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ABSTRACT. A computational method of conditional moments of d—dimensional
diffusion processes is considered. We show that conditional moments of a
diffusion process can be approximated by the solution to an ordinary differ-
ential equation whose coefficients are characterized by coefficients of the sto-
chastic differential equation of the process. We also show that the method
gives the exact conditional moments if a stochastic differential equation has

a special form. The numerical experiment of estimating parameters of a
nonlinear stochastic differential equation from discrete observation shows
that the maximum likelihood estimation with the computed conditional
moments performs better than a conventional discretization approach.
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1. INTRODUCTION

Stochastic behaviors of a diffusion process are characterized by its transition
distribution function induced by the stochastic differential equation of the
process. Nevertheless some statistics, say, the conditional mean and variance,
are often used to describe the behaviors. In practice the conditional mean is
used to predict the future value of the process and the conditional variance is
used to its diversity. Recently in finance knowledge of the conditional variance
particularly plays an important role in modeling financial time series. The
conditional mean and variance, representatives of conditional moments, give
important information on dynamics of the process. More directly conditional
moments are used to derive a pricing model of a derivative security because
the price is formulated as the expectation of a pay off at maturity. From a
statistical point of view, conditional moments are also useful for estimating
parameters of a diffusion process. For example, in the maximum likelihood
estimation or quasi-maximum likelihood estimation, the conditional mean and
variance are necessary to set up a likelihood function. In the generalized
method of moment estimation proposed by Hansen [6], conditional moments
are used to construct orthogonality conditions which are crucial for the method.
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In this way conditional moments of diffusion processes are widely used for many
practical purposes. However, they are not easily computed.

One of most straightforward ways for the computation is to use the tran-
sition probability density function (PDF). PDF is given as a solution to the
well-known Fokker-Planck equation. Conditional moments are given by inte-
gration under the PDF. This, however, is not a practical way. Except for very
simple diffusion processes a closed form solution to the Fokker-Planck equation
can not be obtained. For example, Wong [14] shows that even one-dimensional
case, some restrictions on coefficients of the Fokker-Planck equation are re-
quired for an explicit formula. Thus some numerical methods are needed
in general. These methods are often much time consuming and not easily
to manipulate, particularly in multi-dimensional case. Formidably, numeri-
cal integration under the PDF given numerically is further needed to obtain
conditional moments.

Another way is discretization of a stochastic differential equation (SDE) of
a diffusion process. For example, applying the Euler scheme which assumes
coefficients of a SDE to be piecewisely constant to the SDE, an approximate
discretized process of the diffusion process is easily obtained. More conve-
niently, since the discretized process is expressed as sum of a measurable func-
tion at current time and an innovative process distributed normally, its con-
ditional mean and variance are derived from the discrete process. However,
since it is well-known that approximation by the Euler scheme is not effi-
cient unless discrete time interval is very short, the approximate conditional
mean and variance are probably far from the true ones. Of course, a more
efficient approximation scheme may give the more accurate conditional mean
and variance. However, the scheme almost always leads to a specific form
of discretization; for example, see Kloeden and Platen [8], Biscay et al. [3]
and Shoji [11]. Thus conditional moments, especially higher order, may not
be easily computed. Furthermore, since evaluation of how much conditional
moments are close to the true ones is different from that of how much sample
paths of an approximate process are close to the true, a theoretical study about
the former evaluation is inevitable. We must say the discretization approach
is slow to compute conditional moments. Thus a more direct method is worth
investigating.

The aim of the paper is to present a computational method of conditional
moments of d—dimensional diffusion processes and to study theoretical aspects
of the method. In general the proposed method is to compute conditional mo-
ments approximately. However, the method gives exact conditional moments
if a SDE has a special form. As one of numerical examples an application
to estimation problem is considered. From practical viewpoints, estimating
parameters of a diffusion process from discrete observation is very important
since real data are almost always observed at discrete times. There are many
studies about this subject; for example, Yoshida [15], Bibby and Sorensen [2],



Pedersen [9], and Prakasa Rao [10]. By using the conditional mean and vari-
ance given by the proposed method, a quasi-maximum likelihood estimation
is carried out. We compare the estimation performance with a conventional
estimation.

The paper is organized as follows. In section 2 we present a computational
method of diffusion processes with theoretical results which give accuracy of
approximation. In section 3 two numerical experiments are presented; one
is a comparison of computed conditional moments by the proposed method
and a conventional one using a SDE with linear drift and state dependent
diffusion coefficient. The other is a comparison of performance of estimation
for a nonlinear SDE. The technical details are provided in the appendix.

2. COMPUTATIONAL METHOD OF CONDITIONAL MOMENTS

Let (€2, P, F) be a probability space and {F;};>¢ be a filtration. On the
space, we consider a continuous adapted d—dimensional diffusion process X,
which satisfies the following stochastic differential equation:

(1) dX, = f(X;)dt + o(X,)dB,,

where, f € C*(RY R, 0 € C°(R% R x R"), and B; is an r—dimensional
standard Brownian motion. In this paper X; is considered on t € [s,00) and
so By is a Brownian motion on {F;}> starting at B.

In practice we are only interested in bounded processes since unbounded
ones are out of control. However, X; defined above is not always bounded.
In order to restrict the process to be bounded, we introduce the following
stopping time,

2) T =inf{t > s || X, — Xs|| > Ky},

where Ky is a finite positive constant. Let Xt = X;r. Clearly, X't is bounded
and satisfies the following:

v X+ [Jf(X)du+ [[o(X,)dB, ifs<t<T,
t — .
Xy if t > T.

From now on, we consider conditional moments of Xt instead of X, itself.
Moreover, since we are interested in stochastic behaviors of the process for
relatively short time interval, we will study conditional moments of the process
at time (s+At) where At < 1. The choice of time interval may affect possibility
of events related to 1T'. To characterize the relationship between 17" and At, we
introduce a positive constant dx which basically represents a small number,

(3) dx = P{T < s+ At}.

In other words, we make K x large enough for dx to be small.



Under these settings, we define n-th conditional moment of X, 1 (t), with
a multiple index a = (aq, - ,aq) of length n = |a| = oy + - - - + g,

fS]?

where Xi,t denotes 1—th element of X't and of course XS = X,. Here we consider

d

H(Xi,t — Xi,s)ai

1=1

(4) ba(t) = E

the moments around X, for simplicity in the computation. Now, suppose that
we compute up to n—th conditional moments of X; (0 <t —s < At).

Theorem 1. Let V(t) = (¥a(t))i<aj<n which has dimension of ¢(n). There
exists an Fs-measurable (¢p(n) x ¢(n)) matric A and Fs—measurable ¢p(n)—
dimensional vector functions b(t), R(t), and Rx(t) such that,

(5) w(t) = A / " (u)du + b(t) + R() + Rx (1),

where R(t) has order of O((At)"3)/2) and Rx (t) has O(At) in At and O(0x)
in 6x.

Proof. The proof is given in the appendix.

In the theorem R(t) means an approximation error associated with expan-
sion of f and ool, and Rx(t) does one associated with the stopping time
T.

Theorem 2. V() is give as,
(6) U(t)=A /t exp(A(t — u))b(u)du + b(t) + R'(t) + Ry (t),

where R'(t) and R (t) have the same orders as R(t) and Rx(t) respectively.

Proof. The proof is given in the appendix.

Theorem 2 states that conditional moments can be approximated by a
solution to an ordinary differential equation whose coefficients are all Fj-
measurable:

w(t) = A/t W (u)du + b(t).

More specifically, the proof will show that A and b(¢) are characterized by
partial derivatives of f and oo’. Once the method is turned out to be an
approximation one, we may ask whether or not the method can give exact
conditional moments. This is true if (1) has a special form. In addition, there

is no need to restrict X; to be bounded by the stopping time. Instead let
ult) = B [T (X0~ Xo0)| 7]

Corollary 1. If f(X) is linear in X and oo’ (X) is at most quadratic, then,

(7) w(t) = A / exp(A(t — u))b(u)du + b(t).



Proof. The proof is given in the appendix.

It is interesting to see the similar relationship between the assumption of
corollary 1 and the condition by Wong [14] that the transition probability
density function has an expansion by orthogonal polynomials. Corollary 1 is
also useful in the financial time series analysis since many financial models
satisfies the assumption of the corollary; for example, see Cox, et al. [5] and
Chan, et al. [4].

3. NUMERICAL EXPERIMENTS

We present two numerical examples of one—dimensional SDEs. The first
SDE is often used for a financial model:

dXt = K,(e — Xt)dt + o/ XtdBt.

Since the SDE satisfies the assumption of corollary 1, the proposed method
gives the exact conditional moments. Here we compute the conditional mean
and variance. It can be easily seen that,

—K 0
4 = (2&(9—){5)—1—02 —2/<a>

o - (5G7)

Then, the first and second moments of X; are formulated,

U(t)=A /t exp(A(t — u))b(u)du + b(t).

Although eigen values of A are easily obtained because of its special form, we
try to compute the integration numerically for general cases. For simplicity,
the integration is replaced with the following finite summation,

/ exp(A(t — w))b(u)du ~ 3 exp(A(t — u 1))l 1) (g — ug_1),

where s = ug < --- < u, = t and up — ux_1 = Au. Naturally this causes
approximation error. In the following simulation we set n = 8. As for the
summation, matrix exponentials can be computed by the formula in Bernstein
and So [1].

To see the difference between the above method and a conventional one,
discretization by the Euler scheme is considered; that is,

Xy = Xo+6(0—X,)(t—s)+e
g ~ N(0,0°X,(t - 5)).

This approximation is often used for financial modeling; for example, see Chan
et al. [4].



On the other hand, from Cox, et al. [5] or Bibby and Sorensen [2], the exact
conditional mean and variance of X; are as follows:

E[Xy|Fs] = Xsexp(—x(t —s))+6(1 —exp(—r(t —s))

E[(X, - E[Xt|]-—s])2‘ F] = Xs% (exp(—k(t — s)) — exp(—2k(t — 5)))

+9§ (1 — exp(—r(t — 5))*.

Using the above formulation, we compare approximation error of the two
methods through numerical simulation with (x,6,0) = (0.5,0.05,0.1). Results
of the simulation are displayed in figure 1. The solid line represents approxi-
mation error of the proposed method and the dashed one the discretization by
the Euler scheme. Conditional moments were computed at every discrete time
with ¢ —s = 0.1. Sample points were generated with time interval (¢ —s)/20 by
a local linearization method developed by Shoji [11]. The results show that the
discrtization approach caused much lager error. On the other hand, an error
of the proposed method can be reduced to zero theoretically as increasing n
associated with the finite summation.

As the second we consider the following nonlinear SDE,

dX, = aX}dt + odB,.

Here we want to estimate a and o from discrete observation {X;, }& ;. Since the
likelihood function of X, for discrete observation is not known, some approx-
imation is needed. We will estimate the parameters by the quasi-maximum
likelihood estimation (QML). Even though QML is not an exact one, some
favorable properties are known. Their details are discussed in White [12, 13].
Let ty — t,_1 = At. We use the following as a quasi-likelihood function,

(th+1 - th+1 tk)2>

a,0) = p(Xy) <
’ H 0V 27Tvtk+1\tk 2V lt

where X, and Vi, are the conditional mean and variance which can be
computed by the proposed method. It can be easily seen,

2
4 - <3aXs 3aXs>

Lq(

2aX? 6aX?
o) — <aj§(’£t_—s<§) )

As an alternative, the discretization by the Euler scheme is used again. The
likelihood function is as follows,

p (Xpp,, — (X, +aXE A1)
tk41 173 tr
L o) = p(Xy,) .
s(a, to kI:IO Vo7 R ( 202 At




We estimated a and o with the true (a,0) = (—1,1) and At = 0.1 for five
hundred different paths each of which had one thousand discrete observations
and formed empirical distribution of the estimates. In the same as the first
example, sample points were generated and numerical integration was carried
out. The empirical distributions are displayed in figure 2. Focusing on bias of
the estimates, the QML approach shows smaller bias whereas the discretization
approach overestimates ¢ and considerably underestimates o.

4. CONCLUDING REMARKS

In this paper, we have presented a computational method of conditional mo-
ments of d—dimensional diffusion processes and studied its theoretical aspects.
It was shown that conditional moments can be approximated by a solution
to an ordinary differential equation and also that the method gives the exact
conditional moments if a stochastic differential equation has linear coefficients
of drift and at most quadratic coefficients of quadratic variation. A numerical
experiment was carried out to estimate parameters of a stochastic differential
equation from discrete observation by the quasi-maximum likelihood estima-
tion. The results of the experiments indicated that the proposed method shows
smaller bias of estimates than a discretization approach. The method is also
useful for other estimation methods, say, Hansen [6] or Bibby and Sorensen [2]
which require conditional moments to construct object functions for estima-
tion.

APPENDIX: PROOFS FOR SECTION 2
In the following we assume 0 <t — s < At < 1.

Lemma 1. Let o be a multiple index of length n. For any integer n there
exists a constant C,, which depends only on n, such that,

E H(Xi,t — X )%

]

Fo| < Cu(t—s)",

where for some constant K,
C, < (2K?r)"(n + 2)!.
Proof. We prove the lemma by induction on n. We can assume |X’Z~,t|,

|fi(Xy)|, and |0y j(X;)| are less than a constant K (K > Kx) ont € [s,t AT
because of f; € C*(R?) and 0;; € C*(R?). Let n = 1. For each i Ito’s



formula gives,

(Xz t — Xi,s)2 — (Xi,t/\T - Xi,s)2

’

tAT tAT
= / 2(Xiw — Xio) fi(Xu)du + Z/ 2(Xiu — Xis)0i(Xu)dBju
S J S

tAT
+ E / op(Xy)du.
j S

Applying the optional sampling theorem to the above,

E [(Xi,t/\T - Xi,s)2|fs:|

AT tANT

L J

[ ptAT AT
< E / (Xiw — Xi)2du + FAX)du+ Y / o2, (X,)du
S ] S
fs]

Fs

g

S

IN
&

AT AT AT
/ (Xiw — Xis)du + / K?du + Z/ K2%du
S S J S

t
Fs} —i—(1+7")/ K*du.

r t
< FE /(Xi,u/\T_Xi,s)zdu

Using the Gronwall’s inequality, for example see Karatzas and Shreve [7],

E[(Xinr — Xis)?|Fs) < 1+n)K*(t—s)+(1+7r)K? /t(u — s)exp(t — u)du

exp(t —s) — 1

= (1+7r)K*(t—s) —

Since t — s < 1, we can set C; = 2(1 + r)K?. This shows that the claim holds
for n = 1. Let |a] = n (n > 1). Now suppose that the claim holds for the
case which is less than n. Again, using Ito’s formula and the same argument



as above, we get,

E | [[(Xinr — Xis)™ fs]
tAT
= B> / 200X — X)) [(Xj = X50)% fi(Xu)du| F,
i 7S j#i
1 2 T 20, —2 20 2
+§E Z 20[1'(20(2' — ]-)(Xz,u — Xi,s) ¢ H(leu — Xl,s) lO'iyk(Xu)du fs
ik VS 1#i
1 \ tAT v 1 o1 )
+§E Z /s 206 (X — Xis) ™ 20( X0 — X 6)*Y H'(Xl,u — Xj )"
1#j,k 1#i,j
ai,k(Xu)aj,k(Xu)du fsl
tAT
< K Z/ 200(Xi — Xi,S)zarz H(Xj,u - Xj,S)zaj (X — Xis) fi(Xu) |du| Fy
i VS i
1 2 T 20, —2 20 2
+5E > 203205 — 1) (Xiu — X.0) ™ 2 [ [(Xi = Xi0)* 07 (X ) du| F,
ik UF 1#4
1 ; tAT o1 o1 .
ok Z /s 200 (Xiu — Xis) ™7 205 (X0 — Xjs)™ H.(Xl’u )
1#j,k 1#i,j
[(Xiw — Xio) (Xju — Xjis)oi (Xu) 0o (Xu) [du }'s]
AT
< 4K°’F Z / i (Xiw — Xi5)2% 2 H(Xj,u — X ) *% du| F,
i 7S j£i
2 2 it ) L . _ ) 2ai—2 _ 2051
+EK°E | ) (205 — 1) (X — Xi.0)* 7 [ [ (X1 — Xi0)* du| F,
ik UF 1£i
AT
+K'E| ) 3/ @i(Xiw = Xis) 205 (X — X597 | [ (X — Xi6)™™
izjk VS 1£i

((Xz,u - Xi,s)2 + (Xj,u - ijs)2)du fs] y
where 3% and Y°° mean the double and triple summations subject to the

conditions implied by logical formula of their subscripts. In the above, we
assume that every integrand with negative index is zero. For the first term in




the last inequality, use the supposition of induction on n.

tAT
Z/ ai(Xi,u - Xi7s)204i—2 H(iju - ijs)mfdu
[ s j#i
t
< Z/ ;Cp_1(u — 8)" " du

== Cnfl(t — S)n.

.

For the second term,

Z / 0i(207 = 1) (X — X302 72 [ [ (X = X10) 2 du
I#i
< 22/ ;(20; — 1)Cpoy(u — )" 'du
ik V%

< r(2 Za? —n)Cpry (= S)n.

n

g

For the third term,

(AT
Z / Xiw — X 5)2&Z QQJ(XM — Xj, 5)2% H (Xiw — Xl,s)hl

1#5,k I#1,3

.

((Xz,u - Xi,s)2 =+ (Xj,u - Xj,s)2) du

< 27’2 /azaj et (u — 8)" " tdu

ity U0

= 2r(n®*— Za?)C’n_l (t —ns) )

Thus,

E H(th — Xz’,s)zai

[

fs] < K*2nr — 1 +4)Cpy(t — 5)"

< 2K*r(n+2)Ch_i(t — s)"
The last inequality follows from r > 1. Define C,, = 2K?r(n + 2)C,,_;. Then,

C, = éCl(2K2r)”_1(n+2)!

= é (1 + %) (2K%r)™(n + 2)!
< (2K*)"(n+2).



This completes the proof.

Proof of the Theorem 1. For simplicity ¢ — s = At in the following. Let
n > 1 be fixed and 1 < m < n. Let a be a multiple index of length m.
Applying the Ito’s formula,

E H(Xi,t/\T — Xis)™ ]:s]
AT
= E Z/ ai(Xi,u - Xi,S)ai_l H(Xj,u - Xj,S)aj fz(XU)du -FSI
¢ 70 J#i
1 tAT
+-F 22/ i — 1) (Xiu — Xig)* 2 H(Xl,u — Xl,s)alazk(Xu)du fs]
2 ik § I£i
lE , tAT ¥ X )@l (X X il X X,
*3 Z /s (X = Xi) "0 (Xju — Xjs) H (Xiu = Xi)
ik il

Ok (Xu)ajyk (Xu)du

fS] |

Now we consider separately the three parts of the right hand side. Applying
the Taylor’s expansion of f;(X) up to (n — m + 2)-th order to the first part
with multiple index £,

fs]

tAT
/ (Xi,u - Xi,s)ai+ﬂi_1 H(Xj,u - Xj,s)aj+ﬁj du

tAT
o / (Xiw = Xio) ™™ [ [ (X = X50) fi( X)) du

JFi

B 7 fi(Xy)
= 2 Tt

d

0Bl <n—m+1 g8
tAT
9° fi(€u) +Bi
+ E / — Xiu_Xis eithi=l X'u_X'Saj—I—ﬁjdu ‘Fs ’
|ﬂ:nz_m+2 s |B|' ( 7 , ) 11;[1( g ’ )

where 9% = 9% /(0x,)P - - - (014)P* and &, = X;+0,(X,—X,) with0 < 6, < 1.
Paying our attention to the case |a| = m = 1, the conditional expectation in
the main part of the Taylor’s expansion is expressed as follows:

(1) a =€ (1 <i < d)and |B| = 0 where the i—th element of e; is one
and the others zeros: Then, |+ 8 — ¢;| = 0 and so the integrand
is one. The conditional expectation is E[t AT — s|Fs]. Here, Note
|E[t NT — s|Fs] — At| < 0xAt where 0x = P{T" < t}. In fact, since
tAT = (s+AAT = s+ AtAT, E[t NT — s|Fs] = E[AtAT|Fs] < At.



On the other hand,
EIAtATIF) > / AtdP
{T—s>t—s}

= At(l - P{T <t})

Thus, 0 < At — E[At ANT|Fs] < dxAt. We call this difference an error
associated with stopping the process, X;.
fS]

(2) Otherwise: Since |+ 8 —¢;| > 0,
t
/ (Xiunt = X)) ] [ (Xjunr = X5) % Fidu
s J#

tA\T
B[ K= X [[ (G~ X507

J#

d

Because of |« +  — ¢;| > 0 the first equality holds. As a result, the main part
is expressed as the sum of f;(X,)At + f;(X;)(E[At A T|Fs] — At) and linear
combination of fst Varpe, (u)du with F,—measurable coefficients 9° f;(X,)/|B]!.
Next, we evaluate the remainder of the Taylor’s expansion. Without loss of
generality we can assume |0°f;(X)| < K because X, is bounded and f; €
C>*(R%). Define,

P /t/\T Z aﬂfz(fu) (X - X )Oéi-l-ﬂz‘*l H(X —X. )aj+,8jdu F
o s |B|=n—m+2 |6|' o " VE=) . ]75 ’

Noticing |a + 3 — ¢;| > 0,
0P f; (&, _, Y. Jaith H X X

< [ (e

< [ GG -9 a
2K(0n+1)1/2 ntd
(n+3)(n —m+2)! (A1)

V2(2K2rAt)" 2 /(n + 3)!
(n+3)(n —m+2)!

|Rig| < E du

Fs

1/2
(Xiunr — Xy g)@itFib) H(Xj,u/\T — X)) fs] ) du
J#




The second inequality follows from Schwarz inequality and the third and fifth
inequalities from the lemma 1. Now we define the last term as R..
Similarly, applying the Taylor’s expansion of g;x(X) = 07, (X) up to (n —
m + 3)-th order to the second part, we get,
fS]

AT
/ (Xiw — Xz',s)aﬁﬂifz H(Xj,u — Xj,s)aﬁﬁj du
s J#

AT
E / (Xiw — Xig) ™2 H(Xj,u — X;s)" gi g (Xu)du

JF#i

B 0" gin(Xs)
= 2 o

/]
)l

0<|B|<n—m+2

+ Y E

|B|=n—m-+3

gir(&) [ i -
W / (Xl,U - Xi,s) ithi=2 H(Xj,u — Xj,s) ]+ﬂ] dU,
- i

The conditional expectation in the main part of the Taylor’s expansion is
expressed as follows. Neglecting zero terms,

(1) @ =2¢; (1 < i <d)and || =0: Then, the conditional expectation is
E[AtAT — At|F,].
(2) Otherwise: Then, the conditional expectation is f: Yot p—2¢; (W) du.

In the same as the first part, the main part is expressed as the sum of g; , (X ;) At+
Gi k(X)) (E[At AT |F,] — At) and linear combination of f: Yot p—2¢; (w)du with
Fs—measurable coefficients 9°g; (X;)/|5|!. Evaluating the remainder of the
Taylor’s expansion, R;; 3, we get,

fS]

because g;x € C°(R?). We define the last term as R%. Similarly, by setting
Gijk(X) = 0,1(X)0;,(X) we can show that

taﬂ ; !
|Ri,k,,3| = E / g ;k‘ (gu) (Xy,yu _ Xi’s)ai‘f'ﬂi*Z H(nyu _ ijs)aj—'—ﬂj dU,

|

n+3

V22K rAt) = \/(n+3)!
(n+3)(n —m + 3)!

Y

E

t
/ (Xz,u — Xi,s)ai_l(iju — Xj,s)aj_l H (Xl,u - Xl,s)algi,j,k(Xu)dU
5 I£i,l#£]

can be expressed as the sum of the three parts. The first is g; ;x(Xs) At +
Gi.j 1 (X)) (E[AtAT | Fy]—At), the second is linear combination of f: Vatpei—e; (u)du
with F,—measurable coefficients 8%g; ; x(X;)/|B]!, and the last is the remainder



of the Taylor’s expansion, R; ;x 3, which satisfies,

t
aﬂgl k(letl) a;+Bi— a;i+Bi—
|Rijksl = |E / W(Xi,u—Xi,s) O X — X)Wt
[ (X = X00) P du ]:s] ‘
Y
< R:.

Summing up three kinds of the remainders, we obtain the following total
remainder associated with the expansion, R, (t), for the conditional moments

bal(t):

[Ra()] = D i Y, Rig
) B=n—m+2
+% (Z 2 ai(ai — 1) Z Rz’,k,,B —+ Z 3 OZZ'Oéj Z Rz’,j,k,,@) ‘
i,k B=n—m+3 i#£j,k B=n—m+3
< ZOZZ' Z R(1,4-|-1 (ZZOZZ'(OZZ'—I) Z Ri—f—z?’aiaj Z Ri)
3 B=n—m+2 2 i,k B=n—m+3 i#£j,k B=n—m+3

= (d"m“R; + g ((Z of - m) + <m2 > a§>) d”m+3R§)

_ V2md" T/ (n 4+ 3)! rd(m —1) ) 13
= a3 m—m+2) (1 2(n—m+3)>(2KTAt) '

Similarly, for the total error associated with stopping the process, Rx (%),

|Rxa(t)]
i B=n—m+2
1 2 3
+§ (Z a;(a; — 1) Z K(SXAt+Z Q0 Z K5XAt>
i,k B=n—m+3 1],k B=n—m+3

_ n—m+2 r 2 2 2 n—m+3
- (d K(SXAt—i—i((;ai—m)—l—(m —;ai)>d K(SXAt)
— mdnm? (1 + w> Koy At.

This completes the proof.



Proof of Theorem 2. From theorem 1,
U(t)y=A /1t U(u)du + b(t) + R(t) + Rx(1).
Note that,
d t
@ exp(~A1 / W(u)du = exp(—At) ( A/ u)du + (1 ))
Then,
— A / exp(A(t — u))(b(u) + R(u) + R (u))du + b{t) + R(t) + Ry (7).
We evaluate the remainder,
Re(t) = A / exp(A(t — u))(R(w) + Ry (u))du+ R(t) + Ry (t).

From theorem 1 there exist constants Cr and Cx such that |R(t)| < Cr(At)"+3)/2]
and |Rx(t)] < Cx(At)J where J is a column vector whose elements are all
one. In fact we can choose them as follows,

\/ind”“ (TL + 3)‘ rd(n — 1) 9 | nt3
— 1 2K )
Cr 2(n + 3) < + 6 ) (2K77)
Cx = nd"t! (1 + 7"‘1(”27_1» Kby

Then,

[Ry| < /IAleXp(|A|(t—U))(|R(U)I+IRx(U)I)dU+IR(t)|+|Rx(t)|

IN

/t |Alexp(|A|(t — u))du (CR(At) gt Cx(At)J + (C’R(At) Eps Cx(At)J

= exp(|A|AL)(Cr(At) ™ + Cx(At).]

where the inequality holds elementwise and every element of |A| is its absolute
value. Recall that for each « (1 < |a| < n), 8 (0 < |8 <n—|aj+1) and e
(1 < i < d), the nonzero element of A is expressed as either of the following;



for AO&,OH—/B*Ei (|a| 2> 2OI“|/3| > 1)7

0” fi(X,) 07 f;(X,)
T TR DR AT
J#
ﬁ’=[3—6i+6]‘
2 a;(a; — 1) 07 g; 1(X,)
+ Z 9 15]!
J. k
B =pB—eit2e;
3 ;o aﬁlgj,l,k(Xs)

J#FLE
B'=B—ei+ej+e

or for Ag a—2; (|| > 2),

o\ — a;Q
S ) Y ()

ik J£Lk

For the first case, since all the partial derivatives are bounded by K and at
least |G| > 0,

|a|K Kr Kr
Aoara-al < g+ gm0 (;a?_m')+2l6'l! ('a|_zi:a?>
|a|K< r(|a|—1>)
EIRSEES
< nk <1+m>.

2
Clearly, the inequality holds for A, o_s,. Designating the last term as Cy, we
get,

|A| < CaH,
where H is a matrix whose elements are all one. Noticing J is an eigen vector
for the eigen value, ¢(n), of H,

exp(CaHAL)J = exp(Cagp(n)At)J.
Finally,
[Ry| < exp(Cag(m) A (Cr(A8)™5 + Cx (A1)
This completes the proof.

Proof of Corollary 1. The proof of theorem 2 shows that the remainder
associated with the Taylor’s expansion, R(t), is zero-vector if 0° f; = 0 (|8| =
n—m+2)and 0°g;r = 0%g; ;s =0 (|8] =n—m+3) forall m (1 < m < n),
where 1 <i # j < dand 1 <k <. This holds when 8°f; = 0 (|3]| = 2) and
0%gir = 0°gijr = 0 (|8] = 3). On the other hand, if f;(X) is linear in X and
both g¢;(X) and g¢;;x(X) are at most quadratic, then, these equalities hold.



Moreover, focusing on the proof of theorem 2, boundedness of the process, X;,
is used only to evaluate R(t). In this case R(t) = 0, so the boundedness is not
required. This completes the proof.
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Comparison of Approximation Error: mean (upper) and variance (lower)
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