after PBT

CSI and chemotherapy were negatively 
correlated with HRQoL Comparison was not 
performed between photon and proton

Yock et al., 
201637)

59 (MB) Evaluate late toxicity after PBT (CSI 23.4 
GyE, boost dose 54.0 GyE)

3-year incidence of Grade 3-4 hearing 
loss was 12% 5-year incidence rate of any 
neuroendocrine deficit was 55% Comparison 
was not performed between photon and proton

Pulsifer  
et al., 201539)

60 (28 CSI, 32 
partial brain)

Evaluate full scale IQ, verbal 
comprehension, perceptual reasoning, 
working memory

Comparison was not performed between 
photon and proton

Eaton et al., 
201636)

77 (MB) Proton vs. Photon  
Evaluate endocrine outcome

proton vs photon; hypothyroidism 23% vs 
69%, Sex hormone deficiency 3% vs 19%, any 
endocrine replacement therapy 55% vs 78%. 
PBT may reduce the risk of some endocrine 
abnormalities.

Moeller et al., 
201140)

23 (MB) Evaluate early ototoxicity after PBT 1-year grade 3 or 4 ototoxicity rate was 5% 
Comparison was not performed between 
photon and proton

Giantsoudi  
et al., 201541)

111 (MB) Evaluate incidence of CNS injury after 
PBT

5-year incidence of grade 3 or more CNS 
injury was 2.7% Comparison was not 
performed between photon and proton

Min et al.,
201442)

12 (MB) Evaluate alopecia after PBT Permanent alopecia was associated with dose 
to the skin.

Indelicato  
et al., 201491)

313 (EP 73, CR 
68, LGG 66, 
MB 38, Other 
68)

Evaluate pediatric brain stem toxicity 
after PBT  
(received 50.4 GyE or more to the brain 
stem)

2-year incident of grade 3 or more brain 
stem toxicity was 2.1% Comparison was not 
performed between photon and proton

Park et al., 
201576)

17 (GCT) Proton vs. IMRT  
(RO; brain, hippocampus, pituitary gland)

PBT significantly reduced the dose to risk 
organs except for the pituitary gland. (DVH 
analysis)

Beltran et al., 
201284)

14 (CR) Proton vs. IMRT  
(RO; brain, cochlea, chiasm, hippocampus, 
optic nerve, brain stem, body)

PBT significantly reduced the dose to brain 
and body (DVH analysis)

Boehling  
et al., 201285)

10 (CR) IMPT vs. IMRT  
(RO; Hippocampus, carotid, brain stem, 
brain)

PBT reduced the dose to a variety of risk 
organs (DVH analysis)

CR: craniopharyngioma, CSI: craniospinal irradiation, DVH analysis: non-clinical data: only in theory, EP: ependymoma, GCT: 
germ cell tumor, IMPT: intensity-modulated proton therapy, LGG: low grade glioma, MB: medulloblastoma, OPG: optic pathway 
glioma, RO: risk organ.
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lifetime risk ratio of 0.18.48) There is a large benefit 
of PBT, especially for CSI, and the question can be 
asked: “Are protons the only ethical approach?”.49) 
In this article, their answer was “Yes”.49) based 
on there being sufficient evidence to support the 
argument that all children with medulloblastoma 
should be offered PBT.

Historically, small round blue cell tumors of the 
cerebellum have been grouped under medulloblas-
toma. However, medulloblastoma is now considered 
to be a single entity with four molecular subgroups 
(wingles (WNT), sonic hedgehog (SHH), group 
3, group 4) with distinct demographics, clinical 
features and genetics.50–56) Future treatment strategies 
may be customized according to these subgroups. 
However, considering the long life span after the 
treatment for pediatric patients, there is a need to 
minimize the dose to ensure healthy growth and to 
preserve normal tissue to maintain cognitive func-
tion and endocrine function, and reduce radiation 
therapy-related truncal organ dysfunction. PBT has 
robust benefits in all of these respects, even though 
the survival outcome is similar to that in photon 
radiotherapy.49,57) 

Ependymoma
Ependymoma is a tumor arising from ependymal 

cells. More than half of cases occur in children younger 
than 3 years old and are located in the posterior fossa. 
In the treatment of ependymoma, surgical resection 
is the most important factor and local control is the 
key. Radiotherapy is applied postoperatively at doses 
of 50.4–59.4 GyE, except after complete resection of 
Grade 2 supratentorial ependymoma.58–60) The treat-
ment volume in early studies included prophylactic 
CSI, but the efficacy was not been established. More 
recently, the clinical target volume (CTV) has gener-
ally been defined as the gross target volume (GTV) 
(remnant tumor or tumor bed) plus a 1.5-cm margin. 
However, Merchant et al. conducted radiotherapy for 
153 patients with ependymoma or anaplastic epend-
ymoma using a 1.0-cm margin and obtained favorable 
results of a 7-year local control rate of 88.7%, OS 
of 85.0%. All local recurrence was found within the 
95% iso-dose irradiation area, which suggested that 
reduction of the irradiation field might be possible.59) 
The incident rate of brain stem necrosis was 2.5%, 
and the incident of a secondary malignancy at  
7 years was 4.07%, respectively.

Reduction of the treatment field is currently an 
important issue under discussion in Japan.

PBT can be used as radiotherapy for ependymoma. 
Using pencil beam scanning PBT for 50 patients with 
ependymoma using 0.5- to 1-cm CTV margins to the 
GTV and a dose of 54-60 GyE (median, 59.4 GyE), 

Ares et al. obtained 5-year OS and local control rates 
of 84% and 78.0%, respectively.61) Severe toxicities 
occurred in 3 patients (6%): unilateral deafness in 2 
patients and fatal brainstem necrosis in one patient.61)

A comparison of dosimetry in intensity-modulated 
radiotherapy (IMRT) and PBT for patients with epend-
ymoma by MacDonald et al. showed several advan-
tages of PBT. Thus, the mean doses to the temporal 
lobe were 16 Gy with IMRT, but only 4 Gy with PBT 
and 2 Gy with IMPT; 5% and 50% of the pituitary 
received 16 and 12 Gy with IMRT, respectively, but <1 
cGyE with PBT and IMPT; the hypothalamus received 
mean doses of 10.7 Gy with IMRT and 0.2 GyE with 
PBT; and the mean doses to the left cochlea were 37 
Gy with IMRT, but only 2 cGyE with PBT and <0.1 
cGyE IMPT. The average dose to the cochlea should 
be kept at <32 Gy to avoid hearing loss.62) In a report 
of the clinical results of PBT for 70 patients with 
ependymoma by the same authors, gross total resection 
(GTR) was obtained for 66% of the patients, and the 
delivered dose ranged from 50.4 to 60 GyE in frac-
tions of 1.8 GyE. The 3-years PFS and OS were 76% 
and 95%, respectively. The mental development index 
(MDI)/IQ decline was not significant, with a mean 
time interval of 2.21 years. The average total MDI/
IQ was 108.5 at baseline and 111.3 at follow up (P =  
0.475). Growth hormone replacement was required 
in 2 patients.63) Merchant et al. showed that PBT for 
ependymoma reduces the dose for organs at risk, such 
as the brain, hypothalamus and cochlea.16) We also 
found a similar tendency for reduction of the dose 
to normal brain tissue with PBT compared to photon 
radiotherapy64) (Fig. 1).

Radiotherapy is also used as a treatment modality 
for recurrent ependymoma. The first choice treatment 
for intracranial recurrent is surgical resection, and 
radiotherapy is also effective, even as re-irradiation. 
Bouffet et al. reported the results of 47 patients with 
recurrent ependymoma, 29 of whom were treated 
with surgical resection and/or chemotherapy and 
18 received full dose re-irradiation of ≥54 Gy.65) The 
3-year OS rates were 7% and 81% in these respec-
tive groups. During a mean follow up period of 3.7 
years, 2 patients who underwent re-irradiation had 
endocrine dysfunction and one required special 
education support. Eaton et al. reported the results 
of PBT for re-irradiation in 20 pediatric patients with 
intracranial ependymoma.66) The patients were initially 
treated with 52.2–59.4 GyE. Fourteen of the patients 
received repeated PBT at a previously treated site for 
local failure, and most received second PBT at >50 
GyE. Grade 2 toxicities occurred in 3 patients. The 
3-year PFS was 28.1% (95% CI: 15.6–40.6%) and 
66% of the patients had distant failure, indicating 
that re-irradiation with PBT is safe and effective.
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mainly arise in the suprasellar region or pineal 
gland, and are usually localized, but sometimes 
disseminate to the CNS. The tumors are generally 
sensitive to chemotherapy and radiotherapy, and 
the method of radiotherapy is decided based on the 
histologic type, age, and metastatic extent. 

Germinoma is the most common type of GCT 
and has a favorable prognosis, with 10-year OS of 
90%.68,69) Germinoma has high sensitivity to radio-
therapy, and chemoradiotherapy plays an important 
role in treatment. However, long survival has revealed 
late treatment toxicities. Currently, standard radio-
therapy for an intratubular GCT (ICGT) is whole 
ventricular irradiation (WVI) at a dose of 24 Gy in 
12 fractions or 25.2 Gy in 14 fractions, followed 
by neoadjuvant chemotherapy.70,71) Historically, high 
dose irradiation of the cranio-spinal field or whole 
brain irradiation at 40-50 Gy had been used for 
germinoma, but radiation-related late toxicities were 
severe. Of 405 patients who survived for more than 
5 years, Acharya et al. reported 20- and 30-year 
OS rates of 84.1% and 61.9%, respectively. There 
was a 59-fold increase in risk of death from stroke, 
and the 25-year cumulative mortality rates due to 
cancer and subsequent malignancy were 16% and 
6%, respectively.72) In a long-term study of 111 
patients with ICGT and non-IGCT, Sawamura et al. 
reported that 85 received radiotherapy, and that 58 
of these 85 patients needed hormonal replacement 
therapy, 26 had a poor performance status, and only 
1 patient had fathered children.73)

Based on these results, efforts have been made 
to reduce the irradiation dose to normal brain and 
preserve brain function. Bamberg et al. reduced the 
CSI dose to 30-36 Gy, and obtained 5-year RFS of 
91%.74) As late toxicity, 23 of 60 patients had an 
evidence of at least one endocrine abnormality 
requiring hormone replacement. However, local 
irradiation with chemotherapy increases the risk 
of recurrence. In a comparison of standalone CSI 
and local irradiation with chemotherapy, Calaminus 
et al., found no significant recurrence at 5 years, 
but PFS was better for patients treated with CSI.70) 
Disease recurrence was observed in 7 of the 65 
patients who received local irradiation, and was in 
the ventricle in 6 patients of the 7 patients. This 
study suggests that the ventricles should be included 
in the radiation field for germinoma.70)

Yang et al. used dose painting IMRT to reduce 
the mean dose to the whole brain, temporal lobes, 
hippocampus, cochlea, and optic nerves, compared 
to sequential IMRT.75) PBT is also advantageous for 
WVI, based on several comparisons with photon 
beams for irradiation of intracranial germinoma. 
Park et al. showed a dosimetric benefit of PBT over 

Fig. 1  (a) 3-year-old boy had a parietal lobe tumor. 
(b) Tumor excision was performed and was diagnosed 
as an anaplastic ependymoma. Postoperative proton 
beam therapy was started 37 days after surgery.  
(c and d) A dose of 59.4 GyE in 33 fractions was initially 
administered to the tumor bed. Normal brain outside 
the blue line was completely avoided. So in theory, 
late toxicity and secondary cancer were prevented by 
PBT in the area.

A

C D

B

In a recent study by Gunther et al., imaging changes 
on magnetic resonance image (MRI) were more 
frequent in patients with intracranial ependymoma 
treated with PBT compared to those treated with 
IMRT, with 16 of 37 patients treated with PBT and 
6 of 35 patients treated with IMRT showing MRI 
changes.67) Brainstem toxicity is a major concern for 
irradiation of ependymoma located in the posterior 
fossa. Therefore, these results suggest that PBT is a 
higher risk treatment than IMRT. However, 15 of the 
22 patients with MRI changes were asymptomatic, 
and of the 7 patients with symptoms, 3 received 
IMRT and 4 received PBT. Moreover, patients who 
received PBT had a trend for better 4-year OS. The 
reasons for the MRI changes are unclear, but it is 
clear that careful attention to brainstem toxicities 
are required, even though PBT is acceptable and 
beneficial for patients with ependymoma.

Germinoma
Germ cell tumors (GCTs) of various histologic 

subtypes arise from primordial germ cells of devel-
oping embryos. These tumors are divided into two 
histologic groups with germinoma and non-germi-
nomatous components (NGGCT). Intracranial GCTs 



PBT for Pediatric Brain Tumor 351

Neurol Med Chir (Tokyo) 57, July, 2017

IMRT, with PBT significantly reducing the mean dose 
and the 10 and 15 Gy area to the normal brain.76) 
MacDonald et al. compared dose distributions 
among IMRT, three-dimensional conformal proton 
therapy (3D-CPT), and intensity modulated proton 
therapy (IMPT), and reported early clinical results 
for 22 patients with ICGT.77) Normal tissue was more 
spared using PBT, and IMPT additionally spared the 
brain and temporal lobe. Local control, PFS, and OS 
were 100, 95% and 100% for all patients. Follow-
up period was still too short so it was difficult to 
evaluate late toxicity of PBT for germinoma. 

Craniopharyngioma
Surgical resection is the most important factor 

in treatment of craniopharyngioma. Some authors 
recommend radiotherapy after conservative or 
maximal resection, as for gross total resection, with 
a total dose of 50-55 Gy.78,79) The 1- and 5-year 
progression-free survival does not differ between 
these two treatments, but neurological deficits are 
higher after gross total resection. However, recur-
rence after radiotherapy is very difficult to treat 
and surgical resection is the key for treatment. 
In 97 patients with recurrent craniopharyngeoma 
treated with conformal radiotherapy of 54 Gy in 30 
fractions after safe resection or decompression of 
predominantly cystic tumors, Klimo et al. reported 
failure of treatment in 18 patients and 5- and 
10-year treatment free-survival of 89% and 76%, 
respectively.80) One patient had radiation-induced 
vasculopathy requiring bypass surgery. Patients who 
received gross total resection for recurrent disease 
had a lower risk of subsequent recurrence, and 
the time interval between each treatment for new 
recurrence was progressively shorter. Therefore, it 
was concluded that craniopharyngioma progres-
sion after prior irradiation is very difficult to treat 
and local control is challenging, despite repeated 
surgical procedures. 

Other reports show a 5-year PFS of about 90% after 
photon radiotherapy of 50-55 Gy. Three retrospec-
tive studies have examined PBT for craniopharyn-
gioma.81–83) Luu et al. found that one of 16 patients 
had local recurrence after PBT of 50.4–59.4 GyE 
in a median follow-up period of 60.2 months.81) 
Long term complications were panhypopituitarism,  
a cerebrovascular accident and an out-of-proton 
field meningioma.

Winkfield et al. showed that all patients (n = 24) 
were well controlled in a median follow-up period 
of 40.5 months after PBT of 52.2–54.0 GyE.81) These 
studies have small numbers of patients and relatively 
short follow-up periods, but the results suggest 
that PBT can achieve similar outcomes to photon 

radiotherapy. In a multi-institutional comparison 
of PBT and conformal radiation therapy for child-
hood craniopharyngioma, Bishop et al. showed that 
survival, disease-control and toxicity were equivalent 
for PBT and IMRT, but it should be noted that the 
follow-up period for PBT was short.83) Merchant  
et al. showed that PBT reduced the dose to the total 
brain, cochlea and hypothalamus.16) and suggested 
that PBT may minimize intelligence diminution after 
radiotherapy. In dosimetric comparisons of photon 
radiotherapy and PBT, Beltran et al.84) and Boehling 
et al.85) both concluded that PBT reduced the dose to 
normal structures such as the brain, brainstem, optic 
nerve and optic chiasm. At this time, late toxicity 
peculiar to proton beam therapy was not happened. 
Vasculopathy and loss of pituitary function were 
common late toxicity of PBT and photon radiotherapy.

Late toxicity/Secondary cancer
Radiotherapy plays an important role in the 

treatment of pediatric malignancies, especially for 
brain tumors, because obtaining a sufficient surgical 
margin is difficult for brain tumors. However, radia-
tion sensitivity in children is higher than in adults, 
and even a computed tomography (CT) scan may 
increase cancer risk.86) Toxicities related to impair-
ment of growth and development are also significant 
problems in growing children, and intelligence 
retardation is related to the irradiation dose, age 
at irradiation, time since irradiation, and the mean 
dose to normal brain.87–89) Growth hormone is the 
most susceptible to irradiation among hypothalamic-
pituitary hormones.34) 

PBT can safely irradiate a tumor that cannot be 
treated by photon radiotherapy by sparing critical 
organs due to the high degree of dose conformity.22,90) 
DVH comparisons of PBT and photon radiotherapy 
and toxicity data after PBT are shown in Table 6. 91-93) 
These studies indicated that PBT significantly reduces 
the dose to organs at risk and the risk of secondary 
cancer. Pulsifer et al. analyzed cognitive function after 
PBT using full scale IQ (FSIQ) and its components 
(verbal comprehension, perceptual reasoning/organi-
zation, working memory. and processing speed) in 
60 pediatric patients with brain tumor.39) FSIQ, 
verbal and nonverbal intelligence, and working 
memory were stable at a mean of 2.5 years follow 
up, whereas progressive cognitive decline is evident 
at 1–2 years after photon radiotherapy. However, 
reduced scores were found for processing speed, 
especially for younger patients (<12 years old).39)

Brain stem toxicity is also a concern in PBT. Proton 
beams are regarded to have similar LET and RBE to 
photon radiotherapy, as discussed above. However, 
RBE slightly increases in the very distal part of 
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the SOBP relative to the mid-SOBP.7,9) It has also 
been suggested that aggressive surgery may increase 
brainstem sensitivity to radiation, and this toxicity 
is therefore of concern in postoperative PBT. In 
pediatric patients who received PBT of ≥50.4 GyE 
to the brainstem, Indelicato et al. found a 2-year 
incidence of brain stem toxicity of grade 3 or more 
of 2.1%.91) This risk of brainstem toxicity is similar 
to that with photon radiotherapy, and it was recom-
mended that no more than one-third of proton beams 
should reach a brainstem tissue outside the planning 
target volume (PTV). Other analyses of brainstem 
injury attributed to proton beam characteristics 
have also suggested a clinical incidence similar to 
that with photon raditotherapy.41,67) Recently, we 
retrospectively analyzed the 62 children who were 
treated by PBT and followed up 5 or more years 
in Japan.15) The 5 year rates for grade 2 or higher 
late toxicity was 18% and no malignant secondary 
tumors occurred within irradiated. At this time late 
toxicity peculiar to proton beam therapy was not 
occurred. The rate of late toxicity and secondary 
tumors looks low, and these data indicate that PBT 
has the potential to reduce the risk of late toxicity 
and secondary malignancy.

Conclusion

Current PBT is mainly administered with a similar 
schedule to that of photon radiotherapy. Based on 
studies with short follow-up and a small number 
of patients, PBT has an equivalent therapeutic 
effect to that of photon radiotherapy. Many studies 
showed that PBT reduces the dose to an organ at 
risk, compared to photon radiotherapy. Although 
long-term follow up is required for full evalua-
tion of the effects, PBT is a promising treatment 
that reduces the risk of secondary cancer and late 
toxicity. 
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