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INTRODUCTION 

      

Global climate changes influence the magnitude and frequency of hydrological 

fluctuations and cause unfavorable environment for plant growth and development 

(Fukao et al., 2011). Climate changes result in various abiotic stresses such as flooding 

(Bailey-Serres et al., 2012), drought (Choat et al., 2012), salty (Polle and Chen, 2015), 

heat (Ozga et al., 2017), and cold (Jha et al., 2017). Growth and productivity of crops 

are negatively affected by abiotic stresses caused by global climate changes (Hashiguchi 

et al., 2010). Plants encounter abiotic stresses and modulate adaptive responses through 

complex signaling pathways to survive the extreme conditions during growth and 

development (Fukao et al., 2011). Various transcription factors and cis-acting elements 

involve in signal transduction network from perception to response for plant adaption to 

environmental cues (Yamaguchi-Shinozaki and Shinozaki, 2006). Moreover, novel 

proteins as well as proteins with different abundance, which are in response to stresses, 

are associated with plant defense system (Komatsu and Hossain, 2013). The climate 

changes are potential threat for plants and a serial of processes involving gene 

expression and protein accumulation are mediated for plant adaption to abiotic stresses.  

Crops are mainly intolerant to flooding and such extreme condition affects the 

patterns of plant distribution and biodiversity (Silvertown et al., 1999). Flooding causes 

decreased gas diffusion in water (Armstrong, 1979), which is the major problem for 

plants and limits the entry of oxygen for respiration and carbon dioxide for respiration 

(Voesenek et al., 2006). In addition, flooding affects the soil chemical characteristics 

including variations in soil pH (Probert and Keating, 2000), redox potential (Pezeshki, 

2001), and microorganism (Kato et al., 2013). Flooding is composed of several 

underlying changes in substances such as oxygen, carbon dioxide, reactive oxygen 

species (ROS), phytotoxins, and ethylene inside plants and from environment (Perata et 

al., 2011). Therefore, flooding threats the environmental conditions as well as inside 

status for plants. 

The detail understanding of morphological, physiological, and molecular 

mechanisms of flooding tolerance is essential to develop and adopt germplasm to 

endure the abiotic assaults (Bailey-Serres et al., 2012). Flooding exerted effects on field 
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bean at both vegetative phase and generative phase, indicating strong reduction in stem 

elongation, leaf area, and dry matter production (Pociecha et al., 2008). In addition, 

flooding negatively affected growth of soybean in germination (Wuebker et al., 2001), 

early vegetative, and early reproductive stages (Linkemer et al., 1998). The root to shoot 

ratio of flooded plants was higher, the development of adventitious root was increased, 

and the aerenchyma proliferation in cortex of root was induced compared to unstressed 

soybeans (Bacanamwo and Purcell, 1999). Root respiration, alcoholic fermentation, 

stomatal closure, and non-stomatal metabolic alterations were responsible for 

physiological adaptation for plants exposed to flooding (Liao and Lin, 2001). Moreover, 

low-oxygen-sensing mechanisms and metabolic adjustments were associated with 

controlled use of carbohydrate as well as ATP, which were examined through gene 

regulation and function in model systems (Bailey-Serres and Voesenek, 2008). These 

findings provide opportunities to uncover the mysterious of flooding and may bring 

benefits to plant breeding. 

Proteomic approaches have been widely used to uncover the flooding responses 

in plants. In rice, proteins related to stress responses and redox metabolism were 

differentially changed in response to flooding (Sadiq et al., 2011). In wheat, 

coordinating methionine assimilation and cell wall hydrolysis were associated with 

restricting cell growth under flooding (Kong et al., 2010). In maize, proteins related to 

energy metabolism, photosynthesis, programmed cell death, phytohormones, and 

polyamines were identified under flooding (Chen et al., 2014). In soybean, a plethora of 

biological processes underwent flooding including signal transduction, hormone 

regulation, transcriptional control, glucose degradation, sucrose accumulation, alcoholic 

fermentation, mitochondrial impairment, proteolysis, and cell wall loosening (Komatsu 

et al., 2012a). Furthermore, some processes were highlighted involving in flooding-

tolerant mechanisms in plants. The ability to maintain glycolysis and to induce 

fermentation was associated with flooding tolerance in cacao (Bertolde et al., 2014). 

Protein synthesis and RNA regulation played roles in triggering tolerance at initial stage 

of flooding, while cell wall integrity and glycolysis balance promoted tolerance during 

survival stages in soybean (Yin et al., 2016). These findings indicate that proteomic 

technique is essential to acquire protein profiles in exploring responsive and tolerant 
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mechanisms in plants under flooding stress. 

Drought was evaluated as a meteorological anomaly characterized by a prolonged 

and abnormal moisture deficiency (Palmer, 1965). The impacts of drought associated 

with water demand exceeding water supply originated with the usable supplies 

including soil moisture, ground water, snowpack, streamflow, and reservoir storage 

(McKee et al., 1993). Because of the growth of population and expansion of agriculture, 

water demanding increased manifold than ever before and water scarcity occurred in 

many parts of the world (Mishra and Singh, 2010). Moreover, water was a predominate 

factor in determining geographic distribution of vegetation on the global scale and the 

occurrence of drought was a crucial yield factor in agriculture (Boyer, 1982). Drought 

and salt often integrated and induced similar cellular damage (Wang et al., 2003), while 

drought was even more pervasive and economically damaging (Boyer, 1982). These 

results implicate that drought is another major concern factor for agriculture. 

Plant growth and productivity are adversely affected under drought, which is 

limited factor for both elongation and expansion growth (Franco et al., 2011). The 

meristematic cells were induced to be longer and rates of cell division were reduced due 

to drought (Sacks et al., 1997). The restriction of stomatal conductance became apparent 

even with a few changes of water status in soil (Davies and Gowing, 1999). The general 

positive correlation between stomal conductance and hydraulic conductivity was 

observed (Küppers, 1984), indicating that changes in hydraulic conductivity from soil 

and through plants in drying soil affected the stomatal aperture (Schulze, 1986). Cell 

expansion and cell growth were greatly suppressed under drought because of low turgor 

pressure (Franco et al., 2011). Plants responded to drought via a series of physiological, 

cellular, and molecular processes culminating in stress tolerance (Shinozaki and 

Yamaguchi-Shinozaki, 2007). The signal transduction, which consisted of ionic/osmotic 

homeostasis signaling pathways, detoxification response pathways, and growth 

regulation pathways, was activated under drought (Zhu, 2002). These reports display 

that drought causes negative effects on plants and complex pathways are integrated in 

response to drought stress. 

An array of data related to drought responsive and tolerant mechanisms in plants 

were obtained via proteomic approaches. In rice, proteins related to defense, energy, 
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metabolism, cell structure, and signal transduction were identified under drought (Ali 

and Komatsu, 2006). In maize, a high abundance of cationic peroxidases with increase 

in phenylpropanoids led to reduction in lignin biosynthesis in the xylem vessels and 

induced cell wall stiffening in response to drought (Alvarez et al., 2008). In wheat, 

comparative proteomic analysis between salinity and drought indicated that ionic stress 

perception and transduction were differently involved, while toxic by-products 

elimination and metabolic adaptation processes were shared (Peng et al., 2009). In 

soybean, proteins related to osmotic adjustment, defense signaling, and programmed 

cell death played roles for drought adaptation (Alam et al., 2010). Moreover, light 

harvesting complex chain II and actin depolymerizing factor were accumulated at high 

levels in drought-tolerant rice (Ali and Komatsu, 2006). Furthermore, a global capacity 

ranging from intracellular-homeostasis reconstruction, ROS, and toxicant clearance to 

energy, carbon assimilation as well as growth recovery contributed to drought-tolerant 

wheat (Peng et al., 2009). These findings exhibit the importance of proteomics in 

uncovering the relative mechanisms of drought response and tolerance in plants. 

Soybean, which is one of the important food crops, is rich in protein, vegetable oil 

(Sugiyama et al., 2015), and several phytochemicals such as isoflavones and phenolic 

compounds (Kim et al., 2012). Soybean is the only legume with ample amount of 

essential ω-3 fatty acid and α-linolenic acid (Messina and Messina, 2010). In addition, 

biotin, which is recognized as an essential nutrient factor, is included at a higher 

concentration in soybean compared to vegetables, fruits, and most meat products 

(Depeint et al., 2006). Notably, soybean and its products provide the most abundant 

isoflavones (Wang and Murphy, 1994), which contribute to reducing the risk of 

heart/cardiovascular diseases, osteoporosis, and cancer (Crozier et al., 2009). Besides, 

soybean seeds contain a variety of phenolic compounds such as chlorogenic acid, 

caffeic acid, and coumaric acid (Kim et al., 2006), which are beneficial to human health 

because of the antioxidant activities (Tyug et al., 2010). Such information well 

documentes the nutritional elements as well as pharmacological values of soybean, 

suggesting the importance of soybean in providing daily consumption and potential 

benefits for health promoting. 

With the predominate values, soybean is cultivated with a long history, while it is 
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sensitive to flooding, which suppresses plant growth and grain yield (Li et al., 2017). 

Flooding responsive mechanisms have been explored in soybean ranging from 

subcellular organelles, organs, different growth stages of plants, post-flooding recovery, 

and along with other treatments using proteomic approaches (Table 1, Figure 1A). 

Subcellular proteomics indicated that flooding altered the regulation of proteins related 

to ROS scavenging, protein folding, ion flux, energy management, and cell wall 

synthesis in several subcellular compartments (Wang and Komatsu, 2016). Organ-

specific protein profiles were examined under flooding with the demonstration that 

protein metabolism was increased in root; however, decreased in hypocotyl and leaf 

(Khatoon et al., 2012). Calcium-related signal transduction was induced at initial stage 

of flooding (Yin et al., 2014a); an imbalance of metabolic pathways including 

carbohydrate metabolism was occurred at early stage of flooding (Nanjo et al., 2010); 

and scavenging of toxic radicals played roles in late stage of flooding as well as post-

flooding recovery (Khan et al., 2014). These findings illuminate the flooding responses 

in soybean from different aspects, and indicate that energy metabolism and ROS 

scavenging play pivotal roles in response to flooding. 

A series of findings were obtained in soybean under flooding along with other 

treatments such as calcium (Oh et al., 2014a), nanoparticles (Mustafa and Komatsu, 

2016), abscisic acid (ABA) (Komatsu et al., 2013a), and gibberellic acid (Oh et al., 

2014b). It was reported that calcium affected the proteins related to the metabolisms of 

cell wall, hormone, protein, and DNA in soybean exposed to flooding (Oh et al., 2014a). 

Various sizes of aluminum oxide nanoparticles regulated membrane permeability and 

activity of the tricarboxylic acid cycle under flooding (Mustafa and Komatsu, 2016). In 

presence of phytohormones, it indicated that ABA enhanced flooding tolerance in 

soybean through governing energy conservation via glycolytic system (Komatsu et al., 

2013a), and gibberellic acid induced the proteins related to secondary metabolism, cell 

cycle, and protein metabolism in flooded soybean (Oh et al., 2014b). These results give 

insights into the cross-talk between flooding and other treatments, and provide 

possibility to eliminate the hazards caused by flooding stress. 

Drought is another abiotic stress causes deleterious effects on soybean production 

(Deshmukh et al., 2014). Enormous progress has been made in the area of proteomics of 
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soybean exposed to drought (Table 2, Figure 1B). In early stage, increased abundance of 

ferritin effectively sequestered iron and prevented excess free iron in the elongation 

zone of root under drought (Yamaguchi et al., 2010). Glycerol kinase, 

arogenate/prephenate dehydratase, and phloem serpin contributed to osmotic 

adjustment, ROS metabolism, secondary metabolism, and signal transduction in root of 

drought-stressed seedling (Alam et al., 2010). Carbon metabolism, protein synthesis, 

amino acid metabolism, and cell growth were the most altered processes in nodule of 

soybean seedling under drought (Gil-Quintana et al., 2013). Moreover, ROS was 

increased in response to drought and high amount of carbonic anhydrase aided the cell 

in becoming tolerant to cytotoxic accumulation of hydrogen peroxide in late stage of 

soybean leaf (Das et al., 2016). Additionally, organ-specific analysis of soybean 

seedling indicated that root was the most drought responsive organ compared to 

hypocotyl and leaf (Mohammadi et al., 2012). These findings indicate that root is more 

sensitive compared to other organs in response to drought and ROS metabolism might 

be given priority over other responsive processes for drought adaptation. 

Proteomic studies provided valuable information of the mechanisms occurring in 

soybean recovering from drought (Khan and Komatsu, 2016). Abundance of UDP-

glucose pyrophosphorylase and 2,3- bisphosphoglycerate independent phosphoglycerate 

mutase reverted to control under post-drought recovery, indicating that a shift in carbon 

partitioning played roles in drought adaptation (Alam et al., 2010). Additionally, 

peroxidase and aldehyde dehydrogenase were associated with post-drought recovery 

through scavenging ROS and reducing harmful aldehydes loading (Khan and Komatsu, 

2016). Comparative proteomic studies were conducted between drought stress and 

polyethylene glycol condition, which was a simulation of water withholding, indicating 

that soybean differently responded to drought stress and polyethylene glycol treatment 

(Mohammadi et al., 2012). However, caffeoyl-CoA-O-methyltransferase and 20S 

proteasome displayed same changes between drought-stressed seedling and 

polyethylene glycol-treated plant, indicating common processes of oxidative damage 

and misfolded proteins increment (Toorchi et al., 2009). These reports enrich the 

understanding of post-drought recovery and common responses for osmotic adaptation 

of soybean. 
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Although flooding and drought negatively affect soybean growth, the 

morphological characteristics and molecular responses differ in plants under these 

conditions. In early stage of soybean, root elongation was suppressed under flooding, 

while root diameter was decreased under drought (Oh and Komatsu, 2015). Different 

morphological changes were observed in soybean seedling exposed to flooding 

(Khatoon et al., 2012) and drought (Mohammadi et al., 2012). Morphological 

differences indicated that independent mechanisms might be applied for stress adaption 

in soybean. It was demonstrated that activation of plant defense was essential to conquer 

flooding, while osmotic adjustment, defense signaling, and programmed cell death 

played roles in drought adaptation (Hossain and Komatsu, 2014). Furthermore, protein 

abundance and enzyme activity of ascorbate peroxidase were decreased under flooding, 

whereas they increased under drought, indicating that soybean experienced different 

levels of intracellular ROS under flooding and drought (Kausar et al., 2012). On the 

other hand, sufficient information on drought sensing and tolerant mechanisms on the 

organella proteomic is not available (Hossain et al., 2012). For example, the 

endoplasmic reticulum (ER) stress occurred due to accumulation of misfolded or 

unfolded proteins, which were induced by adverse environmental conditions (Howell, 

2013). On the basis of these reports, dissecting molecular pathways, which 

independently or commonly respond to flooding and drought, will facilitate marker-

assisted breeding for soybean. 

An arsenal of proteomic studies was performed in soybean under flooding 

ranging from whole organ to in-depth subcellular organelle (Table 1). Compared to 

flooding, the knowledge of drought responsive and tolerant in soybean is rare (Table 2). 

Taking these into account, independent responses and cross-talk between flooding and 

drought need to be explored at the molecular level. In this study, proteomic technique 

was used to identify the flooding- and drought-responsive proteins in soybean. Firstly, 

to get insights into the more sensitive organ and growth stage of soybean towards 

flooding and drought, organ-specific and stage-dependent proteomic analyses were 

performed. Secondly, to get insights into the protein synthesis/degradation under both 

stresses, the ER proteomics was conducted. Thirdly, the roles of calcium in ER events as 

well as in cellular processes were examined using gel-free/label-free proteomic 
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approach. In the present study, systematic comparisons were conducted in soybean 

between flooding and drought, and it will facilitate the selection of molecular marker for 

stress tolerance in soybean. 
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Table 1. List of publications of proteomics in soybean under flooding stress 

Organ 

Growth stage/ 

Flooding duration Major findings References 

Subcellular    

root including 

hypocotyl/cell wall 

2-day-old/48h a) Lignification was suppressed through decrease of proteins by downregulation of ROS and JA 

biosynthesis. 

Komatsu et al., 2010 

root including 

hypocotyl/plasma 

membrane 

2-day-old/24h a) Plasma membrane contributed to cell wall construction. b) Antioxidative system played roles in 

protecting cell from oxidative damage. c) Heat shock cognate protein protected proteins from 

degradation. d) Signaling proteins cooperatively worked to maintain ion homeostasis. 

Komatsu et al., 2009a 

root/nuclei 2-day-old/4h a) ABA enhanced tolerance through energy conservation via glycolytic system and regulation of 

nuclear proteins including zinc finger proteins, cell division cycle 5 protein, and transducin. 

Komatsu et al., 2013a 

root tip/nuclei 2-day-old/48h a) Suppression of RNA metabolism and accumulation of acceleration of poly-ADP-ribosylation were 

involved. 

Oh et al., 2014c 

root tip/nuclei 2-day-old/48h a) RACK 1 in nucleus was accumulated. b) RACK 1 inhibited root growth through ABA action.  

c) RACK 1 interacted with 14-3-3 protein. 

Komatsu et al., 2014 

root tip/nuclei 2-day-old/3h a) Nuclear-localized phosphoproteins were mediated by ABA. Yin and Komatsu, 2015 

root tip/nuclei 2-day-old/3h a) Protein translation was suppressed through inhibition of pre-ribosome biogenesis- and mRNA 

processing-related proteins in nuclei.  

Yin and Komatsu, 2016 

root including 

hypocotyl/mitochondria 

2-day-old/48h a) Electron transport chains were impaired, although mitochondrial NADH production was increased 

through the TCA cycle. 

Komatsu et al., 2011a 

root/mitochondria 2-day-old/48h a) Oxidative and peroxide scavenging led to biophoton emission and oxidative damage. Kamal and Komatsu, 2015 

root tip/mitochondria 2-day-old/48h a) Mitochondrial proteins were affected by various sizes of Al2O3 NPS by regulating membrane 

permeability and the TCA cycle activity. 

Mustafa and Komatsu, 2016 

root tip/ER 2-day-old/48h a) Protein synthesis and glycosylation were affected. Komatsu et al., 2012b 

Modification    

root tip/phosphorylation 2-day-old/12h a) Proteins related to energy production were increased, while proteins related to protein folding and 

cell-structure maintenance were decreased. b) Energy demanding and producing related metabolic 

pathways were regulated by protein phosphorylation. 

Nanjo et al., 2012 

root tip/phosphorylation 2-day-old/3h a) Phosphoproteins were changed with respect to phosphorylation statue after 3 h of stress.  

b) Ethylene signaling played roles in plant tolerance at initial stage via protein phosphorylation. 

Yin et al., 2014b 

root tip/phosphorylation 2-day-old/3h a) ABA affected responses via the regulation of nuclear-localized phosphoproteins. Yin and Komatsu, 2015 

root/ubiquitination 2-day-old/24h a) Ubiquitinated proteins were increased after de-submergence. b) Accumulation of COP9 signalosome 

proteins enhanced degradation of ubiquitinated proteins independent of low oxygen condition. 

Yanagawa and Komatsu, 

2012 
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root/glycosylation 2-day-old/48h a) Accumulation of glycoproteins was decreased. b) N-glycosyltaion of proteins related to stress and 

protein degradation was negatively affected, while glycoproteins in glycolysis were activated. 

Mustafa and Komatsu, 2014 

root including 

hypocotyl/ 

phosphorylation 

2-day-old/12h a) Heat shock proteins and enzymes related to glycolysis and fermentation were key elements in early 

stress responses. b) Proteins involved in protein folding and synthesis were dephosphorylated. 

Nanjo et al., 2010 

Post-flooding recovery 

root 2-day-old/24(96), 48(72), 

72(48)h* 

a) Cell wall metabolism and reorganization of cytoskeleton played roles in recovery process. Salavati et al., 2012 

root 2-day-old/48(48), 48(96), 

48(144)h* 

2-day-old/96(48), 96(96), 

96(144)h* 

a) Peroxidase was required for recovery through scavenging toxic radicals. Khan et al., 2014 

root including hypocotyl 2-day-old/96(48), 96(96)h* a) S-adenosyl-L-methionine dependent methyltransferases and enolase mediated recovery responses by 

Al2O3 NPS. 

Yasmeen et al., 2016 

hypocotyl 2-day-old/48(48), 48(96)h* a) ATP generation and secondary metabolism were regulated in post recovery through pyruvate kinase, 

nucleotidylyl transferase, and β-ketoacyl reductase. 

Khan et al., 2015 

Flooding + other treatments 

root tip/ABA 2-day-old/24h a) Zinc finger/BTB domain-containing protein 47, glycine-rich protein, and rRNA processing protein 

Rrp5 were phosphorylated after 3 h of stress with ABA. 

Yin and Komatsu, 2015 

root/ABA 2-day-old/48h a) Content of ABA was not decreased in stressed root. b) Survival ratio was improved with additional 

ABA. c) Proteins related to cell organization, vesicle transport, and glycolysis were decreased with 

additional ABA. 

Komatsu et al., 2013a 

root/ABA 2-day-old/3, 24, 48, 72, 96h a) Tolerance of ABA-treated soybean was mediated by nutrient- and growth-related proteins. Yin et al., 2016 

root/GA 2-day-old/48h a) Protein related to secondary metabolism, cell cycle, and protein metabolism were affected by GA 

supplementation. 

Oh et al., 2014b 

root/JA, SA 2-day-old/48h a) Proteins related to stress, signaling, glycolysis, fermentation, degradation, cell wall, cell 

organization, as well as metabolisms including secondary, hormone, and amino acid were affected by 

JA and SA. 

Kamal and Komatsu, 2016 

root/CaCl2 2-day-old/48h a) Exogenous calcium enhanced root elongation and suppressed cell death of root tip. b) Calcium 

affected cell wall, hormone metabolism, protein metabolism, and DNA synthesis. 

Oh et al., 2014a 

root, cotyledon/AgO 

NPs 

2-day-old/48, 96h a) AgO NPs with 15 nm and 2 ppm enhanced growth. b) AgO NPs shifted metabolism from 

fermentation to normal cellular processes and formation of comparatively low cytotoxic by-products. 

Mustafa et al., 2015a 

root including 

hypocotyl/AgO NPs 

2-day-old/24, 48, 72h a) AgO NPs with 15 nm promoted growth compared to 2 and 50-80 nm. b) Different sizes of AgO NPs 

affected growth by regulating proteins related to amino acid synthesis and wax formation. 

Mustafa et al., 2016 
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root including 

hypocotyl/Al2O3 NPS 

2-day-old/24, 48, 72h a) Al2O3 NPS with 50 ppm enhanced growth compared to AgO NPs and ZnO NPs. b) Al2O3 NPS 

promoted growth by regulating energy metabolism and cell death. 

Mustafa et al., 2015b 

root including 

hypocotyl/Al2O3 NPS 

 

2-day-old/24, 48, 72, 96h a) Length of root including hypocotyl was significantly longer in soybean exposed to Al2O3 NPS with 

30-60 nm compared to 5 and 135 nm. b) Al2O3 NPS with 30-60 nm suppressed glycolysis. c) Reduced 

activity of ascorbate/glutathione cycle related to reduced ROS scavenging activity on exposure to 

Al2O3 NPS. 

Mustafa and Komatsu, 2016 

root including 

hypocotyl/Al2O3 NPS 

 

2-day-old/48, 96h a) Survival ratio and weight/length of root including hypocotyl were improved with 50 ppm Al2O3 NPS 

and led to recovery. b) Al2O3 NPS activated enolase and S-adenosyl-L-methionine dependent 

methyltransferases to mediate recovery responses. 

Yasmeen et al., 2016 

No modification    

radicle of seeding 2-day-old/48h a) Proteins related to RNA binding/processing and flooding indicators were correlated with tolerance.  Nanjo et al., 2014 

root, cotyledon 2-day-old/48h a) 70 kDa heat shock protein was increased in root and cotyledon. b) Calcium played roles through 

heat shock protein 70 kDa in cotyledon. 

Komatsu et al., 2013b 

cotyledon 2-day-old/24, 48, 72, 96h a) Ferritin had an essential role in protecting cell from oxidative damage with stress duration. Kamal et al., 2015 

*, hour of flooding (hour of post-revovery flooding); RACK 1, receptor for activated protein kinase 1; TCA, tricarboxylic acid; GA, gibberellic acid; JA, jasmonic acid; SA, salicylic 

acid; CaCl2, calcium chloride; AgO NPs, silver nanoparticles; Al2O3 NPs, aluminum oxide nanoparticles; ZnO NPs, zinc oxide nanoparticles.  
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Table 2. List of publications of proteomics in soybean under drought stress 

Organ Growth stage/Drought duration Major findings References 

nodule 42-day-old/48, 96, 168h a) Carbon metabolsim, protein synthesis, amino acid metabolism, and cell growth were the 

most altered processes in nodule. 

Gil-Quintana et al., 2013 

root 2-day-old/48h a) Proteins related to protein synthesis and glycolysis were increased. b) Increased SAM 

synthetase was involved in the regulation. 

Oh and Komatsu, 2015 

root 14-day-old/120h a) Proteins associated with osmotic adjustment, defense signaling, and programmed cell death 

played roles for stress adaptation. 

Alam et al., 2010 

root, hypocotyl, leaf 3-day-old/96h a) Decreased methionine synthase impaired seedling growth. Mohammadi et al., 2012 

Post-drought recovery    

root including hypocotyl 2-day-old/96(48), 96(96)h* a) Peroxidase and aldehyde dehydrogenase played roles in post-stress recovery by scavenging 

toxic ROS and reducing the load of harmful aldehydes. 

Khan and Komatsu, 2016 

*, hour of drought (hour of post-revovery drought), SAM, S-adenosylmethionine
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Figure 1. Overview of the cellular events induced by flooding and drought in soybean. 

The cellular events in soybean exposed to flooding and drought were explored using 

proteomic techniques. The up- and down-arrows indicated the activated and suppressed 

metabolisms, respectively, induced by stress. Abbreviations are as follows: GA, 

gibberellic acid; ROS, reactive oxygen species; GABA, γ-aminobutyric acid. 
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1.1. Introduction 

Soybean is sensitive to abiotic stresses, including flooding (Russell et al., 1990) 

and drought (Korte et al., 1983). Growth rate of soybean was inhibited under both 

flooding and drought, while there was much difference in morphological responses 

between these two abiotic stresses, especially in the root compared to hypocotyl and leaf 

(Kausar et al., 2012). In the early stage of soybean, the length of root tip was markedly 

suppressed by flooding (Nanjo et al., 2013), whereas the root diameter was reduced by 

drought (Oh and Komatsu, 2015). In the seedling stage of soybean, weight of root, 

hypocotyl, and leaf as well as the length of root and hypocotyl were decreased in 

flooded plants (Khatoon et al., 2012). Similar results of declined weight were shown in 

soybean seedling exposed to drought (Mohammadi et al., 2012). These findings indicate 

that flooding and drought exert negative effects on soybean growth at different 

developmental stages. 

Not only morphological parameters, but also biochemical responses were altered 

by flooding and drought. Following long exposure to flooding, protein abundance and 

enzyme activity of ascorbate peroxidase decreased, but increased under drought, 

indicating that intracellular levels of ROS differed in plants under both stresses (Kausar 

et al., 2012). Oh and Komatsu (2015) reported that fermentation, stress, and cell wall-

related proteins were increased in root in response to flooding, whereas cell organization 

and redox-related proteins increased under drought. In addition, S-adenosylmethionine 

(SAM) synthetases were commonly identified between flooding and drought, while 

protein abundance differed between these stresses, indicating that redox signaling and 

polyamine oxidation were differentially controlled in stressed soybean (Oh and 

Komatsu, 2015). These results highlight the different responses induced by flooding and 

drought, whereas detail information of affected cellular metabolisms in different organs 

is warranted.  

Because plant responses towards abiotic stresses differ in each organ, organ-

specific analyses of protein profiles provide better understanding of cellular processes 

involved in plant growth and development (Komatsu and Hossain, 2013). For example, 

organ-specific analysis in flooded-soybean seedling revealed that proteins related to 

metabolism were increased in root, whereas they decreased in hypocotyl and leaf 
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(Khatoon et al., 2012). In response to drought stress, more proteins were differentially 

affected in root compared to leaf and hypocotyl (Mohammadi et al., 2012). Comparative 

proteomic analysis between root and cotyledon in the early-stage soybean indicated that 

heat shock protein (HSP) 70 was increased in root and cotyledon of flooded soybean; 

however, protein abundance of HSP 70 and biophoton emission in the cotyledon was 

higher than those in the root (Komatsu et al., 2013b). Photosynthetic machinery, 

carbohydrate metabolism, and ROS metabolism were affected in plants in response to 

temperature and drought stresses (Johnová et al., 2016). Compared to the studies of 

soybean seedling in response to flooding and drought, the knowledge of stress responses 

on organ-specific manner in the early stage is rare. These results indicate that effects 

induced by flooding and drought appear to be organ-specific dependent; however, the 

systematic comparisons among organs at different developmental stages are needed. 

In this study, to obtain sensitive organ towards flooding and drought at different 

developmental stages, the organ-specific and stage-dependent proteomic analyses were 

performed. Enzyme activity was conducted to examine physiological changes induced 

by flooding and drought. Protein profiles and cluster analysis were examined to 

determine the most responsive proteins. In addition, bioinformatic analyses such as in 

silico protein-protein interaction and functional visualization were conducted. The 

quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was carried out 

to integrate the multiple regulation levels between protein abundance and gene 

expression. 

 

1.2. Materials and methods 

1.2.1. Plant material and treatments 

Soybean seeds (Glycine max L. cultivar Enrei) were sterilized with 3% sodium 

hypochlorite solution and rinsed in water. After sowing seeds in 500 mL of silica sand 

wetted with 150 mL of water in a plastic case (180 mm x 140 mm x 45 mm), soybeans 

were grown in a growth chamber illuminated with white fluorescent light (160 μmol m-

2s-1, 16 h light period/day) at 25C. Stage-dependent experiments included the early 

stage and seedling stage. For the early stage, 2-day-old soybeans were exposed to 

flooding or drought for 1 and 2 days. The root tip, root, hypocotyl, and cotyledon were 
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collected as samples. For the seedling stage, 6-day-old soybeans were exposed to 

flooding or drought for 4, 6, and 8 days. The root, hypocotyl, and leaf were collected as 

samples. To expose soybean to stress, excess water was added or withheld for flooding 

or drought, respectively. Untreated soybeans were collected as controls. Three 

independent experiments were performed as biological replicates for all experiments. 

Biological replicate means soybeans sown on different days. Twenty plants were sown 

in each time point for one replicate (Figure 2). 

 

1.2.2. Extraction of cellular proteins for proteomic analysis 

A portion (0.5 g) of samples was ground to powder in liquid nitrogen with a 

mortar and pestle. The powder was transferred to solution containing 10% 

trichloroacetic acid and 0.07% β-mercaptoethanol in acetone. The resulting mixture was 

vortexed, sonicated for 10 min, and incubated for 1 h at -20oC with vortexing every 15 

min. The suspension was centrifuged at 9000 x g for 20 min at 4°C and obtained pellet 

was washed twice with 0.07% β-mercaptoethanol in acetone. Pellet was dried using a 

Speed-Vac concentrator (Savant Instruments, Hickville, NY, USA) and resuspended in 

lysis buffer consisting of 8 M urea, 2 M thiourea, 5% CHAPS, and 2 mM 

tributylphosphine by vortexing for 1 h. The resulting suspension was centrifuged at 

20000 x g for 20 min and supernatant was collected as cellular extract.  

 

1.2.3. Concentration measurement of proteins  

The method of Bradford (Bradford, 1976) was used to determine protein 

concentration. 

 

1.2.4. Clean up and digestion of cellular proteins  

Proteins (100 µg) were added to 400 µL of methanol and mixed thoroughly 

before further adding 100 µL of chloroform and 300 µL of water. After mixing, the 

samples were centrifuged at 20000 x g for 10 min to achieve phase separation. The 

upper aqueous phase was discarded and 300 µL of methanol was slowly added to the 

lower phase. The samples were further centrifuged at 20000 x g for 10 min. The dried 

pellets were resuspended in 50 mM NH4HCO3, reduced with 50 mM dithiothreitol for 
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30 min at 56oC, and then alkylated with 50 mM iodoacetamide for 30 min at 37oC in the 

dark. Alkylated proteins were digested with trypsin and lysyl endopeptidase (Wako, 

Osaka, Japan) at 1:100 enzyme/protein concentration at 37oC for 16 h. The resulting 

peptides were acidified with formic acid (pH<3) and centrifuged at 20000 x g for 10 

min. The supernatant was collected and analyzed by nanoliquid chromatography (LC)-

mass spectrometry (MS)/MS. 

 

1.2.5. Mass spectrometry analysis  

The peptides in 0.1% formic acid were loaded onto an Ultimate 3000 nanoLC 

system (Dionex, Germering, Germany) equipped with a C18 PepMap trap column (300 

µm ID x 5 mm; Dionex) and were separated by elution from the trap column using 0.1% 

formic acid in acetonitrile at a flow rate of 200 nL/min on a C18 Tip column (75 µm ID 

x 120 mm; Nikkyo Technos, Tokyo, Japan) with a spray voltage of 1.8 kV. Peptide ions 

were analyzed using a nanospray LTQ Orbitrap MS (Thermo Fisher Scientific, San 

Jose, CA, USA) operated in data-dependent acquisition mode with Xcalibur software 

(version 2.1; Thermo Fisher Scientific). Full-scan mass spectra were acquired in the MS 

over 400-1500 m/z with a resolution of 30000. A lock mass function was used to obtain 

high mass accuracy (Olsen et al., 2005). The ions C24H39O
+

4 (m/z 391.28429), 

C14H46NO7Si+
7 (m/z 536.16536), and C16H52NO8Si+

8 (m/z 610.18416) were used as lock 

mass standards. The top ten most intense precursor ions were selected for collision-

induced fragmentation in the linear ion trap at a normalized collision energy of 35%. 

Dynamic exclusion was employed within 90 sec to prevent the repetitive selection of 

peptides (Zhang et al., 2009). The MS data have been deposited with the 

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 

PRIDE partner repository (Vizcaíno et al., 2013) with the data set identifiers 

PXD001687 and PXD005342. 

 

1.2.6. Protein identification using mass spectrometry data 

Protein identification was performed using Mascot search engine (version 2.5.1; 

Matrix Science, London, UK) and Proteome Discoverer software (version 1.4.0.288; 

Thermo Fisher Scientific) against soybean peptide database (Phytozome, version 9.1; 
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http://www.phytozome.net/soybean) (Schmutz et al., 2010). For Mascot search, the 

parameters were as follows: carbamidomethylation of cysteine was fixed modification; 

oxidation of methionine was variable modification; trypsin was specific proteolytic 

enzyme; one missed cleavage was allowed; peptide mass tolerance was 10 ppm; 

fragment mass tolerance was 0.8 Da; and peptide charge was set at +2, +3, and +4. An 

automatic decoy database search was performed as part of search. The Mascot 

Percolator was performed to improve accuracy and sensitivity of peptide identification 

(Brosch et al., 2009). For all searches, false discovery rates (false positive/(false 

positive+true positive)) for peptide identification were less than 1%. Peptides with more 

than 13 (p<0.05) percolator ion score were used for protein identification.  

 

1.2.7. Analysis of differentially abundant proteins 

The Mascot search results were exported for SIEVE analysis (version 2.2.49; 

Thermo Fisher Scientific). For analysis, chromatographic peaks detected by MS were 

aligned and peptide peaks were detected as a frame on all parent ions scanned by 

MS/MS using 5 min of frame time width and 10 ppm of frame m/z width. Area of 

chromatographic peak within a frame was compared for each sample and ratios between 

samples were determined for each frame. The frames with MS/MS scan were matched 

to the Mascot search results. The ratio of peptides between samples were determined 

from the variance-weighted average of the ratios in frames, which matched the peptides 

in the MS/MS spectrum. The ratios of peptides were further integrated to determine the 

ratios of corresponding proteins. Total ion current was used for normalization of 

differential analysis of protein abundance. The outliers of ratio were deleted in frame 

table filter based on the frame area. The minimum requirement for protein identification 

was two matched peptides. Significance of protein abundance between samples was 

analyzed (p<0.05). Isoforms were manually deleted based on protein ID. 

 

1.2.8. Analysis of protein function and metabolism pathway 

Functional analysis was performed using MapMan bin codes (Usadel et al., 

2005). Visualization of protein abundance was performed using MapMan software 

(version 3.6.0RC1) (Usadel et al., 2009). Pathway mapping of proteins was performed 
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using Kyoto encyclopedia of genes and genomes (KEGG) database against Gmax 

(http://www.genome.jp/kegg/) (Kanehisa and Goto, 2000). 

 

1.2.9. Cluster analysis of protein abundance 

Ratio of protein abundance calculated by SIEVE software was used for cluster 

analysis, which was performed with Genesis software (version 17.6, 

http://genome.tugraz.at) (Sturn et al., 2002). 

 

1.2.10.  In silico protein-protein interaction analysis 

Protein-protein interactions were estimated from temporal profiles of protein 

abundance utilizing a modified version of the S-system differential equation (Voit, 

2000) as a mathematical model: dxi/dt = αi xj(g(ij)) - βi xi, where αi, βi≥0. xj and dxi/dt 

denote the expression level of i-th protein and its time-derivative, respectively. Each 

interaction between proteins was tested based on a goodness-of-fit, which indicates how 

well the modified S-system differential equation simulates expression of the 

corresponding target protein. The interactions showing an r2 value (coefficient of 

determination) of >0.8 were considered as candidate interactions. Protein abundance 

was originally obtained at days 2, 3, and 4 using SIEVE software, while it insufficient 

for the in-house interaction estimation software. Protein abundance was interpolated at 

days 2.5 and 3.5 by fitting a quadratic function to logarithmic values of the acquired 

protein abundance at days 2, 3, and 4. The interpolated protein abundance was used to 

estimate the interactions with protein abundance at days 2, 3, and 4. In the model of 

protein interaction diagram, a red arrow indicates an inductive interaction and a blue T-

bar indicates a suppressive interaction in the S-system differential equation (Tanaka et 

al., 2005). 

 

1.2.11. Analysis of enzyme activity 

A portion (0.2 g) of samples was ground in extraction buffer containing 50 mM 

HEPES-NaOH (pH 7.5), 5 mM MgCl2, 1 mM EDTA, 2% polyvinylpyrrolidone, 0.1% 

Triton X-100, 1 mM dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride, with a 

mortar and pestle on ice. The resulting mixture was centrifuged at 15000 x g for 20 min 
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at 4oC. The supernatant was collected for enzyme activity assays. Protein concentration 

was determined using the Bradford as described in 1.2.3 in Chapter 1. Alcohol 

dehydrogenase (ADH) activity was measured according to Nanjo et al. (2010). The 

reaction solution of ADH assay was composed of 50 mM MES-NaOH (pH 7.5), 5 mM 

MgCl2, 1 mM dithiothreitol, 0.1 mM NADH, and 4% acetaldehyde. Pyrroline-5-

carboxylate synthase (P5CS) activity was measured according to Wang et al. (2011). 

The reaction solution of P5CS assay was composed of 100 mM Tris-HCl (pH 7.2), 20 

mM MgCl2, 75 mM Glutamate, 0.4 mM NADPH, and 5 mM ATP. Both reactions were 

measured continuously for 5 min at 25oC at 340 nm (EC340 = 6.22 mM-1 cm-1). The 

enzyme activity was calculated using the formula: U/mg protein = [(ΔA340/min x total 

volume x sample dilution factor)/(6.22 x sample volume)]/protein concentration. 

 

1.2.12. RNA extraction and quantitative reverse transcription-polymerase chain reaction  

A portion (0.1 g) of samples was ground to powder in liquid nitrogen using a 

sterilized mortar and pestle, and total RNA was then extracted using an RNeasy Plant 

Mini kit (Qiagen, Valencia, CA, USA). Extracted RNA was reverse transcribed to 

cDNA using iScript Reverse Transcription Supermix (Bio-Rad, Hercules, CA, USA) 

according to the manufacturer’s instructions. qRT-PCR was performed using 

SsoAdvanced SYBR Green Supermix (Bio-Rad) on a MyiQ Single-Color Real-Time 

PCR Detection system (Bio-Rad). The PCR conditions were as follows: 95oC for 30 

sec, followed by 45 cycles of 95oC for 10 sec, and 60oC for 30 sec. Gene expression was 

normalized using the 18S rRNA gene (X02623.1) as an internal control. The qRT-PCR 

primers were designed using the Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi) (Table 3). Primer specificity was examined by 

BLASTN searches against the Phytozome-Glycine max database with designed primers 

as queries and by melt curve analysis. Three biological replicates were performed and 

each biological replicate was technically duplicated to reduce error rate. 

 

1.2.13. Statistical analysis 

Student’s t-test was performed between two groups using GraphPad Prism 

(version 6.0; GraphPad software, La Jolla, CA, USA). One-way ANOVA followed by 
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Tukey’s multiple comparison was conducted among multiple groups using SPSS 

software (version 22.0; IBM, Armonk, NY, USA). A p<0.05 was considered as 

statistical significance. 

 

1.3. Results 

1.3.1. Effects of flooding and drought stresses on morphology of the early-stage 

soybean 

To investigate the effects of flooding and drought on soybean morphology, seeds 

were germinated for 3 days without or with 1-day flooding or drought stress (Figure 3). 

The fresh/dry weight of plant and fresh weight/length of root including hypocotyl were 

examined as morphological parameters. Compared to 3-day-old untreated soybean, the 

fresh weight of plant did not change upon exposure to flooding or drought; however, the 

dry weight of plant reduced under both stresses. Notably, drought had more serious 

effects on the fresh weight of plant than flooding. In addition, the fresh weight and 

length of root including hypocotyl were suppressed under flooding, but the length was 

increased in response to drought exposure (Figure 3). Because plant morphology was 

affected by flooding and drought at the early stage of development, the stress responsive 

mechanisms were explored using proteomic technique. 

 

1.3.2. Organ-specific proteomics and gene expression analysis of the early-stage 

soybean under flooding and drought stresses 

Proteomic technique was used to analyze the organ-specific response to flooding 

and drought stresses in the early stage of soybean. Two-day-old soybeans were treated 

without or with flooding and drought stresses for 2 days, and protein samples were 

analyzed. Proteins identified in the root tip, root, hypocotyl, and cotyledon were 

classified with organ specificity in response to flooding and drought stresses (Figure 4). 

In the root tip, there were 504, 1337, and 370 specific proteins among control, flooding, 

and drought, respectively. In the root, there were 998, 351, and 755 specific proteins 

among control, flooding, and drought, respectively. In the hypocotyl, a total of 107, 111, 

and 164 proteins were specific to control, flooding, and drought, respectively. In the 

cotyledon, a total of 163, 45, and 208 proteins were specific to control, flooding, and 



  

23 

 

drought, respectively (Figure 4).  

The organ-specific proteins were examined to obtain common candidates among 

control, flooding, and drought, which revealed that 95, 46, 3, and 10 proteins were 

common in the root tip, root, hypocotyl, and cotyledon, respectively (Table 4). In the 

root tip, biotin/lipoyl attachment domain containing protein (root tip, number 1) was 

decreased and increased in response to flooding and drought, respectively (Table 4). In 

the root, NADH dehydrogenase subunit 7 (root, number 6), TOPLESS RELATED 3 

(root, number 24), WUS interacting protein 2 (root, number 26), TOPLESS RELATED 

1 (root, number 27), villin 4 (root, number 32), and UDP glucose: glycoprotein 

glucosyltransferases (UGGT) (root, number 35) were significantly decreased and 

increased under flooding and drought, respectively (Table 4).  

For NADH dehydrogenase subunit 7, gene expression was upregulated during 

germination, but downregulated under both stresses in the root tip of soybean. For villin 

4, in the root tip, it was upregulated during germination, but downregulated under stress 

conditions. In the root, however, villin 4 was downregulated during germination as well 

as under stress conditions. For biotin/lipoyl attachment domain containing protein, gene 

expression was upregulated in the root tip during growth, but downregulated under both 

stresses. For UGGT, it was significantly changed in the root tip, root, and cotyledon 

under both stresses, and downregulated in flooded plants. For TOPLESS RELATED 1, 

it was upregulated in hypocotyl under drought. For WUS interacting protein 2, it was 

downregulated in the cotyledon of flooded soybean, while there was no significant 

change under drought (Figure 5). 

 

1.3.3. Time-dependent proteomics, cluster analysis, and in silico protein-protein 

interaction in root tip of the early-stage soybean under flooding and drought 

stresses 

For temporal proteomics, root tip was analyzed because it presented with more 

stress responsive proteins compared to other organs (Table 4). Two-day-old soybeans 

were treated without or with flooding and drought stresses for 1 and 2 days, and protein 

samples were extracted from root tip. Functional analysis of root-tip proteins was 

performed using MapMan bin codes to determine cellular responses under flooding and 
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drought over time (Figure 6). Under control, proteins related to the cell wall (13%), cell 

organization (12%), and protein synthesis/degradation (11%) were the major increased 

categories. Under flooding, proteins related to fermentation (18%) and cell wall (14%) 

were induced over time. Under drought, proteins related to protein 

synthesis/degradation (16%), cell organization (11%), cell wall (10%), and RNA 

metabolism (10%) were the major increased categories over time (Figure 6). 

Cluster analysis of 11 common proteins was performed to investigate protein 

profiles of root tip among control, flooding, and drought over time (Figure 7). Using 

this approach, 5 different Clusters (I-V) were recognized. Cluster I consisted of 2 

candidates, B-S glucosidase 44 (Figure 7, number 6 and 7), whose abundance were 

decreased during germination, flooding, and drought. Cluster II consisted of 2 

candidates, mitochondrial substrate carrier family protein (Figure 7, number 4 and 5), 

which were continuously increased during germination and drought, and they decreased 

after flooding for 1 day. Cluster III consisted of 2 candidates (Figure 7, number 8 and 9) 

and displayed similar changes under germination and drought. Cluster IV consisted of 3 

candidates (Figure 7, number 1-3) and the protein abundance were decreased after 1 day 

exposure to both stresses. Cluster V consisting of 2 candidates (Figure 7, number 10-11) 

were increased under both stresses. 

In silico protein-protein interaction was conducted to examine potential 

interactions among 11 common proteins (Figure 8, Table 5). Under control, common 

proteins were predicted to form a uniform network with both inductive and suppressive 

connections. Under flooding and drought, coordinated networks were recognized, in 

which Class II aminoacyl tRNA/biotin synthetases superfamily protein (Figure 8, 

number 11) was found to be a stress-sensitive candidate for an integral component in the 

protein interaction network. Notably, protein-protein interaction revealed that B-S 

glucosidase 44 (Figure 8, number 6) and SAM synthetase family protein (Figure 8, 

number 3) had inductive interaction under flooding, while they presented with 

suppressive interaction under drought. In addition, SAM synthetase 1 (Figure 8, number 

1), SAM synthetase 2 (Figure 8, number 2), and SAM synthetase family protein (Figure 

8, number 3) were predicted to form cross interactions under flooding (Figure 8). The 

gene expression of SAM synthetases were examined, showing that SAM synthetase 2 
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and SAM synthetase family protein were downregulated under flooding compared to 

control (Figure 9). 

 

1.3.4. Protein abundance and gene expression of biotin/lipoyl attachment domain 

containing protein and ClassII aminoacyl tRNA/biotin synthetases superfamily 

protein in the early-stage soybean under flooding and drought stresses 

Protein and total RNA were extracted from the root tip during time-dependent 

stresses. Protein abundance of biotin/lipoyl attachment domain containing protein was 

continuously increased under drought for 2 days compared to flooding (Figure 10). The 

gene expression was downregulated in flooded soybean with stress duration (Figure 10). 

Protein abundance of Class II aminoacyl tRNA/biotin synthetases superfamily protein 

was increased on time-dependent mananer under both stresses. Meanwhile, gene 

expression was downregulated in plants exposed to stresses for 1 day (Figure 10). 

 

1.3.5. Physiological responses of soybean seedling under flooding and drought stresses 

To investigate the effects of flooding and drought on soybean seedling, the 

physiological responses were examined in 6-day-old soybeans treated without or with 

flooding and drought for 4, 6, and 8 days. Under control conditions, ADH and P5CS 

activities did not change during development. ADH activity was increased in root and 

leaf of soybean treated with flooding for 4 days, but then decreased in root after 6 days 

of drought treatment. P5CS activity was increased in root of flooding-stressed soybean 

after 4 days, and gradually increased in both root and leaf under drought (Figure 11A). 

In addition, ADH activity was drastically increased in root of flooded soybean 

compared to control and drought plants with the same age. P5CS activity was increased 

in leaf of soybean with drought stress compared to control and flooded plants. It was 

increased in root of soybeans exposed to both stresses compared to control (Figure 

11B). Because the activities of ADH and P5CS were increased in soybean seedlings 

exposed to flooding and drought for 6 days, respectively, proteomic analysis was 

performed using samples collected after stress treatment for 6 days. 

 

1.3.6. Organ-specific proteomics and functional analysis of identified proteins in 
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soybean seedling under flooding and drought stresses 

Organ-specific protein profiles of flooding- and drought-stressed plants were 

compared to 6-day-old soybean without treatment (Figure 12). The stress-specific 

protein profiles of each organ were analyzed among control, flooding, and drought 

conditions (Figure 12). In root, 200, 362, and 264 proteins were specific to control, 

flooding, and drought, respectively. In hypocotyl, 40, 223, and 374 proteins were 

specifically identified in control and flooding- and drought-treated plants, respectively. 

In leaf, 107, 157, and 220 proteins were specifically identified of plants exposed to 

control, flooding, and drought, respectively (Figure 12).  

To determine the function of flooding- and drought-responsive proteins identified 

in root, hypocotyl, and leaf of soybean seedling, functional analysis was performed 

using MapMan bin codes. The number of proteins related to photosynthesis, RNA, 

DNA, signaling, and the tricarboxylic acid cycle changed (increased or decreased) more 

than three-fold in root, hypocotyl, and leaf of soybean seedling under control, flooding, 

and drought (Figure 13). Most of the identified proteins in hypocotyl and leaf under 

three conditions were involved in photosynthesis. RNA-related proteins were markedly 

decreased in root and hypocotyl of flooding-stressed plant compared to the control and 

drought-stressed plants. Proteins related to DNA were decreased in hypocotyl of plants 

under flooding and drought compared to control plants. In addition, compared to control 

plants, more proteins related to signaling were increased in hypocotyl of flooding-

stressed plant, and in root and hypocotyl of drought-stressed soybean. Proteins related to 

the tricarboxylic acid cycle were mainly decreased in root and leaf of plant treated with 

flooding compared to control plants, and more proteins were decreased in root and leaf 

compared to hypocotyl in soybean under drought (Figure 13). 

 

1.3.7. Effects of flooding and drought on the tricarboxylic acid cycle in soybean 

seedling 

Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic 

acid cycle were predominantly affected in soybean seedling exposed to both stresses. 

Furthermore, abundance of the tricarboxylic acid cycle-related proteins was examined 

and visualized using MapMan software (Figure 14). In the root, the tricarboxylic acid 
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cycle-related proteins were markedly decreased under flooding, and only slightly 

declined in drought-treated plant compared to control. Additionally, in response to both 

stresses, the tricarboxylic acid cycle-related proteins were decreased in the root and leaf 

of soybean seedling. In the hypocotyl, more tricarboxylic acid cycle-related proteins 

responded to both stresses compared to control; however, they did not change in 

abundance among control, flooding, or drought. In the leaf, the tricarboxylic acid cycle-

related proteins were significantly decreased under flooding compared to the control 

levels, but only slightly declined in response to drought (Figure 14). 

To further investigate the effects of flooding and drought on the tricarboxylic acid 

cycle, the identified stress-responsive proteins were mapped to the KEGG (Figure 14). 

In the root, pyruvate dehydrogenase, citrate synthase, and malate dehydrogenase were 

decreased in response to flooding compared to the levels in control plants. Pyruvate 

dehydrogenase and succinyl-CoA synthetase were decreased, whereas succinate 

dehydrogenase increased in drought-stressed seedling compared to control. In the 

hypocotyl, pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and 

succinyl-CoA synthetase were increased in seedling treated with flooding and drought 

compared to control, whereas succinate dehydrogenase decreased. In the leaf, aconitase 

and succinyl-CoA synthetase were decreased under flooding and drought, compared to 

control plant. Although malate dehydrogenase was decreased in the leaf in response to 

flooding, it increased in drought-stressed plant. Additionally, isocitrate dehydrogenase 

was decreased under flooding, whereas succinate dehydrogenase increased under 

drought (Figure 14). 

 

1.3.8. Protein abundance and gene expression of β-glucosidase and β-amylase 5 in 

soybean seedling under flooding and drought stresses 

Among flooding- and drought-responsive proteins, 17 proteins were commonly 

identified in the root, hypocotyl, and leaf (Table 6). Of these proteins, β-glucosidase 31 

(Table 6, number 15) was decreased during development in control plants. Although β-

glucosidase 31 protein was decreased in the hypocotyl of flooding- and drought-stressed 

plants compared to the same stage control soybean, it increased in the leaf and root. β-

Amylase 5 (Table 5, number 16) was found to be decreased in the hypocotyl and leaf of 
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control plants during development, but increased in root. The protein abundance of β-

amylase 5 was increased in the root, hypocotyl, and leaf in flooding- and drought-

treated soybeans compared to the same stage control plant.  

As β-glucosidase 31 and β-amylase 5 were increased in the root and leaf of 

soybean seedling exposed to both stresses, gene expression was further examined 

(Figure 15). β-Glucosidase 31 was downregulated in the root of flooding- and drought-

treated plants as well as in the leaf of soybean exposed to drought, compared to the 

same stage control plant. In addition, β-amylase 5 was upregulated in the root of 

flooding-stressed plants and in the leaf of soybean under both stresses compared to 

controls. The upregulated gene expression of β-amylase 5 was consistent with increased 

protein abundance in the root under flooding and in the leaf under both stresses (Figure 

15).  

 

1.4. Discussion 

1.4.1. Root tip and root are sensitive organs of the early-stage soybean in response to 

flooding and drought 

Plants adapt to different stresses by regulating the abundance of responsive 

proteins in an organ-specific manner (Komatsu and Hossain, 2013). To better 

understand the effects of flooding and drought stresses on the growth of soybean in the 

early stage, organ-specific protein profiles of the root tip, root, hypocotyl, and cotyledon 

exposed to flooding and drought stresses were determined (Figure 4). Previous studies 

indicated the difference in morphology of stressed soybean even at the same 

development stage between flooding (Nanjo et al., 2013; Komatsu et al. 2013a; 

Hashiguchi et al., 2009) and drought (Oh and Komatsu, 2015). Because of this reason, 

comparisons of protein abundance between control and stress conditions including the 

starting point were used in the present study. Comparisons of the protein abundance of 

these four organs indicated that root tip was the most responsive organ to flooding, 

which diaplayed the largest number of responsive proteins. The different sensitive 

organs under flooding and drought imply that different mechanisms might be involved 

for soybeans to struggle against stresses. 
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1.4.2. Flooding and drought stresses affect TOPLESS RELATED in the early-stage 

soybean 

TOPLESS RELATED 1, TOPLESS RELATED 2, and WUS interacting protein 2 

were identified in soybean root under both stresses; and they were reported as 

corepressors and recruited by transcription factors to regulate the gene expression 

(Causier et al., 2012a). In Arabidopsis, four TOPLESS RELATED candidates were 

predicated according to similarity of amino acid sequence to TOPLESS (Long et al., 

2006), and WUS interacting protein 2 was named as TOPLESS RELATED 4 (Kieffer et 

al., 2006; Liu and Karmarkar, 2008). TOPLESS/TOPLESS RELATED, general 

corepressors for plant development (Causier et al., 2012b) were involved in hormone 

responses such as auxin, ABA, ethylene, and jasmonic acid (Causier et al., 2012a). 

Although the gene expression was not significantly changed in the root, proteomic 

results indicated that TOPLESS RELATED candidates were decreased and increased 

under flooding and drought, respectively. It suggested that decreased TOPLESS 

RELATED might weaken the repression of hormone-response to struggle against 

flooding, while increased TOPLESS RELATED might enhance the repression of 

hormone-response to impair root growth maintenance under drought. Taken together, 

these results indicate that TOPLESS RELATED corepressors might be involved in 

hormone responses for root growth in soybean under flooding and drought stresses. 

 

1.4.3. NADH dehydrogenase subunit 7 and villin 4 are involved in tolerance against 

flooding and drought in the early-stage soybean 

NADH dehydrogenase subunit 7, villin 4, and biotin/lipoyl attachment domain 

containing protein were identified as the organ-specific proteins in soybean under both 

stresses, which were validated at transcriptional level (Figure 5). NADH dehydrogenase 

limited the formation of ROS in mitochondria by regulating the mitochondrial electron 

transport chain (Moller, 2001). Komatsu et al. (2011a) reported that flooding impaired 

the electron transport chain in soybean. In the present study, NADH dehydrogenase 

subunit 7 was downregulated in soybean root exposed to flooding, suggesting that 

flooding negatively affected the function of mitochondria and thereby reduced the 

supply of ATP for soybean growth. However, it was increased in soybean exposed to 
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drought, indicating that drought might have opposite manner compared to flooding. 

Villins, a member of the villin/gelsolin/fragmin superfamily, were served as major 

actin filament-binding proteins to modulate actin dynamics (Du et al., 2011; Bao et al., 

2012; Huang et al., 2015). Knockout of the villin gene AtVLN4 inhibited the growth rate 

of root hairs, eliminated actin cables in root hairs, and disrupted cytoplasmic streaming 

(Zhang et al., 2011a). Except AtVLN1, four other members regulated actin dynamics on 

the calcium or calcium/calmodulin (Huang et al., 2005; Khurana et al., 2010; Zhang et 

al., 2010) dependent manner, repressing the length of actin filaments dependent on 

calcium (Zhang et al., 2011a). Here, villin 4, recognized as a root-specific protein, was 

increased at higher level under drought compared to flooding. Taken together, these 

suggest that soybean could adapt itself to drought through villin 4 to ensure 

cytoskeleton formation and cytoplasmic streaming, which is beneficial to promote 

growth of root hair to uptake water and nutrients from soil. 

 

1.4.4. Fermentation and protein metabolism are increased in root tip of the early-stage 

soybean under flooding and drought stresses 

Under flooding stress, fermentation was activated in the root tip over the 2-day 

exposure (Figure 6). Pyruvate dehydrogenase complex catalyzes the decarboxylation of 

pyruvate to acetaldehyde, and overexpression of PDC1 or PDC2 enhanced the survival 

of Arabidopsis under flooding (Ismond et al., 2003). Activity of ADH was reported to 

be enhanced in the root of flooding-tolerant sorghum during flooding stress (Jain et al., 

2010). ADH2 was a root-specific gene, which was mainly induced in root apical 

meristem in response to flooding (Komatsu et al., 2009b; Komatsu et al., 2011b), and 

overexpression of ADH2 eliminated the growth inhibition caused by flooding in the 

seedling stage of soybean (Tougou et al., 2012). The results indicate that fermentation 

metabolism might be enhanced in root tip of soybean to improve survival ability against 

flooding, but it might not function under drought. 

Functional analysis of identified proteins in the root tip under drought indicated 

that protein synthesis/degradation were significantly activated over time (Figure 6). 

Under drought, it was reported that an increased abundance of proteins were involved in 

protein metabolism in the root of Rangpur lime, which was the tolerant rootstock for 
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citrus (Oliveira et al., 2015). Furthermore, there was accumulation of proteins related to 

protein synthesis in the root of creeping bentgrass, which responded to increased 

endogenous cytokinins to enhance drought tolerance (Merewitz et al., 2011). Taken 

together, these findings suggest that enhanced protein metabolism might be essential for 

drought adaptation.  

 

1.4.5. S-adenosylmethionine synthetase family protein and B-S glucosidase 44 are 

related to soybean growth in the early stage under flooding and drought stresses 

Previous studies indicated that ETHYLENE OVERPRODUCER 1-like (Du et al., 

2014) and SAM synthetases (Oh and Komatsu, 2015) responded to flooding and 

drought. In the present study, 11 common proteins were identified under flooding and 

drought over time (Table 5). In silico protein-protein interaction analysis indicated that 

SAM synthetase family protein and B-S glucosidase 44 had different interaction 

patterns under control and stress conditions (Figure 8). B-S glucosidase 44 participates 

in starch and sucrose metabolism, leading to glucose producing (Fayaz et al., 2014), 

which was increased in the root tip exposed to flooding. Plant submergence increased 

ethylene production, which was thought to protect plants against low oxygen conditions 

by either enhancing shoot elongation or promoting fermentation (Pandey et al., 2008; 

Bailey-Serres and Voesenek, 2010). It was reported that the development of early 

seedling was regulated through an antagonistic interaction between glucose and 

ethylene, and ETHYLENE INTENSIVE 3 was involved in the interaction, which 

mediated protein stability (Rolland et al., 2006). In the present study, SAM synthetase 

family protein catalyzing formation of SAM synthetase was decreased under both 

stresses. The suppressive interaction between SAM synthetase family protein and B-S 

glucosidase 44 under drought may imply an antagonistic interaction between glucose 

and ethylene, leading to regulating soybean growth. On the other hand, inductive 

interaction might suggest that ethylene could promote B-S glucosidase 44 to accumulate 

glucose for carbohydrate consumption in supporting cellular metabolism under 

flooding. 

 

1.4.6. Early-stage soybean responses to flooding and drought stresses are regulated by 
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biotin-related proteins 

Biotin/lipoyl attachment domain containing protein is multidomain protein, in 

which biotin or lipoic was attached to the domain for protein biotinylation and 

lipoylation (Cui et al., 2006). Enzymes such as pyruvate carboxylase and acetyl-CoA 

carboxylase were biotin-dependent carboxylases that were involved in glucose, amino 

acid, and fatty acid metabolisms (Tissot et al., 1996; Rodriguez-Melendez and 

Zempleni, 2003). It was reported that genes responding to glucose were modulated by 

histone biotinylation (Depeint et al., 2006), and biotin deficiency resulted in cell death 

and activation of defense signaling for abiotic stress (Li et al., 2012a). Aminoacyl-tRNA 

synthetases were a family of enzymes which played roles in protein synthesis and 

transcriptional/translational regulation (Martinis et al., 1999a). These enzymes were 

grouped into two classes based on sequence motif, active site topology, tRNA binding 

site, and aminocaylation site (Martinis et al., 1999a; Mucha, 2002). Amino acids were 

served as precursors for biotin (Asensi-Fabado and Munné-Bosch, 2010). Protein 

abundance and gene expression of biotin/lipoyl attachment domain containing protein 

and Class II aminoacyl tRNA/biotin synthetases superfamily protein displayed that they 

responded to both stresses, and previous studies indicated that biotin and biotinylation 

were related to stress. Taken together, these findings imply the importance of biotin 

synthesis and biotinylation, and they could regulate biotin-dependent carboxylases and 

histone biotinylation to affect glucose metabolism under flooding and drought. 

 

1.4.7. Flooding and drought affect proteins related to photosynthesis, RNA, DNA, and 

signaling in soybean seedling 

Plant organs differentially respond to abiotic stresses, and organ-specific proteins 

are critical for plant growth and development (Komatsu and Hossain, 2013). Proteins 

related to RNA, DNA, and signaling were predominantly altered in soybean seedling 

under both stresses (Figure 13). Photosynthesis converts light energy to chemical energy 

in integrated photosynthetic-carbon metabolism processes and a systemic approach is 

needed to coordinately improve plant productivity under environmental stresses (Zhu et 

al., 2010). Starch granule accumulation and ABA signaling/stomatal conductance were 

previously found to contribute to reduced photosynthetic activity in soybean under 
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flooding and drought, respectively (Mutava et al., 2015). Proteins related to 

photosynthesis, metabolism, and stress/defense were differentially affected in response 

to flooding stress in tomato (Ahsan et al., 2007) and to drought stress in tobacco (Xie et 

al., 2016). In rice, drought and heat stresses induced transcriptional activation of several 

photosynthetic genes, leading to enhanced photosynthesis (Ambavaram et al., 2014). 

Taken together, the results of present study are not only in consistent with that energy 

metabolism is associated with flooding and drought stresses in soybean seedling, but 

also suggest that hormone signaling might contribute to photosynthesis in the hypocotyl 

and leaf.  

Several RNA-related proteins were significantly decreased in the root and 

hypocotyl of soybean seedling under flooding. Similarly, DNA-related proteins were 

markedly decreased in the hypocotyl in response to both stresses (Figure 13). Proteomic 

analysis indicated that RNA regulation-related proteins including glycine-rich RNA-

binding protein 3 and eukaryotic aspartyl protease were increased in protein abundance, 

suggesting that these proteins were required for promoting flooding tolerance in 

soybean at initial stage (Yin et al., 2016). Previously reported RNA-sequencing analysis 

demonstrated that genes related to RNA processing were downregulated in soybean 

during the first 6 h of flooding (Nanjo et al., 2011). Additionally, genes related to DNA 

metabolism were downregulated in both root and hypocotyl after 12 h of flooding 

(Nanjo et al., 2011). These results suggest that RNA and DNA metabolisms are sensitive 

to flooding stress and these processes might be negatively affected in root and hypocotyl 

with flooding duration. 

In addition to RNA- and DNA-related proteins, proteins related to signaling, such 

as 14-3-3 proteins, responded to both stresses (Figure 13). 14-3-3 proteins affected 

protein-protein interactions (Roberts et al., 2002) and involved in signal transduction 

under stresses (Liu et al., 2016). For example, overexpression of TFT6 and TFT7, which 

are members of the 14-3-3 family, enhanced tomato growth in response to low 

phosphorus stress (Xu et al., 2012). Additionally, overexpression of Arabidopsis 14-3-3 

in cotton resulted in fewer wilted leaves/higher photosynthetic rates and improved 

drought tolerance (Yan et al., 2004). Moreover, overexpression of 14-3-3 in potato 

increased the number and decreased the size of tubers; however, repression of 14-3-3 
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reversed these trends (Szopa, 2002). Collectively, these findings indicate that 14-3-3 

proteins regulate plant growth and stress responses, and they might be essential proteins 

in hypocotyl to help soybean seedling cope with flooding and drought. 

 

1.4.8. Proteins related to the tricarboxylic acid cycle are differentially affected in 

soybean seedling under flooding and drought stresses 

In root, pyruvate dehydrogenase was decreased under both stresses compared to 

control condition. Similarly, citrate synthase/malate dehydrogenase and succinyl-CoA 

synthetase were decreased under flooding and drought, respectively (Figure 14). In 

agreement with protein abundance, pyruvate dehydrogenase was downregulated under 

flooding (Nanjo et al., 2011) and drought (Agrawal et al., 2016), indicating that 

pyruvate dehydrogenase is critical enzyme connecting glycolysis and the tricarboxylic 

acid cycle for energy regulation. Citrate synthase converts acetyl-CoA to citrate and 

succinyl-CoA synthetase converts succinyl-CoA to succinate (Bailey-Serres and 

Voesenek, 2008) in the tricarboxylic acid cycle. Overproduction of citrate conferred 

aluminum tolerance to transgenic tobacco and papaya (Fuente et al., 1997), and 

enhancement of citrate synthase activity promoted root elongation in canola exposed to 

aluminum (Anoop et al., 2003). In addition, activation of γ-aminobutyric acid (GABA) 

shunt was observed in tomato due to reduction of succinyl-CoA synthetase activity 

below a certain threshold level (Studart-Guimarães et al., 2007). GABA was previously 

found to accumulate in soybean under flooding (Nakamura et al., 2012) and drought 

(Serraj et al., 1998). Taken together, the present and previous findings suggest that 

citrate synthase and succinyl-CoA synthetase play pivotal roles in the tricarboxylic acid 

cycle in the root of soybean seedling under flooding and drought, respectively, and that 

succinyl-CoA synthetase may have decreased involvement in the GABA shunt in 

drought-stressed plant. 

In hypocotyl of examined soybean seedling, more proteins responded to flooding 

and drought compared to control (Figure 14). Notably, succinate dehydrogenase, which 

plays a central role in respiratory metabolism as a component of electron transport chain 

and the tricarboxylic acid cycle (Araújo et al., 2011), was decreased under both stresses 

(Figure 14). In response to flooding, succinate dehydrogenase was decreased in root 
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including hypocotyl (Komatsu et al., 2011a; Kamal and Komatsu, 2015). Increased 

succinate dehydrogenase contributed to tolerance of short-term salt stress (Wang et al., 

2014a). Furthermore, upregulated succinate dehydrogenase was correlated with its 

increased activity in absence of mitochondrial damage in the drought-tolerant genotype 

of Ilex paraguariensis (Acevedo et al., 2013). Additionally, succinate dehydrogenase 

positively regulated the generation of ROS and loss-of-function mutant of succinate 

dehydrogenase 1-1 was susceptible to biotic stress (Gleason et al., 2011). The present 

results in combination with previous findings suggest that succinate dehydrogenase may 

play roles in modulating the tricarboxylic acid cycle in plant in response to biotic and 

abiotic stresses, such as flooding and drought. 

In leaf, proteins related to the tricarboxylic acid cycle were differentially 

decreased under flooding and drought (Figure 14). Compared to control plant, pyruvate 

dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase were decreased in 

response to flooding, whereas malate dehydrogenase increased in abundance under 

drought (Figure 14). Pyruvate dehydrogenase links glycolysis to the tricarboxylic acid 

cycle (Bailey-Serres and Voesenek, 2008) and pyruvate is oxidatively converted to 

acetyl-CoA to enable entry into the tricarboxylic acid cycle for energy production 

(Lakshmanan et al., 2013). In response to flooding, pyruvate was fermented to ethanol 

in soybean (Nanjo et al., 2010), and a truncated tricarboxylic acid cycle between 

fumarate and oxaloacetate was observed in rice (Lakshmanan et al., 2013). In addition, 

pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase were 

downregulated in the root of cucumber (Qi et al., 2012) and soybean (Nanjo et al., 2011) 

under flooding. Furthermore, malate dehydrogenase was increased in Arabidopsis in 

response to osmotic stresses (Ndimba et al., 2005). Overexpression of MdcyMDH 

contributed to plant growth and conferred tolerance in apple callus and tomato plants 

under cold and salt stresses (Yao et al., 2011). Overall, these findings indicate that 

pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase are 

negatively affected in soybean under flooding, and that increased malate dehydrogenase 

may be associated with drought adaptation in the leaf of soybean seedling. 

 

1.4.9. β-Amylase 5 mediates carbohydrate metabolism in soybean seedling under 
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flooding and drought stresses 

β-Glucosidase 31 was differentially affected in the root and leaf of soybean 

seedling in response to flooding and drought (Table 6, number 16). β-Glucosidase 31 

was downregulated in the root and in the leaf of plants induced by both stresses (Figure 

15). β-Glucosidases have various functions in plants, such as cell wall modification, 

defense, phytohormone signaling, and secondary metabolism (Cairns et al., 2015). β-

Glucosidase, which functions in cellulose hydrolysis by converting cellobiose to 

glucose (Singhania et al., 2013), was decreased in wheat seedling exposed to 2 days of 

flooding (Kong et al., 2010). CIBG1, which is a homologue of β-Glucosidase 1, was 

significantly downregulated in watermelon seedlings under drought (Li et al., 2012b). 

Loss-of-function of AtBG1, a β-glucosidase in Arabidopsis, resulted in the development 

of a drought-sensitive phenotype, whereas overexpression of AtBG1 led to enhanced 

drought tolerance in Arabidopsis (Lee et al., 2006). In the present study, β-glucosidase 

31 was downregulated upon the exposure of seedling to both stresses for 6 days; 

however, the corresponding protein abundance was increased, likely because of 

continued protein accumulation during stress exposure. These results suggest that β-

glucosidase 31 responds to flooding and drought in soybean seedling, and that the 

increased abundance of this protein might be associated with the adaptation of abiotic 

stresses. 

β-Amylase 5 was increased in the leaf of soybean seedling under both stresses 

compared to control condition and the protein level was in accordance with gene 

expression (Figure 15). Starch, which is hydrolyzed by β-amylase to maltose (Smith et 

al., 2005), is an abundant storage carbohydrate produced in plants (Orzechowski, 2008). 

In Arabidopsis, β-amylases were upregulated in response to drought, cold, and salt 

stresses (Seki et al., 2002). The induction of β-amylase correlated with the accumulation 

of maltose in Arabidopsis exposed to heat and cold shock on time-dependent manner 

(Kaplan and Guy, 2004). In addition, elevated β-amylase activity was found to be 

critical for rice survival during early-germination stage and for subsequent-seedling 

growth under flooding (Ella et al., 2010). The present results, as well as previous 

findings, suggest that β-amylase 5 is involved in starch degradation in soybean exposed 

to flooding and drought, and this enzyme might regulate carbohydrate mobilization to 
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increase energy provision in leaf of soybean seedling. 

 

1.5. Conclusion  

The present proteomic analysis characterized the organ-specific protein profiles of 

soybean in the early stage and seedling stage under flooding and drought stresses. The 

major findings are as follows (Figure 16): (i) root tip was the most sensitive organ 

affected by both stresses in the early-stage soybean; (ii) fermentation and protein 

metabolism were predominantly affected in root tip of the early-stage soybean under 

flooding and drought, respectively; (iii) biotin synthetase and biotin attachment domain 

contain protein were altered in root tip of the early-stage soybean under both stresses; 

(iv) proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid 

cycle were predominantly affected in seedling exposed to both stresses; (v) the 

tricarboxylic acid cycle was suppressed in root and leaf of seedling under both stresses; 

and (vi) increased protein abundance of β-amylase 5 was correlated with upregulated 

gene expression level in leaf of soybean seedling under both stresses. Taken together, 

these results suggest that root tip might be more sensitive towards both stresses in the 

early-stage soybean. Biotin and biotinylation might be involved in energy regulation in 

root tip of the early-stage soybean under flooding and drought. 
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Table 3. Primer sequences of genes selected for qRT-PCR in Chapter 1 

Protein ID a) Description  Sequence of primers (5’--- 3’) 

Glyma0776s50.1 NADH dehydrogenase subunit 7 F: TTCGAATTTCGGACCTCAAC 
  R: TCTTGGGCCATCGTAGAAAC’ 

Glyma09g06390.3 villin 4 F: CCACATTGATTGCACAGGAC 
  R: TTCTTTCCAATCCACGTTCC 

Glyma11g35740.1 biotin/lipoyl attachment domain containing protein F: AGCATTGGAGGCTTCTGGTA 
  R: AGGCTCTCCATCCTCAACAA 

Glyma08g20020.1 UGGT F: CGATTCTCTTGCGTCTTTCC 
  R: CAAACAGTTGCGGTCTCTGA 

Glyma13g44420.1 TOLESEE RELATED 1 F: GCCAATCCCTTATTTCGTGA 
  R: TCCTCCAGCCTTTGGTAATG’ 

Glyma03g39290.1 TOPLESS RELATED 3 F: TTGTGGATGCTGTCCAATGT 
  R: CCAATGCTGTGGAACAACAC 

Glyma13g22720.2 WUS interacting protein 2 F: GTCCCAGCGCTCAGATTAAG 
  R: TCGTTTGGAGGTGGAGTACC 

Glyma15g21890.1 SAM synthetase family F: GTGCTTCTGGAAGTTAAAATGG 
  R: TGATCTCTCCGAAAACCATC 

Glyma03g38190.3 SAM synthetase 1 F: GACTGGCAGTATATCCAGTTACAG 
  R: GATGCAAAAGAAGGGTGAT 

Glyma19g40810.1 SAM synthetase 2 F: CTGCTTCTTCAGCTTGAGAAATG 
  R: CAAAGACCATGACCATGTTGG 

Glyma17g34070.1 Class II aminoacyl tRNA/biotin synthetases superfamily protein F: CTGAAGCGGAAAGGAAATTG 
  R: ACACGCTGAGCTCCTGAAAT 

Glyma08g15960.3 β-glucosidase 31 F: GCATGGCTGAATCAAGGAAT 
  R: TGTAACCAGCATCCCATTCA 

Glyma06g45700.1 β-amylase 5 F: GGTGTGGACAACGAGCCTAT 
  R: GAAATTCGCCAATACCAGGA 

X02623.1b) 18S rRNA F: TGATTAACAGGGACAGTCGG 

    R: ACGGTATCTGATCGTCTTCG 

a, Protein ID according to Phytozome soybean genome database; b, according to Genebank. 
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Table 4. List of common proteins identified in the root tip, root, hypocotyl, and cotyledon of the early-stage soybean under flooding and drought stresses 

   Control  2(0)a) 4(0) Flooding 4(2) Drought 4(2)  

 Protein ID Description M.P. Ratio  Ratio M.P. Ratio M.P. Ratio Function 

Root tip 

1 Glyma11g35740.1 biotin/lipoyl attachment domain containing protein 3 1 1.52 2 0.67 4 1.76 lipid metabolism 

2 Glyma13g32660.1 pyrophosphorylase 6 6 1 1.41 2 0.35 6 1.40 nucleotide metabolism 

3 Glyma13g43430.2 PDI like 16 5 1 0.67 6 0.58 6 0.69 redox 

4 Glyma09g37860.1 RAS 5 3 1 0.64 3 0.68 2 0.65 signaling 

5 Glyma02g13330.1 reversibly glycosylated polypeptide 3 15 1 0.62 14 0.61 15 0.79 cell wall 

6 Glyma01g33220.2 plant VAP homolog 12 4 1 0.62 3 0.39 4 0.62 protein 

7 Glyma03g03800.1 plant VAP homolog 12 4 1 0.62 3 0.39 4 0.62 protein 

8 Glyma20g01220.1 oxidoreductases acting on the aldehyde 4 1 0.60 4 0.70 4 0.71 amino acid metabolism 

9 Glyma03g42150.1 RNA binding family protein 3 1 0.59 4 0.41 5 0.71 RNA 

10 Glyma19g44860.1 RNA binding family protein 3 1 0.59 4 0.41 5 0.71 RNA 

11 Glyma06g05770.1 nitrilase/cyanide hydratase 3 1 0.58 3 0.62 3 0.60 not assigned 

12 Glyma04g40750.2 CTC interacting domain 11 2 1 0.58 2 0.40 2 0.68 RNA 

13 Glyma04g40760.1 CTC interacting domain 11 2 1 0.58 2 0.40 2 0.68 RNA 

14 Glyma06g14030.1 CTC interacting domain 11 2 1 0.58 2 0.40 2 0.68 RNA 

15 Glyma06g14050.3 CTC interacting domain 11 2 1 0.58 2 0.40 2 0.68 RNA 

16 Glyma09g02731.1 glycosyl hydrolase family protein 7 1 0.58 6 0.47 6 0.68 misc 

17 Glyma15g13620.1 glycosyl hydrolase family protein 7 1 0.58 6 0.47 6 0.68 misc 

18 Glyma10g43590.1 Ras related small GTP binding family protein 3 1 0.58 3 0.57 3 0.66 signaling 

19 Glyma11g15120.1 Ras related small GTP binding family protein 3 1 0.58 3 0.57 3 0.66 signaling 

20 Glyma12g07070.1 Ras related small GTP binding family protein 3 1 0.57 3 0.57 3 0.66 signaling 

21 Glyma13g40870.3 RAB GTPase homolog 8A 3 1 0.57 3 0.57 3 0.66 signaling 

22 Glyma15g04560.2 Ras related small GTP binding family protein 3 1 0.57 3 0.57 3 0.66 signaling 

23 Glyma18g52450.1 Ras related small GTP binding family protein 3 1 0.57 3 0.57 3 0.66 signaling 

24 Glyma20g23210.5 Ras related small GTP binding family protein 3 1 0.57 3 0.57 3 0.66 signaling 

25 Glyma10g35230.1 Ras related small GTP binding family protein 2 1 0.54 2 0.61 2 0.57 signaling 

26 Glyma20g32320.1 Ras related small GTP binding family protein 2 1 0.54 2 0.61 2 0.57 signaling 

27 Glyma10g42630.1 GHMP kinase family protein 4 1 0.54 4 0.54 4 0.79 secondary metabolism 

28 Glyma18g07030.1 cyclophilin 5 2 1 0.53 2 0.61 3 0.69 cell 

29 Glyma02g04980.1 RNA binding family protein 2 1 0.52 2 0.37 2 0.66 RNA 

30 Glyma16g23010.1 RNA binding family protein 2 1 0.52 2 0.37 2 0.66 RNA 
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31 Glyma07g03930.1 dihydrolipoamide acetyltransferase long form protein 11 1 0.52 10 0.61 11 0.72 TCA cycle 

32 Glyma16g00590.1 dihydrolipoamide acetyltransferase long form protein 10 1 0.51 10 0.61 10 0.71 TCA cycle 

33 Glyma19g39710.1 amino acid dehydrogenase family protein 5 1 0.50 5 0.64 5 0.65 C1-metabolism 

34 Glyma16g29450.3 phosphatase related 4 1 0.50 3 0.53 4 0.66 protein 

35 Glyma03g37080.4 amino acid dehydrogenase family protein 5 1 0.49 5 0.65 5 0.65 C1-metabolism 

36 Glyma19g33140.1 ahal domain containing protein 4 1 0.47 4 0.50 4 0.61 not assigned 

37 Glyma03g05135.1 phosphoglucomutase 4 1 0.46 4 0.57 4 0.68 glycolysis 

38 Glyma17g08491.1 UDP glucose 6 dehydrogenase family protein 5 1 0.46 5 0.60 5 0.63 cell wall 

39 Glyma05g00590.2 UDP glucose 6 dehydrogenase family protein 4 1 0.45 4 0.58 4 0.62 cell wall 

40 Glyma10g15910.1 S formylglutathione hydrolase 4 1 0.44 4 0.47 4 0.45 C1-metabolism 

41 Glyma17g16850.1 N.D.* 4 1 0.43 3 0.10 4 0.90 not assigned 

42 Glyma14g01850.6 20S proteasome β-subunit PBB2 2 1 0.43 2 0.60 2 0.67 protein 

43 Glyma11g04650.1 peptidase M20/M25/M40 family protein 6 1 0.43 6 0.62 6 0.58 protein 

44 Glyma02g45030.1 putative mitochondrial RNA helicase 2 8 1 0.42 7 0.31 8 0.45 RNA 

45 Glyma05g27980.1 Rubber elongation factor protein (REF) 2 1 0.42 2 0.50 2 0.54 not assigned 

46 Glyma08g04460.1 ATP dependent caseinolytic protease 5 1 0.41 5 0.33 6 0.68 lipid metabolism 

47 Glyma07g00510.2 galactose mutarotase like superfamily protein 2 1 0.41 2 0.47 2 0.59 minor CHO metabolism 

48 Glyma08g23910.2 galactose mutarotase like superfamily protein 2 1 0.41 2 0.47 2 0.59 minor CHO metabolism 

49 Glyma18g52860.1 O Glycosyl hydrolases family 17 protein 5 1 0.40 5 0.40 5 0.61 misc 

50 Glyma07g02470.1 protein phosphatase 2C family protein 2 1 0.39 2 0.29 2 0.77 protein 

51 Glyma08g23550.1 protein phosphatase 2C family protein 2 1 0.393 2 0.29 2 0.77 protein 

52 Glyma10g35490.1 phosphoglucosamine mutase family protein 6 1 0.38 6 0.46 6 0.49 glycolysis 

53 Glyma03g41210.1 rotamase cyclophilin 2 5 1 0.38 4 0.50 5 0.67 cell 

54 Glyma13g00780.1 galactose mutarotase like superfamily protein  7 1 0.37 7 0.51 8 0.57 minor CHO metabolism 

55 Glyma17g38130.2 ubiquitin like superfamily protein 3 1 0.37 3 0.45 3 0.71 protein 

56 Glyma05g03320.1 purple acid phosphatase 27 3 1 0.37 3 0.55 3 0.46 misc 

57 Glyma20g32030.1 phosphoglucosamine mutase family protein 7 1 0.36 7 0.45 7 0.50 glycolysis 

58 Glyma20g16070.1 heat shock protein 70 (Hsp70) family protein 6 1 0.35 6 0.57 5 0.23 stress 

59 Glyma13g42270.1 pyridoxal 5 phosphate dependent enzyme family protein 3 1 0.35 3 0.38 3 0.59 amino acid metabolism 

60 Glyma15g03120.1 pyridoxal 5 phosphate dependent enzyme family protein 3 1 0.35 3 0.38 3 0.59 amino acid metabolism 

61 Glyma01g44833.1 O acetylserine (thiol) lyase (OAS TL) isoform A1 2 1 0.34 4 0.61 3 0.46 amino acid metabolism 

62 Glyma08g42730.1 α/β-Hydrolases superfamily protein 3 1 0.33 4 0.54 2 0.47 protein 

63 Glyma12g01291.1 transducin family protein/WD 40 repeat family protein 9 1 0.33 8 0.22 9 0.59 not assigned 

64 Glyma01g42120.2 glycine cleavage T protein family 5 1 0.33 5 0.58 5 0.51 not assigned 

65 Glyma15g12100.1 fumarylacetoacetase putative 6 1 0.33 6 0.62 6 0.40 amino acid metabolism 
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66 Glyma18g10460.2 HIS HF 10 1 0.32 10 0.58 10 0.54 amino acid metabolism 

67 Glyma18g12920.1 HIS HF 10 1 0.32 10 0.58 10 0.54 amino acid metabolism 

68 Glyma13g02870.1 peptidase M20/M25/M40 family protein 3 1 0.32 3 0.66 3 0.53 misc 

69 Glyma11g19550.1 UDP D apiose/UDP D xylose synthase 2 5 1 0.31 5 0.44 6 0.62 cell wall 

70 Glyma09g06380.2 galactose mutarotase like superfamily protein 6 1 0.31 6 0.49 7 0.52 minor CHO metabolism 

71 Glyma15g17630.5 galactose mutarotase like superfamily protein 6 1 0.31 6 0.49 7 0.52 minor CHO metabolism 

72 Glyma13g10700.1 heat shock protein 70 (Hsp70) family protein 8 1 0.31 8 0.52 8 0.26 stress 

73 Glyma12g08930.1 UDP D apiose/UDP D xylose synthase 2 5 1 0.30 6 0.44 7 0.61 cell wall 

74 Glyma05g38120.1 UDP D glucose/UDP D galactose 4 epimerase 1 2 1 0.29 2 0.26 2 0.13 cell wall 

75 Glyma08g01480.1 UDP D glucose/UDP D galactose 4 epimerase 1 2 1 0.29 2 0.26 2 0.13 cell wall 

76 Glyma04g38590.1 β-galactosidase 10 7 1 0.28 7 0.49 7 0.42 misc 

77 Glyma16g27030.1 tubulin α 3 5 1 0.27 5 0.43 5 0.51 cell 

78 Glyma06g16420.2 β-galactosidase 10 5 1 0.26 5 0.42 5 0.33 misc 

79 Glyma20g19000.1 potassium channel β-subunit 1 4 1 0.25 5 0.61 4 0.41 transport 

80 Glyma05g28500.1 subtilisin like serine endopeptidase family protein 2 1 0.22 2 0.54 2 0.28 protein 

81 Glyma10g24620.1 potassium channel β subunit 1 4 1 0.22 5 0.60 4 0.39 transport 

82 Glyma02g10790.1 protein phosphatase 2A subunit A2 2 1 0.21 2 0.39 2 0.42 protein 

83 Glyma11g15010.1 UDP XYL synthase 6 8 1 0.21 8 0.52 8 0.45 cell wall 

84 Glyma05g34900.1 arginosuccinate synthase family 5 1 0.20 4 0.46 5 0.32 amino acid metabolism 

85 Glyma04g40090.1 nucleic acid binding OB fold like protein 2 1 0.20 2 0.44 2 0.37 protein 

86 Glyma06g14760.1 nucleic acid binding OB fold like protein 5 1 0.19 5 0.50 5 0.39 protein 

87 Glyma11g11410.1 subtilisin like serine protease 2 2 1 0.15 2 0.26 2 0.34 protein 

88 Glyma05g05460.1 glutamate dehydrogenase 2 3 1 0.15 4 0.41 3 0.12 N-metabolism 

89 Glyma17g15740.1 glutamate dehydrogenase 2 3 1 0.15 4 0.41 3 0.12 N-metabolism 

90 Glyma05g37430.2 monodehydroascorbate reductase 6 2 1 0.14 2 0.54 2 0.38 redox 

91 Glyma08g02100.1 monodehydroascorbate reductase 6 2 1 0.14 2 0.54 2 0.38 redox 

92 Glyma11g31450.1 regulatory particle triple A ATPase 3 4 1 0.142 3 0.56 3 0.15 protein 

93 Glyma11g31470.1 regulatory particle triple A ATPase 3 3 1 0.14 3 0.56 3 0.15 protein 

94 Glyma09g08120.1 subtilase family protein 3 1 0.11 3 0.02 3 0.22 protein 

95 Glyma12g06970.1 dessication induced 1VOC superfamily protein 3 1 0.09 3 0.61 3 0.12 biodegradation of xenobiotics 

Root  

1 Glyma12g09940.2 FAD/NAD(P) binding oxidoreductase family protein 7 1 5.71 5 1.28 6 4.02 not assigned 

2 Glyma11g18320.1 FAD/NAD(P) binding oxidoreductase family protein 10 1 5.02 6 1.28 10 4.38 not assigned 

3 Glyma01g31750.1 disease resistance responsive family protein 4 1 4.58 4 1.33 4 3.64 stress 

4 Glyma09g02670.1 peroxidase 2 2 1 2.83 2 1.38 2 2.48 misc 
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5 Glyma15g13540.2 peroxidase 2 2 1 2.83 2 1.38 2 2.48 misc 

6 Glyma0776s50.1 NADH dehydrogenase subunit 7 4 1 2.11 3 0.64 3 2.73 mito. ETC 

7 Glyma10g35381.1 phenylalanine ammonia lyase 2 3 1 2.08 2 0.03 4 1.69 secondary metabolism 

8 Glyma20g32135.1 phenylalanine ammonia lyase 2 3 1 2.08 2 0.03 4 1.69 secondary metabolism 

9 Glyma04g08070.1 FAD dependent oxidoreductase family protein 4 1 2.06 3 1.04 3 1.52 amino acid metabolism 

10 Glyma03g25740.1 nucleotidylyl transferase superfamily protein 5 1 2.05 2 0.52 5 1.76 protein 

11 Glyma03g36470.1 eukaryotic translation initiation factor 3C 12 1 2.03 6 0.35 10 1.95 protein 

12 Glyma16g27440.1 uridine diphosphate glycosyltransferase 74E2 5 1 1.99 5 1.29 5 1.70 hormone metabolism 

13 Glyma06g22050.1 gamma subunit of Mt ATP synthase 4 1 1.94 4 1.23 4 1.83 mito. ETC 

14 Glyma03g33880.1 PHE ammonia lyase 1 5 1 1.94 4 0.01 6 1.66 secondary metabolism 

15 Glyma03g33890.1 PHE ammonia lyase 1 5 1 1.94 4 0.01 6 1.66 secondary metabolism 

16 Glyma19g36620.1 PHE ammonia lyase 1 5 1 1.94 4 0.01 6 1.66 secondary metabolism 

17 Glyma07g30090.1 β-ureidopropionase 8 1 1.86 7 1.35 6 1.75 nucleotide metabolism 

18 Glyma18g44250.1 PYRIMIDINE 4 8 1 1.60 2 0.72 5 1.35 amino acid metabolism 

19 Glyma14g38600.1 eukaryotic translation initiation factor 2 β subunit 3 1 1.58 3 0.64 4 1.37 protein 

20 Glyma05g34120.5 translation elongation factor EF1A 6 1 1.57 5 0.49 6 1.52 signaling 

21 Glyma08g05570.1 translation elongation factor EF1A 6 1 1.56 4 0.49 5 1.56 signaling 

22 Glyma05g30530.1 damaged DNA binding protein 1A 3 1 1.43 2 0.59 2 1.46 stress 

23 Glyma08g13680.1 damaged DNA binding protein 1A 3 1 1.43 2 0.59 2 1.46 stress 

24 Glyma03g39290.1 TOPLESS RELATED 3 2 1 1.36 2 0.68 2 1.59 development 

25 Glyma10g29090.1 TOPLESS RELATED 3 2 1 1.36 2 0.68 2 1.59 development 

26 Glyma13g22720.2 WUS interacting protein 2 2 1 1.36 2 0.68 2 1.59 development 

27 Glyma13g44420.1 TOPLESS RELATED 1 2 1 1.36 2 0.68 3 1.59 development 

28 Glyma17g12110.1 WUS interacting protein 2 2 1 1.36 2 0.68 2 1.59 development 

29 Glyma19g41840.1 TOPLESS RELATED 3 2 1 1.36 2 0.68 2 1.59 development 

30 Glyma20g38230.1 TOPLESS RELATED 3 2 1 1.36 2 0.68 2 1.59 development 

31 Glyma07g03490.3 phospholipase D alpha 1 20 1 1.32 17 0.77 19 1.17 lipid metabolism 

32 Glyma09g06390.3 villin 4 2 1 1.31 2 0.65 4 1.75 cell 

33 Glyma15g17640.2 villin 4 2 1 1.31 2 0.65 4 1.75 cell 

34 Glyma18g12900.1 villin 4 2 1 1.31 2 0.65 2 1.83 cell 

35 Glyma08g20020.1 UGGT 4 1 1.26 3 0.32 4 1.60 protein 

36 Glyma11g03800.1 acyl CoA oxidase 1 7 1 1.26 8 1.29 7 0.88 lipid metabolism 

37 Glyma01g38580.1 clathrin heavy chain 15 1 1.13 12 0.64 15 1.05 cell 

38 Glyma07g21100.1 allene oxide synthase 7 1 1.12 2 0.81 7 0.91 hormone metabolism 

39 Glyma11g06720.1 clathrin heavy chain 15 1 1.10 11 0.64 14 1.03 cell 



  

43 

 

40 Glyma14g37510.1 clathrin heavy chain 13 1 1.05 10 0.56 13 1.01 cell 

41 Glyma12g02076.1 methionine tRNA ligase putative  8 1 0.66 7 0.54 9 0.44 protein 

42 Glyma09g01320.1 N.D.* 2 1 0.47 2 0.30 2 0.53 not assigned 

43 Glyma08g22380.1 protein of unknown function DUF642 3 1 0.46 3 0.72 3 0.22 not assigned 

44 Glyma19g41660.3 adenine nucleotide alpha hydrolases like superfamily 2 1 0.41 2 1.88 2 0.44 hormone metabolism 

45 Glyma18g44300.1 lipid transfer protein 1 2 1 0.19 2 0.53 2 0.29 lipid metabolism 

46 Glyma12g01700.1 nucleotide diphospho sugar transferases superfamily  2 1 0.09 2 2.21 2 0.26 not assigned 

Hypocotyl 

1 Glyma09g14870.1 temperature induced lipocalin 2 1 0.46 2 0.32 2 0.29 transport 

2 Glyma08g46520.1 cytochrome P450 family 93 subfamily D polypeptide 1 2 1 0.25 2 0.28 2 0.08 misc 

3 Glyma10g39170.1 cupin family protein 6 1 0.19 6 0.15 6 0.12 development 

Cotyledon  

1 Glyma01g41401.1 ribosomal protein L19 family protein 2 1 3.75 2 1.21 2 2.77 protein 

2 Glyma11g10040.1 hydroxymethylbilane synthase 2 1 2.91 2 0.66 2 2.11 tetrapyrrole synthesis 

3 Glyma12g02385.1 hydroxymethylbilane synthase 2 1 2.91 2 0.66 3 2.28 tetrapyrrole synthesis 

4 Glyma11g11900.1 fructose bisphosphate aldolase 2 6 1 2.58 2 0.74 5 2.06 photosynthesis 

5 Glyma12g04150.1 fructose bisphosphate aldolase 2 6 1 2.58 2 0.74 5 2.06 photosynthesis 

6 Glyma17g20150.1 2 cysteine peroxiredoxin B 2 1 2.26 2 0.68 2 1.59 redox 

7 Glyma19g38520.2 2 cysteine peroxiredoxin B 2 1 2.26 2 0.68 2 1.59 redox 

8 Glyma03g35860.1 2 cysteine peroxiredoxin B 3 1 2.25 2 0.68 2 1.59 redox 

9 Glyma11g06280.1 reticulan like protein B13 3 1 0.54 3 0.80 3 0.62 not assigned 

10 Glyma10g33760.1 oleosin 1 3 1 0.32 3 0.61 3 0.44 lipid metabolism 

a), day after sowing (day after stress); *, no description in Phytozome database; Protein ID, according to the Phytozome soybean genome database; M.P., number of the matched peptides; 

Ratio, relative abundance of protein; Function, protein function was categorized using MapMan bin codes; RNA, regulation of transcription/processing/RNA binding; TCA, tricarboxylic 

acid; mito. ETC, mitochondrial electron transport chain; C1-metabolism, carbon 1-metabolism; minor CHO metabolism, minor carbohydrate metabolism; N-metabolism, nitrogen 

metabolism; misc, miscellaneous enzyme family. 
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Table 5. List of common proteins identified in root tip of the early-stage soybean under flooding and drought stresses on time-dependent manner 

   Control Ratio Flooding Ratio Drought Ratio  

 Protein ID Description 2(0)a) 3(0) 4(0) 2(0) 3(1) 4(2) 2(0) 3(1) 4(2) Function 

1 Glyma03g38190.3 SAM synthetase 1 1 1.32 1.06 1 0.27 0.25 1 0.64 0.97 amino acid metabolism 

2 Glyma19g40810.1 SAM synthetase 2 1 1.32 1.06 1 0.27 0.25 1 0.65 0.98 amino acid metabolism 

3 Glyma15g21890.1 SAM synthetase family protein 1 1.55 1.18 1 0.29 0.23 1 0.67 1.14 metal handling 

4 Glyma05g29050.1 mitochondrial substrate carrier  1 2.43 3.06 1 0.20 3.10 1 4.57 5.84 transport 

5 Glyma08g12200.1 mitochondrial substrate  1 2.43 2.67 1 0.20 3.10 1 4.57 5.84 transport 

6 Glyma07g11310.1 B-S glucosidase 44 1 0.55 0.23 1 0.75 0.53 1 0.55 0.13 misc 

7 Glyma09g30910.1 B-S glucosidase 44 1 0.66 0.44 1 0.82 0.61 1 0.55 0.17 misc 

8 Glyma08g47790.1 aldolase type TIM barrel family protein 1 2.06 1.96 1 0.09 2.35 1 1.42 2.50 OPP 

9 Glyma18g53700.1 aldolase type TIM barrel family protein 1 2.06 1.96 1 0.09 2.35 1 1.42 2.50 OPP 

10 Glyma05g01010.1 malate dehydrogenase 1 2.29 1.57 1 1.19 1.72 1 1.86 1.54 TCA cycle 

11 Glyma17g34070.1 Class II aminoacyl tRNA/biotin synthetases superfamily protein 1 1.05 1.10 1 0.84 1.24 1 1.35 1.68 protein 

a), day after sowing (day after stress); Protein ID, according to the Phytozome soybean genome database; M.P., number of the matched peptides; Ratio, relative abundance of protein; 

Function, protein function was categorized using MapMan bin codes; OPP, oxidative pentose phosphate pathways; TCA, tricarboxylic acid; misc, miscellaneous enzyme family. 
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Table 6. List of common proteins identified in the root, hypocotyl, and leaf of soybean seedling under flooding and drought stresses 

   Control 12(0)a) Ratio Flooding 12(6) Ratio Drought 12(6) Ratio   
Protein ID Description Root Hypocotyl Leaf Root Hypocotyl Leaf Root Hypocotyl Leaf Function 

1 Glyma17g04210.1 lipoamide dehydrogenase 2 0.98 2.10 2.10 1.00 1.50 1.99 0.83 1.46 1.41 TCA cycle 

2 Glyma07g39380.1 phosphofructokinase 1.87 1.50 1.50 1.18 1.43 1.20 1.00 1.67 2.07 glycolysis 

3 Glyma20g25920.1 ATP synthase α/β 0.86 0.81 0.81 1.00 1.45 0.73 1.00 1.41 1.00 mito. ETC 

4 Glyma08g11490.1 serine hydroxymethyltransferase 4 0.94 0.81 0.81 0.80 1.43 0.67 0.77 1.72 1.00 C1-metabolism 

5 Glyma05g28490.1 serine hydroxymethyltransferase 4 0.94 0.72 0.72 0.79 1.45 0.66 0.77 1.73 1.00 C1-metabolism 

6 Glyma04g43540.1 methylenetetrahydrofolate reductase 2 0.73 0.71 0.71 0.71 1.84 0.74 1.00 1.78 0.68 C1-metabolism 

7 Glyma06g48360.1 methylenetetrahydrofolate reductase 2 0.73 0.71 0.71 0.71 1.83 0.74 1.00 1.75 0.68 C1-metabolism 

8 Glyma11g29460.1 NAD(P) binding Rossmann fold  1.91 0.50 0.50 1.00 2.09 1.53 1.00 1.91 1.00 secondary metabolism 

9 Glyma07g03930.1 dihydrolipoamide acetyltransferase  1.54 0.40 0.40 1.00 1.22 0.59 1.59 1.55 0.57 TCA cycle 

10 Glyma13g41960.1 pfkB like carbohydrate kinase  1.08 0.40 0.40 0.63 1.60 0.30 1.19 2.42 0.58 major CHO metabolism 

11 Glyma16g00590.1 dihydrolipoamide acetyltransferase  1.57 0.39 0.39 1.00 1.30 0.58 1.64 1.62 0.51 TCA cycle 

12 Glyma14g04180.1 N.D.* 1.45 0.39 0.39 1.00 1.07 1.00 1.53 1.31 0.70 development 

13 Glyma11g13580.1 pfkB like carbohydrate kinase  1.10 0.38 0.38 0.73 2.02 0.29 1.16 2.06 0.53 major CHO metabolism 

14 Glyma12g05580.1 pfkB like carbohydrate kinase  1.08 0.38 0.38 0.70 1.97 0.29 1.16 2.16 0.53 major CHO metabolism 

15 Glyma08g15960.3 β-glucosidase 31 0.63 0.80 0.33 2.77 0.73 0.42 2.62 0.54 0.41 misc 

16 Glyma06g45700.1 β-amylase 5 1.36 0.27 0.27 1.83 1.89 1.22 2.73 1.68 0.41 major CHO metabolism 

17 Glyma17g05067.1 sucrose synthase 4 1.39 0.11 0.11 1.00 1.00 0.12 2.83 3.59 0.15 major CHO metabolism 

a), day after sowing (day after stress); *, no description in Phytozome database; Protein ID, according to the Phytozome soybean genome database; Ratio, relative abundance of protein 

was compared to 6-day-old untreated soybean; Function, protein function was categorized using MapMan bin codes; TCA, tricarboxylic acid; mito. ETC, mitochondrial electron transport 

chain; C1-metabolism, carbon 1-metabolism; major CHO metabolism, major carbohydrate metabolism; misc, miscellaneous enzyme family. 
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Figure 2. Experimental design of the organ-specific proteomics in the early stage and 

seedling stage soybean exposed to flooding and drought. For organ-specific experiments 

in the early-stage soyben, 2-day-old soybeans were treated without or with flooding and 

drought for 2 days, and the root tip, root, hypocotyl, and cotyledon were collected. For 

organ-specific experiments in soybean seedling, 6-day-old soybeans were treated 

without or with flooding and drought for 6 days. Root, hypocotyl, and leaf were 

collected. Three independent experiments were performed as biological replicates. 

Three independent experiments were performed as biological replicates. 
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Figure 3. Morphological changes in soybean exposed to flooding and drought. Two-day-

old soybeans were exposed to flooding or drought for 1 day. Photographs of soybeans 

were taken under control, flooding (F), and drought (D). Untreated soybeans were 

collected as controls. Fresh weight of plant, fresh weight of root including hypocotyl, 

length of root including hypocotyl, and dry weight of plant were measured at each 

condition. Data are shown as means ± SD from three independent biological replicates. 

Student’s t-test was used for statistical analysis. Asterisks indicate the significance 

between 3-day-old soybeans without or with flooding or drought (*p<0.05, **p<0.01, 

***p<0.001). Scale bar indicates 10 mm. 
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Figure 4. Venn diagrams of significantly changed organ-specific proteins in the early-

stage soybean under flooding and drought. Two-day-old soybeans were treated without 

or with flooding and drought for 2 days. Protein samples were extracted from root tip, 

root, hypocotyl, and cotyledon and then analyzed by nanoLC-MS/MS. Untreated 

soybeans were used as controls. The venn diagrams show the number of changed 

proteins among control, flooding, and drought in root tip (RT, dark blue), root (R, 

yellow), hypocotyl (H, green), and cotyledon (C, red). 
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Figure 5. Effects of flooding and drought on gene expression level of the genes 

encoding organ-specific proteins in the early-stage soybean. Two-day-old soybeans 

(2(0)) were treated without stress (4(0)), with flooding for 2 days (4(2)F), and with 

drought for 2 days (4(2)D), and RNA samples were extracted from root tip, root, 

hypocotyl, and cotyledon. Untreated soybeans were used as control. Gene expression 

was normalized against that of 18S rRNA. Data are shown as means ± SD from three 

independent biological replicates. Different letter indicates the change is significant, as 

determined by one-way ANOVA according to Tukey’s Multiple multiple comparison 

test (p<0.05). 
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Figure 6. Functional analysis of the identified proteins in root tip of the early-stage 

soybean exposed to flooding and drought over time. Functional analysis of identified 

proteins was performed using MapMan bin codes. In control, the functional categories 

of proteins decreased (A) and increased (B) are shown; under flooding, the functional 

categories of proteins decreased (C) and increased (D) are shown; under drought, the 

functional categories of proteins decreased (E) and increased (F) are shown. 

Abbreviations are as follows: PS, photosynthesis; TCA, tricarboxylic acid; misc, 

miscellaneous enzyme family. Others included C1-metabolism, development, DNA, 

major carbohydrate metabolism, minor CHO metabolism, metal handling, nucleotide 

metabolism, and oxidative pentose phosphate pathway. The numbers in the pie graph 

indicate the percentage of proteins in each category. 
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Figure 7. Cluster analysis of commonly changed proteins in root tip of the early-stage 

soybean under flooding and drought over time. Two-day-old soybeans were treated 

without or with flooding and drought for 1 and 2 days. Protein samples were extracted 

from root tip of 2-, 3-, and 4-day-old soybeans without stress (Control); 2-day-old 

soybeans exposed to flooding for 1 and 2 days (Flooding); and 2-day-old soybeans 

treated with drought for 1 and 2 days (Drought). In total, 11 common proteins were 

identified among control, flooding, and drought conditions over time. Black lines 

denoted the significant clusters based on the logarithmic values of protein abundance. 

The numbers in the figure show the protein number and correspond to those in Table 5. 

  



  

53 

 

 
Figure 8. In silico protein-protein interaction of commonly identified proteins in root tip 

of the early-stage soybean under flooding and drought over time. Two-day-old soybeans 

were treated without or with flooding and drought for 1 and 2 days, and protein samples 

were extracted from root tip. Eleven common proteins among control, flooding, and 

drought conditions were analyzed. Protein interactions were estimated based on 

temporal protein abundance. Interactions showing an r2 (coefficient of determination) of 

more than 0.8 were considered as candidate interactions. In the interactions, a red arrow 

indicates an inductive interaction, and a blue T-bar indicates a suppressive interaction. 

The numbers in the figure show the protein number and correspond to those in Table 5. 
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Figure 9. Effects of flooding and drought on gene expression of SAM synthetases in 

root tip of the early-stage soybean. Two-day-old soybeans were treated without or with 

flooding (F) and drought (D) for 2 days. RNA samples were extracted from root tip and 

subjected to gene expression analysis. Untreated soybeans were used as controls. Gene 

expression was normalized against that of 18S rRNA. Data are shown as means ± SD 

from three independent biological replicates. Different letter indicates the change is 

significant, as determined by one-way ANOVA according to Tukey’s Multiple multiple 

comparison test (p<0.05). 
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Figure 10. Protein abundance and gene expression of biotin/lipoyl attachment domain 

containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein 

in root tip of the early-stage soybean. Two-day-old soybeans were treated without or 

with flooding and drought for 1 and 2 days. Protein samples were extracted from root 

tip and analyzed by nanoLC-MS/MS. RNA samples were extracted from the root tip and 

subjected to qRT-PCR analysis. Untreated soybeans were used as controls. The protein 

abundance was acquired by comparison to untreated soybeans using SIEVE software 

(p<0.05). Gene expression was normalized against that of 18S rRNA. Data are shown as 

means ± SD from three independent biological replicates. Student’s t-test analysis was 

used to evaluate protein abundance and gene expression. Two-day-old untreated 

soybean was used as the comparison point among control, flooding, and drought. The 

asterisks indicate significance between different time points (*p<0.05, **p <0.01). 
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Figure 11. Organ-specific enzyme assay of alcohol dehydrogenase and pyrroline-5-

carboxylate synthase in soybean seedling under flooding and drought. Six-day-old 

soybeans were treated without or with flooding and drought for 4, 6, and 8 days. 

Enzyme activities of ADH and P5CS were examined in root and leaf of soybean under 

control (C), flooding (F), and drought (D) on time-dependent manner (A). Enzyme 

activities of ADH and P5CS were examined in root and leaf of soybean at indicated 

points among different conditions (B). Data are shown as means ± SD from three 

independent biological replicates. Different letter indicates the change is significant, as 

determined by one-way ANOVA according to Tukey’s multiple comparison test 

(p<0.05). Abbreviations are as follows: ADH, alcohol dehydrogenase; P5CS, pyrroline-

5-carboxylate synthase. 
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Figure 12. Venn diagrams of flooding- and drought-responsive proteins in soybean 

seedling. Six-day-old soybeans were treated without or with flooding and drought for 6 

days. Root, hypocotyl, and leaf were collected for protein extraction. Extracted proteins 

were analyzed by nanoLC-MS/MS. Untreated soybeans were used as controls. Venn 

diagrams show stress-specific proteins in root, hypocotyl, and leaf of soybean seedling 

among control, flooding, and drought. 
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Figure 13. Functional analysis of flooding- and drought-responsive proteins in soybean 

seedling. Six-day-old soybeans were treated without or with flooding and drought for 6 

days. Root (R), hypocotyl (H), and leaf (L) were collected. Functional analysis of 

identified proteins was performed using MapMan bin codes. Untreated soybeans were 

used as controls. Others included major/minor carbohydrate metabolism, secondary 

metabolism, lipid metabolism, polyamine metabolism, vitamin metabolism, C1/N 

metabolism, nucleotide metabolism, tetrapyrrole synthesis, metal handing, 

mitochondrial electron transport, fermentation, biodegradation of xenobiotics, oxidative 

pentose phosphate, development, and gluconeogenesis. Abbreviations are as follows: 

protein, protein synthesis/degradation; cell, cell division/organization; RNA, RNA 

metabolsim. The number of categorized proteins are shown in the graph. Open and 

filled bars indicate increased and decreased proteins, respectively. 
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Figure 14. Mapping of identified proteins to the tricarboxylic acid cycle in soybean 

seedling under flooding and drought. The abundance of identified proteins was 

compared to 6-day-old untreated soybean. Each square and color indicate Log2 Ratio of 

identified protein. Green and red colors indicate decrease and increase, respectively, in 

the Log2 Ratio values. Abbreviations are as follows: PDH, pyruvate dehydrogenase; 

IDH, isocitrate dehydrogenase; OGDH, 2-oxoglutarate dehydrogenase; SCS, succinyl-

CoA synthetase; SDH, succinate dehydrogenase; MDH, malate dehydrogenase.  
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Figure 15. Protein abundance and gene expression of β-glucosidase 31 and β-amylase 5 

in soybean seedling under flooding and drought stresses. Six-day-old soybeans were 

treated without or with flooding and drought for 6 days. Protein samples were extracted 

and analyzed by nanoLC-MS/MS. RNA samples were extracted and analyzed by qRT-

PCR. Untreated soybeans were collected as controls. The protein abundance was 

acquired by comparison to 6-day-old untreated soybean using SIEVE software (p<0.05). 

Gene expression was normalized against that of 18S rRNA and significance was 

examined using the Student’s t-test. Data are shown as means ± SD from three 

independent biological replicates. The asterisks indicate the significance between 12-

day-old soybeans without or with flooding and drought (*p< 0.05, **p< 0.01). 
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Figure 16. Schematic representation of flooding and drought responsive mechanisms in 

different organs of soybean in the early stage and seedling stage. The red and blue 

arrows indicate changes of protein abundance under flooding; orange and purple arrows 

indicate changes of protein abundance under drought; and upward and downward 

arrows indicate increased and decreased changes of protein abundance, respectively. 
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Chapter 2 

Endoplasmic reticulum proteomics in soybean under flooding and drought stresses   
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2.1. Introduction 

The cellular processes for sensing environmental changes and responsive 

mechanisms are highly organized (Heino and Palva, 2003). Subcellular proteomics 

elucidates the functions of spatially organized proteins in specific organelle (Lilley and 

Dupree, 2006). Proteomic analyses of cell wall (Mithöfer et al., 2002; Komatsu et al., 

2010), plasma membrane (Komatsu et al., 2009a; Nouri and Komatsu, 2010), nucleus 

(Wu et al., 2009; Yin and Komatsu, 2015), and mitochondria (Yin et al., 2009; Komatsu 

et al., 2011a) have been conducted to investigate the role of proteins in plant 

development and stress responses of soybean. Under flooding, signal-related proteins in 

plasma membrane cooperatively regulated H+-ATPase activity (Komatsu et al., 2009a), 

which also increased in response to drought to accelerate ion efflux (Nouri and 

Komatsu, 2010). In soybean nucleus, variants and modifications of histone were 

observed during development (Wu et al., 2009), and ABA treatment altered the levels of 

several phosphoproteins in flooded soybean (Yin and Komatsu, 2015). Flooding 

disrupted electron transport chains in soybean mitochondria (Komatsu et al., 2011a), 

which displayed changes in ultrastructure and metabolic activity in response to cold 

(Yin et al., 2009). Based on these reports, investigating the functions of subcellular 

organelles under various stress conditions is expected to provide insights into the 

mechanisms by which plants attempt to cope with unfavorable growth conditions. 

The ER is a continuous membrane system, which consists of a nuclear envelope 

and flattened peripheral sheets containing ribosomes and interconnected tubules that 

extend throughout most of cytoplasm (Healy et al., 2012). The ER functions as a protein 

factory and calcium reservoir (Papp et al., 2003), and serves as the cabinet for protein 

quality, which is monitored by various signaling pathways mediated by protein folding 

assistants (Sitia and Braakman, 2003; Tu and Weissman, 2004). Accumulation of 

misfolded or unfolded proteins causes ER stress and it ultimately leads to cell death 

under adverse environmental conditions (Vitale and Boston, 2008; Howell, 2013). 

Proteomic analysis of the ER revealed that protein synthesis and glycosylation were 

affected in soybean exposed to flooding (Komatsu et al., 2012b). Although these 

findings indicated that ER function was altered under flooding (Komatsu et al., 2012b), 

ER proteins induced by abiotic stresses have not been fully resolved. 
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Root tip is essential for root growth and development (Mathesius et al., 2011), 

and it undergoes morphological and physiological changes in response to various 

stresses (Feldman, 1984). For example, in root tip of Arabidopsis, primordia formation 

of lateral root was inhibited under high salt condition and elongation of existing lateral 

root increased due to auxin accumulation (Wang et al., 2009). In root tip of soybean, 

exposure to flooding induced protein phosphorylation, which altered the regulation of 

metabolic pathways and led to decreased cellular ATP content (Nanjo et al., 2012). 

Exposure to sudden flooding induced accumulation of ROS and programmed cell death 

in root tip of pea, allowing for rapid diversion of resources to lateral root for stimulating 

growth (Gladish et al., 2006; Cheng et al., 2013). Under drought, elongation was 

maintained at normal rates in the apical zone of maize root; however, progressive 

inhibition of elongation occurred at greater distances from the root tip (Sharp et al., 

2004). Taken together, these properties demonstrate that root tip is associated with plant 

growth and stress responses. 

Stage-dependent proteomics was conducted in soybean under flooding and 

drought stresses, indicating that early-stage soybean was more sensitive compared to 

seedling stage. Especially, root tip presented with more responsive proteins compared to 

other organs in the early-stage soybean (Chapter 1). To uncover the response 

mechanisms triggered in the ER by flooding and drought stresses, proteomic analysis 

was performed. The rough ER fraction was enriched from soybean-root tip and proteins 

were analyzed using gel-free/label-free proteomic technique. Based on ER proteomic 

results, analyses of gene expression, glycoproteomics, and endogenous calcium content 

were further conducted.  

 

2.2. Materials and methods 

2.2.1. Plant material and treatments 

Soybean was used as plant material in this study. Plant growth conditions were 

the same as described in 1.2.1 in Chapter 1. For treatment, 2-day-old soybeans were 

exposed to flooding or drought by adding 700 mL of excess water or withholding water 

for 2 days, respectively. For all experiments, untreated soybeans were collected as 

controls. Three independent experiments were performed as the biological replicates for 
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all experiments. Biological replicate means soybeans sown on different days. One 

hundred and fifty plants were collected as material for one replicate (Figure 17). 

 

2.2.2. Enrichment of rough endoplasmic reticulum 

Rough ER was enriched according to the instructions supplied by the 

Endoplasmic Reticulum Enrichment Kit (Novus, Littleton, CO, USA) with some 

modifications (Figure 18). All the procedures were performed at 4oC. For enrichment, a 

portion (1.0 g) of root tips was ground with a mortar and pestle in grinding buffer 

containing 4 mL of 1 x Isosmotic Homogenization Buffer and 40 μL of 100 x Protease 

Inhibitor Cocktail (Novus). Homogenates were centrifuged at 1000 x g for 10 min and 

pellet was collected as Fraction 1. The supernatant was centrifuged at 10000 x g for 15 

min and the pellet was collected as Fraction 2. The transferred supernatant was 

centrifuged at 12000 x g for 15 min. After centrifugation, the supernatant was collected 

and 8 mM CaCl2 was added drop by drop with stirring for 15 min. The precipitated 

sample was centrifuged at 8000 x g for 10 min. The obtained pellet was collected as 

rough ER fraction. 

  

2.2.3. Enrichment of glycoproteins 

A portion (0.5 g) of root tips was ground with a mortar and pestle in extraction 

buffer consisting of 20 mM HEPES-NaOH (pH 7.5), 150 mM NaCl, 10% glycerol, 1% 

Nonidet P-40, and 0.25% sodium deoxycholate. The homogenates were centrifuged at 

20000 x g for 10 min at 4oC. The obtained supernatant was subjected to glycoprotein 

enrichment using the Glycoprotein Isolation Kit, ConA (Thermo Scientific, Rockford, 

IL, USA). All the procedures were carried out at 25oC. The extracts were equilibrated 

with the binding buffer supplied in the kit. ConA resin was placed into the spin column 

and centrifuged at 1000 x g for 1 min. ConA resin was washed three times using the 

binding buffer. The equilibrated extracts were added to the ConA resin, mixed for 10 

min, and centrifuged at 1000 x g for 1 min. The flow-through was discarded and resin 

was washed four times using the binding buffer. SDS-sample buffer consisting of 60 

mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, and 5% β-mercaptoethanol (Laemmli, 

1970) was added to the resin and kept rotating for 30 min. The resin was centrifuged at 
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1000 x g for 1 min. The flow-through was determined as enriched glycoproteins. 

 

2.2.4. Extraction of cellular proteins for immunoblot and enzyme activity analyses 

For immunoblot analysis, a portion (0.1 g) of root tips was ground with a mortar 

and pestle in the SDS-sample buffer. The homogenates were centrifuged at 20000 x g 

for 20 min at 25oC. The supernatant was collected as cellular protein extracts. For 

enzyme assay, a portion (0.1 g) of root tips was ground with a mortar and pestle in the 

enzyme extraction buffer containing 50 mM HEPES-NaOH (pH 7.5), 1 mM 

phenylmethylsulfonyl fluoride, 0.1% Triton X-100, 5 mM MgCl2, 1 mM dithiothreitol, 

2% polyvinylpyrrolidone-40, and 1 mM EDTA. The homogenates were centrifuged at 

20000 x g for 20 min at 4oC. The supernatant was collected as cellular protein extracts. 

 

2.2.5. Concentration measurement of proteins and peptides 

The method of Braford (Braford, 1976) as described in 1.2.3 in Chapter 1 was 

used to determine protein concentration of the samples for proteomic, enzyme activity, 

and clalium quantification analyses. The method of Pierce 660 nm Protein Assay Kit 

with Ionic Detergent Compatibility Reagent (Thermo Scientific) was used to determine 

protein concentration of the samples, which were dissolved in SDS-sample buffer. The 

Direct Detect Spectrometer (Millipore, Billerica, MA, USA) with the Direct Detect 

software (version 3.0.25.0) was used to determine peptide concentration. 

 

2.2.6. Immunoblot analysis for purity assessment of the endoplasmic reticulum 

Histone H3 was used as marker protein for nucleus. Each fraction collected in 

rough ER isolation procedure was added SDS-sample buffer. Cellular protein extracts 

and each collected fraction in SDS-sample buffer were sonicated for 20 min followed by 

centrifuged at 20000 x g for 20 min at 25oC. Proteins (10 μg) of each sample were 

separated using 17% SDS-polyacrylamide gel electrophoresis and transferred onto the 

polyvinylidene difluoride membrane using a semidry transfer blotter. The blotted 

membrane was blocked overnight at 4oC in the buffer containing 500 mM NaCl, 20 mM 

Tris-HCl (pH 7.5), 0.1% Tween-20, and 5% skim milk (Difco, Sparks, MD, USA). 

After blocking, the membrane was incubated with a 1: 9000 diluted anti-histone H3 
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antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) for 1 h at 25oC. 

Subsequently, the membrane was washed three times using the buffer containing 500 

mM NaCl, 20 mM Tris-HCl (pH 7.5), and 0.1% Tween-20. The anti-rabbit IgG 

conjugated with horseradish peroxidase (Bio-Rad) was used as the secondary antibody 

and incubated for 1 h at 25oC. Signals were detected using the Chem-Lumi One Super 

kit (Nacalai tesque, Kyoto, Japan) and visualized by LAS-3000 luminescent image 

analyzer (Fujifilm, Tokyo, Japan). The relative intensities of bands were calculated 

using ImageJ software (version 1.46). Coomassie brilliant blue staining was used as 

loading control. 

 

2.2.7. Enzyme activity analysis for purity assessment of the endoplasmic reticulum 

ADH, fumarase, and NADH cytochrome c reductase were used as marker 

proteins for cytosol, mitochondria, and the ER, respectively. Each fraction collected in 

the rough ER isolation procedure was added enzyme extraction buffer. Cellular protein 

extracts and each collected fraction in enzyme extraction buffer were sonicated in cold 

water for 40 min followed by centrifuged at 20000 x g for 20 min at 4oC. The 

supernatant was collected for enzyme assay analysis. 

ADH: the activity of ADH was performed as described in 1.2.11 in Chapter 1. 

Fumarase: the reaction solution contained 70 mM KH2PO4-NaOH (pH 7.7), 50 

mM L-malic acid, and 0.05% Triton X-100. The reaction was measured continuously for 

5 min at 25oC at 340 nm (EC340 = 2.55 mM-1 cm-1). The activity of fumarase was 

calculated using formula: U/mg protein = [(ΔA340/min x total volume x sample dilution 

factor)/(2.55 x sample volume)]/protein concentration (Huang et al., 2014). 

NADH cytochrome c reductase: the reaction solution contained 20 mM potassium 

phosphate buffer (pH 7.2), 0.2 mM NADH, 0.02 mM cytochrome c, and 6 mM NaN3. 

The reaction was measured continuously for 5 min at 25oC at 550 nm (EC550 = 21.1 

mM-1 cm-1). The activity of NADH cytochrome c reductase was calculated using 

formula: U/mg protein = [(ΔA550/min x total volume x sample dilution factor)/(21.1 x 

sample volume)]/protein concentration (Hasinoff, 1990; Gomez and Chrispeels, 1994). 

 

2.2.8. Clean up and digestion of cellular proteins 



  

68 

 

Rough ER fraction was added lysis buffer containing 7 M urea, 2 M thiourea, 5% 

CHAPS, and 2 mM tributylphosphine. The homogenates were centrifuged at 20000 x g 

for 20 min at 25oC. The supernatant was collected as rough ER proteins. Rough ER 

proteins (100 μg) and enriched glycoproteins (100 μg) were cleaned up and digested as 

described in 1.2.4 in Chapter 1. For glycoproteomics, the Pierce Detergent Removal 

Spin Columns (Thermo Scientific) was further used to remove detergent in the peptides 

following manufacturer’s instruction. 

 

2.2.9. Mass spectrometry analysis 

Mass spectrometry analysis was performed as described in 1.2.5 in Chapter 1. The 

MS data have been deposited with the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

(Vizcaíno et al., 2013) with the data set identifier PXD003397. 

 

2.2.10. Protein identification using mass spectrometry data 

Protein identification was carried out as described in 1.2.6 in Chapter 1. 

 

2.2.11. Analysis of differentially abundant proteins 

The acquired Mascot results were exported into SIEVE for the ER proteomic 

analysis as described in 1.2.7 in Chapter 1. Additionally, exported XML files from 

Mascot were used for protein abundance through emPAI values for glycoproteomic 

analysis. The protein abundance was determined by molar percentage (mol%) (Ishihama 

et al., 2005). 

 

2.2.12. Analyses of protein localization and function  

Protein localization was predicated using intracellular targeting prediction 

programs of SUBA3 (http://suba3.plantenergy.uwa.edu.au/) (Tanz et al., 2013), 

MultiLoc2 (http://abi.inf.uni-tuebingen.de/Services/MultiLoc2) (Blum et al., 2009), and 

WoLF PSORT (http://www.genscript.com/wolf-psort.html) (Horton et al., 2007). For 

predication of the ER proteins, the minimum requirement was that the identified protein 

was predicated by one software. The N-glycosylation consensus of identified 

http://www.genscript.com/wolf-psort.html
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glycoproteins was predicated using NetNGlyc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/) (Gupta and Brunak, 2002). Funational 

analysis was performed using MapMan bin codes (Usadel et al., 2005). 

 

2.2.13. Quantification of endogenous calcium content 

A portion (0.1 g) of root tips was ground with a mortar and pestle in calcium 

extraction buffer containing 50 mM phosphate buffered saline (pH 7.5), and the 

homogenates were centrifuged at 12000 x g for 15 min at 4oC. The supernatant was 

collected for calcium quantification using the Calcium Colorimetric Assay Kit (Sigma-

Aldrich, St. Louis, MO, USA) according to manufacturer’s instructions. The absorbance 

of complex was measured at 575 nm and quantified based on known concentration of 

calcium solution. The calcium content was determined as mmol/g protein to minimize 

the effect of sample variance during extraction process. 

 

2.2.14. RNA extraction and quantitative reverse transcription-polymerase chain reaction 

RNA extraction and qRT-PCR analysis were performed as described in 1.2.12 in 

Chapter 1. The qRT-PCR primers were designed using the Primer3Plus web interface 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) (Table 7). 

 

2.2.15 Statistical analysis 

Statistical analysis was performed as described in 1.2.13 in Chapter 1. 

 

2.3. Results 

2.3.1. Purity of the endoplasmic reticulum in soybean-root tip 

The proteomic technique was performed to investigate roles of the ER in 

soybean-root tip under flooding and drought stresses (Figure 17). Two-day-old soybeans 

were treated without or with flooding or drought for 2 days, and rough ER was isolated 

(Figure 18). The purity of the ER isolated from root tips of 2-day-old soybeans was 

assessed by immunoblot analysis (Figure 19) and enzyme activity (Figure 20). For 

immunoblot analysis, anti-histone H3 antibody was used as a positive marker of nuclear 

proteins, indicating that it cross-reacted with a 17-kDa protein in cellular-protein 

http://www.cbs.dtu.dk/services/NetNGlyc/
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fraction, Fraction 1, Fraction 2, and rough ER fraction (Figure 19). However, relative 

intensity of corresponding signal band was nine-fold less in the ER fraction than in the 

Fraction 1 (Figure 19). In addition, the immunoblot analysis of 4-day-old soybeans 

without or with flooding and drought indicated that corresponding band was higher in 

the Fraction 1 than in other fractions (Figure 21). 

The purity of the ER fraction was also assessed using enzyme activity analyses 

for ADH and fumarase, which were used as markers of contamination from cytosolic 

and mitochondrial proteins, respectively; and for NADH cytochrome c reductase, which 

was used as positive marker of the ER proteins (Figures 20 and 21). In the 2-day-old 

soybeans, the highest activity of ADH was detected in the cellular-protein fraction; the 

highest activity of fumarase was detected in Fraction 2; and the highest activity of 

NADH cytochrome c reductase was detected in the rough ER fraction, which was two-

fold higher than in other fractions (Figure 20). In addition, enzyme activity analysis of 

4-day-old soybeans without or with flooding or drought indicated that the activity of 

NADH cytochrome c reductase was higher in the rough ER fraction than in other 

fractions (Figure 21). Based on the results of immunoblot and enzyme activity analyses, 

it indicated that the ER was isolated with high purity from root tip of soybean under 

control, flooding, and drought conditions using current method. 

 

2.3.2. Effects of flooding and drought stresses on ribosomal proteins 

Rough ER fraction was isolated from the root tips of 2-day-old soybeans without 

or with flooding or drought for 2 days. Extracted rough ER proteins were analyzed 

using gel-free/label-free proteomic technique. In the rough ER fraction, 1511, 1770, and 

770 proteins were identified from control, and flooding- and drought-stressed plants, 

respectively (Figure 22). Among the identified proteins, 63, 74, and 40 ribosomal 

proteins were detected in the control, and flooding- and drought-stressed plants, 

respectively (Figures 22 and 23). Comparison of the relative protein levels revealed that 

73% (46/63) of the identified ribosomal proteins were increased during development, 

whereas 65% (48/74) and 80% (32/40) of them were decreased in response to flooding 

and drought, respectively (Figure 23). 

To improve identification accuracy of the ER proteins, localization of 1448, 1696, 
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and 730 proteins in the control, and flooding- and drought-stressed plants, respectively, 

was predicated using several subcellular prediction programs including SUBA3, 

MultiLoc2, and WoLF PSORT. Using this approach, 255, 368, and 103 proteins in the 

control, and flooding- and drought-stressed samples, respectively, were predicted to be 

ER proteins (Figure 22). Functional analysis of the predicted ER proteins was 

performed using MapMan bin codes. Functional category of protein was separated into 

several subcategories including glycosylation, degradation, and targeting (Figure 24). 

The ER proteins related to protein glycosylation and signaling were changed in 

abundance by more than three-fold in the control, and flooding- and drought-stressed 

plants. Redox homeostasis was the major functional category in control plants during 

development, whereas several transport-related proteins were increased under flooding 

and drought. Additionally, proteins related to stress, development, and protein 

degradation were markedly decreased in response to drought (Figure 24). 

 

2.3.3. Effects of flooding and drought stresses on protein glycosylation and signaling 

Functional analysis of predicated ER proteins indicated that proteins related to 

protein glycosylation and signaling were significantly altered under flooding and 

drought (Figure 24). To further explore the effects of stresses on protein glycosylation 

and signaling in the ER, proteins related to protein glycosylation, redox homeostasis, 

signaling, and transport were examined at gene expression level (Table 8, Figures 25 

and 26). Among the genes related to protein glycosylation, dolichyl-diphospho-

oligosaccharide protein glycosyltransferase (Table 8, number 4) was downregulated 

after 1-day flooding and 2-day drought (Figure 25). β-Xylosyltransferase (Table 8, 

number 9) was upregulated at the early stage of development and after 1 day of flooding 

exposure, but downregulated after 3 days of flooding and 2 days of drought (Figure 25). 

α-Mannosyl glycoprotein N-acetylglucosaminyl transferase (Table 8, number 10) was 

downregulated after 1 day of both stresses (Figure 25). 

Expression level of genes related to protein folding was also altered in response to 

flooding and drought (Figure 25). Calnexin 1 (Table 8, number 15) was upregulated at 

the early stage of development, but downregulated under both stresses (Figure 25). 

Similarly, calreticulin 3 (Table 8, number 28) and protein disulfide isomerase (PDI)-like 
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proteins 1,2; 1,1; and 1,6 (Table 8, number 47, 48, and 69) were downregulated after 1-

day flooding and 3-day drought (Figure 25). In contrast, UGGT (Table 8, number 12) 

was upregulated during development and downregulated after 3 days of drought, but 

unaltered in response to flooding (Figure 25). Ribophorin I (Table 8, number 3 and 8) 

was downregulated after 1 day of both stresses (Figure 25). Chaperone regulator-like 

protein (Table 8, number 37) was downregulated after 2 days of flooding and 3 days of 

drought (Figure 25). 

Gene expression of proteins related to signaling and transport was analyzed 

(Figure 26). Calmodulin-binding proteins (Table 8, number 18 and 30) were 

downregulated at the early stage of flooding and after 3 days of drought (Figure 26). 

RAB homolog 1 (Table 8, number 33), but not GTPase homolog B1C (Table 8, number 

26), was downregulated after 2 days of both stresses (Figure 26). Ca2+-transporting 

ATPase (Table 8, number 98) was downregulated after 2-day flooding and 1-day 

drought (Figure 26). In addition, several genes had different expression levels between 

flooding and drought. For example, leucine-rich repeat receptor-like protein kinase 

(Table 8, number 36) and inorganic H+ pyrophosphatase family protein (Table 8, 

number 96) were upregulated under flooding, but downregulated or unaltered in 

response to drought (Figure 26). 

 

2.3.4. Effects of flooding and drought stresses on glycoproteins 

Functional analysis and gene expression indicated that protein glycosylation and 

folding responded to both stresses (Figures 24 and 25). To further examine the effects of 

flooding and drought on protein glycosylation, glycoproteomic analysis was conducted 

using enriched glycoproteins from cellular protein extracts in root tips of 2-day-old 

soybeans exposed to flooding or drought for 2 days (Figure 27). A total of 162 (118+44) 

and 293 (199+94) proteins were identified in the root tip of 2- and 4-day-old soybeans 

under control condition, and of these proteins, 118 and 199 proteins were predicted with 

N-glycosylation sites, respectively. In addition, 286 (187+99) and 251 (177+74) proteins 

were identified including 187 and 177 predicted as N-glycoproteins exposed to flooding 

and drought, respectively. Furthermore, the ratio of N-glycoproteins was 64% 

(18.47/29.08), 65% (39.39/60.68), 57% (39.86/70.03), and 61% (33.85/55.42) under 
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each condition (Figure 27). These results indicated that N-glycoproteins accumulated in 

the root tip of soybean during development; however, the number and accumulation of 

N-glycoproteins were reduced exposed to both stresses. 

 

2.3.5. Effects of flooding and drought stresses on endogenous calcium level 

Functional analysis and gene expression of the predicted ER proteins indicated 

that proteins related to calcium signaling and transport were triggered under both 

stresses (Figures 24 and 26). To further examine the effects of flooding and drought on 

calcium, the endogenous calcium contents were quantified in the root tips of 2-day-old 

soybeans treated without or with flooding or drought for 2 days (Figure 28). Compared 

to 2-day-old soybeans, calcium level was increased during development and it 

responsed to both stresses. Furthermore, compared to 4-day-old soybeans, calcium 

levels were increased exposed to both stresses (Figure 28).  

 

2.4. Discussions 

2.4.1. Protein synthesis is suppressed in soybean-root tip under flooding and drought 

stresses 

The rough ER tends to form large flattened sheets studded with ribosomes (Healy 

et al., 2012), which are composed of ribosomal RNAs and ribosomal proteins (Wilson 

and Doudna Cate, 2012). Ribosomal proteins are critical for protein synthesis and play 

regulatory roles in plant development (Byrne, 2009), as well as sensing environmental 

stimuli (Falcone Ferreyra et al., 2010; Wang et al., 2013). The abnormal-development 

traits of embryo-lethal and pointed/narrow leaf mutants were attributable to ribosomal 

protein mutations that disturbed the capacity of cells to maintain normal levels of 

protein synthesis (Byrne, 2009). Furthermore, post-translational modifications of 

ribosomal proteins have been shown to be responsive for environmental conditions 

(Pérez et al., 1990; Weis et al., 2015). In Arabidopsis, a knockdown mutant of ribosomal 

protein RPL23aA, which was involved in ribosome biogenesis, displayed retarded 

growth and irregular root morphology (Degenhardt et al., 2008). The present analysis 

revealed that ribosomal proteins were mainly decreased under both stresses (Figure 23). 

Protein synthesis was previously shown to be altered in the root tip of flooded soybean 
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(Komatsu et al., 2012b). In addition, upregulated gene expression of ribosomal protein 

mediated translational process and ribosome functioned to enhance cold tolerance in 

soybean (Kim et al., 2004). The present results combined with previous findings, 

indicate that protein synthesis is impaired in soybean under flooding and drought 

stresses, which might be due to the decreased abundance of ribosomal proteins. 

 

2.4.2. Cytochrome b5 isoform E and inorganic H+ pyrophosphate family protein are 

associated with flooding and drought stresses 

Functional analysis of redox homeostasis and transport indicated that cytochrome 

b5 isoform E and inorganic H+-pyrophosphate family protein were the most responsive 

proteins during development and under both stresses (Table 8). Cytochrome b5 was 

presented in the Golgi apparatus; however, specific membrane shuttled between the ER 

and the Golgi through a recycling process (Collot et al., 1982). In Arabidopsis, four ER-

localized cytochrome b5 isoforms interacted with REVERSION TO ETHYLENE 

SENSITIVITY 1, and overexpression of cytochrome b5D reduced ethylene sensitivity 

(Chang et al., 2014). In soybean, ethylene signaling played roles in flooding tolerance 

through protein phosphorylation (Yin et al., 2014b). In the present study, cytochrome b5 

isoform E was decreased under flooding, suggesting that cytochrome b5 isoform E 

might be associated with ethylene signaling in soybean-root tip under flooding. 

Inorganic H+ pyrophosphate was involved in generating proton electrochemical 

gradients and acidified vacuolar lumen, as well as other endomembrane compartments 

in plants (Sze et al., 1999). Overexpression of H+- pyrophosphates from wheat 

promoted tobacco growth under normal conditions and enhanced tolerance against 

unfavorable environments including salt and drought stresses (Li et al., 2014). In the 

present study, inorganic H+ pyrophosphatase family protein was increased under 

drought, while decreased under flooding, suggesting that vacuolar H+-pyrophosphate 

might play roles in acidifying the ER lumen and is required for enhancing drought 

tolerance in soybean. 

 

2.4.3. N-glycan synthesis is enhanced under flooding, but not under drought 

In the ER, nascent polypeptides bearing glycosylated sites are folded in an N-
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glycan-dependent manner (Howell, 2013). In the present study, the ER proteins related 

to protein glycosylation responded to both stresses (Figures 22 and 24). Dolichyl-

diphospho-oligosaccharide protein glycosyltransferase is the subunit of an 

oligosaccharyltransferase, which transfers oligosaccharides to proteins after the 

synthesis of lipid-linked oligosaccharide (Pattison and Amtmann, 2009). β-

Xylosyltransferase (Kajiura et al., 2012) and α-mannosyl glycoprotein N-

acetylglucosaminyl transferase (Bakker et al., 1999) are involved in N-linked glycan 

synthesis. In Arabidopsis, enhancement of oligosaccharyltransferase anchoring 

protected cells from DNA fragmentation induced by ultraviolet C irradiation (Gallois et 

al., 1997; Danon et al., 2004), and maturation of N-glycan complexes was essential for 

adaptation to high-salt condition (Kang et al., 2008). In the present study, dolichyl-

diphospho-oligosaccharide protein glycosyltransferase, β-xylosyltransferase, and α-

mannosyl glycoprotein N-acetylglucosaminyl transferase were increased under flooding, 

but unaltered under drought. These results indicate that N-glycan synthesis is activated 

under flooding and N-glycan complexes might be associated with flooding adaptation in 

soybean. 

 

2.4.4. Calnexin cycle is suppressed under flooding and drought stresses 

N-glycosylation has critical roles in proper folding for glycoproteins. After 

addition of oligosaccharide, the two outermost glucosyl residues are removed by 

glucosidases I and II, resulting in a monoglucosylated oligosaccharide, which is 

specifically recognized by ER lectins, such as calnexin and calreticulin (Healy et al., 

2012; Howell, 2013). Protein folding is regulated with the help of recruited foldases, 

which are associated with oxidative environment of the ER (Williams, 2006). In the 

present study, calnexin, calreticulin, PDI-like proteins, chaperones, UGGT, and 

ribophorin I were identified with different abundance in the root tip of soybean under 

flooding and drought, indicating that calnexin cycle of protein folding might be affected 

by both stresses. Calnexin and calreticulin create the cabinet for protein folding, and 

calnexin expression contributed to the regulation of ER-mediated cell death (Delom et 

al., 2007). Previous reports in soybean indicated that calnexin level was affected by 

flooding (Nanjo et al., 2010) and osmotic stresses (Nouri et al., 2012). Consistent with 
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these findings, calnexin was decreased in soybean-root tip under both stresses (Table 8). 

Taken together, these results suggest that decreased accumulation of calnexin might 

suppress protein folding under flooding and drought. 

 

2.4.5. Folding-assistant proteins are affected under flooding and drought stresses 

To fully investigate the roles of calnexin cycle under both stresses, folding-

assistant proteins were further examined. As many as 17 members in the PDI family 

serve as folding enzymes, which form and interchange disulfide bonds (Williams, 

2006). The ER provides an optimized environment for oxidative protein folding (Tu and 

Weissman, 2004). The major-stress factor associated with flooding is decreased oxygen 

(Nanjo et al., 2013). In the present study, identified PDI-like proteins were mainly 

decreased under flooding; however, unaltered under drought. These results imply that 

protein folding in the ER might be suppressed due to dysfunction of PDI-like proteins 

under hypoxic condition. In addition to foldases, several chaperone proteins assist with 

protein folding in the ER. For example, DnaJ proteins functioned as co-chaperones with 

HSP70 (Ohta and Takaiwa, 2014) and enhanced drought tolerance when they were 

overexpressed (Wang et al., 2014b). In the present study, DnaJ proteins and HSP70 were 

decreased under drought (Table 8). These results indicate that protein folding might be 

impaired in response to drought due to reduced accumulation of HSPs. Taken together, 

these findings suggest that PDI-like proteins or HSPs might serve as the major-folding 

assistants under flooding or drought, respectively. 

 

2.4.6. Fewer glycoproteins are accumulated in soybean-root tip under flooding and 

drought stresses 

Protein folding proceeds with the assistance of foldases and chaperones; however, 

misfolded or unfolded proteins accumulate due to ER stress causing by adverse 

environmental conditions (Vitale and Boston, 2008). UGGT recognizes and modifies 

unfolded proteins, and the reglycosylated proteins undergo protein folding (Healy et al., 

2012). Ribophorins are transmembrane glycoproteins, which bind ribosomes in rough 

ER (Rosenfeld et al., 1984), and ribophorin I functions as a chaperone that interacts with 

misfolded proteins (Qin et al., 2012). In the present study, UGGT and ribophorin I were 
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increased under flooding, but unaltered under drought (Table 8). These results indicate 

that refolding might be activated under flooding condition to eliminate ER stress. 

In respect to glycoprotein synthesis under both stresses, the subunits of 

oligosaccharyltransferase were increased under flooding; calnexin was decreased under 

both stresses; and PDI-like proteins or HSPs were decreased by flooding or drought, 

respectively (Table 8). To examine the effects of flooding and drought on glycoprotein 

accumulation, glycoproteomics was further conducted in soybean-root tip (Figure 27). 

ConA is applicable to isolate most N-linked glycan, which has the consensus sequence 

(Fitchette et al., 2007; Ruiz-May et al., 2012), and it is suitable to evaluate glycoprotein 

accumulation in stressed soybean (Mustafa and Komatsu, 2014). The results of 

glycoproteomics indicated that glycoproteins were accumulated during development 

and comparatively fewer glycoproteins accumulated under both stresses than control 

(Figure 27). Similarly, fewer glycoproteins were identified in soybean root exposed to 

flooding (Mustafa and Komatsu, 2014). The present results suggest that decreased 

calnexin and PDI-like proteins or HSPs under flooding or drought, respectively, might 

impair protein folding, leading to reduced glycoprotein accumulation. 

 

2.4.7. Cytosolic calcium is increased under flooding and drought stresses 

Calcium is an essential nutrient for plant development and serves as the second 

messenger in plant-signal transduction (Hepler, 2005; Huda et al., 2013). In Cynodon 

dactylon, exogenous calcium improved cold tolerance by reducing ROS (Shi et al., 

2014). In flooded soybean, calcium-related signaling responded to stress (Yin et al., 

2014a), and exogenous calcium enhanced root elongation and suppressed cell death in 

root tip (Oh et al., 2014a). In addition, calcium involved in drought tolerance (Shao et 

al., 2008) and enhanced antioxidative activity when applied exogenously, leading to 

improved drought recovery in Camellia sinensis (Upadhyaya et al., 2011). Taken 

together, these reports indicate that calcium is associated with various stresses, and 

exogenous calcium has the capacity to activate cellular metabolism and enhance stress 

tolerance. In the present study, under both stresses, several signaling-related proteins 

were changed (Figure 24) and gene expression of proteins related to calcium 

signaling/transport was downregulated (Figure 26). These results indicate that calcium 
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levels might fluctuate under flooding and drought stresses. The cytosolic calcium 

content was further examined, showing that it was increased under both stresses (Figure 

28). 

The ER is a subcellular organelle that is involved in protein folding and serves as 

calcium reservoir (Healy et al., 2012; Burgoyne et al., 2015) with the aid of calcium-

binding proteins, calcium ATPase, and calcium-release channels (Papp et al., 2003). In 

the present study, under both stresses, calmodulin-binding proteins were decreased in 

soybean-root tip, whereas calcium-transporting ATPases increased (Table 8). 

Furthermore, endogenous calcium levels were increased in cytosol under both stresses 

(Figure 28). It was reported that cytosolic calcium levels were elevated during 

development and under various environmental conditions to trigger downstream 

responses (Kudla et al., 2010; Zhu et al., 2013). Taken together, these results suggest 

that calcium might be released from the ER into cytosol under flooding and drought, 

and increased cytosolic calcium functions as the secondary messenger to mediate stress 

responses in soybean. 

 

2.5. Conclusion 

The present proteomic analysis examined protein profiles of the ER in soybean-

root tip under flooding and drought stresses. The main findings are as follows (Figure 

29): (i) ribosomal proteins were decreased under both stresses; (ii) proteins related to 

protein glycosylation and signaling responded to both stresses; (iii) calnexin was 

decreased under both stresses, and PDI-like proteins or HSPs declined under flooding or 

drought, respectively; (iv) cytosolic calcium was increased under both stresses; and (v) 

fewer glycoproteins were accumulated under both stresses. Taken together, these 

findings indicate that calnexin in combination with PDI-like proteins or HSPs plays 

roles in protein folding under flooding or drought, respectively, and suggest that the 

reduced accumulation of glycoproteins under both stresses might be due to dysfunction 

of protein folding. Furthermore, increased cytosolic calcium induced by flooding and 

drought might alter calcium homeostasis in the ER, leading to suppressed protein 

folding. 
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Table 7. Primer sequences of genes selected for qRT-PCR in Chapter 2 

Protein ID a) Description  Sequence of primers (5’--- 3’) 

Glyma04g42690.1 PDI like 1,2 F: TCAACACAATGACGGGAAAA   
R: CTGTTTGCAATGACCACACC 

Glyma14g24090.1 PDI like 1,1 F: CACCTTGGATGCCAAATACC   
R: ACAAAAGGGTGATTGCTTGG 

Glyma13g40130.1 PDI like 1,4 F: TTTGAGGACTTCGAGGAGGA   
R: TACGTCTTCGCCCTTGAGTT 

Glyma15g01880.1 PDI like 1,6 F: TGGAGGTATTTACGCCTTGG   
R: AGCGTGGGGTAGTCATTCAC 

Glyma09g38410.2 calreticulin 3 F: ACATCCAGTGATGCCAAACA   
R: CCCCACCAAACTTCTTTTGA 

Glyma07g35090.1 calmodulin binding protein F: TCATTGCTCTGCTTCTGGTG   
R: TGTCCTGCATTCCGACAATA 

Glyma15g12880.1 RAB GTPase homolog B1C F: CATCGGTGTTGAATTTGGTG   
R: CTTCCAACCAGCTAGCCAAG 

Glyma11g13460.1 calreticulin 3 F: CATGGATTGGGACATCCTTC   
R: TCAACAGGCTTCTTGGCTTT 

Glyma20g02951.1 calmodulin binding protein F: GATTTCTGCGATTGTGCTGA   
R: CCATCGTATTCATCGGTTCC 

Glyma09g40980.1 receptor like protein kinase family protein F: GGGGTTCCAGTGCATAAAGA   
R: CTAGCCGTTGATGGGTCAAT 

Glyma20g23490.1 calcium binding EF hand family protein F: ATGGTTGTGCAAGGAGGAAG   
R: GTTTGCCAATTATGGGCTGT 

Glyma11g33100.1 RAB homolog 1 F: CAGACGCTGGCAGTAAATGA   
R: TGAAGCTCTTGGACCCACTT 

Glyma11g34490.1 leucine-rich repeat receptor like protein kinase F: AGTATGTGGGGTTGGAGCTG   
R: CTAGAAGCCGGTCACTGGAG 

Glyma09g36560.1 chaperone regulator like protein F: TCGAGAATGAGTTGCGTTTG   
R: CTCCGCAACCCACTTGTACT 

Glyma13g23170.1 inorganic H+ pyrophosphatase family protein F: GACTGGGGTGGTCTTTTTGA   
R: CTTCGGGGATGTTTCTTTCA 

Glyma04g04810.1 Ca2+-transporting ATPase F: AGACGCTCCAATCAGGAGAA   
R: TCAAATCACGTCCCTCAACA 

Glyma10g28880.1 inorganic H+ pyrophosphatase family protein F: GGCCGGAATGAGACATAAGA   
R: AGAGCTGCACTCCCAACACT 

Glyma10g35450.1 ribophorin I F: CGGGCCATATGAAAATCATC   
R: CTTTATGTCGAGCACCAGCA 

Glyma11g12800.1 dolichyl diphospho oligosaccharide protein glycosyltransferase  F: AACCGATTTTTCACGTCAGG   
R: CCAACTTTGTGGTGTTGCAC 

Glyma20g32070.2 ribophorin I F: CGGGCCATATGAAAATCATC 
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R: CTTTATGTCGAGCACCAGCA 

Glyma08g43680.1 β-xylosyltransferase F: ACTGCACGCCTTTCTGAGTT   
R: GCCCAGCTCTTCAATGAGTC 

Glyma04g00200.1 α-mannosyl glycoprotein N-acetylglucosaminyl transferase F: TCACCAAAATGGCCTAAAGC   
R: CATTCAGCTTGATTGGCTCA 

Glyma05g30230.2 UGGT F: GGCTCTGTTGAGCTGGTAGG   
R: GCACCAACAGAACCACAATG 

Glyma04g38000.1 calnexin 1 F: GGATCCTGTTTTTAACGCAGATTAG   
R: AAATTATCATTATTCTATTGCATTAGTAGG 

a, Protein ID according to Phytozome soybean genome database. 
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Table 8. List of predicted ER proteins related to protein glycosylation, signaling, redox, transport, and stress in the root tip of soybean under flooding and drought stresses 

   Ratio  

 
Protein ID Description 

Control 
2(0) a) 

Control 
4(0) 

Flooding   
4(2) 

Drought 
4(2) Function 

Protein glycosylation       
1  Glyma04g01690.1 ribophorin I  1 1.41 1.36 - protein glycosylation 
2  Glyma06g01790.1 ribophorin I 1 1.41 1.43 - protein glycosylation 
3  Glyma10g35450.1 ribophorin I 1 0.15 1.12 - protein glycosylation 
4  Glyma11g12800.1 dolichyl diphospho oligosaccharide protein glycosyltransferase 48kDa subunit  1 0.05 1.45 - protein glycosylation 
5  Glyma12g04950.1 dolichyl diphospho oligosaccharide protein glycosyltransferase 48kDa subunit  1 0.06 1.49 - protein glycosylation 
6  Glyma08g13400.1 UGGT 1 1.17 - - protein glycosylation 
7  Glyma08g20020.1 UGGT 1 0.80 - - protein glycosylation 
8  Glyma20g32070.2 ribophorin I 1 - 2.87 - protein glycosylation 
9  Glyma08g43680.1 β-1,2 xylosyltransferase 1 - 2.73 - protein glycosylation 
10  Glyma04g00200.1 α-1,3 mannosyl glycoprotein β 1,2 N-acetylglucosaminyl transferase putative 1 - 1.91 - protein glycosylation 
11  Glyma06g00230.1 α-1,3 mannosyl glycoprotein β 1,2 N-acetylglucosaminyl transferase putative 1 - 1.81 - protein glycosylation 
12  Glyma05g30230.2 UGGT 1 - 1.81 - protein glycosylation 
13  Glyma18g09480.1 β-1,2 xylosyltransferase 1 - 1.10 - protein glycosylation 
14  Glyma08g43670.1 β-1,2 xylosyltransferase 1 - 0.90 - protein glycosylation 
Signaling       
15  Glyma04g38000.1 calnexin 1 1 1.54 0.36 0.34 signaling 
16  Glyma06g17060.1 calnexin 1 1 1.46 0.35 0.37 signaling 
17  Glyma09g38410.2 calreticulin 3 1 2.97 1.88 - signaling 
18  Glyma07g35090.1 calmodulin binding protein 1 1.89 0.07 - signaling 
19  Glyma09g37860.1 RAS 5 1 1.09 1.37 - signaling 
20  Glyma18g48610.2 RAS 5 1 1.07 1.69 - signaling 
21  Glyma05g33700.1 receptor like kinase 1 1 0.95 0.82 - signaling 
22  Glyma03g26090.1 RAS 5 1 0.93 1.11 - signaling 
23  Glyma05g33330.1 calnexin 1 1 0.92 0.98 - signaling 
24  Glyma08g00920.1 calnexin 1 1 0.89 1.00 - signaling 
25  Glyma08g06020.1 receptor like kinase 1 1 0.73 0.71 - signaling 
26  Glyma15g12880.1 RAB GTPase homolog B1C 1 0.38 2.30 - signaling 
27  Glyma09g01950.2 RAB GTPase homolog B1C 1 0.38 2.28 - signaling 
28  Glyma11g13460.1 calreticulin 3 1 0.19 2.96 - signaling 
29  Glyma20g23080.1 calreticulin 1b 1 0.00 0.25 - signaling 
30  Glyma20g02951.1 calmodulin binding protein 1 0.04 - 0.26 signaling 
31  Glyma09g40980.1 receptor like protein kinase family protein 1 3.32 - - signaling 
32  Glyma20g23490.1 calcium binding EF hand family protein 1 2.46 - - signaling 
33  Glyma11g33100.1 RAB homolog 1 1 2.17 - - signaling 
34  Glyma10g43360.1 calcium binding EF hand family protein 1 2.11 - - signaling 
35  Glyma10g28890.1 calreticulin 1b 1 0.05 - - signaling 
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36  Glyma11g34490.1 leucine-rich repeat receptor like protein kinase family protein 1 - 7.73 - signaling 
37  Glyma09g36560.1 chaperone regulator like protein 1 - 2.38 - signaling 
38  Glyma07g10695.1 protein kinase superfamily protein 1 - 2.06 - signaling 
39  Glyma09g31333.1 protein kinase superfamily protein 1 - 2.04 - signaling 
40  Glyma02g16130.2 guanylate binding family protein 1 - 1.82 - signaling 
41  Glyma10g35230.1 Ras related small GTP binding family protein 1 - 1.47 - signaling 
42  Glyma07g13890.2 RAS 5 1 - 1.23 - signaling 
43  Glyma12g05460.4 calreticulin 3 1 - 0.89 - signaling 
Redox       
44  Glyma03g42070.3 cytochrome b5 isoform E 1 3.54 1.81 3.70 redox 
45  Glyma19g44780.1 cytochrome b5 isoform E 1 2.63 1.51 4.04 redox 
46  Glyma13g03650.1 plant L ascorbate oxidase 1 0.51 0.60 1.70 redox 
47  Glyma04g42690.1 PDI like 1,2 1 0.15 0.22 0.31 redox 
48  Glyma14g24090.1 PDI like 1,1 1 2.41 1.16 - redox 
49  Glyma04g41010.1 cytochrome b5 isoform E 1 1.84 1.59 - redox 
50  Glyma15g18310.1 glutaredoxin family protein 1 1.61 1.20 - redox 
51  Glyma09g07040.1 glutaredoxin family protein 1 1.61 1.21 - redox 
52  Glyma13g40350.1 PDI like 5,1 1 1.56 0.30 - redox 
53  Glyma13g40130.1 PDI like 1,4 1 1.55 0.02 - redox 
54  Glyma07g05830.1 cytochrome b5 isoform E 1 1.49 1.51 - redox 
55  Glyma16g02410.3 cytochrome b5 isoform E 1 1.45 1.08 - redox 
56  Glyma19g41690.1 thioredoxin family protein 1 1.27 1.35 - redox 
57  Glyma03g00920.1 NADH: cytochrome b5 reductase 1 1 1.26 0.95 - redox 
58  Glyma03g39130.1 thioredoxin family protein 1 1.14 1.40 - redox 
59  Glyma10g36170.1 PDI like 5,2 1 1.13 1.78 - redox 
60  Glyma19g29720.1 NADH: cytochrome b5 reductase 1 1 1.01 1.06 - redox 
61  Glyma13g03600.2 PDI like 1,1 1 1.01 0.65 - redox 
62  Glyma12g07260.1 PDI like 1,4 1 0.91 0.32 - redox 
63  Glyma11g20630.1 PDI like 1,4 1 0.86 0.09 - redox 
64  Glyma20g29660.1 membrane steroid binding protein1 1 0.73 1.20 - redox 
65  Glyma06g12090.1 PDI like 1,2 1 0.66 1.09 - redox 
66  Glyma13g43430.2 PDI like 1,6 1 0.65 0.33 - redox 
67  Glyma16g31873.1 membrane associated progesterone binding protein 3 1 0.63 1.32 - redox 
68  Glyma09g25940.1 membrane associated progesterone binding protein 3 1 0.58 1.44 - redox 
69  Glyma15g01880.1 PDI like 1,6 1 0.47 1.46 - redox 
70  Glyma12g29550.1 PDI like 1,4 1 0.28 0.02 - redox 
71  Glyma14g05520.1 PDI like 2,2 1 0.14 0.13 - redox 
72  Glyma02g01750.2 thioredoxin family protein 1 0.10 1.38 - redox 
73  Glyma10g01820.1 thioredoxin family protein 1 0.09 1.36 - redox 
74  Glyma02g43460.1 PDI like 2,2 1 0.08 0.12 - redox 
75  Glyma13g09130.1 thioredoxin family protein 1 0.04 1.27 - redox 
76  Glyma11g11460.1 ascorbate peroxidase 3 1 1.13 - 0.09 redox 
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77  Glyma20g26050.1 sulfhydryl oxidase 1 1 2.61 - - redox 
78  Glyma06g42130.1 PDI like 5,4 1 1.49 - - redox 
79  Glyma10g38150.1 membrane steroid binding protein 1 1 0.50 - - redox 
80  Glyma06g13840.5 cytochrome b5 isoform E 1 0.14 - - redox 
81  Glyma06g24520.2 thioredoxin family protein 1 0.10 - - redox 
82  Glyma14g20360.1 thioredoxin family protein 1 - 1.37 - redox 
83  Glyma18g45500.1 PDI like 1,2 1 - 0.63 - redox 
84  Glyma20g12150.1 plant L ascorbate oxidase 1 - 0.52 1.80 redox 
85  Glyma20g12230.2 plant L ascorbate oxidase 1 - - 1.67 redox 
Transport       
86  Glyma13g23170.1 inorganic H+ pyrophosphatase family protein 1 1.99 0.73 2.66 transport 
87  Glyma19g35960.1 Ca2+-transporting ATPase 1 0.02 1.17 1.37 transport 
88  Glyma03g33240.1 Ca2+-transporting ATPase 1 0.02 1.16 1.37 transport 
89  Glyma04g04810.1 Ca2+-transporting ATPase 1 2.97 2.78 - transport 
90  Glyma04g38190.1 phosphate deficiency response 2 1 1.78 1.56 - transport 
91  Glyma05g30330.1 emp24/gp25L/p24 family/GOLD family protein 1 1.43 0.65 - transport 
92  Glyma07g03220.1 inorganic H+ pyrophosphatase family protein 1 1.12 0.60 - transport 
93  Glyma10g02370.1 ABC transporter C family member 4-like 1 0.37 0.12 - transport 
94  Glyma06g07290.3 nucleotide sugar transporter family protein 1 5.00 - - transport 
95  Glyma13g20810.3 ethylene-insensitive protein 2-like 1 3.20 - - transport 
96  Glyma10g28880.1 inorganic H+ pyrophosphatase family protein 1 - 7.50 - transport 
97  Glyma20g27980.1 oligosaccharyltransferase complex 1 - 2.69 - transport 
98  Glyma06g04900.1 Ca2+-transporting ATPase 1 - 2.30 - transport 
99  Glyma20g03930.1 emp24/gp25L/p24 family/GOLD family protein 1 - 2.26 - transport 
100  Glyma07g35490.1 emp24/gp25L/p24 family/GOLD family protein 1 - 1.94 - transport 
101  Glyma06g16860.1 phosphate deficiency response 2 1 - 1.47 - transport 
102  Glyma10g39750.1 oligosaccharyltransferase complex 1 - 1.09 - transport 
103  Glyma09g04980.1 ABC transporter C family member 14-like 1 - 0.80 - transport 
104  Glyma15g15870.1 ABC transporter C family member 14-like 1 - 0.71 - transport 
105  Glyma07g12680.2 ABC transporter C family member 15-like 1 - 0.17 - transport 
Stress       
106  Glyma01g35220.2 early responsive dehydration stress protein 1 0.22 0.14 0.19 stress 
107  Glyma03g37650.1 DnaJ heat shock family protein 1 0.20 0.18 0.32 stress 
108  Glyma05g36600.1 HSP 70 protein 5 1 0.20 0.14 0.71 stress 
109  Glyma05g36620.1 HSP 70 family protein 1 0.04 1.38 0.05 stress 
110  Glyma16g08105.1 early responsive dehydration stress protein 1 0.00 0.14 0.33 stress 
111  Glyma18g15080.2 methyltransferase 1 0.00 0.14 0.73 stress 
112  Glyma02g11890.1 methyltransferase 1 1.62 1.23 - stress 
113  Glyma01g05580.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 1.61 0.05 - stress 
114  Glyma20g35120.5 S adenosyl L methionine dependent methyltransferases superfamily protein 1 1.33 1.48 - stress 
115  Glyma20g16070.1 HSP 70 family protein 1 1.32 1.70 - stress 
116  Glyma02g00550.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 1.27 2.10 - stress 
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117  Glyma03g33710.1 DnaJ homolog subfamily 1 1.07 0.69 - stress 
118  Glyma13g10700.1 HSP 70 family protein 1 0.82 1.32 - stress 
119  Glyma08g41220.4 S adenosyl L methionine dependent methyltransferases superfamily protein 1 0.23 0.19 - stress 
120  Glyma11g14970.1 pathogenesis related thaumatin superfamily protein 1 0.15 1.45 - stress 
121  Glyma14g40320.1 HSP 90 1 1.14 - - stress 
122  Glyma17g37820.1 HSP 90 1 1.14 - - stress 
123  Glyma10g32000.1 HSP 20 family protein 1 0.09 - - stress 
124  Glyma16g08410.1 staurosporin and temperature sensitive 3 like A 1 - 4.40 - stress 
125  Glyma15g20400.1 DnaJ/Sec 63 Brl domains containing protein 1 - 3.73 - stress 
126  Glyma19g34890.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 2.82 - stress 
127  Glyma09g29470.1 staurosporin and temperature sensitive 3 like b 1 - 2.59 - stress 
128  Glyma16g33881.1 staurosporin and temperature sensitive 3 like b 1 - 2.57 - stress 
129  Glyma09g08830.1 DnaJ/Sec63 Brl domains containing protein 1 - 2.45 - stress 
130  Glyma10g04370.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 2.40 - stress 
131  Glyma10g00880.2 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 2.11 - stress 
132  Glyma06g21060.2 DnaJ heat shock N terminal domain containing protein 1 - 1.60 - stress 
133  Glyma13g18630.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 1.58 - stress 
134  Glyma02g43110.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 1.58 - stress 
135  Glyma04g33740.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 1.39 - stress 
136  Glyma09g16690.1 chaperone protein htpG family protein 1 - 0.21 - stress 
137  Glyma16g17500.1 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 0.14 - stress 
138  Glyma08g02940.1 HSP 70 family protein 1 - 0.71 - stress 
139  Glyma08g41220.3 S adenosyl L methionine dependent methyltransferases superfamily protein 1 - 0.29 - stress 

a), day after sowing (day after stress); Protein ID, according to the Phytozome soybean genome database; Ratio, relative abundance of protein was compared to 2-day-old untreated 

soybean; Function, protein function was categorized using MapMan bin codes; “-”, proteins with the same relative ratio as 2-day-old untreated soybeans. 
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Figure 17. Experimental design for the endoplasmic reticulum proteomics in soybean. 

Two-day-old (2(0)) soybeans were treated without or with flooding and drought for 2 

days (4(2)). Soybeans without treatments were collected as controls. Root tips were 

collected 5 mm from the end of roots for rough ER enrichment. Proteins were extracted 

and analyzed using nanoLC-MS/MS. Glycoproteomics, gene expression, and 

endogenous calcium content were further analyzed. Three independent experiments 

were conducted as biological replicates. 
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Figure 18. Enrichment of rough endoplasmic reticulum in soybean. Two-day-old 

soybeans were treated without or with flooding or drought for 2 days, and root tips were 

collected. All the procedures were performed at 4oC. Rough ER was enriched according 

to the instructions supplied by the Endoplasmic Reticulum Enrichment Kit with some 

modifications. A portion (1.0 g) of fresh root tips was ground with the homogenization 

buffer and protease inhibitor cocktail. The resulting homogenates were centrifuged at 

1000 x g for 10 min and pellet was collected as Fraction 1 (F1). The supernatant was 

transferred and centrifuged at 10000 x g for 15 min. The pellet was collected as Fraction 

2 (F2) and supernatant was centrifuged at 12000 x g for 15 min. The supernatant was 

precipitated using 8 mM CaCl2 and centrifuged at 8000 x g for 10 min. The pellet was 

collected as rough ER. 
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Figure 19. Immunoblot analysis to evaluate purity of endoplasmic reticulum in soybean. 

Rough ER was enriched from root tips of 2-day-old soybeans and purity of obtained 

fraction was assessed by immunoblot analysis. The cellular proteins (CP), proteins in 

Faction 1 (F1), Fraction 2 (F2), and rough ER were extracted and separate by SDS-

polyacrylamide gel electrophoresis, transferred to the polyvinylidine disfluoride 

membrane, reacted with anti-histone H3 (nucleus) antibody, and then signals were 

detected using the Chem-Lumi One Super kit. The relative intensities of bands were 

calculated using ImageJ software. Coomassie brilliant blue (CBB) staining pattern was 

used as loading control. Data are shown as means ± SD from three independent 

biological replicates. Different letter indicates the change is significant, as determined 

by one-way ANOVA according to Tukey’s multiple comparison test (p<0.05). 
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Figure 20. Enzyme assay to evaluate purity of endoplasmic reticulum in soybean. 

Rough ER was enriched from the root tips of 2-day-old soybeans and purity of obtained 

fraction was assessed by enzyme assays. The cellular proteins (CP), proteins in Fraction 

1 (F1), Fraction 2 (F2), and rough ER were used. For enzyme activity analyses, CP, F1, 

F2, and rough ER were examined by ADH (cytosol), fumarase (mitochondria), and 

NADH cytochrome c reductase activities (ER). Data are shown as means ± SD from 

three independent biological replicates. Different letter indicates the change is 

significant, as determined by one-way ANOVA according to Tukey’s multiple 

comparison test (p<0.05).  
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Figure 21. Immunoblot analysis and enzyme assay to evaluate purity of endoplasmic 

reticulum in soybean under flooding and drought. Two-day-old soybeans were treated 

without or with flooding and drought for 2 days. Rough ER was enriched from root tips 

under control, flooding, and drought. The cellular proteins (CP), proteins in Fraction 1 

(F1), Fraction 2 (F2), and rough ER were used. Each sample was separated by SDS-

polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride 

membrane for reaction with anti-histone H3 (nucleus) antibody. CP, F1, F2, and rough 

ER were assayed by ADH (cytosol), fumarase (mitochondria), and NADH cytochrome c 

reductase activities (ER). Data are shown as means ± SD from three independent 

biological replicates. Different letter indicates the significant change, as determined by 

one-way ANOVA according to Tukey’s multiple comparison test (p<0.05). 
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Figure 22. Diagrams of identified proteins in rough endoplasmic reticulum in soybean 

under flooding and drought. Two-day-old soybeans were treated without or with 

flooding and drought for 2 days, and rough ER was enriched from the root tips. The 

proteins were extracted and analyzed using nanoLC-MS/MS. The diagrams show that 

1511, 1770, and 770 proteins were identified in rough ER from control, and flooding- 

and drought-stressed seedlings, respectively, and included 63, 74, and 40 ribosomal 

proteins, respectively. A total of 255, 368, and 103 proteins were predicted to be ER 

proteins under control, flooding, and drought conditions, respectively. 
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Figure 23. Ribosomal proteins in soybean affected by flooding and drought. Two-day-

old soybeans were treated without or with flooding and drought for 2 days. The number 

and percentage of identified ribosomal proteins with increased and decreased abundance 

were shown for control, flooded, and drought-stressed soybean. Open and filled bars 

indicate increased and decreased protein abundance, respectively. 
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Figure 24. Functional analysis of predicted endoplasmic reticulum proteins in soybean 

under flooding and drought. Functional analysis of predicated ER proteins under control 

(C), flooding (F), and drought (D) was performed using MapMan bin codes. The 

functional category of protein was further classified into several subcategories. aOthers 

included lipid metabolism, secondary metabolism, nucleotide metabolism, amino acid 

metabolism, major CHO metabolism, minor CHO metabolism, RNA metabolism, 

fermentation, and the tricarboxylic acid cycle. bOthers included amino acid activation, 

post modification, and folding. 
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Figure 25. Gene expression of the endoplasmic reticulum proteins related to protein 

glycosylation and redox homeostasis. Two-day-old soybeans were treated without or 

with flooding and drought for 1, 2, and 3 days. RNA samples were extracted from the 

root tips. Gene expression was normalized against that of 18S rRNA. Data are shown as 

means ± SD from three independent biological replicates. Student’s t-test was used for 

statistical analysis. Two-day-old untreated soybeans were used for comparison point. 

The asterisks indicate the significance between different time points (*p<0.05, 

**p<0.01, ***p<0.001).  
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Figure 26. Gene expression of the endoplasmic reticulum proteins related to signaling 

and transport. RNA samples were extracted from the root tips. Gene expression was 

normalized against that of 18S rRNA. Data are shown as means ± SD from three 

independent biological replicates. Student’s t-test was used for statistical analysis. Two-

day-old untreated soybeans were used for comparison point. The asterisks indicate the 

significance between different time points (*p<0.05, **p<0.01, ***p<0.001).  
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Figure 27. Glycoproteins affected by flooding and drought in soybean. Two-day-old 

soybeans (2(0)) were treated without stresses for 2 days (4(0)) or with flooding (F) or 

drought (D) for 2 days (4(2)), and root tips were collected. Glycoproteins were enriched 

in root tips using the Glycoprotein Isolation Kit, ConA; and peptides were analyzed 

using nanoLC-MS/MS. N-glycosylation sites were predicted using NetNGlyc 1.0 

Server. The number of identified proteins, predicted N-glycoproteins, and percentage of 

N-glycoprotein abundance were presented for each condition. The filled and opened 

bars indicate proteins with or without N-glycosylation sites, respectively. 
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Figure 28. Effect of flooding and drought on endogenous calcium content in soybean. 

Two-day-old (2(0)) soybeans were treated without or with flooding (F) or drought (D) 

for 2 days and root tips were collected for endogenous calcium content analysis, using 

the Calcium Colorimetric Assay Kit. Data are shown as means ± SD from three 

independent biological replicates. Student’s t-test was used for statistical analysis. The 

solid and dotted lines indicate the comparisons using 2(0) and 4-day-old (4(0)) soybeans 

as control, respectively. The asterisks indicate the significant change (*p<0.05, 

**p<0.01, ***p<0.001). 

  



  

97 

 

 
Figure 29. Proposed model for glycoprotein synthetic pathways affected by flooding 

and drought in the endoplasmic reticulum of soybean. The red and blue arrows indicate 

changes of protein abundance under flooding; orange and purple arrows indicate 

changes of protein abundance under drought; and upward and downward arrows 

indicate increased and decreased changes of protein abundance, respectively, compared 

to untreated soybean. Abbreviations are as follows: OST, oligosaccharyltransferase; 

PDI, protein disulfide isomerase; HSP, heat shock protein; UGGT, UDP glucose: 

glycoprotein glucosyltransferase; CaM, calmodulin-binding protein. 
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Chapter 3 

Calcium effects on soybean under flooding and drought stresses
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3.1. Introduction 

Calcium is an important secondary messenger playing vital roles in stress 

signaling and increased cytosolic calcium caused by adverse environmental conditions 

triggers downstream responses to cope with the stresses (Huda et al., 2013, Zhu et al. 

2013). Calcium signaling pathways involve calcium sensors and several downstream 

factors, such as calmodulin (Harmon et al., 2000), calcineurin B-like proteins (Luan et 

al., 2002), and calcium-dependent protein kinases (Zhu et al., 2007). In soybean, 

exogenous calcium enhanced root elongation and suppressed cell death in root tip under 

flooding (Oh et al., 2014a). In addition, calcium pretreatment increased biomass and 

improved drought tolerance of zoysiagrass through regulation of photosynthesis and 

antioxidant responses (Xu et al., 2013). Based on these findings, further studies are 

necessary to examine the effects of calcium on soybean under flooding and drought 

stresses. 

Plants have developed complex strategies to maintain balance between protein 

folding demand and folding capacity in the ER (Deng et al., 2013). Misfolded or 

unfolded proteins accumulate under adverse environmental conditions due to 

dysfunction of the ER (Vitale and Boston, 2008). Calcium homeostasis is maintained 

through distribution of calcium-binding proteins, calcium pumps, and calcium-release 

channels in the ER (Papp et al., 2003). Overexpression of luminal binding protein (BiP), 

which is a calcium-handling protein in the ER, mediated the capacity of calcium 

homeostasis under drought (Valente et al., 2009). Additionally, protein abundance of 

BiP was decreased upon exposure to flooding (Mustafa and Komatsu, 2014). Although 

these findings indicate cross-talk between calcium and the ER, the mechanisms by 

which calcium modulates ER-associated degradation/unfolded protein response in 

soybean to cope with ER stress induced by flooding and drought is not well understood. 

Metabolic regulation was activated in plants under stress conditions. Energy 

sensor Snf1-related protein kinase 1, which is metabolic master regulator in eukaryotic 

cells, played modulatory role in plant hypoxia adaptation and salt tolerance (Im et al., 

2014). Calcium was not only associated with ER function in plants under stress 

conditions (Liu et al., 2011), but also participated in metabolic regulation in plants. For 

example, calcium was involved in the regulation of aquaporins, which played key roles 
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in hydraulic mediation in response to flooding and drought stresses (Maurel et al., 

2015). Calcium-dependent mitochondrial carriers functioned as mitochondrial-ATP 

importers to balance the loss of mitochondrial-oxidative phosphorylation during 

hypoxia condition (Stael et al., 2011). Calcium-transporter systems including 

calcium/proton exchanger 11 mediated calcium homeostasis under hypoxia in 

Arabidopsis (Wang et al., 2016). Exogenous calcium improved metabolism and ion 

transport to increase tolerance in cucumber under hypoxia (He et al., 2015). These 

findings indicate versatile roles of calcium in flooded plants, while metabolic regulation 

induced by drought is limited. 

It was demonstrated that disruption of calcium homeostasis in the ER affected 

protein folding in calnexin cycle and declined accumulation of glycoproteins in soybean 

exposed to flooding and drought (Chapter 2). To better understand the responsive 

mechanisms in soybean related to calcium effects in the ER and the systems plant used 

to alleviate ER stress under flooding and drought, gel-free/label-free proteomic 

technique was used. To regulate calcium content, 2-aminoethoxydiphenyl borate (2-

APB) was used to inhibit inositol-trisphosphate receptor, which is a gated-calcium 

channel in the ER (Parre et al., 2007; Healy et al., 2012), and LaCl3 was used to block 

Ca2+-ATPase in the plasma membrane (Xu and Heath 1998; Chung et al., 2000). 

Bioinformatic, transcriptional, and biochemical analyses were further conducted to 

determine the function of flooding- and drought-responsive proteins. 

 

3.2. Materials and methods 

3.2.1. Plant material and treatments 

Soybean was used as plant material in this study. 2-APB (Sigma-Aldrich) and 

LaCl3 (Wako) were separately dissolved in ethanol to prepare 100 mM stock solutions. 

EGTA (Sigma-Aldrich) and CaCl2 (Wako) were separately dissolved in water to prepare 

500 mM stock solutions. Working solutions of 0.1 mM 2-APB (Liu et al., 2011), 0.1 

mM LaCl3 (Maintz et al., 2014), 1 mM EGTA (Li et al., 2011), and 1 mM CaCl2 (Li et 

al., 2011) were used in the experiments. The silica sand was wetted with 150 mL of 0.1 

mM 2-APB, 0.1 mM LaCl3, 1 mM EGTA, 1 mM CaCl2, or water (untreated). Plant 

growth conditions were the same as described in 1.2.1 in Chapter 1. For treatment, 2-
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day-old soybeans were exposed to flooding or drought by adding 700 mL of excess 

water or withholding water for 1 day, respectively. Non-stressed soybeans were 

collected as controls. In time-dependent experiment, 2-day-old soybeans were exposed 

to flooding or drought for 1, 2, 3, and 4 days, and root tips were collected. Three 

independent experiments were performed as the biological replicates for all 

experiments. Biological replicate means soybeans sown on different days. Twenty plants 

were sown in each time point for one replicate (Figure 30). 

 

3.2.2. Quantification of endogenous calcium content 

Quantification of endogenous calcium content was performed as described in 

2.2.13 in Chapter 2. 

 

3.2.3. Protein extraction for proteomic, enzymatic, and immunoblot analyses 

For proteomic analysis, protein extraction was performed as described in 1.2.2 in 

Chapter 1. For enzyme activity analysis, a portion (0.1 g) of root tips was ground with a 

mortar and pestle in enzyme extraction buffer consisting of 50 mM HEPES-NaOH (pH 

7.5), 1 mM phenylmethylsulfonyl fluoride, 0.1% Triton X-100, 5 mM MgCl2, 1 mM 

dithiothreitol, 2% polyvinylpyrrolidone-40, and 1 mM EDTA. The homogenates were 

sonicated for 20 min in cold water and centrifuged at 15000 x g for 20 min at 4°C. The 

supernatant was collected as protein extracts. For immunoblot analysis, protein 

extraction was performed as described in 2.2.6 in Chapter 2. 

 

3.2.4 Concentration measurement of proteins 

Concentration measurement of proteins was performed as described in 1.2.3 in 

Chapter 1. 

 

3.2.5 Clean up and digestion of cellular proteins 

Clean up and digestion of cellular proteins was performed as described in 1.2.4 in 

Chapter 1. 

 

3.2.6 Mass spectrometry analysis 
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Mass spectrometry analysis was performed as described in 1.2.5 in Chapter 1. The 

MS data have been deposited with the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

(Vizcaíno et al., 2013) with the data set identifier PXD005281. 

 

3.2.7 Protein identification using mass spectrometry data 

Protein identification was performed as described in 1.2.6 in Chapter 1. 

 

3.2.8 Analysis of differentially abundant proteins 

The acquired Mascot results were exported into SIEVE for proteomic analysis as 

described in 1.2.7 in Chapter 1. 

 

3.2.9 Analyses of protein localization, protein function, and metabolism pathway 

Protein localization was predicted using SUBA3 intracellular targeting prediction 

program (http://suba3.plantenergy.uwa.edu.au/) (Tanz et al. 2013). Functional analysis 

and metabolism pathway were performed as described in 1.2.8 in Chapter 1. 

 

3.2.10 Cluster analysis of protein abundance 

Cluster analysis of protein abundance was performed as described in 1.2.9 in 

Chapter 1. 

 

3.2.11 Enzyme activity analysis of pyruvate decarboxylase 

Proteins in enzyme extraction buffer were used to examine the activity of 

pyruvate decarboxylase as described by Gounaris et al. (1971) with some modifications. 

The reaction solution contained 400 mM Tris-HCl (pH 6.0), 30 mM sodium pyruvate, 

75 μM NADH, and 3 U/mL ADH. The reaction was measured continuously for 5 min at 

25°C at 340 nm (EC340 = 6.22 mM-1 cm-1) and enzyme activity was calculated using 

formula: U/mg protein = [(ΔA340/min x total volume x sample dilution factor)/(6.22 x 

sample volume)]/protein concentration. 

 

3.2.12 Immunoblot analysis  
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Immunoblot analysis was performed as described in 2.2.6 in Chapter 2 using anti-

calnexin antibody with the ratio of 1: 3000 (Nouri and Komatsu, 2010). 

 

3.2.13 RNA extraction and quantitative reverse transcription-polymerase chain reaction 

RNA extraction and qRT-PCR were performed as described in 1.2.12 in Chapter 

1. The qRT-PCR primers were designed using the Primer3Plus web interface 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) (Table 9). 

 

3.2.14 Statistical analysis   

Statistical analysis was performed as described in 1.2.13 in Chapter 1. 

 

3.3. Results 

3.3.1. Effects of 2-APB and LaCl3 on calcium content under flooding and drought 

stresses 

As cytosolic calcium content was increased in root tip of soybean under flooding 

and drought (Chapter 2), the source of increased calcium under these abiotic stresses 

was examined using 2-APB and LaCl3. Soybean seeds were germinated for 2 days 

without or with treatment of 2-APB and LaCl3, and 2-day-old soybeans were exposed to 

flooding or drought for 1 day before the root tips were collected. In absence of chemical 

treatment, calcium content was increased in soybeans under both stresses compared to 

non-stressed plants. Calcium content was not increased in soybeans treated by 2-APB 

under flooding compared to non-treated soybeans without stresses. Moreover, calcium 

level did not change by LaCl3 under flooding and drought compared to non-stressed 

plants (Figure 31). Because calcium content was not increased by chemical treatment 

under both stresses, 2-APB and LaCl3 were used to regulate cellular calcium level in the 

following experiments. 

 

3.3.2. Effects of chemical treatment on gene expression of calcium-related proteins 

under flooding and drought stresses 

Inositol trisphosphate, which was phosphorylated by inositol 1,3,4-trisphosphate 

5/6 kinase, mediated calcium release from the ER (Du et al., 2011). Ca2+-transporting 
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ATPase in the plasma membrane was decomposed by LaCl3 (Carafoli, 1991). Gene 

expression of inositol 1,3,4-trisphosphate 5/6 kinase and Ca2+-transporting ATPase was 

examined to determine the effects of 2-APB and LaCl3 on calcium mediation. Soybean 

seeds were germinated for 2 days without or with treatment of 2-APB, LaCl3, or EGTA, 

and 2-day-old soybeans were exposed to flooding or drought for 1 day before the root 

tips were collected. Inositol 1,3,4-trisphosphate 5/6-kinase family protein was 

upregulated and downregulated without chemical treatment under flooding and drought, 

respectively, compared to non-stressed soybeans. It was downregulated by chemical 

treatment compared to untreated soybeans under flooding condition. Ca2+-transporting 

ATPase was upregulated without chemical treatment under drought (Figure 32).  

 

3.3.3. Effects of chemical treatment on gene expression and protein abundance of 

calnexin under flooding and drought stresses 

The ER is involved in protein folding through calnexin cycle (Healy et al., 2012) 

and calnexin was decreased in root tip of soybean exposed to flooding and drought for 2 

days (Chapter 2). To examine the effects of calcium on calnexin under flooding and 

drought, gene expression and protein abundance of calnexin were examined. Soybean 

seeds were germinated for 2 days without or with treatment of 2-APB, LaCl3, or EGTA, 

and were exposed to flooding or drought for 1 day before the root tips were collected. 

Calnexin was downregulated without chemical treatment under both stresses compared 

to non-stressed soybeans and downregulated by 2-APB and LaCl3 compared to 

untreated soybeans under both stresses (Figure 33A). Calcium effects on calnexin 

abundance were also examined, but the abundance was unaltered without or with 

chemical treatment in control or flooding- or drought-stressed plants (Figure 33B).  

 

3.3.4. Effects of chemical treatment and stress duration on gene expression of ER-

stress related proteins under flooding and drought stresses 

To determine the effects of calcium on ER stress, gene expression of HCP-like 

superfamily protein and GRP78/BiP, which are involved in ER-associated degradation 

and unfolded protein response, was analyzed. Soybean seeds were germinated for 2 

days without or with treatment of 2-APB, LaCl3, or EGTA, and 2-day-old soybeans 
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were exposed to flooding or drought for 1 day before the root tips were collected. HCP-

like superfamily protein was upregulated without chemical treatment under flooding 

compared to non-stressed soybeans, but downregulated by 2-APB compared to 

untreated soybeans under both stresses (Figure 34A). GRP78/BiP was downregulated 

without chemical treatment under both stresses compared to non-stressed plants (Figure 

34A). Because gene expression of these ER stress-related proteins was affected under 

both stresses, it was analyzed in detail on time-dependent manner. HCP-like superfamily 

protein was upregulated in the first day of exposure to both stresses (Figure 34B). 

GRP78/BiP was downregulated after 1 day of flooding and after 3 days of drought 

(Figure 34B).  

 

3.3.5. Calcium effects on the abundance of ER proteins under flooding and drought 

stresses 

To explore the effects of calcium on soybean under flooding and drought stresses, 

proteomic analysis was conducted. Soybean seeds were germinated for 2 days without 

or with treatment of 2-APB, LaCl3, EGTA, or CaCl2, and 2-day-old soybeans were 

exposed to flooding or drought for 1 day before the root tips were collected. To examine 

the effects of 2-APB and LaCl3 on ER function, the abundance of predicted ER proteins 

was analyzed. Among the predicted ER proteins, calnexin, PDI-like proteins, HSPs, and 

thioredoxin family proteins were the most abundant. Cluster analysis of these abundant 

ER proteins was further performed to examine the protein abundance induced by 2-APB 

and LaCl3 under both stresses (Figure 35). Under flooding, increased calnexin and PDI-

like proteins were identified in absence of chemical treatment. Calnexin and HSPs were 

decreased; however, PDI-like proteins unaltered or increased in soybeans with 2-APB 

treatment under flooding compared to untreated plants. Thioredoxin family proteins 

were decreased in flooded soybeans and it further declined with 2-APB or LaCl3 

treatment compared to untreated plants. Under drought, calnexin was increased in 

absence of chemical treatment. Calnexin was increased and decreased by 2-APB and 

LaCl3, respectively, compared to untreatment. PDI-like proteins were decreased by 2-

APB treatment under drought compared to untreated soybeans. HSPs were slightly 

increased by 2-APB compared to untreated soybeans under drought. In addition, more 
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proteins were decreased in plants treated with LaCl3 under both stresses compared to 

untreated soybeans (Figure 35).  

 

3.3.6. Primary metabolic pathways related to calcium under flooding and drought 

stresses 

To determine the function of responsive proteins induced by chemical treatment, 

functional analysis was performed using MapMan bin codes under control, flooding, 

and drought. The fold change of protein abundance was visualized using MapMan 

software to examine the affected metabolism. Out of all the primary metabolism, 

glycolysis, fermentation, the tricarboxylic acid cycle, and amino acid metabolism were 

significantly altered by calcium (Figure 36).  

Effects of calcium on the ER and plasma membrane were examined using 2-APB 

and LaCl3. Under control, 2-APB treatment suppressed the tricarboxylic acid cycle 

(Figure 36C), whereas LaCl3 enhanced amino acid metabolism (Figure 36D). Under 

flooding, 2-APB treatment suppressed the tricarboxylic acid cycle (Figure 36A, G) and 

LaCl3 suppressed fermentation compared to untreated soybeans (Figure 36A, H). Under 

drought, 2-APB and LaCl3 inhibited glycolysis and amino acid metabolism (Figure 36B, 

K, L). Under control, EGTA suppressed glycolysis, fermentation, the tricarboxylic acid 

cycle, and amino acid metabolism (Figure 36E), whereas CaCl2 enhanced fermentation 

(Figure 36F). Under flooding, EGTA suppressed fermentation (Figure 36A, I) compared 

to CaCl2 (Figure 36A, J) or untreatment. Under drought, EGTA suppressed glycolysis, 

the tricarboxylic acid cycle, and amino acid metabolism (Figure 36B, M), whereas 

CaCl2 enhanced the tricarboxylic acid cycle, compared to untreated soybeans (Figure 

36B, N). 

Abundance of the most affected proteins in response to calcium under flooding 

and drought stresses was examined. Under flooding, pyruvate decarboxylase 2 (Table 

10, number 25) and NADP malic enzyme 4 (Table 10, number 38) displayed the highest 

and the lowest protein abundance, respectively. Under drought, ATP citrate lyase subunit 

B2 (Table 10, number 42) and pyruvate decarboxylase 2 (Table 10, number 41) were 

determined with the highest and the lowest protein abundance, respectively.  
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3.3.7. Calcium effects on the abundance of proteins related to glycolysis, fermentation, 

the tricarboxylic acid cycle, and amino acid metabolism under flooding and 

drought stresses 

Because glycolysis, fermentation, the tricarboxylic acid cycle, and amino acid 

metabolism were altered in response to chemical treatment under both stresses (Figure 

36), the effects of calcium on protein abundance of these categories were further 

analyzed. A total of 47 proteins were determined to be calcium responsive under both 

stresses (Table 10). Of these 47 proteins, 36 were mapped to glycolysis, fermentation, 

the tricarboxylic acid cycle, and amino acid metabolism against KEGG (Figure 37). 

Among the identified proteins, pyruvate decarboxylase, ATP citrate lyase, 

isocitrate dehydrogenase, and 2-oxoglutarate dehydrogenase were changed in response 

to calcium under both stresses. Pyruvate decarboxylase was the most changed protein 

and found increased and decreased in untreated plants under flooding and drought, 

respectively, compared to non-stressed plants. Under both stresses, pyruvate 

decarboxylase was decreased in plants treated with 2-APB and LaCl3, but increased by 

CaCl2, compared to untreated soybeans. ATP citrate lyase was decreased and increased 

in untreated plants under flooding and drought, respectively, compared to non-stressed 

plants. The same change tendency of ATP citrate lyase was further induced by 2-APB 

treatment under both stresses compared to untreatment. Isocitrate dehydrogenase was 

decreased without chemical treatment under both stresses compared to non-stressed 

soybeans. 2-Oxoglutarate dehydrogenase was increased without chemical treatment 

under both stresses compared to non-stressed soybeans, but decreased and increased in 

response to 2-APB treatment under flooding and drought, respectively, compared to 

untreated soybeans (Figure 37). 

Furthermore, the abundance of several other proteins including aconitase, 

succinate dehydrogenase, and asparate aminotransferases, was altered in soybeans under 

flooding or drought. Under flooding, succinate dehydrogenase was decreased without 

chemical treatment compared to non-stressed soybeans, but increased by 2-APB and 

EGTA compared to untreated soybeans. Aspartate aminotransferases were slightly 

increased without chemical treatment, but increased by 2-APB and EGTA treatment 

compared to untreated soybeans under flooding. Under drought, aconitase was slightly 
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decreased without chemical treatment compared to non-stressed soybeans (Figure 37). 

The abundance of proteins related to glycolysis was significantly altered in 

soybean exposed to flooding. Under flooding, phosphofructokinase was decreased, 

whereas enolase and pyruvate kinase increased in absence of chemical treatment 

compared to non-stressed soybeans. In contrast, phosphofructokinase was increased by 

2-APB, whereas enolase decreased by 2-APB and LaCl3 compared to untreated 

soybeans under flooding. Pyruvate kinase was slightly decreased by 2-APB, LaCl3, and 

EGTA, but increased by CaCl2 compared to untreated soybeans under flooding. 

Furthermore, proteins related to amino acid metabolism were decreased without 

chemical treatment compared to non-stressed soybeans, but they exhibited variable 

changes in response to chemical treatment compared to untreated soybeans under 

flooding (Figure 37). 

 

3.3.8. Effects of flooding and drought on pyruvate decarboxylase activity 

Protein abundance of pyruvate decarboxylase was increased and decreased under 

flooding and drought, respectively, and markedly affected by calcium (Figures 37 and 

38A, Table 10). To further characterize the properties of pyruvate decarboxylase in 

soybean under flooding and drought, temporal changes in enzyme activity were 

examined (Figure 38B). Two-day-old soybeans were exposed to flooding or drought for 

1, 2, 3, and 4 days, and the root tips were collected for pyruvate decarboxylase activity 

analysis. Pyruvate decarboxylase activity was decreased in 5-day-old soybeans under 

control, but gradually increased during the 4 days of flooding. In contrast, pyruvate 

decarboxylase activity was continuously decreased under drought (Figure 38B). 

 

3.4. Discussion 

3.4.1. Calcium is involved in the ER function in soybean-root tip under flooding and 

drought stresses 

Because cytosolic calcium content was reportedly increased in root tip of soybean 

under flooding and drought, source of increased cytosolic calcium was examined using 

2-APB and LaCl3. 2-APB functions as a non-competitive antagonist of inositol-

trisphosphate receptor in the ER (Prakriya and Lewis 2001; Healy et al., 2012) and 
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LaCl3 is a blocker of Ca2+-ATPase activity in the plasma membrane (Xu and Heath 

1998; Chung et al., 2000). Treatment of 2-APB and LaCl3 did not induce calcium 

elevation in cytosol under both stresses in soybean (Figure 31), suggesting that calcium 

might be released from the ER or from the outside of plasma membrane, under flooding 

or drought.  

In response to ER stress, ER-associated degradation and unfolded protein 

response are activated (Howell, 2013). HCP-like superfamily protein was upregulated 

and downregulated, respectively, under flooding and drought, whereas GRP78/BiP 

downregulated under both stresses (Figure 34). HCP-like superfamily protein is a 

homologue of Arabidopsis HRD3A, which was a component of ER-associated 

degradation complex (Liu et al., 2011). In Arabidopsis, ER-associated degradation was 

involved in stress response (Chen et al., 2016), and impairment of HRD3A altered 

unfolded protein response and increased plant sensitivity to salt stress (Liu et al., 2011). 

GRP78/BiP, which is an HSP homologue, has multiple roles in the ER, including ER-

associated folding, ER-associated degradation, and unfolded protein response (Healy et 

al., 2012). Taken together, these findings indicate that HCP-like superfamily protein is a 

component of ER-associated degradation complex in soybean and might alleviate ER 

stress in root tip at initial stage of soybean exposed to flooding and drought, as well as 

salt stress.  

Calnexin was increased in root tip of soybean exposed to flooding and drought for 

1 day (Figure 35). Calnexin, which is an ER-localized protein involved in protein 

folding and quality control (Bergeron et al., 1994), was increased in root including 

hypocotyl of the early-stage soybean in the first day of flooding (Nanjo et al., 2010). 

Exposed to flooding for 2 days, decreased calnexin was reported in soybean (Komatsu 

et al., 2012b); however, it increased in flooding-tolerant mutant (Yin et al., 2016). 

Calnexin was decreased in soybean exposed to drought for 2 days (Chapter 2) and 

heterogenous expression of OsCNX in tobacco enhanced germination under mannitol 

stress (Sarwat and Naqvi, 2013). Taken together, these results suggest that increased 

calnexin might maintain protein folding in root tip of the early-stage soybean under 

flooding and drought. 

The ER regulates protein folding and assembly of multimeric proteins through an 
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array of chaperones including calnexin, PDI, and HSPs (Healy et al., 2012). The 

accumulation of misfolded or unfolded proteins under adverse environmental conditions 

leads to ER stress (Vitale and Boston, 2008). In the present study, the treatment of 2-

APB resulted in decreased and increased levels of calnexin/HSPs under flooding and 

drought, respectively, and slightly increased the abundance of PDI-like proteins under 

flooding (Figure 35). 2-APB inhibited calcium release induced by inositol trisphosphate 

in animals (Maruyama et al., 1997) and mediated ER calcium in fungi (Silverman-

Gavrila and Lew, 2001), as well as in plants (Liu et al., 2011). Calnexin, together with 

PDI-like proteins or HSPs, was involved in protein folding under flooding and drought, 

respectively (Chapter 2). The present results combined with previous findings suggest 

that calcium in the ER is associated with protein folding and reduction of cytosolic 

calcium might weaken ER stress under drought. 

 

3.4.2. Calcium is associated with energy supply in soybean-root tip exposed to 

flooding and drought stresses 

In response to calcium, several proteins involved in primary metabolic pathways 

including glycolysis, fermentation, the tricarboxylic acid cycle, and amino acid 

metabolism were differentially affected under flooding and drought (Figures 36 and 37). 

Proteins involved in glycolysis were increased and responded to calcium level under 

flooding (Figure 37). Genes associated with glycolysis were downregulated or unaltered 

in potato exposed to drought (Watkinson et al., 2008), but upregulated in flooded 

soybean (Nanjo et al., 2011). Various glycolysis-related proteins were increased in 

flooded soybean exposed to aluminum oxide nanoparticles (Mustafa et al., 2015b) and 

enhanced-glycolytic activity was required for mediating waterlogging tolerance in mung 

bean (Sairam et al., 2009). Additionally, disruption of calcium homeostasis in the ER 

reduced the accumulation of glycoproteins under flooding and drought (Chapter 2), 

whereas glycoproteins involved in glycolysis were activated in response to flooding 

(Mustafa and Komatsu, 2014). Taken together, these findings suggest that calcium in the 

ER is involved in glycolysis and increased-glycolytic activity might be required to meet 

energy demand during the early stage of flooding. 

The present finding that proteins involved in the tricarboxylic acid cycle were 
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modulated in response to calcium in the ER was not unexpected, because 2-APB 

reduced the extent of mitochondrial-calcium uptake (Peppiatt et al., 2003). Notably, 

isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase were decreased and 

increased in soybean-root tip under flooding and drought, respectively (Figure 37). In 

the tricarboxylic acid cycle, isocitrate dehydrogenase catalyzes the conversion of 2-

oxyglutarate to isocitrate (Bailey-Serres and Voesenek, 2008) and 2-oxoglutarate 

dehydrogenase is involved in the conversion of 2-oxoglutarate to succinate (Hassel et 

al., 1998). γ-Aminobutyrate metabolism was functional bypass of 2-oxyglutarate to 

succinate of the tricarboxylic acid cycle in plants (Studart-Guimarães et al., 2007). 

GABA was accumulated in soybean under flooding (Komatsu et al., 2011a) and drought 

(Serraj et al., 1998). In addition, succinate accumulated in soybean under flooding 

(Komatsu et al., 2011a) and in tobacco under salt (Zhang et al., 2011b). These findings 

indicate that the balance between succinate and GABA might play roles in energy 

replenishment in response to depleted-energy production induced by flooding and 

drought in soybean. 

Protein abundance and enzyme activity of pyruvate decarboxylase were increased 

under flooding or decreased under drought, in absence of chemical treatment (Figures 

37 and 38). The protein abundance was decreased and increased following treatment 

with 2-APB and CaCl2, respectively, under both stresses (Figures 37 and 38). Pyruvate 

decarboxylase was key fermentative enzyme under flooding (Komatsu et al., 2011b) and 

involved in drought adaptation (Ranjan et al., 2012). Energy sensor Snf1-related protein 

kinase 1 underwent activation under hypoxia-inducible energy deprivation (Fragoso et 

al., 2009). Faster consuming of pyruvate was reported in plants under control than under 

extended darkness conditions, which was validated with significant alterations in the 

activity of pyruvate dehydrogenase complex (Nägele et al., 2014). Calcium transients 

were required for alterations in gene expression enhancing fermentation and ATP 

management under stress (Bailey-Serres and Voesenek, 2008). In root of flooded 

cucumber, upregulated gene expression and increased protein abundance of pyruvate 

decarboxylase were further induced by exogenous calcium application (He et al., 2012). 

Taken together, these findings suggest that pyruvate decarboxylase responds to calcium 

and might be a key enzyme to switch energy metabolism in root tip of soybean under 
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flooding and drought. 

 

3.5. Conclusion 

The present study investigated calcium effects on ER function and cellular 

metabolisms of soybean under flooding and drought stresses. The main findings are as 

follows (Figure 39): (i) 2-APB and LaCl3 inhibited the elevation of cytosolic calcium in 

soybean under both stresses; (ii) calnexin, PDI-like proteins, HSPs, and thioredoxin 

family proteins were affected as abundant ER proteins in response to calcium under 

both stresses; (iii) HCP-like superfamily protein responded to calcium and its gene 

expression was upregulated upon 1-day exposure to both stresses; (iv) glycolysis, 

fermentation, the tricarboxylic acid cycle, and amino acid metabolism were altered as 

main cellular metabolisms in response to calcium under both stresses; (v) protein 

abundance of pyruvate decarboxylase was increased under flooding and decreased 

under drought, respectively, in absence of chemical treatment; and it presented with 

increased abundance in response to elevated cytosolic calcium; and (vi) enzyme activity 

of pyruvate decarboxylase was increased and decreased under flooding and drought, 

respectively. Collectively, these findings indicate that calcium is involved in ER 

function and ER-associated degradation might eliminate ER stress during the early stage 

of both stresses. In addition, calcium might play roles in energy production in soybean-

root tip exposed to flooding and drought, and pyruvate decarboxylase may be a key 

enzyme for modifying energy metabolism in response to these abiotic stresses. 
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Table 9. Primer sequences of genes selected for qRT-PCR in Chapter 3 

Protein ID a) Description  Sequence of primers ( 5’--- 3’) 

Glyma04g09290.2 inositol 1,3,4-trisphosphate 5/6-kinase family protein F: GCTGTTGCGGATATGAACCT 

  R: ACTCCTGGAGCACAAGAGGA 

Glyma19g35960.1 Ca2+-transporting ATPase F: GGGAGTATGTGGATGGATGG 

  R: GGCCATCTTTCGAGTACCAA 

Glyma04g38000.1 calnexin F: GGATCCTGTTTTTAACGCAGATTAG 

  R: AAATTATCATTATTCTATTGCATTAGTAGG 

Glyma11g13460.1 calreticulin 3 F: CATGGATTGGGACATCCTTC 

  R: TCAACAGGCTTCTTGGCTTT 

Glyma14g24090.1 PDI like 1,1 F: CACCTTGGATGCCAAATACC 

  R: ACAAAAGGGTGATTGCTTGG 

Glyma05g33770.1 HCP-like superfamily protein F: TCCAGGCACCACCTCTATTC 

  R: GGTTAGCAGCGAGGACAAAG 

Glyma05g36600.1 GRP78/BiP F: AGCTCGGTTTGAGGAGTTGA 

    R: TTGTTTGGCTCCTTTCCATC 

a, Protein ID according to Phytozome soybean genome database. 
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Table 10. List of proteins related to glycolysis, fermentation, the tricarboxylic acid cycle, and amino acid metabolism in response to calcium in the root tip of soybean 

under flooding and drought stresses 

   Ratio  

 Protein ID Description 3(0)a) 3(1) 2-APB 3(1) LaCl3 3(1) EGTA 3(1) CaCl2 3(1) Function  

Flooding  

1 Glyma10g34490.1 pyruvate kinase family protein 1 1.72 1.51 1.57 1.70 1.89 glycolysis 

2 Glyma09g28100.1 enolase 1 1.28 1.03 0.60 1.14 1.35 glycolysis 

3 Glyma10g25683.1 phosphofructokinase family protein 1 0.68 0.71 0.61 1.00 0.67 glycolysis 

4 Glyma16g09020.1 glyceraldehyde 3 phosphate dehydrogenase of plastid 2 1 0.66 0.64 0.83 0.58 1.00 glycolysis 

5 Glyma03g22790.1 glyceraldehyde 3 phosphate dehydrogenase of plastid 2 1 0.62 0.56 0.27 0.54 0.62 glycolysis 

6 Glyma09g01270.1 fumarylacetoacetase putative 1 1.56 1.81 1.56 1.67 1.52 amino acid metabolism 

7 Glyma05g27840.1 urease 1 1.19 1.37 0.87 2.06 0.74 amino acid metabolism 

8 Glyma06g08670.1 aspartate aminotransferase 3 1 1.06 1.22 0.94 1.17 1.06 amino acid metabolism 

9 Glyma04g08560.1 aspartate aminotransferase 3 1 1.05 1.20 0.94 1.17 1.05 amino acid metabolism 

10 Glyma19g29180.3 cobalamin independent synthase family protein 1 0.36 1.00 0.02 0.50 0.17 amino acid metabolism 

11 Glyma02g04760.1 phosphoserine aminotransferase 1 0.71 1.00 0.09 1.00 0.67 amino acid metabolism 

12 Glyma14g35370.2 class II DAHP synthetase family protein 1 0.14 1.00 0.02 1.00 0.09 amino acid metabolism 

13 Glyma05g03190.1 arginosuccinate synthase family 1 0.82 0.92 0.85 1.00 0.75 amino acid metabolism 

14 Glyma19g36580.1 pyridoxal dependent decarboxylase family protein 1 0.73 0.85 0.67 1.00 0.72 amino acid metabolism 

15 Glyma20g31980.1 chorismate synthase putative 1 0.75 0.76 0.63 1.00 0.68 amino acid metabolism 

16 Glyma13g15140.1 cobalamin independent synthase family protein 1 0.76 0.71 0.13 0.73 0.92 amino acid metabolism 

17 Glyma04g30350.1 cobalamin independent synthase family protein 1 0.78 0.69 0.16 0.68 0.90 amino acid metabolism 

18 Glyma17g23730.1 cobalamin independent synthase family protein 1 0.68 0.54 0.07 0.62 0.72 amino acid metabolism 

19 Glyma17g24366.1 cobalamin independent synthase family protein 1 0.68 0.54 0.07 0.61 0.68 amino acid metabolism 

20 Glyma13g21230.1 threonine dehydratase 1 0.45 0.51 0.37 1.00 0.45 amino acid metabolism 

21 Glyma20g01180.2 peroxisomal 3 ketoacyl CoA thiolase 3 1 0.61 0.49 0.58 0.58 0.65 amino acid metabolism 

22 Glyma08g17760.1 mercaptopyruvate sulfurtransferase 1 1 0.56 0.43 1.31 0.38 1.00 amino acid metabolism 

23 Glyma14g39170.1 glutamate decarboxylase 1 0.51 0.37 0.42 0.50 0.62 amino acid metabolism 

24 Glyma05g10840.2 cobalamin independent synthase family protein 1 0.20 0.25 0.01 0.58 0.14 amino acid metabolism 

25 Glyma13g30490.1 pyruvate decarboxylase 2 1 2.03 1.51 0.20 1.32 2.63 fermentation 

26 Glyma08g17450.1 aldehyde dehydrogenase 5F1 1 1.51 2.33 1.00 2.02 1.00 TCA cycle 

27 Glyma15g41690.1 aldehyde dehydrogenase 5F1 1 1.55 2.01 1.44 1.58 1.10 TCA cycle 

28 Glyma02g10470.1 2-oxoglutarate dehydrogenase E1 component 1 1.28 1.00 0.64 1.19 1.34 TCA cycle 

29 Glyma16g00590.1 dihydrolipoamide acetyltransferase long form protein 1 0.83 1.00 0.89 1.00 0.75 TCA cycle 

30 Glyma18g52430.2 2-oxoglutarate dehydrogenase E1 component 1 1.25 1.00 1.00 1.17 1.28 TCA cycle 
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31 Glyma14g39160.2 cytosolic NADP dependent isocitrate dehydrogenase 1 0.54 1.00 1.00 1.00 0.41 TCA cycle 

32 Glyma01g38200.1 succinate dehydrogenase 1 0.79 0.90 0.66 1.00 0.77 TCA cycle 

33 Glyma05g08770.1 isocitrate/isopropylmalate dehydrogenase family protein 1 0.70 0.58 0.83 0.63 1.00 TCA cycle 

34 Glyma09g04000.2 ATP citrate lyase B1 1 0.78 0.57 1.00 0.70 1.00 TCA cycle 

35 Glyma08g17080.1 cytosolic NADP dependent isocitrate dehydrogenase 1 0.66 0.49 0.80 0.47 1.00 TCA cycle 

36 Glyma02g04120.1 ATP citrate lyase A1 1 0.65 0.49 0.69 0.60 0.70 TCA cycle 

37 Glyma07g37050.1 lipoamide dehydrogenase 1 1 0.67 0.44 0.45 0.63 0.70 TCA cycle 

38 Glyma15g02230.1 NADP malic enzyme 4 1 0.10 0.18 0.08 0.11 0.09 TCA cycle 

Drought 

39 Glyma04g36860.1 glyceraldehyde 3 phosphate dehydrogenase C2 1 0.93 0.86 0.68 0.90 1.00 glycolysis 

40 Glyma12g02510.1 pyridoxal phosphate dependent transferases superfamily 1 0.89 0.80 0.73 0.77 1.00 amino acid metabolism 

41 Glyma13g30490.1 pyruvate decarboxylase 2 1 0.67 0.58 0.28 0.54 0.71 fermentation 

42 Glyma15g15010.1 ATP citrate lyase subunit B2 1 1.34 1.42 1.57 1.40 1.27 TCA cycle 

43 Glyma18g52430.2 2-oxoglutarate dehydrogenase E1 component 1 1.16 1.34 1.13 1.16 1.00 TCA cycle 

44 Glyma15g02230.1 NADP malic enzyme 4 1 0.97 1.00 0.23 0.99 0.89 TCA cycle 

45 Glyma02g40820.1 cytosolic NADP dependent isocitrate dehydrogenase 1 0.76 1.00 1.02 1.00 0.63 TCA cycle 

46 Glyma03g24630.1 NAD dependent malic enzyme 1 1 1.19 1.00 0.98 1.00 1.20 TCA cycle 

47 Glyma12g32000.1 aconitase 3 1 0.92 0.92 0.92 0.89 1.01 TCA cycle 

a), day after sowing (day after stress); Protein ID, according to Phytozome soybean genome database; Ratio, relative abundance of protein was compared to 3-day-old untreated soybeans 

without stresses; Function, functional analysis was performed using MapMan bin codes. Proteins related to glycolysis, fermentation, the tricarboxylic acid (TCA) cycle, and amino acid 

metabolism affected by chemical treatment were selected. The following criteria were used: change tendency of stress-response protein was opposite between 2-APB/CaCl2 and 

EGTA/CaCl2, but it similar between 2-APB and EGTA.
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Figure 30. Experimental design to examine calcium effects in soybean under flooding 

and drought. Two-day-old soybeans were exposed to flooding or drought for 1 day. 

Soybean seeds were germinated for 2 days without or with treatment of 2-APB, LaCl3, 

EGTA, or CaCl2. Root tips of 3-day-old soybeans without or with chemical treatment 

were collected for calcium content, gene expression, immunoblot, and proteomic 

analyses. Two-day-old soybeans without chemical treatment were exposed to flooding 

or drought for 1, 2, 3, and 4 days and root tips were collected for gene expression and 

enzyme activity analyses. 
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Figure 31. Effects of 2-APB and LaCl3 on calcium content in soybean under flooding 

and drought. Soybean seeds were germinated for 2 days without or with treatment of 2-

APB or LaCl3. Two-day-old soybeans were exposed to flooding or drought for 1 day 

and root tips were collected for the measurement of calcium content. Data are shown as 

means ± SD from three independent biological replicates. Student’s t-test was used for 

statistical analysis. Asterisks indicate the significance between 3-day-old soybeans 

treated without or with 2-APB or LaCl3 and non-stressed soybeans without treatment 

under control, flooding, and drought conditions (*p<0.05, **p<0.01, ***p< 0.001). 

  



  

118 

 

 

Figure 32. Effects of chemical treatment on gene expression of calcium-related proteins 

in soybean under flooding and drought. Soybean seeds were germinated for 2 days 

without or with treatment of 2-APB, LaCl3, or EGTA. Two-day-old soybeans were 

exposed to flooding or drought for 1 day and root tips were collected for RNA 

extraction. Gene expression was normalized against that of 18S rRNA. Data are shown 

as means ± SD from three independent biological replicates. Different letter indicates 

the change is significant, as determined by one-way ANOVA according to Tukey’s 

multiple comparison test (p<0.05). 
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Figure 33. Gene expression and protein abundance of calnexin in soybean treated with 

2-APB, LaCl3, or EGTA under flooding and drought. Soybean seeds were germinated 

for 2 days without or with 2-APB, LaCl3, or EGTA treatment, and 2-day-old soybeans 

were exposed to flooding or drought for 1 day before the collection of root tips. Gene 

expression was normalized against that of 18S rRNA (A). Immunoblot analysis was 

performed for calnexin using anti-calnexin antibody and relative protein abundance was 

compared to untreated soybeans without stresses (B). Data are shown as means ± SD 

from three independent biological replicates. Different letter indicates the change is 

significant, as determined by one-way ANOVA according to Tukey’s multiple 

comparison test (p<0.05). 
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Figure 34. Gene expression of the endoplasmic reticulum stress-related proteins in 

soybean under flooding and drought. Soybean seeds were germinated for 2 days without 

or with treatment of 2-APB, LaCl3, or EGTA, and 2-day-old soybeans were exposed to 

flooding or drought for 1 day before the collection of root tips (A). Two-day-old 

soybeans were exposed to flooding or drought for 1, 2, 3, and 4 days, and root tips were 

collected (B). Gene expression was normalized against that of 18S rRNA. Data are 

shown as means ± SD from three independent biological replicates. Different letter 

indicates the change is significant, as determined by one-way ANOVA according to 

Tukey’s multiple comparison test (p<0.05). 
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Figure 35. Cluster analysis of the endoplasmic reticulum proteins in soybean treated 

with 2-APB and LaCl3 under flooding and drought. Soybeans seeds were germinated for 

2 days without or with treatment of 2-APB or LaCl3, and 2-day-old soybeans were 

exposed to flooding or drought for 1 day before the collection of root tips. Proteins were 

extracted from the root tips and analyzed using nanoLC-MS/MS. Localization of the 

identified proteins was performed using SUBA3 intracellular targeting prediction 

program. Out of all the ER proteins, the abundant proteins including calnexin, PDI-like 

proteins, HSPs, and thioredoxin family proteins were subjected to cluster analysis. 

Black lines indicate these abundant ER proteins based on the logarithmic values of 

protein abundance. Green and red colors indicate decrease and increase, respectively, in 

Log2 Ratio compared to 3-day-old untreated soybeans without stresses. 
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Figure 36. Abundance of proteins identified in soybean with chemical treatment under 

flooding and drought. Soybean seeds were germinated for 2 days without or with 

chemical treatment, and 2-day-old soybeans were exposed to flooding or drought for 1 

day before root tips were collected for protein extraction. The fold change of proteins 

grouped into primary metabolism was visualized using MapMan software. The 

functional categories of the primary metabolic pathways of glycolysis, fermentation, the 

tricarboxylic acid (TCA) cycle, and amino acid metabolism are shown. Each square and 

color indicate the fold change value of a differentially changed protein. Green and red 

colors indicate decrease and increase, respectively, in fold change values compared to 3-

day-old untreated soybeans without stresses.  
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Figure 37. Integrated pathways affected by calcium in soybean exposed to flooding and 

drought. Pathways of glycolysis, fermentation, the tricarboxylic acid cycle, and amino 

acid metabolism were integrated based on the responsive proteins. Each square and 

color indicate the Log2 Ratio of a differentially changed protein. Green and red colors 

indicate Log2 Ratio values of identified enzymes compared to untreated plants without 

stresses. Full and dash lines indicate single and multiple steps, respectively. 

Abbreviations are as follows: DAHP, 3-deoxy-D-arabino-heptulosonic acid 7-

phosphate; PHDPA, 3-phosphohydroxypyruvic acid; meso-DAP, meso-2, 6-

diaminopimelate; 2-hydroxyethyl-ThPP, 2-(alpha-hydroxyethyl) thiamine 

pyrophosphate; 2-OG, 2-oxoglutarate. 
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Figure 38. Protein abundance and enzyme activity of pyruvate decarboxylase in 

response to calcium in soybean under flooding and drought. Soybean seeds were 

germinated for 2 days without or with treatment of 2-APB, LaCl3, EGTA, or CaCl2, and 

2-day-old soybeans were exposed to flooding or drought for 1 day before the collection 

of root tips to examine protein abundance of pyruvate decarboxylase (A). The protein 

abundance was compared to untreated plants without stresses using SIEVE software 

(p<0.05). Two-day-old soybeans were exposed to flooding or drought for 1, 2, 3, and 4 

days, and root tips were collected to examine enzyme activity of pyruvate 

decarboxylase (B). Significance of enzyme activity was determined by one-way 

ANOVA according to Tukey’s multiple comparison test (p<0.05) and different letter 

indicates the change is significant. Data are shown as means ± SD from three 

independent biological replicates. 
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Figure 39. Schematic representation of responsive mechanisms induced by calcium 

under flooding and drought. 2-APB, LaCl3, and CaCl2 were used to change cytosolic 

calcium in soybean under flooding and drought. Based on the proteomic data, 

highlighted proteins were explained. Untreated soybean without stresses was used as 

comparison point. The red and blue arrows indicate changes of protein abundance under 

flooding; orange and purple arrows indicate changes of protein abundance under 

drought; and upward and downward arrows indicate increased and decreased changes of 

protein abundance, respectively. Abbreviations are as follows: TCA, tricarboxylic acid; 

2-APB, 2-aminoethoxydiphenyl borate. 
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CONCLUSION AND FUTURE PROSPECTS 

 

Global climate changes influence the magnitude and frequency of hydrological 

fluctuations and cause unfavorable environment for plant growth and development 

(Fukao et al., 2011). Abiotic stresses are potential threat to biodiversity (Eigenbrod et 

al., 2015) and cause extensive losses to agricultural production (Mittler and Blumwald, 

2010). Soybean, which is one of the important food crops, is rich in protein, vegetable 

oil (Sugiyama et al., 2015), and several phytochemicals, such as isoflavones and 

phenolic compounds (Kim et al., 2012). Because of the nutritional and pharmacological 

values, soybean and its products are considered with the benefits for health promoting. 

However, soybean growth was significantly suppressed under flooding (Khatoon et al., 

2012) and drought (Mohammadi et al., 2012). Root elongation was inhibited under 

flooding and root diameter was reduced under drought in the early-stage soybean (Oh 

and Komatsu, 2015). In flooded soybean, proteomics has been utilized to uncover the 

stress responsive proteins, which were involved in hormonal signaling, transcriptional 

regulation, glycolysis, fermentation, GABA shunt, mitochondrial impairment, 

proteolysis, cell-wall loosening, and ROS suppression (Komatsu et al., 2015). Osmotic 

adaptation, ROS metabolism, secondary metabolism, and signal transduction were 

induced by drought in soybean (Alam et al., 2010). The current study not only enriches 

the knowledge of flooding and drought mechanisms, but also points out the feature 

between both stresses in soybean. 

Stage-dependent proteomic analysis indicated that early-stage soybean is more 

sensitive to flooding and drought than seedling-stage plant (Chapter 1). Class II 

aminoacyl tRNA/biotin synthetases superfamily protein, biotin/lipoyl attachment 

domain containing protein, SAM synthetase family protein, B-S glucosidase 44 were in 

response to both stresses in root tip (Figure 40). In cytosol, Class II aminoacyl 

tRNA/biotin synthetases superfamily protein was increased under flooding and drought; 

however, biotin/lipoyl attachment domain containing protein decreased and increased 

under flooding and drought, respectively (Figure 40). Aminoacyl-tRNA synthetases are 

a family of enzymes known for their roles in protein synthesis and a variety of critical 

cellular activities including cellular fidelity, tRNA processing, RNA splicing, RNA 
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trafficking, apoptosis, and transcriptional/translational regulation (Martinis et al., 

1999b). With specific interactions with amino acids, tRNAs, and universal cellular 

energy source of ATP, they represented the bridge between RNA and contemporary 

cellular milieu (Francklyn et al., 1997). Class II aminoacyl tRNA/biotin synthetases 

superfamily protein was also described as aspartate-tRNA ligase and mediated plant 

perception of β-aminobutyric acid, which provided broad-spectrum disease protection in 

Arabidopsis (Luna et al., 2014). Biotin/lipoyl attachment domain containing protein 

harbors multidomain, in which biotin or lipoic was attached for protein biotinylation or 

lipoylation (Cui et al., 2006). Biotin deficiency resulted in cell death and activation of 

defense signaling for abiotic stresses (Li et al., 2012a). These findings suggest that 

biotin synthesis might be enhanced under both stresses; however, biotinylation is likely 

to be suppressed or activated in flooded or drought-stressed soybean.  

SAM synthetase is the key enzyme catalyzing the formation of SAM, which is the 

precursor of polyamines and ethylene (Guo et al., 2014). In flooded rice, ethylene 

accumulated and induced the gene expression of SNORKEL1 and SNORKEL2 to trigger 

internode elongation via gibberellin (Hattori et al., 2009). In flooded soybean, ethylene 

signaling played roles in plant tolerance via protein phosphorylation at initial-flooding 

stress (Yin et al., 2014b). Besides, polyamines played pivotal roles in plant defense to 

various types of environmental stresses (Bouchereau et al., 1999) and polyamine 

oxidation was related to stress response of soybean exposed to early-stage flooding and 

drought (Oh and Komatsu, 2015). In the present study, SAM synthetase family protein 

was decreased under both stresses (Figure 40). Taken together, these results indicate that 

decreased SAM synthetase family protein might cause soybean sensitivity to both 

stresses through decline in polyamine metabolism. 

B-S glucosidase 44 displayed converted protein abundance in response to 

flooding and drought (Figure 40). Flooding is a compound stress in which the decline in 

molecular oxygen and thus the restriction of ATP synthesis and carbohydrate resources 

have major consequences for growth and survival of plants (Bailey-Serres and 

Voesenek, 2008). B-S glucosidase 44 is β-glucosidase-related protein, which played 

roles in cellulose hydrolysis by converting cellobiose to glucose (Singhania et al., 

2013). On the other hand, the tricarboxylic acid cycle provided energy for plant under 
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drought (Bian et al., 2017). These findings suggest that B-S glucosidase 44 might play 

roles in glucose production to sustain energy from glycolysis in flooded soybean. 

However, the tricarboxylic acid cycle might be major process for energy metabolism in 

drought-stressed soybean. 

In respect to rough ER, peptide glycosylation related proteins and folding 

assistants were differentially affected by flooding and drought (Figure 40). 

Overexpression of At-DAD1, which locates in the ER membrane and is the anchorage 

protein in the oliggosaccharyltransferase complex, affected induction of DNA 

fragmentation by limiting or preventing ER stress (Danon et al., 2004). In Arabidopsis, 

mutant defective in N-glycan maturation was more sensitive to salt stress than wild-type 

plant; and ER oliggosaccharyltransferase mutant led to growth inhibition, aberrant 

morphology of root tip, and callose accumulation (Kang et al., 2008). In the present 

study, oliggosaccharyltransferases were increased under flooding, suggesting that ER 

might be more sensitive to flooding than drought. In addition, PDI-like proteins form 

and interchange disulfide bonds (Freedman et al., 1994), and HSPs/chaperones are 

responsible for protein refolding under stress conditions (Wang et al., 2004). In the 

present study, PDI-like proteins or HSPs were decreased in response to flooding or 

drought, suggesting the stress specific of folding assistants in the ER. These findings 

indicate that different response of N-glycan synthesis and folding assistants might be 

induced by flooding and drought. 

In addition, ribosomal proteins, calnexin, and calmodulin-binding protein were 

decreased, while Ca2+-transporting ATPase increased, exposed to both stresses (Figure 

40). Protein synthesis and RNA regulation were associated with flooding tolerance in 

soybean (Yin et al., 2016). It was further reported that protein synthesis was suppressed 

through the decreased mRNA export/pre-ribosome biogenesis-related proteins (Yin and 

Komatsu, 2016). Protein synthesis was inhibited during osmotic stress (Irsigler et al., 

2007), which was found in polyethylene glycol-treated and drought-stressed soybean 

(Mohammadi et al., 2012). Calnexin provides the cabinet for protein folding (Ou et al., 

1993) and maintains calcium homeostasis, which is mediated by calmodulin-binding 

proteins (Harmon et al., 2000), calcineurin B-like proteins (Luan et al., 2002), and 

calcium-dependent protein kinases (Zhu et al., 2007), is responsible for the ER 
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environment. In addition, Ca2+-transporting ATPase, which locates in the ER or in the 

plasma membrane (Thomson et al., 1993), is associated with calcium content (Bush, 

1995). These findings represent the interaction between protein folding and calcium 

homeostasis, suggesting that maintain calcium level in the ER might facilitate protein 

folding in soybean under flooding and drought. 

Pyruvate decarboxylase was increased and decreased under flooding and drought, 

respectively, in absence of chemical treatment. In addition, it responded to calcium level 

and its abundance was accumulated with elevated cytosolic calcium under flooding and 

drought (Figure 40). Proteins related to glycolysis and fermentation were induced in 

plant exposed to anaerobic conditions; and pyruvate decarboxylase was dramatically 

upregulated (Umeda and Uchimiya, 1994). Overexpression of pyruvate decarboxylase 

showed high enzyme activity and ethanol production, which was positively correlated 

with survival after flooding (Quimio et al., 2000). Although pyruvate decarboxylase was 

critical fermentative enzyme under flooding (Komatsu et al., 2011b), it also involved in 

stress signal and adaptation of plants under drought (Ranjan et al., 2012). Fast 

consuming of pyruvate was examined in dark-stressed plant, which was validated with 

enzyme activity of pyruvate decarboxylase (Nägele et al., 2014). In addition, pyruvate 

decarboxylase was indicated to switch energy metabolism in response to flooding and 

drought stresses in soybean (Chapter 3). These findings suggest that increased cytosolic 

calcium induces the accumulation of pyruvate decarboxylase for stress adaptation under 

flooding and drought. Additionally, direction of pyruvate flux to fermentation or to the 

tricarboxylic acid cycle might dependent on stress specificity of flooding or drought.  

Genetic dissection of quantitative traits controlling abiotic-stress adaptation is 

effective application of genomic-based approaches to improve sustainability and 

stability of yield under adverse conditions (Collins et al., 2008). Single quantitative trait 

loci, which linked to marker Sat_064, was associated with growth improvement and 

grain yield for flooded soybean (vanToai et al., 2001). Molecular markers including 

Satt226, Sat_044, Satt205-satt489, A489H, and B031-1 were linked to quantitative trait 

loci for drought tolerance in soybean (Manavalan et al., 2009). These reports 

demonstrate the importance of application of quantitative trait loci on plant growth 

under different conditions. In the present study, the location of genes encoding 
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responsive proteins was analyzed using DAIZUbase (Tables 11 and 12; Figures 41 and 

42). The location of genes forms the basis of genetic analysis for plant breeding under 

environmental stimuli. Under flooding, more genes located in the chromosomes 5, 10, 

11, and 13. Under drought, more genes located in the chromosomes 5 and 13. These 

findings suggest that chromosomes 5 and 13 might harbor many quantitative trait loci 

for stress responses in soybean under flooding and drought. 

Chromosomes 5 and 13 presented with abundant responsive genes under flooding 

and drought (Figures 41 and 42) such as calnexin, PDI-like proteins, HSPs, and 

pyruvate decarboxylase (Figure 41, number 124; Figure 42, number 68). Exposed to 

flooding and drought, calnexin, PDI-like proteins, and HSPs were associated with 

protein folding (Chapter 2); and pyruvate decarboxylase was reported as switch enzyme 

in energy (Chapter 3). Pyruvate decarboxylase responded to calcium level and its 

protein abundance was accumulated in flooded and drought-stressed soybean in 

presence of additional calcium (Chapter 3). Overexpression of pyruvate decarboxylase 

enhanced the survival of flooded plant (Ismond et al., 2003). Longer-root length, which 

is obvious effect of drought on root morphology (Oh and Komatsu, 2015), was observed 

in the loss-of-function mutation of pyruvate decarboxylase 1 (Kürsteiner et al., 2003). 

Furthermore, cytosolic calcium was elevated in plants induced by oxygen deprivation 

(Subbaiah et al., 1994) and osmotic condition (Knight et al., 1997). Taken together, 

these findings suggest that elevating cytosolic calcium over certain threshold is potential 

for pyruvate carboxylase to govern the pyruvate flux into energy metabolism to confer 

flooding and drought in soybean. 

Soybean is intolerant to flooding (Githiri et al., 2006) and drought (Deshmukh et 

al., 2014), which cause adverse effects to its plant growth and grain yield. However, 

morphological characteristics (Oh and Komatsu, 2015; Khatoon et al., 2012; 

Mohammadi et al., 2012) and molecular responses (Kausar et al., 2012; Hossain and 

Komatsu, 2014; Oh and Komatsu, 2015) differ in soybean exposed to both stresses. 

Energy regulation was affected by both stresses and biotin/lipoyl attachment domain 

containing protein displayed opposite changes in the early-stage soybean exposed to 

flooding and drought. Protein folding was suppressed under both stresses, while PDI-

like proteins and HSPs might serve as folding assistants, respectively, with calnexin 
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under floodind and drought. Pyruvate decarboxylase was increased and decreased under 

flooding and drouhgt, respectively; and its abundance correlated with elevated cytosolic 

calcium. This study will be helpful to understand molecular basis of flooding and 

drought; and gives rise to possible-interacted mechanisms between calcium homeostasis 

and stress responses in soybean. Proteomic study in combination with quantitative trait 

loci approach will facilitate the selection of molecular marker for stress tolerance in 

soybean. 
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Table 11. List of genes encoding flooding-responsive proteins in soybean 

No. Ratio Protein ID Location Description 

1 Dea) Glyma01g05580.1 Gm01 : 5372500 - 5376619 (strand : -) S adenosyl L methionine dependent methyltransferases 
superfamily protein 

2 De Glyma01g35220.2 Gm01 : 47744169 - 47746902 (strand : -) plant VAP homolog 12 

3 In Glyma02g00550.1 Gm02 : 328488 - 333545 (strand : -) S adenosyl L methionine dependent methyltransferases 
superfamily protein 

4 In Glyma02g01750.2 Gm02 : 1271084 - 1276344 (strand : +) thioredoxin family protein 

5 De Glyma02g04980.1 Gm02 : 4030951 - 4034105 (strand : +) RNA binding family protein 
6 De Glyma02g10790.1 Gm02 : 8679102 - 8686798 (strand : +) protein phosphatase 2A subunit A2 

7 In Glyma02g11890.1 Gm02 : 10096333 - 10101410 (strand : -) methyltransferase 

8 De Glyma02g13330.1 Gm02 : 11601786 - 11605281 (strand : +) reversibly glycosylated polypeptide 3 
9 In Glyma02g43110.1 Gm02 : 47984584 - 47988358 (strand : -) S adenosyl L methionine dependent methyltransferases 

superfamily protein 

10 De Glyma02g43460.1 Gm02 : 48222057 - 48226061 (strand : -) PDI like 2,2 
11 De Glyma02g45030.1 Gm02 : 49443006 - 49447931 (strand : +) putative mitochondrial RNA helicase 2 

12 De Glyma03g00920.1 Gm03 : 626722 - 631477 (strand : -) NADH: cytochrome b5 reductase 1 

13 De Glyma03g03800.1 Gm03 : 3633770 - 3638147 (strand : -) plant VAP homolog 12 
14 In Glyma03g26090.1 Gm03 : 33434531 - 33438525 (strand : +) RAS 5 

15 In Glyma03g33240.1 Gm03 : 40885587 - 40891963 (strand : +) Ca2+-transporting ATPase 

16 De Glyma03g33710.1 Gm03 : 41215500 - 41220643 (strand : +) DnaJ homolog subfamily 

17 De Glyma03g37650.1 Gm03 : 44190430 - 44194864 (strand : +) DnaJ heat shock family protein 

18 In Glyma03g39130.1 Gm03 : 45329036 - 45332552 (strand : +) thioredoxin family protein 

19 De Glyma03g41210.1 Gm03 : 46735997 - 46737827 (strand : -) rotamase cyclophilin 2 
20 In Glyma03g42070.3 Gm03 : 47374627 - 47378345 (strand : +) cytochrome b5 isoform E 

21 De Glyma03g42150.1 Gm03 : 47428796 - 47435494 (strand : -) RNA binding family protein 

22 In Glyma04g00200.1 Gm04 : 7268 - 22892 (strand : -) α-1,3 mannosyl glycoprotein β 1,2 N-acetylglucosaminyl 
transferase putative 

23 In Glyma04g01690.1 Gm04 : 1128740 - 1133407 (strand : -) ribophorin I 

24 In Glyma04g04810.1 Gm04 : 3567380 - 3577561 (strand : +) Ca2+-transporting ATPase 
25 In Glyma04g33740.1 Gm04 : 39489463 - 39495115 (strand : +) S adenosyl L methionine dependent methyltransferases 

superfamily protein 

26 De Glyma04g38000.1 Gm04 : 44418156 - 44421941 (strand : +) calnexin 1 
27 In Glyma04g38190.1 Gm04 : 44589289 - 44604291 (strand : -) phosphate deficiency response 2 

28 De Glyma04g38590.1 Gm04 : 44957860 - 44971142 (strand : +) β-galactosidase 10 

29 De Glyma04g40090.1 Gm04 : 46218142 - 46227070 (strand : +) nucleic acid binding OB fold like protein 
30 De Glyma04g40750.2 Gm04 : 46699533 - 46705586 (strand : +) CTC interacting domain 11 

31 De Glyma04g40760.1 Gm04 : 46724021 - 46729598 (strand : +) CTC interacting domain 11 

32 In Glyma04g41010.1 Gm04 : 46901418 - 46904354 (strand : -) cytochrome b5 isoform E 
33 De Glyma04g42690.1 Gm04 : 48376626 - 48381064 (strand : -) PDI like 1,2 

34 In Glyma05g01010.1 Gm05 : 609594 - 611534 (strand : +) malate dehydrogenase 

35 De Glyma05g03320.1 Gm05 : 2547518 - 2552812 (strand : -) purple acid phosphatase 27 
36 De Glyma05g05460.1 Gm05 : 4767337 - 4771477 (strand : -) glutamate dehydrogenase 2 

37 De Glyma05g27980.1 Gm05 : 33852909 - 33854869 (strand : +) Rubber elongation factor protein (REF) 

38 De Glyma05g28500.1 Gm05 : 34296431 - 34303454 (strand : -) subtilisin like serine endopeptidase family protein 
39 In Glyma05g29050.1 Gm05 : 34730528 - 34735631 (strand : +) mitochondrial substrate carrier  

40 De Glyma05g30330.1 Gm05 : 35722786 - 35726536 (strand : +) emp24/gp25L/p24 family/GOLD family protein 

41 De Glyma05g33330.1 Gm05 : 38028921 - 38032577 (strand : -) calnexin 1 
42 De Glyma05g33700.1 Gm05 : 38278126 - 38280829 (strand : +) receptor like kinase 1 

43 De Glyma05g34900.1 Gm05 : 39094615 - 39098883 (strand : +) arginosuccinate synthase family 

44 De Glyma05g36600.1 Gm05 : 40426908 - 40430703 (strand : -) HSP 70 protein 5 
45 In Glyma05g36620.1 Gm05 : 40443124 - 40447225 (strand : -) HSP 70 family protein 

46 De Glyma05g38120.1 Gm05 : 41530564 - 41533554 (strand : +) UDP D glucose/UDP D galactose 4 epimerase 1 
47 In Glyma06g00230.1 Gm06 : 24815 - 43462 (strand : +) α-1,3 mannosyl glycoprotein β 1,2 N-acetylglucosaminyl 

transferase putative 

48 In Glyma06g01790.1 Gm06 : 1129858 - 1134208 (strand : -) ribophorin I 
49 In Glyma06g04900.1 Gm06 : 3460618 - 3467695 (strand : +) Ca2+-transporting ATPase 

50 De Glyma06g05770.1 Gm06 : 4127859 - 4132398 (strand : +) nitrilase/cyanide hydratase 

51 In Glyma06g12090.1 Gm06 : 9308451 - 9312386 (strand : +) PDI like 1,2 
52 De Glyma06g14030.1 Gm06 : 11079494 - 11084221 (strand : -) CTC interacting domain 11 

53 De Glyma06g14760.1 Gm06 : 11565183 - 11572316 (strand : -) nucleic acid binding OB fold like protein 

54 In Glyma06g16860.1 Gm06 : 13253251 - 13268511 (strand : +) phosphate deficiency response 2 

55 De Glyma06g17060.1 Gm06 : 13418027 - 13421764 (strand : -) calnexin 1 

56 De Glyma07g02470.1 Gm07 : 1682404 - 1690170 (strand : +) protein phosphatase 2C family protein 

57 De Glyma07g03220.1 Gm07 : 2263708 - 2268409 (strand : -) inorganic H+ pyrophosphatase family protein 
58 De Glyma07g03930.1 Gm07 : 2782652 - 2789177 (strand : +) dihydrolipoamide acetyltransferase long form protein 

59 In Glyma07g05830.1 Gm07 : 4519394 - 4525700 (strand : -) cytochrome b5 isoform E 

60 De Glyma07g11310.1 Gm07 : 9498808 - 9503366 (strand : +) B-S glucosidase 44 
61 De Glyma07g35090.1 Gm07 : 40210582 - 40221957 (strand : +) calmodulin binding protein 

62 In Glyma07g35490.1 Gm07 : 40668330 - 40671317 (strand : -) emp24/gp25L/p24 family/GOLD family protein 

63 De Glyma08g01480.1 Gm08 : 939512 - 942346 (strand : -) UDP D glucose/UDP D galactose 4 epimerase 1 
64 De Glyma08g02100.1 Gm08 : 1432092 - 1438807 (strand : +) monodehydroascorbate reductase 6 
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65 De Glyma08g02940.1 Gm08 : 2029928 - 2033740 (strand : +) HSP 70 family protein 

66 De Glyma08g04460.1 Gm08 : 3149759 - 3155385 (strand : +) ATP dependent caseinolytic protease 

67 De Glyma08g06020.1 Gm08 : 4278474 - 4281591 (strand : -) receptor like kinase 1 

68 In Glyma08g12200.1 Gm08 : 8865640 - 8870375 (strand : +) mitochondrial substrate  
69 De Glyma08g23550.1 Gm08 : 17944940 - 17951613 (strand : -) protein phosphatase 2C family protein 

70 De Glyma08g41220.3 Gm08 : 41236106 - 41240034 (strand : -) S adenosyl L methionine dependent methyltransferases 

superfamily protein 
71 De Glyma08g42730.1 Gm08 : 42711059 - 42724363 (strand : +) α/β-Hydrolases superfamily protein 

72 De Glyma08g43670.1 Gm08 : 43456275 - 43459631 (strand : +) β-1,2 xylosyltransferase 

73 In Glyma08g43680.1 Gm08 : 43461710 - 43464771 (strand : +) β-1,2 xylosyltransferase 
74 In Glyma08g47790.1 Gm08 : 46591084 - 46595539 (strand : -) aldolase type TIM barrel family protein 

75 De Glyma09g04980.1 Gm09 : 3758897 - 3769175 (strand : -) ABC transporter C family member 14-like 
76 In Glyma09g07040.1 Gm09 : 5857812 - 5860477 (strand : +) glutaredoxin family protein 

77 De Glyma09g08120.1 Gm09 : 7185807 - 7188643 (strand : +) subtilase family protein 

78 In Glyma09g08830.1 Gm09 : 8241631 - 8249457 (strand : +) DnaJ/Sec63 Brl domains containing protein 
79 De Glyma09g16690.1 Gm09 : 20098535 - 20099611 (strand : +) chaperone protein htpG family protein 

80 In Glyma09g25940.1 Gm09 : 32168675 - 32172540 (strand : +) membrane associated progesterone binding protein 3 

81 In Glyma09g29470.1 Gm09 : 36349061 - 36355214 (strand : +) staurosporin and temperature sensitive 3 like b 
82 De Glyma09g30910.1 Gm09 : 37693814 - 37698798 (strand : -) B-S glucosidase 44 

83 In Glyma09g36560.1 Gm09 : 42263808 - 42266564 (strand : +) chaperone regulator like protein 

84 In Glyma09g38410.2 Gm09 : 43780130 - 43785822 (strand : +) calreticulin 3 

85 In Glyma10g00880.2 Gm10 : 610809 - 617509 (strand : +) S adenosyl L methionine dependent methyltransferases 

superfamily protein 

86 In Glyma10g01820.1 Gm10 : 1317528 - 1323204 (strand : +) thioredoxin family protein 
87 De Glyma10g02370.1 Gm10 : 1629329 - 1637165 (strand : -) ABC transporter C family member 4-like 

88 In Glyma10g04370.1 Gm10 : 3364599 - 3368253 (strand : +) S adenosyl L methionine dependent methyltransferases 

superfamily protein 
89 De Glyma10g15910.1 Gm10 : 18699198 - 18719524 (strand : +) S formylglutathione hydrolase 

90 De Glyma10g24620.1 Gm10 : 32175274 - 32180564 (strand : -) potassium channel β subunit 1 

91 In Glyma10g28880.1 Gm10 : 37780349 - 37784273 (strand : +) inorganic H+ pyrophosphatase family protein 
92 In Glyma10g35450.1 Gm10 : 43648036 - 43656146 (strand : +) ribophorin I 

93 De Glyma10g35490.1 Gm10 : 43714944 - 43722164 (strand : +) phosphoglucosamine mutase family protein 

94 In Glyma10g36170.1 Gm10 : 44352238 - 44357180 (strand : -) PDI like 5,2 
95 In Glyma10g39750.1 Gm10 : 47377444 - 47378739 (strand : +) oligosaccharyltransferase complex 

96 De Glyma10g42630.1 Gm10 : 49524298 - 49528280 (strand : -) GHMP kinase family protein 

97 De Glyma10g43590.1 Gm10 : 50228552 - 50231641 (strand : +) Ras related small GTP binding family protein 
98 De Glyma11g04650.1 Gm11 : 3182802 - 3186273 (strand : +) peptidase M20/M25/M40 family protein 

99 De Glyma11g11410.1 Gm11 : 8132034 - 8134710 (strand : +) subtilisin like serine protease 2 

100 In Glyma11g12800.1 Gm11 : 9149894 - 9154262 (strand : +) dolichyl diphospho oligosaccharide protein glycosyltransferase 
48kDa subunit  

101 In Glyma11g13460.1 Gm11 : 9552340 - 9559012 (strand : +) calreticulin 3 

102 In Glyma11g14970.1 Gm11 : 10720268 - 10721423 (strand : +) pathogenesis related thaumatin superfamily protein 

103 De Glyma11g15010.1 Gm11 : 10752370 - 10757000 (strand : +) UDP XYL synthase 6 

104 De Glyma11g15120.1 Gm11 : 10824406 - 10828605 (strand : +) Ras related small GTP binding family protein 

105 De Glyma11g19550.1 Gm11 : 16310166 - 16313231 (strand : -) UDP D apiose/UDP D xylose synthase 2 
106 De Glyma11g20630.1 Gm11 : 17418671 - 17423245 (strand : +) PDI like 1,4 

107 De Glyma11g31450.1 Gm11 : 32629475 - 32634601 (strand : -) regulatory particle triple A ATPase 3 

108 De Glyma11g31470.1 Gm11 : 32684322 - 32688565 (strand : -) regulatory particle triple A ATPase 3 
109 In Glyma11g34490.1 Gm11 : 36309028 - 36312310 (strand : +) leucine-rich repeat receptor like protein kinase family protein 

110 De Glyma11g35740.1 Gm11 : 37351501 - 37358128 (strand : +) biotin/lipoyl attachment domain containing protein 

111 In Glyma12g04950.1 Gm12 : 3287891 - 3292128 (strand : +) dolichyl diphospho oligosaccharide protein glycosyltransferase 
48kDa subunit  

112 De Glyma12g05460.4 Gm12 : 3635192 - 3641756 (strand : +) calreticulin 3 

113 De Glyma12g06970.1 Gm12 : 4751921 - 4752781 (strand : -) dessication induced 1VOC superfamily protein 
114 De Glyma12g07070.1 Gm12 : 4818042 - 4822153 (strand : +) Ras related small GTP binding family protein 

115 De Glyma12g07260.1 Gm12 : 4957660 - 4961664 (strand : +) PDI like 1,4 

116 De Glyma12g08930.1 Gm12 : 6693116 - 6695951 (strand : +) UDP D apiose/UDP D xylose synthase 2 
117 De Glyma12g29550.1 Gm12 : 32985108 - 32989483 (strand : +) PDI like 1,4 

118 De Glyma13g00780.1 Gm13 : 493912 - 501516 (strand : +) galactose mutarotase like superfamily protein  

119 De Glyma13g02870.1 Gm13 : 2823368 - 2830952 (strand : -) peptidase M20/M25/M40 family protein 
120 De Glyma13g03650.1 Gm13 : 3663883 - 3672157 (strand : +) plant L ascorbate oxidase 

121 In Glyma13g09130.1 Gm13 : 10116237 - 10116628 (strand : +) thioredoxin family protein 

122 In Glyma13g18630.1 Gm13 : 22300713 - 22304473 (strand : +) S adenosyl L methionine dependent methyltransferases 
superfamily protein 

123 De Glyma13g23170.1 Gm13 : 26624092 - 26628887 (strand : +) inorganic H+ pyrophosphatase family protein 
124 In Glyma13g30490.1 Gm13 : 33109988 - 33114029 (strand : -) pyruvate decarboxylase 2 

125 De Glyma13g32660.1 Gm13 : 34763980 - 34767201 (strand : +) pyrophosphorylase 6 

126 De Glyma13g40130.1 Gm13 : 40681809 - 40686147 (strand : +) PDI like 1,4 
127 De Glyma13g40350.1 Gm13 : 40852483 - 40855002 (strand : -) PDI like 5,1 

128 De Glyma13g40870.3 Gm13 : 41317042 - 41320023 (strand : -) RAB GTPase homolog 8A 

129 De Glyma13g42270.1 Gm13 : 42303058 - 42305143 (strand : +) pyridoxal 5 phosphate dependent enzyme family protein 
130 De Glyma13g43430.2 Gm13 : 43121828 - 43126858 (strand : +) PDI like 16 

131 De Glyma14g05520.1 Gm14 : 3948810 - 3952784 (strand : +) PDI like 2,2 
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132 In Glyma14g20360.1 Gm14 : 23336396 - 23337161 (strand : +) thioredoxin family protein 

133 In Glyma14g24090.1 Gm14 : 28767127 - 28771904 (strand : -) PDI like 1,1 

134 In Glyma15g01880.1 Gm15 : 1245193 - 1250273 (strand : -) PDI like 1,6 

135 De Glyma15g03120.1 Gm15 : 2171866 - 2174277 (strand : -) pyridoxal 5 phosphate dependent enzyme family protein 
136 De Glyma15g04560.2 Gm15 : 3179074 - 3182655 (strand : +) Ras related small GTP binding family protein 

137 De Glyma15g12100.1 Gm15 : 8968913 - 8975996 (strand : +) fumarylacetoacetase putative 

138 In Glyma15g12880.1 Gm15 : 9554380 - 9557776 (strand : +) RAB GTPase homolog B1C 
139 De Glyma15g13620.1 Gm15 : 10209940 - 10216791 (strand : -) glycosyl hydrolase family protein 

140 De Glyma15g15870.1 Gm15 : 12196351 - 12206082 (strand : +) ABC transporter C family member 14-like 

141 In Glyma15g18310.1 Gm15 : 15003048 - 15005641 (strand : +) glutaredoxin family protein 
142 In Glyma15g20400.1 Gm15 : 18260654 - 18267258 (strand : +) DnaJ/Sec 63 Brl domains containing protein 

143 De Glyma15g21890.1 Gm15 : 20279967 - 20282605 (strand : -) S-adenosylmethionine synthetase family protein 
144 De Glyma16g00590.1 Gm16 : 247496 - 254683 (strand : +) dihydrolipoamide acetyltransferase long form protein 

145 In Glyma16g08410.1 Gm16 : 7765711 - 7774194 (strand : -) staurosporin and temperature sensitive 3 like A 

146 De Glyma16g17500.1 Gm16 : 19007669 - 19013835 (strand : +) S adenosyl L methionine dependent methyltransferases 
superfamily protein 

147 De Glyma16g23010.1 Gm16 : 26638616 - 26641814 (strand : +) RNA binding family protein 

148 De Glyma16g27030.1 Gm16 : 31081828 - 31086763 (strand : +) tubulin α 3 
149 De Glyma17g15740.1 Gm17 : 12459363 - 12463520 (strand : -) glutamate dehydrogenase 2 

150 De Glyma17g16850.1 Gm17 : 13635703 - 13638881 (strand : -) N. D.* 

151 In Glyma17g34070.1 Gm17 : 37961077 - 37965016 (strand : -) Class II aminoacyl tRNA/biotin synthetases superfamily 

protein 

152 De Glyma18g07030.1 Gm18 : 5730116 - 5732839 (strand : +) cyclophilin 5 

153 In Glyma18g09480.1 Gm18 : 8374020 - 8378571 (strand : -) β-1,2 xylosyltransferase 
154 De Glyma18g12920.1 Gm18 : 12333170 - 12343800 (strand : +) HIS HF 

155 De Glyma18g45500.1 Gm18 : 55246255 - 55246808 (strand : -) PDI like 1,2 

156 De Glyma18g52450.1 Gm18 : 61052857 - 61057770 (strand : -) Ras related small GTP binding family protein 
157 De Glyma18g52860.1 Gm18 : 61306195 - 61309857 (strand : -) O Glycosyl hydrolases family 17 protein 

158 In Glyma18g53700.1 Gm18 : 61964545 - 61968719 (strand : +) aldolase type TIM barrel family protein 

159 In Glyma19g29720.1 Gm19 : 37451136 - 37455763 (strand : +) NADH: cytochrome b5 reductase 1 
160 De Glyma19g33140.1 Gm19 : 40772865 - 40774370 (strand : -) ahal domain containing protein 

161 In Glyma19g34890.1 Gm19 : 42485179 - 42490482 (strand : +) S adenosyl L methionine dependent methyltransferases 

superfamily protein 
162 In Glyma19g35960.1 Gm19 : 43384216 - 43390334 (strand : +) Ca2+ transporting ATPase 

163 De Glyma19g39710.1 Gm19 : 46301684 - 46304736 (strand : +) amino acid dehydrogenase family protein 

164 De Glyma19g40810.1 Gm19 : 47126385 - 47129171 (strand : +) S-adenosylmethionine synthetase 2 
165 In Glyma19g41690.1 Gm19 : 47898502 - 47902440 (strand : +) thioredoxin family protein 

166 In Glyma19g44780.1 Gm19 : 50096715 - 50101693 (strand : +) cytochrome b5 isoform E 

167 De Glyma19g44860.1 Gm19 : 50167251 - 50174260 (strand : -) RNA binding family protein 
168 De Glyma20g01220.1 Gm20 : 833962 - 839151 (strand : +) oxidoreductases acting on the aldehyde 

169 In Glyma20g03930.1 Gm20 : 3862190 - 3865257 (strand : -) emp24/gp25L/p24 family/GOLD family protein 

170 De Glyma20g12150.1 Gm20 : 17069690 - 17077611 (strand : +) plant L ascorbate oxidase 

171 De Glyma20g19000.1 Gm20 : 26702308 - 26707310 (strand : -) potassium channel β-subunit 1 

172 De Glyma20g23080.1 Gm20 : 33012502 - 33015990 (strand : +) calreticulin 1b 

173 In Glyma20g27980.1 Gm20 : 36953778 - 36956758 (strand : -) oligosaccharyltransferase complex 
174 In Glyma20g29660.1 Gm20 : 38514463 - 38517385 (strand : -) membrane steroid binding protein1 

175 De Glyma20g32030.1 Gm20 : 40646909 - 40654749 (strand : -) phosphoglucosamine mutase family protein 

176 De Glyma20g32320.1 Gm20 : 40930276 - 40936570 (strand : +) Ras related small GTP binding family protein 

a), Increased (In) and decreased (De) protein abundance in flooded plant was compared to 2-day-old untreated 

soybean; Protein ID, according to Phytozome soybean genome database; Location, location was analyzed using 

DAIZUbase. 
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Table 12. List of genes encoding drought-responsive proteins in soybean 
No. Ratio Protein IDa) Location Description 

 

1 Deb) Glyma01g35220.2 Gm01 : 47744169 - 47746902 (strand : -) early responsive dehydration stress protein 
2 De Glyma02g04980.1 Gm02 : 4030951 - 4034105 (strand : +) RNA binding family protein 

3 De Glyma02g10790.1 Gm02 : 8679102 - 8686798 (strand : +) protein phosphatase 2A subunit A2 

4 De Glyma02g13330.1 Gm02 : 11601786 - 11605281 (strand : +) reversibly glycosylated polypeptide 3 
5 De Glyma02g45030.1 Gm02 : 49443006 - 49447931 (strand : +) putative mitochondrial RNA helicase 2 

6 De Glyma03g03800.1 Gm03 : 3633770 - 3638147 (strand : -) plant VAP homolog 12 

7 In Glyma03g33240.1 Gm03 : 40885587 - 40891963 (strand : +) Ca2+-transporting ATPase 
8 De Glyma03g37650.1 Gm03 : 44190430 - 44194864 (strand : +) DnaJ heat shock family protein 

9 De Glyma03g41210.1 Gm03 : 46735997 - 46737827 (strand : -) rotamase cyclophilin 2 

10 In Glyma03g42070.3 Gm03 : 47374627 - 47378345 (strand : +) cytochrome b5 isoform E 
11 De Glyma03g42150.1 Gm03 : 47428796 - 47435494 (strand : -) RNA binding family protein 

12 De Glyma04g38000.1 Gm04 : 44418156 - 44421941 (strand : +) calnexin 1 
 

13 De Glyma04g38590.1 Gm04 : 44957860 - 44971142 (strand : +) β-galactosidase 10 
14 De Glyma04g40090.1 Gm04 : 46218142 - 46227070 (strand : +) nucleic acid binding OB fold like protein 

15 De Glyma04g40750.2 Gm04 : 46699533 - 46705586 (strand : +) CTC interacting domain 11 

16 De Glyma04g40760.1 Gm04 : 46724021 - 46729598 (strand : +) CTC interacting domain 11 
17 De Glyma04g42690.1 Gm04 : 48376626 - 48381064 (strand : -) PDI like 1,2 

 

18 In Glyma05g01010.1 Gm05 : 609594 - 611534 (strand : +) malate dehydrogenase 

19 De Glyma05g03320.1 Gm05 : 2547518 - 2552812 (strand : -) purple acid phosphatase 27 

20 De Glyma05g05460.1 Gm05 : 4767337 - 4771477 (strand : -) glutamate dehydrogenase 2 

21 De Glyma05g27980.1 Gm05 : 33852909 - 33854869 (strand : +) Rubber elongation factor protein (REF) 

22 De Glyma05g28500.1 Gm05 : 34296431 - 34303454 (strand : -) subtilisin like serine endopeptidase family protein 
23 In Glyma05g29050.1 Gm05 : 34730528 - 34735631 (strand : +) mitochondrial substrate carrier  

24 De Glyma05g34900.1 Gm05 : 39094615 - 39098883 (strand : +) arginosuccinate synthase family 

25 De Glyma05g36600.1 Gm05 : 40426908 - 40430703 (strand : -) HSP 70 protein 5 
26 De Glyma05g36620.1 Gm05 : 40443124 - 40447225 (strand : -) HSP 70 family protein 

27 De Glyma05g38120.1 Gm05 : 41530564 - 41533554 (strand : +) UDP D glucose/UDP D galactose 4 epimerase 1 

28 De Glyma06g05770.1 Gm06 : 4127859 - 4132398 (strand : +) nitrilase/cyanide hydratase 
29 De Glyma06g14030.1 Gm06 : 11079494 - 11084221 (strand : -) CTC interacting domain 11 

30 De Glyma06g14760.1 Gm06 : 11565183 - 11572316 (strand : -) nucleic acid binding OB fold like protein 

31 De Glyma06g17060.1 Gm06 : 13418027 - 13421764 (strand : -) calnexin 1 
 

32 De Glyma07g02470.1 Gm07 : 1682404 - 1690170 (strand : +) protein phosphatase 2C family protein 

33 De Glyma07g03930.1 Gm07 : 2782652 - 2789177 (strand : +) dihydrolipoamide acetyltransferase long form protein 

34 De Glyma07g11310.1 Gm07 : 9498808 - 9503366 (strand : +) B-S glucosidase 44 
35 De Glyma08g01480.1 Gm08 : 939512 - 942346 (strand : -) UDP D glucose/UDP D galactose 4 epimerase 1 

36 De Glyma08g02100.1 Gm08 : 1432092 - 1438807 (strand : +) monodehydroascorbate reductase 6 

37 De Glyma08g04460.1 Gm08 : 3149759 - 3155385 (strand : +) ATP dependent caseinolytic protease 
38 In Glyma08g12200.1 Gm08 : 8865640 - 8870375 (strand : +) mitochondrial substrate  

39 De Glyma08g23550.1 Gm08 : 17944940 - 17951613 (strand : -) protein phosphatase 2C family protein 

40 De Glyma08g42730.1 Gm08 : 42711059 - 42724363 (strand : +) α/β-Hydrolases superfamily protein 
41 In Glyma08g47790.1 Gm08 : 46591084 - 46595539 (strand : -) aldolase type TIM barrel family protein 

42 De Glyma09g08120.1 Gm09 : 7185807 - 7188643 (strand : +) subtilase family protein 

43 De Glyma09g30910.1 Gm09 : 37693814 - 37698798 (strand : -) B-S glucosidase 44 
44 De Glyma09g37860.1 Gm09 : 43388629 - 43392321 (strand : -) RAS 5 

 

45 De Glyma10g15910.1 Gm10 : 18699198 - 18719524 (strand : +) S formylglutathione hydrolase 

46 De Glyma10g24620.1 Gm10 : 32175274 - 32180564 (strand : -) potassium channel β subunit 1 
47 De Glyma10g35230.1 Gm10 : 43422479 - 43430194 (strand : -) Ras related small GTP binding family protein 

48 De Glyma10g35490.1 Gm10 : 43714944 - 43722164 (strand : +) phosphoglucosamine mutase family protein 

49 De Glyma10g42630.1 Gm10 : 49524298 - 49528280 (strand : -) GHMP kinase family protein 
50 De Glyma10g43590.1 Gm10 : 50228552 - 50231641 (strand : +) Ras related small GTP binding family protein 

51 De Glyma11g04650.1 Gm11 : 3182802 - 3186273 (strand : +) peptidase M20/M25/M40 family protein 
52 De Glyma11g11410.1 Gm11 : 8132034 - 8134710 (strand : +) subtilisin like serine protease 2 

53 De Glyma11g11460.1 Gm11 : 8165996 - 8170401 (strand : -) ascorbate peroxidase 3 

54 De Glyma11g15010.1 Gm11 : 10752370 - 10757000 (strand : +) UDP XYL synthase 6 
55 De Glyma11g15120.1 Gm11 : 10824406 - 10828605 (strand : +) Ras related small GTP binding family protein 

56 De Glyma11g19550.1 Gm11 : 16310166 - 16313231 (strand : -) UDP D apiose/UDP D xylose synthase 2 

57 De Glyma11g31450.1 Gm11 : 32629475 - 32634601 (strand : -) regulatory particle triple A ATPase 3 
58 De Glyma11g31470.1 Gm11 : 32684322 - 32688565 (strand : -) regulatory particle triple A ATPase 3 

59 In Glyma11g35740.1 Gm11 : 37351501 - 37358128 (strand : +) biotin/lipoyl attachment domain containing protein 

60 De Glyma12g06970.1 Gm12 : 4751921 - 4752781 (strand : -) dessication induced 1VOC superfamily protein 

61 De Glyma12g07070.1 Gm12 : 4818042 - 4822153 (strand : +) Ras related small GTP binding family protein 

62 De Glyma12g08930.1 Gm12 : 6693116 - 6695951 (strand : +) UDP D apiose/UDP D xylose synthase 2 

63 De Glyma13g00780.1 Gm13 : 493912 - 501516 (strand : +) galactose mutarotase like superfamily protein  
64 De Glyma13g02870.1 Gm13 : 2823368 - 2830952 (strand : -) peptidase M20/M25/M40 family protein 

65 In Glyma13g03650.1 Gm13 : 3663883 - 3672157 (strand : +) plant L ascorbate oxidase 

66 De Glyma13g10700.1 Gm13 : 12773297 - 12782079 (strand : +) heat shock protein 70 (Hsp70) family protein 
67 In Glyma13g23170.1 Gm13 : 26624092 - 26628887 (strand : +) inorganic H+ pyrophosphatase family protein 

68 De Glyma13g30490.1 Gm13 : 33109988 - 33114029 (strand : -) pyruvate decarboxylase 2 

69 In Glyma13g32660.1 Gm13 : 34763980 - 34767201 (strand : +) pyrophosphorylase 6 
70 De Glyma13g40870.3 Gm13 : 41317042 - 41320023 (strand : -) RAB GTPase homolog 8A 
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71 De Glyma13g42270.1 Gm13 : 42303058 - 42305143 (strand : +) pyridoxal 5 phosphate dependent enzyme family protein 

72 De Glyma13g43430.2 Gm13 : 43121828 - 43126858 (strand : +) PDI like 16 
 

73 De Glyma15g03120.1 Gm15 : 2171866 - 2174277 (strand : -) pyridoxal 5 phosphate dependent enzyme family protein 

74 De Glyma15g04560.2 Gm15 : 3179074 - 3182655 (strand : +) Ras related small GTP binding family protein 
75 De Glyma15g12100.1 Gm15 : 8968913 - 8975996 (strand : +) fumarylacetoacetase putative 

76 De Glyma15g13620.1 Gm15 : 10209940 - 10216791 (strand : -) glycosyl hydrolase family protein 

77 In Glyma15g21890.1 Gm15 : 20279967 - 20282605 (strand : -) S-adenosylmethionine synthetase family protein 
78 De Glyma16g00590.1 Gm16 : 247496 - 254683 (strand : +) dihydrolipoamide acetyltransferase long form protein 

79 De Glyma16g23010.1 Gm16 : 26638616 - 26641814 (strand : +) RNA binding family protein 

80 De Glyma16g27030.1 Gm16 : 31081828 - 31086763 (strand : +) tubulin α 3 
 

81 De Glyma17g15740.1 Gm17 : 12459363 - 12463520 (strand : -) glutamate dehydrogenase 2 

82 De Glyma17g16850.1 Gm17 : 13635703 - 13638881 (strand : -) N. D.* 
 

83 In Glyma17g34070.1 Gm17 : 37961077 - 37965016 (strand : -) Class II aminoacyl tRNA/biotin synthetases superfamily 

protein 

84 De Glyma18g07030.1 Gm18 : 5730116 - 5732839 (strand : +) cyclophilin 5 
85 De Glyma18g12920.1 Gm18 : 12333170 - 12343800 (strand : +) HIS HF 

 

86 De Glyma18g52450.1 Gm18 : 61052857 - 61057770 (strand : -) Ras related small GTP binding family protein 

87 De Glyma18g52860.1 Gm18 : 61306195 - 61309857 (strand : -) O Glycosyl hydrolases family 17 protein 
88 In Glyma18g53700.1 Gm18 : 61964545 - 61968719 (strand : +) aldolase type TIM barrel family protein 

89 De Glyma19g33140.1 Gm19 : 40772865 - 40774370 (strand : -) ahal domain containing protein 

90 In Glyma19g35960.1 Gm19 : 43384216 - 43390334 (strand : +) Ca2+ transporting ATPase 

91 De Glyma19g39710.1 Gm19 : 46301684 - 46304736 (strand : +) amino acid dehydrogenase family protein 

92 De Glyma19g40810.1 Gm19 : 47126385 - 47129171 (strand : +) S-adenosylmethionine synthetase 2 

93 In Glyma19g44780.1 Gm19 : 50096715 - 50101693 (strand : +) cytochrome b5 isoform E 
94 De Glyma19g44860.1 Gm19 : 50167251 - 50174260 (strand : -) RNA binding family protein 

95 De Glyma20g01220.1 Gm20 : 833962 - 839151 (strand : +) oxidoreductases acting on the aldehyde 

96 In Glyma20g12150.1 Gm20 : 17069690 - 17077611 (strand : +) plant L ascorbate oxidase 
97 De Glyma20g16070.1 Gm20 : 22168983 - 22178286 (strand : -) heat shock protein 70 (Hsp70) family protein 

98 De Glyma20g19000.1 Gm20 : 26702308 - 26707310 (strand : -) potassium channel β-subunit 1 

99 De Glyma20g32030.1 Gm20 : 40646909 - 40654749 (strand : -) phosphoglucosamine mutase family protein 
100 De Glyma20g32320.1 Gm20 : 40930276 - 40936570 (strand : +) Ras related small GTP binding family protein 

 

a), Increased (In) and decreased (De) protein abundance in drought-stressed plant was compared to 2-day-old 

untreated soybean; Protein ID, according to Phytozome soybean genome database; Location, location was analyzed 

using DAIZUbase. 
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Figure 40. Schematic representation of stress-induced processes and events in response 

to calcium in soybean under flooding and drought. The red and blue arrows indicate 

changes of protein abundance under flooding; orange and purple arrows indicate 

changes of protein abundance under drought; and upward and downward arrows 

indicate increased and decreased changes of protein abundance, respectively. The 

abundance of protein induced by stresses in cytosol and the ER was compared to 

untreated soybean without stresses. The abundance of protein in response to additional 

calcium was compared to stressed plant without reagent application. Abbreviations are 

as follows: OST, oligosaccharyltransferase; CaM, calmodulin-binding protein; TCA, 

tricarboxylic acid. 
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Figure 41. Location of genes encoding flooding-responsive proteins in soybean. The 

location of genes encoding flooding-responsive proteins was conducted using 

DAIZUbase (http://daizu.dna.affrc.go.jp/) based on the identified Protein ID. Red and 

blue colors indicate increased and decreased protein abundance, respectively, in flooded 

plant, compared to 2-day-old untreated soybean. The information of genes encoding 

flooding-responsive proteins was listed in Table 11. 
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Figure 42. Location of genes encoding drought-responsive proteins in soybean. The 

location of genes encoding drought-responsive proteins was conducted using 

DAIZUbase (http://daizu.dna.affrc.go.jp/) based on the identified Protein ID. Orange 

and purple colors indicate increased and decreased protein abundance, respectively, in 

drought-stressed plant, compared to 2-day-old untreated soybean. The information of 

genes encoding drought-responsive proteins was listed in Table 12. 
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SUMMARY 

 

Global climate changes influence the magnitude and frequency of hydrological 

fluctuations and cause unfavorable environment for plant growth and development. 

Soybean is the important crop with high abundant of protein, vegetable oil, and several 

phytochemicals. With the predominate values, soybean is cultivated with a long history, 

while it is sensitive to flooding and drought, which lead to deleterious effects on plant 

growth. Root growth was suppressed under flooding and drought, while the parameters 

of root elongation and root diameter differed between two conditions. To unveil the 

responsive mechanisms of soybean under flooding and drought, proteins were analyzed 

using the gel-free/label-free proteomic technique. 

 To obtain the sensitive organ towards flooding and drought at different 

developmental stages, the organ-specific and stage-dependent proteomic analyses were 

performed. Root tip, which is the first organ to sense stress conditions, was the most 

sensitive organ affected by flooding and drought in the early-stage soybean because 

more proteins were induced by both stresses compared to other organs. Fermentation 

and protein synthesis/degradation were major functional categories induced by flooding 

and drought in the root tip. Class II aminoacyl tRNA/biotin synthetases superfamily 

protein was increased under both stresses; however, biotin/lipoyl attachment domain 

containing protein was decreased and increased under flooding and drought, 

respectively. Moreover, β-amylase 5 was increased in the leaf of soybean seedling under 

both stresses. These results indicate that biotin and biotinylation might be involved in 

energy metabolism in soybean exposed to both stresses, while biotin metabolism such as 

biotinylation might be differently triggered in respect to flooding and drought.  

To investigate the mechanisms in response to flooding and drought, which cause 

accumulation of misfolded or unfolded proteins, the ER proteomic analysis was 

performed. Ribosomal proteins were mainly decreased under both stresses, while 

oligosaccharyltransferases increased under flooding. As the protein-folding machinery, 

calnexin was decreased under both stresses, while PDI-like proteins or HSPs served as 

the major folding assistants for flooding or drought, respectively. The accumulation of 

glycoproteins was reduced; however, cytosolic calcium was increased under both 
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stresses. These results indicate that reduced accumulation of glycoproteins under both 

stresses might be due to dysfunction of protein folding. Furthermore, increased 

cytosolic calcium induced by both stresses might disturb the ER environment for proper 

folding. 

To understand the mechanisms in response to calcium in the ER and cytosol of 

soybean under flooding and drought, the proteomic analysis was further conducted. 

With the application of chemicals, which inhibited the elevation of cytosolic calcium 

under both stresses, calnexin, PDI-like proteins, HSPs, and thioredoxin family proteins 

were abundant ER proteins. HCP-like superfamily protein was in response to calcium 

level and its gene expression was upregulated under both stresses. Besides, cellular 

metabolisms including glycolysis, fermentation, the tricarboxylic acid cycle, and amino 

acid metabolism were altered by calcium level under both stresses. Protein abundance 

and enzyme activity of pyruvate decarboxylase were increased or decreased under 

flooding or drought, respectively. In addition, pyruvate decarboxylase was increased in 

response to elevated cytosolic calcium. These results indicate that proteins in the ER are 

altered by the calcium level and pyruvate decarboxylase might be the key enzyme in 

response to calcium under both stresses. 

Taken together, these findings suggest that biotin and biotinylation might 

participate in energy regulation under flooding and drought in the early-stage soybean. 

Calnexin together with PDI-like proteins or HSPs is responsive for proper folding of 

glycoproteins in the ER under flooding or drought. Moreover, calcium homeostasis is 

related to protein folding and ER-associated degradation, and calcium alters pyruvate 

decarboxylase in energy regulation of soybean under flooding and drought. 
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Vizcaíno, J. A., Côté, R. G., Csordas, A., Dianes, J. A., Fabregat, A., Foster, J. M., Griss, 

J., Alpi, E., Birim, M., Contell, J., O’Kelly, G., Schoenegger, A., Ovelleiro, D., 
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