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Abstract
Urban volume, such as urban built volume (UBV), can 

be used as a proxy indicator for measuring the intensity 
and spatial pattern of urban development, and for char-
acterizing social structure, intensity of economic activity, 
levels of economic supremacy, and levels of resource 
consumption. Urban volume estimation requires two ba-
sic input data: (1) urban footprint (built footprint for UBV 
and green footprint for urban green volume (UGV)); and 
(2) height data for urban features (herein called surface 
feature height (SFH)). A digital surface model (DSM) 
and a digital terrain model (DTM) can be used to extract 
SFH, i.e., by subtracting the DTM from the DSM. Light 
Detection and Ranging (LiDAR) data are often used to 
generate DSMs and DTMs. However, the availability of 
LiDAR data remains limited. The recent release of ALOS 
World 3D topographic data provides an alternative data 
source for DSMs and potentially for DTMs. However, 
the potential of ALOS PRISM DSM for deriving SFH 
has not been rigorously assessed, especially at the micro 
level. In this study, we validated six sets of 5 m ALOS 
PRISM DSM-derived SFH data across six test sites (To-
kyo (Japan), Beijing (China), Shanghai (China), Surabaya 
(Indonesia), Tsukuba (Japan), and Lusaka (Zambia)). We 
described the grid-based method used to derive a DTM 
from a DSM and how this method was applied. We then 
validated the derived SFH data through comparison with 
recorded building height (RBH) data. Across the six test 
sites, the root-mean-square error (RMSE) of the ALOS 
PRISM DSM-derived SFH data ranged from 7 m (Tsuku-
ba) (approximately 2 building floors) to 81 m (Beijing) 
(approximately 27 building floors). The ALOS PRISM 
DSM-derived SFH data for lower buildings (e.g., RBH 
< 100 m) and smaller and less dense cities (Surabaya, 
Tsukuba and Lusaka) were more accurate than for high-

rise buildings (e.g. RBH > 100 m) and larger and denser 
cities (Tokyo, Beijing and Shanghai). Factors that may 
have influenced the validation results were considered, 
as were the implications of the findings on urban volume 
estimation.

Key words: ALOS, DSM, DTM, SFH, GIS, remote sens-
ing, urban volume

1. Introduction
Knowledge of urban forms, including the intensity and 

spatial pattern of built-up areas and urban green spaces, is 
important in urban studies – urban morphology, urban ge-
ography, urban ecology, and urban sustainability, among 
others – as well as in landscape and urban planning. 
Traditionally, the characterization and monitoring of the 
intensity and spatial pattern of built-up areas and urban 
green spaces are confined only to their lateral, two-dimen-
sional (2D) extents. However, the increasing availability 
of earth observation data, such as remote sensing and 
other geospatial data, facilitates three-dimensional (3D) 
analysis incorporating urban feature height and thus en-
ables estimation of urban volume (Koomen et al., 2009; 
Estoque et al., 2015). 

Indeed, the continued development of geospatial 
technologies, including advances in remote sensing and 
geographic information system (GIS) tools and tech-
niques, has made urban volume measurement a growing 
research area in applied earth observation. The measure-
ment of urban volume includes the estimation of urban 
built volume (UBV) based on built-up features, such as 
buildings, and urban green volume (UGV) based on green 
features, such as trees and forests. The UBV indicator 
can be used for visualizing and quantifying urban land-
use intensity (Koomen et al., 2009; Estoque et al., 2015), 
while the UGV indicator can be used for characterizing 
urban vegetation structure, and supports ecological eval-
uation, green-economic estimation, and urban ecosys-
tems research (Hecht et al., 2008; Huang et al., 2013). 
Urban green spaces are typically the main provider of 
various ecosystem services in an urban landscape (Neu-
enschwander et al., 2014; Estoque and Murayama, 2016), 
and therefore, the measurement of UGV may contribute 
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towards advances in urban ecosystem services monitoring 
and assessment.

Among the earlier works related to urban volume 
measurement are those of Holtier et al. (2000), which 
used floor polygons, floor level, and storey height data 
to represent 3D building forms, and Yong (2001), which 
estimated UBV using aerial photographs. More recently, 
Koomen et al. (2009) measured and compared the UBV 
of four Dutch cities using elevation and vector layer top-
ographic datasets, while Santos et al. (2013) used Light 
Detection and Ranging (LiDAR) and other altimetric and 
planimetric data to characterize the UBV of Lisbon, Por-
tugal. In another study, Kabolizade et al. (2012) used Li-
DAR data for the automatic 3D reconstruction of building 
models using a genetic algorithm. The use of LiDAR data 
is increasingly popular in the field of UGV estimation 
(Hecht et al., 2008; Huang et al., 2013) and other related 
works, such as the assessment of canopy top elevation, 
ground elevation, and vegetation height (Enßle et al., 
2014).

Typically, the estimation of UBV and UGV requires 
data on urban built and green footprints, and height data 
for these features, herein called surface feature height 
(SFH). Recent studies have shown that built and green 
footprints can be derived from remote sensing data, such 
as aerial photographs and satellite images, while SFH 
data can be estimated from digital elevation model (DEM) 
data, such as a digital surface model (DSM) and a digital 
terrain model (DTM) (Santos et al., 2013; Hecht et al., 
2008; Huang et al., 2013; Estoque et al., 2015). In this 
paper, the term ‘DEM’ is used to refer to DSM and DTM 
data. ‘DSM’ is defined as the height measured from either 
the mean sea level (geoid) or ellipsoid to the top of sur-
face features, such as buildings and trees, while ‘DTM’ is 
the height measured from either the geoid or ellipsoid to 
the topographic surface. In previous studies, LiDAR data 
have been used to derive DSMs and DTMs (Hecht et al., 
2008; Huang et al., 2013; Santos et al., 2013). LiDAR 
data have also been used for extracting urban features 
(Priestnall et al., 2000) and as a data input for the assess-
ment and dissemination of solar income in digital city 
models (Bremer et al., 2016). However, the availability of 
LiDAR data across different landscapes and study areas 
remains limited.

The recent release of the ALOS World 3D (AW3D) 
topographic data by the Japan Aerospace Exploration 
Agency (JAXA) (http://www.eorc.jaxa.jp/ALOS/en/
aw3d/index_e.htm), the Remote Sensing Technology 
Center of Japan (RESTEC), and NTT Data (http://www.
aw3d.jp/en) provides an alternative source for DSMs. The 
AW3D DSMs were produced from images captured by 

the PRISM (Panchromatic Remote-sensing Instrument for 
Stereo Mapping) sensor, an optical stereo-mapping sensor 
onboard the Japanese ALOS-1 (Advanced Land Observ-
ing Satellite-1) satellite. The availability of ALOS PRISM 
DSM data offers an opportunity for urban geographers to 
include the third dimension – height – in urban geograph-
ical analysis, without relying on LiDAR data. However, 
the reliability and potential of the ALOS PRISM DSM 
data for this purpose has not been rigorously evaluated, 
especially at the micro level. 

This study aims to fill this gap by validating six sets of 
SFH data extracted from 5 m ALOS PRISM DSMs and 
discuss the implications of the results to urban volume es-
timation. The six test sites include Tokyo (Japan), Beijing 
(China), Shanghai (China), Surabaya (Indonesia), Tsuku-
ba (Japan), and Lusaka (Zambia). Tokyo, Beijing, and 
Shanghai are metropolitan cities with dense buildings. 
Surabaya and Lusaka are mid-size cities, while Tsukuba 
is a small-size city. The validation process started with 
the generation of DTMs from the ALOS PRISM DSMs 
via a grid-based method (described in detail in Chapter 
2). SFH data were extracted by subtracting the generated 
DTMs from their corresponding ALOS PRISM DSMs. 
Finally, the validation was performed by comparing the 
extracted SFH data with reference data.

2. Deriving DTM from DSM: The grid-based method
The question whether a DTM can be derived from a 

DSM has been considered by other researchers. Krauss et 
al. (2011) assessed three techniques for generating DTMs 
from satellite-based stereo DSMs, such as the AW3D 
DSMs, based on steep edge detection, geodesic dilation, 
and morphology, by testing them on simulated synthetic 
urban scenes. Arefi et al. (2011) proposed another tech-
nique based on iterative geodesic reconstruction and test-
ed it on Cartosat-1 stereo imagery. Tian et al. (2014) gen-
erated a DTM for a vegetated area (forest) by classifying 
a Cartosat-1 stereo image into forest regions and subtract-
ing the relative region heights from the DSM. Beumier 
and Idrissa (2015) proposed a method consisting of three 
steps: (1) DSM region segmentation; (2) region selection; 
and (3) height interpolation. Based on the work of Meng 
et al. (2009) on the development of a multi-directional 
ground filtering algorithm for airborne LIDAR, Perko et 
al. (2015) proposed a fully-automatic multi-directional 
slope-dependent filtering method for DTM generation. 

Another technique is the ‘grid-based’ method, original-
ly proposed and developed by Estoque et al. (2015). This 
approach derives a DTM from a DSM using a semi-auto-
matic two-step process: (1) sample points identification 
and extraction; and (2) spatial interpolation. In the first 
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step, the pixels with the lowest DSM value within each 
grid are identified and extracted. This is then followed by 
conversion of these extracted pixels to points. Fig. 1a pre-
sents a flowchart showing the automatic identification and 
extraction of sample points, and the subsequent spatial 
interpolation of DTM and SFH extraction. 

The model first creates a mesh, the size of which is de-
fined by the user (e.g., 100 m) (Fig. 1a), and each grid in 
the mesh is assigned a unique identification (ID) number 
(calculate field). The DSM and the mesh are then used as 
inputs to a zonal statistics tool, which is used to generate 
a new raster (i.e., Output Raster 1 in Fig. 1a). In this new 
raster file, if the statistical measure (statistics type) selected 
is ‘minimum’ (this is necessary to derive a DTM from a 
DSM), all pixels within a particular grid are assigned a sin-
gle, common value, i.e., the lowest value among this group 
of pixels. The model then employs a raster calculator tool 
to compare the newly created raster with the DSM, to iden-
tify the pixel (or pixels) in the DSM that corresponds to 
the lowest value found within each grid. This comparison 
is achieved by applying a conditional statement, i.e., Con 
(“DSM” == “Output Raster 1”, “DSM”), so that within 
each grid, if the value of pixel x in the DSM is equal to the 

common value of the pixels in Output Raster 1, then pixel 
x and its value is identified and extracted (i.e., Output Ras-
ter 2 in Fig. 1a). In addition, within each grid, those pixels 
in the DSM with values not equal to the common value of 
the pixels in Raster Output 1 are assigned to ‘No Data’ in 
Raster Output 2 (Fig. 1a).

In the second step of this grid-based method, the sam-
ple points are interpolated to produce a surface map – the 
DTM (Fig. 1b). This process of spatial interpolation is 
based on the principle of spatial autocorrelation, which 
assumes that points closer together in space are more 
likely to have similar values than points that are more 
distant (Tobler’s First Law of Geography, Tobler, 1970). 
There are several interpolation techniques and these are 
generally classified into either deterministic or geostatis-
tical. Deterministic interpolation techniques create sur-
faces from measured points, based on either the extent of 
similarity or the degree of smoothing, while geostatistical 
interpolation techniques utilize the statistical properties of 
the measured points, quantify the spatial autocorrelation 
among the measured points, and account for the spatial 
configuration of the sample points around the prediction 
location.

Fig. 1.  Semi-automatic generation of a surface feature height (SFH) map from a DSM using the grid-based method (Estoque et 
al., 2015). (a) identification and extraction of sample points from a DSM; (b) DTM spatial interpolation; (c) generation 
of a SFH map; (d)(i) a cross-section of a 300 m wide hypothetical urban landscape with topographic surface shown as a 
brown line; and d(ii) a 100 m grid showing the hypothetical 5 m × 5 m pixel (red) with the lowest DSM value (72 m).
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Deterministic interpolation techniques include inverse 
distance weighting (IDW), radial basis functions (RBF), 
natural neighbor, trend, spline, global polynomial inter-
polation (GPI), and local polynomial interpolation (LPI); 
geostatistical interpolation techniques include kriging and 
its variants e.g., simple, ordinary, universal, and empiri-
cal Bayesian. Details of these techniques can be found in 
literature (e.g. Mitas and Mitasova, 1999; Childs, 2004; 
EPA, 2004; Wong et al., 2004; Li and Heap, 2008; Sun et 
al., 2009; Krivoruchko, 2012; Arun, 2013; see also ES-
RI’s documentation – http://desktop.arcgis.com). 

To illustrate this, Fig. 1d(i) shows a 300 m wide 
cross-section of a hypothetical urban landscape. In this 
figure, the landscape is segmented into three parts, each 
measuring 100 m wide, which corresponds to a 100 m 
grid. Fig. 1d(ii) shows the pixel with the lowest DSM 
value within the 100 m grid (i.e., red pixel with a value of 
72 m). Once the model is run, this pixel is identified and 
extracted, and serves as the representative sample pixel 
for the grid where it is located. It should be noted that two 
or more pixels with the same value can be identified and 
extracted within each grid, particularly if the ‘pixel type’ 
of the input DSM file is ‘integer’.

3. Application: Validation of ALOS PRISM DSM-de-
rived surface feature height (SFH) 

3.1. Extracting SFH
In this study, the SFH data for the six test sites were 

derived from ALOS PRISM DSMs provided by JAXA 
(Figs. 2-7). These DSMs had a spatial resolution of 5 m, 
and were expressed based on the ellipsoid. This study fo-
cused only on the SFH of buildings.

The grid-based method (Estoque et al., 2015) was used 
to extract the SFH data (Fig. 1). Various grid sizes were 
tested for sample points identification and extraction. 
For the larger and denser cities of Tokyo, Beijing and 
Shanghai, 200 m-300 m grids were considered the most 
appropriate, while for the smaller and less dense cities of 
Surabaya, Tsukuba and Lusaka, 100 m-200 m grids were 
most appropriate. The results presented in this paper are 
all based on 200 m grids. 

Following identification and extraction of the sample 
points for each test site (Fig. 1a), a DTM map for each 
site was produced through spatial interpolation (Fig. 1b) 
using the Empirical Bayesian Kriging (EBK) technique 
(Krivoruchko, 2012). The interpolated DTM maps were 
set to the same spatial extent and resolution as the ALOS 
PRISM DSMs. The derived DTM maps were then sub-
tracted from their respective ALOS PRISM DSM source 
maps (Fig. 1c). This process resulted in six SFH maps, 
one for each test site (Figs. 2-7). 

Fig. 2. ALOS PRISM DSM and derived DTM and SFH maps for the Tokyo test site. The DSM map was captured on December 10, 2010.
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3.2. Validating extracted SFH 
To validate the derived SFH maps, sample buildings 

constructed prior to the capture dates of the ALOS PRISM 
DSM maps (Figs. 2-7), but still in existence at the time of 
the study, were used. Prospective sample buildings were 
identified taking into account two factors: (1) rooftop com-
plexity (buildings with less complex rooftops were pre-
ferred); and (2) building height (only buildings with height 

information were used). In this paper, building height is 
referred to as recorded building height (RBH). Sources of 
information on building height included The Global Tall 
Building Database of the Council on Tall Buildings and 
Urban Habitat (CTBUH) (www.skyscrapercenter.com; 
www.ctbuh.org). The polygon outline of these buildings 
was manually digitized and zonal analysis was performed 
to extract the maximum SFH values within each building 

Fig. 3. ALOS PRISM DSM and derived DTM and SFH maps for the Beijing test site. The DSM map was captured on October 25, 2010.

Fig. 4. ALOS PRISM DSM and derived DTM and SFH maps for the Shanghai test site. The DSM map was captured on December 2, 2010.
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polygon. Finally, the RBH values were compared with the 
maximum SFH values for each test site by calculating the 
root-mean-square error (RMSE).

3.3. Validation results
Fig. 8 shows the results of the validation process, 

based on a comparison of the derived SFH data and the 

RBH data for each test site. The results showed that Bei-
jing had the highest RMSE at 81 m (n = 25), followed by 
Tokyo at 47 m (n = 30) (Fig. 8). Conversely, Tsukuba had 
the lowest RMSE at 7 m (n = 30), followed by Surabaya 
at 11 m (n = 37). Shanghai (n = 30) and Lusaka (n = 14) 
both had a RMSE of 30 m (Fig. 8).

Fig. 5. ALOS PRISM DSM and derived DTM and SFH maps for the Surabaya test site. The DSM map was captured on July 17, 2010.

Fig. 6. ALOS PRISM DSM and derived DTM and SFH maps for the Tsukuba test site. The DSM map was captured on February 23, 2011.
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4. Discussion
RMSE values closer to zero indicate higher accuracy 

or better one-to-one correspondence between the ALOS 
PRISM DSM-derived SFH data and the RBH data. The 
results showed that the datasets with the highest accuracy 
were from the Tsukuba and Surabaya test sites, with a 
RMSE of 7 m and 11 m, respectively (Fig. 8). Assuming 
one building floor is equal to 3 m, this range of error ap-
proximated to between 2 and 4 building floors. However, 
the other test sites had much higher RMSE values (30 
m-81 m) (Fig. 8), which translated to between 10 and 27 
building floors. The results also indicate that the accuracy 
of the derived SFH maps varied between buildings within 
a test site and also between test sites (Fig. 8). 

In a previous urban volume study using ALOS PRISM 
DSM (i.e., a “stacked DSM” across the years 2006-2011) 
(Estoque et al., 2015), the assessment of the results was 
done through visual comparison of the derived urban vol-
ume map with corresponding Google Earth imagery. This 
present study advances the evaluation of the ALOS PRISM 
DSMs in the context of urban volume estimation through 
a more detailed and rigorous assessment. In addition, the 
ALOS PRISM DSMs used in this study were not “stacked 
data”, but rather each DSM (one per test site) was captured 
in a single time point (see Figs. 2-7). The resulting RMSE 
values produced by comparing the SFH and RBH data 
depended on the accuracy of these two input variables. 
Notwithstanding this, the derived SFH data was consid-
ered to have had more influence on the validation results 
than the RBH data. This is due to errors in the SFH data 
attributed to two sources, namely the grid-based method 

applied and the original DSMs used. Factors that can influ-
ence the outcomes of the grid-based approach include the 
method of spatial interpolation and the size of the grid used 
to extract sample points for use in the spatial interpolation 
(as described in Section 2, there are a number of interpola-
tion methods available). In this study, the selection of the 
EBK interpolation method was based on previous studies 
(Krivoruchko, 2012; Estoque et al., 2015).

In a denser urban landscape, i.e., with more buildings 
and less open space, larger grid sizes (e.g., 300 m rather 
than 100 m) may be more appropriate. Larger grids in-
crease the likelihood that pixels with the lowest DSM val-
ue lie in an open space (a topographic space) and not on 
top of small buildings or similar structures. Conversely, 
smaller grid sizes may be more appropriate in less dense 
urban landscapes with more open spaces. Smaller grid 
sizes can also result in more detailed DTM maps. Howev-
er, the selection of appropriate grid sizes can be challeng-
ing because the physical characteristics (e.g. density of 
development) of urban landscapes can vary considerably 
across cities. Within a single city, the density of urban de-
velopment can also vary across the city’s whole landscape 
(e.g., along the urban-rural gradient). In this study, grid 
sizes ranging between 100 m and 300 m were considered 
appropriate for the six test sites, based on RMSE values 
derived during the testing of various grid sizes. However, 
since the difference between RMSE values was small, 
the study used a 200 m grid size for all the test sites. A 
self-adaptive algorithm that can change grid size based 
on urban characteristics could present a possible future 
development of the grid-based method.

Fig. 7. ALOS PRISM DSM and derived DTM and SFH maps for the Lusaka test site. The DSM map was captured on July 13, 2010.
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The accuracy of the DTM maps derived from the grid-
based method and the resulting SFH maps also rely on 
the accuracy of the source DSMs themselves. If the DSM 
values of the selected pixels or points used in the DTM 
spatial interpolation are inaccurate (Fig. 1a) then the re-
sulting DTM and SFH maps (Figs. 1b and 1c) will also be 
inaccurate. In this study, there was evidence to indicate that 
the ALOS PRISM DSMs used to derive the DTM and SFH 
maps had limitations. Based on the structure of the ALOS 
PRISM DSM data used in this study, the DSM value of a 
pixel occupied by a building equaled the sum of the build-
ing height and the ellipsoidal height. Here, the ellipsoidal 
height equaled the difference between the ellipsoid and 
the topographic surface. Thus, it is logical to assume that 
the DSM values of pixels occupied by buildings should be 
greater than the heights of the buildings themselves (i.e., 
DSM > RBH). However, based on the comparison of the 
SFH data (maximum value within a building polygon) and 
RBH data, this was not always the case, with many build-
ings in Tokyo, Beijing and Shanghai exhibiting RBH > 
DSM. It should be noted that both the datasets (DSM and 
RBH) were independent of the derived DTM maps, mean-
ing that they were not influenced by the grid-based method. 

The validation results also indicate that derived SFH 

values were more accurate for buildings with RBH of < 
100 m (Fig. 8). SFH values for smaller and less dense cities 
with lower buildings, such as Tsukuba and Surabaya, have 
smaller RMSE and greater accuracy. The ALOS PRISM 
DSMs appeared to have failed to capture most high-rise 
buildings (> 100 m). Visual comparison of the ALOS 
PRISM DSMs and corresponding Google Earth imagery 
showed that some high-rise buildings were not visible or 
distinguishable from the ALOS PRISM DSMs. As of writ-
ing, the possible causes of these observed inaccuracies or 
errors in the ALOS PRISM DSMs are still unclear. There-
fore, it is recommended that the JAXA ALOS PRISM 
DSM products are reassessed, especially for urban areas, 
so that uncertainties in urban volume estimation can be re-
duced. Our observations and findings contribute to the val-
idation of the ALOS PRISM DSMs (Takaku and Tadono 
2009; Takaku et al. 2016). Taking into account the overall 
pattern of errors in building height (Fig. 8), it is considered 
that UBV is likely to be underestimated if determined us-
ing the derived SFH maps. 

5. Conclusions 
The purpose of this study was to examine the reliability 

and potential of ALOS PRISM DSM data for SFH extrac-

Fig. 8.  Scatter plots of the RBH data and ALOS PRISM DSM-derived SFH data across the six test sites. For each scatter 
plot, the RMSE and number of sample buildings used in the validation are stated.
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tion by validating six sets of SFH data extracted from 5 m 
ALOS PRISM DSMs and discuss the implications of the 
results to urban volume estimation. We conclude that: (1) 
across the six test sites, the RMSE of the SFH data ranged 
from 7 m (Tsukuba) (approximately 2 building floors) to 
81 m (Beijing) (approximately 27 building floors); (2) the 
SFH data for lower buildings (e.g., RBH < 100 m) and for 
smaller and less dense cities were more accurate than for 
high-rise buildings (e.g., RBH > 100 m) and for larger and 
denser cities; and (3) the ALOS PRISM DSMs appeared to 
have failed to capture most high-rise buildings (> 100 m).

The factors that may have influenced the accuracy of 
the derived SFH maps included the size of grid used in 
the grid-based method, the grid-based method itself, and 
the interpolation method used to derive the DTM maps. 
The RBH data may also have contained errors (the scale 
of error was not quantified in this study) that could have 
influenced the validation results. 

In addition, there was evidence of inaccuracy within 
the ALOS PRISM DSMs themselves, as some buildings 
had RBH > DSM. As such errors in the ALOS PRISM 
DSM-derived SFH data could have a profound effect 
on urban volume estimation, it is recommended that the 
ALOS PRISM DSM products used be reassessed and 
improved if necessary. Other DTM generation methods 
could also be tested. 
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