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ABSTRACT 

The lithium-oxygen (Li-O2) battery is currently the subject of intense investigation 

as significantly higher gravimetric energy density (~ 3500 Wh kg-1) than conventional 

Li-ion batteries. Moreover, the use of inexhaustible source of oxygen from ambient air 

makes it more attractive for widespread applications. Despite their promise, the 

practical achievement of rechargeable Li-O2 batteries still face a lot of challenges, such 

as poor cycle life and rate capability, electrolyte instability and low round trip efficiency. 

At the center of thest drawbacks is the high charge overpotential; Recent studies have 

shown that the formation of Li2O2 particles during discharge exhibits a plateau voltage 

of 2.7 V, while the electrochemical oxidation of Li2O2 on charge typically requires 

voltage up to 4-4.5 V. Considerable efforts have been devoted to reduce the high charge 

overpotentials.  

To further decrease the charge overpotential, we propose and realize the 

photoassisted chargeable Li-O2 battery by integrating a redox coupled photocatalyst 

into the oxygen electrode to utilize the photovoltage during the charge process. Upon 

charging under illumination, the photovoltage generated on the g-C3N4 photocatalyst is 

used to compensate the required charging voltage. By integrating the g-C3N4 

photocatalyst, an ultralow charging voltage of 1.9 V can be achieved, which is much 

lower than that of any other conventional nonaqueous Li-O2 batteries. It should be noted 

that the charge voltage is even lower than the redox potential of O2/Li2O2 (2.96 vs. 

Li+/Li), which is thermodynamically impossible without the solar energy absorption. 

Such a low charge voltage dramatically elevates the electric energy efficiency to 142% 

(calculated based on output electric energy/input electric energy). The photo-assisted 

charge process offers a promising strategy for addressing the challenge of high charge 

overpotential in nonaqueous Li-O2 batteries. In the meanwhile, the resulted low charge 

overpotential would alleviate the side reactions associated with carbon-based cathodes 

and electrolytes and elevate the electric energy efficiency of rechargeable Li-O2 battery. 
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Based on our former research, we further continue with the study on photo-assisted 

Li-O2 batteries. Although the redox mediators (RM) played a key role in reducing the 

charge overpotential, the side reactions and serious shuttle effect have been 

demonstrated. Hence, we further demonstrated an unmediated photoelectrochemical 

oxidation method without using any RM. With a proper design of the g-C3N4-carbon 

paper cathode, the direct photo-oxidation between photoexcited holes and Li2O2 

discharge products can be realized. As a result, the Li-O2 exhibits a low charging 

voltage of 1.96 V and favorable cycling performance by the unmediated 

photoelectrochemical approach. These encouraging results represent an attractive 

direction for the further design of photocharging all-solid-state batteries.   

The lacking success of solid-state Li-O2 battery would be attributed to the 

unfavorable charge overpotential derived from solid electrode-electrolyte interface. 

According to our previous results, the integration of solar energy can efficiently reduce 

the charge overpotential of Li-O2 battery since the absorbed solar energy can be used 

to compensate the battery’s electric energy. Owing to the better photo/thermo stability 

of solid electrolyte, the integration of a photocatalyst with solid-state Li-O2 battery 

would be an effective strategy to reduce the severe polarization of solid-state Li-O2 

battery. In this regard, ZnS@CNT composite was synthesized and used as both an 

oxygen electrode and a photoelectrode. Thus the oxygen evolution reaction (OER) is 

greatly facilitated by photocarriers from ZnS photocatalyst, improving the charge 

transport within the solid-solid interface. Utilizing solar energy enables the solid-state 

Li-O2 battery with a low charge voltage of 2.08 V and high electric energy efficiency 

of 113%, implying the critical role of solar-driven oxidation process of Li2O2. Thanks 

to its inherent advantage of high plasticity, a flexible photoassisted-solid-state Li-O2 

battery has been fabricated, which demonstrated the feasible application of our 

proposed solid-state Li-O2 battery on flexible/wearable electronic devices. The solar-

driven charge process provides an alternative way to improve the poor energy efficiency 

caused by interfacial resistance, thus contribute to the practical achievement of solid-

state Li-O2 battery.   
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Chapter 1 General introduction 

1.1 Critical role of high energy-density rechargeable batteries  

It is well-recognized that the society is becoming increasingly energy-dependent, 

while the extensive utilization of fossil fuels, such as oil, coal and natural gas, has led 

to a serious energy crisis and environmental contamination.[1] Since the majority of oil 

is used to power automobiles, the transition from gasoline powered automobiles to 

electric vehicles would do much to decrease the consumption of fossil fuels, and 

thereby emit fewer greenhouse gases. This is already beginning with the increasing 

penetration of hybrid electric vehicles in the global market, which further lead to an 

urgent search for renewable and clean energy sources. Because the renewable energy is 

intermittent in nature as a result of atmospheric conditions, without energy storage 

devices, the renewable energy for electricity production would become much less 

viable.[2; 3] Therefore, energy storage mediums play a critical role to balance the 

mismatch between the electricity consumption and production. Due to their good 

reversibility and device flexibility, electrochemical batteries show appealing potential 

to store the renewable energy for enabling continuous utilization. As a result, 

electrochemical rechargeable batteries are widely used in mobile equipment, such as 

cellular phones, personal computers and digital cameras. 

The key properties of today’s principal rechargeable batteries are listed in table 1.[4-

7] Lead-acid batteries have been used for more than one century from ~1859, mainly as 

the power source for automotive starter. Since the year of 1899, the nickel-based 

batteries have experienced a period of prosperity due to the considerable demand of 

portable electronic devices (phones, toys etc.). The low operating voltage of lead-acid 

and nickel-based batteries and the heavy electrode materials finally lead to low energy 

density.[8] With the pursue for high energy densities, the breakthrough of Li-ion 

batteries has been achieved in 1991 by Sony Corporation, which delivers a specific 

energy as high as 160 Wh kg-1.[9] Due to superior specific, long cycle life and no 
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memory effect, Li-ion batteries are considered as relatively new technology. Until now, 

LIBs still occupies the major position for use in portable electronics. Increasingly they 

are being scaled up for use in electric vehicles as well. 

Table 1. 1. Key properties of today’s principal rechargeable batteries. 

1.1.1 The limitation of LIBs for use in electric vehicles 

LIBs are widely used in many electronic devices which are very important to our 

daily life. While the energy density of current LIBs can hardly satisfy the energy 

demand for electrifying transportation, several approaches have been carried out to 

improve the energy density of state-of-the-art LIBs.[10] The primary cell reactions are 

based on reversible Li-ion intercalation/de-intercalation between cathode and anode 

host structures. Hence, the most important innovative steps as made for advancing this 

field are related to the development of electrode materials.[11; 12] From the viewpoint of 

cathode, lithium transition metal oxides (LiMxOy) have been considered as the most 

attractive cathode materials. 
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Fig. 1. 1 The development of rechargeable batterieis toward high energy densities 

While the capacities of these cathode materials are still far behind the expectation for 

use as electric vehicle batteries (such as layered LiCoO2 140-160 mAh g-1, olivine 

LiFePO4 ~150 mAh g-1 spinal LiMn2O4 ~120 mAh g-1). For example, one alternative 

approach is to elevate the operating voltage by developing cathodes with high 

electrochemical potential. Spinel structured Li(Ni, Mn, Co)O2 offers a charge voltage 

up to 4.5 V, resulting in a limited improvement to 160-180 mAh g-1.[13] Moreover, the 

high voltage batteries suffer from operational instabilities especially at high 

temperatures. On the other hand, extensive studies have been focused on the anode 

materials. After a broad exploitation of higher capacity anode materials, Silicon (Si) has 

emerged as a promising candidate to substitute graphite anode, which can reversibly 

alloy with lithium with a stoichiometry of Li4.4Si, offering a high theoretical capacity 

of 4200 mAh g-1.[14; 15] Unfortunately, due to the densely structure of metalloids, huge 

volume expansion of Li-Si anode would occur during lithiation, even up to 300% in 

some case. This leads to the crack of electrode particles, deteriorated electronic 

conductivity and further capacity fading during cycling.[16] Many strategies have been 

developed to alleviate the volume expansion of Li-Si anode. It is found that nano-

structured Si material such as nanowire morphology, can effectively accommodate the 

volume change of Li–Si alloy upon lithiation. By using the nanowire Si anode, the 
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enhanced energy density of ~300 Wh kg-1 can be achieved.  

Fig. 1. 2 The estimated driving ranges for electric vehicles with various rechargeable 

batteries 

After a steady of improvement of ~15% over the last two decades, the energy density 

of LIBs is currently limited by the Li+ intercalation chemistry. More importantly, the 

energy density of LIBs is far from the goal for use in electric vehicles, even large efforts 

are made to improve their energy-density closed to theoretical limits. Thereby, various 

innovative battery system have been developed, for instance, Li-S battery and Li-

polymer battery etc.[17-19] Although some hope have been shown by these advanced 

battery technology, technical issues still plague them.[20; 21] For instance, the so-called 

“shuttle effect” in Li-S chemistry is caused by dissolved polysulfides migrating to Li 

anode where they react. Extensive research efforts are definitely expected. With today’s 

automotive Li-ion battery, the driving range of electric vehicles is limited to ~160 km, 

as shown in Fig. 1.2. More importantly, even the energy-density of Li-ion battery is 

further improved closed to their theoretical limit, it can hardly meet the demand for 

electric vehicles.[22; 23] In this case, new technologies beyond Li-ion chemistries need 

to be searched to meet high energy-density demand for electric vehicles. Among all 

chemistries beyond Li-ion, Li-Air batteries have received enormous research attention 

to break through the energy-density limitations. According to the Web of Science, 

published papers and patents in this area has increased rapidly in the last couple of years. 

As shown in Fig. 1.2, in theoretical, Li-air batteries have the potential to support for a 
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driving range ~500 km, at least 2-3 times greater than that of Li-ion batteries.[24] 

1.2 Lithium-Air battery 

1.2.1 Introduction of Li-air battery 

Based on the various electrolyte properties, Li-air batteries can be classified into four 

versions, that is, nonaqueous, aqueous, hybrid and solid batteries, as shown in Fig. 1.3. 

Nonaqueous Li-air batteries using aprotic electrolyte were firstly introduced by 

Abraham and Jiang in 1996.[25; 26] Aqueous Li-air batteries are operated based on the 

inorganic lithium salt dissolved in H2O solvent as the electrolyte. Wang and Zhou 

propose a new type Li-air batteries which is based on hybrid electrolyte with an aqueous 

electrolyte in cathode side and an organic electrolyte in anode side.[27] The all-solid-

state Li-air batteries were reported by Kumar to improve the security assurance[28]. In 

the case of aqueous and hybrid Li-O2 batteries, a Li protection film is of essential 

importance, which is designed to prevent the drastic reaction between water and Li. 

Aqueous and hybrid systems share the same reaction mechanisms since the oxygen 

electrodes are exposed to aqueous electrolytes. It is demonstrated that the maximum 

available energy-density of aqueous Li-O2 battery is much less than that when using 

aprotic electrolytes [29]. Further, the non-aqueous Li-air batteries shows more simple 

structure similar with typical Li-ion batteries, except the system is open to absorb O2 

gas. The working principle in all-solid-state Li-air battery is similar to the nonaqueous 

system. However, it is not widely investigated primarily due to the low ionic 

conductivity of solid electrolyte and large interfacial resistance. During my Ph.D. 

period, I mainly focused on the aprotic Li-O2 system since it has dominate the 

development of this research field. 
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Fig. 1. 3 Four principal Li-air battery configurations. 

1.2.2 Working principle of Li-air battery 

A non-aqueous Li-air battery typically consist of a lithium metal anode, a Li+ 

conductive electrolyte and a porous cathode. Li-O2 batteries operate based on simple 

reaction between Li+ and O2 with a thermodynamic potential of 2.96 V : 2Li++ 2e- + 

O2↔ Li2O2.
[30] The schematic diagram of working principle during discharge/charge 

process is given in Fig. 1.4. During discharge process, O2 molecules enters the pores of 

cathode, and reduced by electrons from the current collector to combine with Li+ to 

produce Li2O2 on the cathode. Subsequent charge causes a reverse reaction, making the 

Li-O2 battery to be rechargeable. Upon charge process, these Li2O2 particles are 

electrochemically decomposed to release Li+ and O2 gas.[31] A porous cathode is 

particularly necessary since it not only allow the diffusion of O2 but also provide the 

space to store Li2O2 product. The capacity of a Li-O2 battery is determined by the pore 



7 

 

space in cathode for the storage of Li2O2 products. Thus extensive research activities 

have been dedicated on the cathode materials. Due to the inherent advantages of 

lightweight, high conductivity and large surface areas, carbon-based materials has been 

chosen as the cathode materials for most of the Li-O2 batteries. In addition, carbon 

materials have exhibited certain catalytic activity toward oxygen reduction reaction. 

Various carbon materials have been widely used in current Li-air batteries including 

commercial carbon black, carbon nanotubes, graphite and carbon fibers etc.[32-34] 

Fig. 1. 4 The schematic of working principle for nonaqueous Li-air batteries. 

1.3 Major challenges in current Li-O2 batteries 

Although the Li-O2 chemistry possess the greatest theoretical energy-density (~3550 

mAh g-1), this promising technology has been hindered by several critical challenges, 

such as electrolyte instability, poor cycle life and low round-trip efficiency.[35] These 

drawbacks are mainly caused by the high overpotential issue during charge process. 

1.3.1 High charge overpotential issue 

The typical discharge/charge profiles of non-aqueous Li-O2 battery is presented in 

Fig. 1.5. In practical, Li-O2 battery usually exhibit a discharge voltage around 2.7 V, 

which is coincident with an equilibrium voltage of 2.96 V. While large overpotentials 
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are found during charge process, as much as 4.0 V in some case.[36; 37] The high 

overpotential directly lead to following issues: (1) It is demonstrated, at high voltage (> 

3.5 V), carbonate-based electrolyte (such as EC/DEC and PC) are readily attack by the 

intermediate O2
- species, yielding undesired products such as Li2CO3.

[38] As an 

alternative, ether-based electrolytes (that is, non-carbonate electrolytes) are considered 

more stable than carbonate-based electrolytes, although the decomposition remain at 

high voltage (> 3.5 V).[25; 39-41] (2) Side reactions between carbon-based cathode and 

Li2O2 and decomposition of carbon cathode itself severe polarization (3) poor cycling 

life[34; 42] (4) low energy efficiency around 60% (output electric energy/ input electric 

energy).[43] This value is unacceptable low for use as a practical energy storage system. 

The high charge overpotential could be attribute to the insulating and nonconductive 

nature of Li2O2, thus its electrochemical decomposition requires high charge voltage.[44; 

45] In addition, the pores in air electrode are easily clogged thus the diffusion of Li+ and 

O2 are blocked, causing further overpotential.[46] More seriously, the decomposition of 

electrolyte and carbon-base electrode could directly lead to the formation of Li2CO3 

byproduct. These side products can’t be fully removed without climbing to high voltage 

which, in turn, accelerate the high charge overpotential issue.[47] Due to the presence of 

high charge overpotential, the OER process seems to be more critical than ORR process 

to realize a reversible Li-O2 battery. 

Fig. 1. 5 A typical discharge/charge profile of non-aqueous Li-O2 battery 
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1.3.2 Strategies to reduce the charge overpotential  

Reducing the charge overpotenial are indispensable to insure the battery component 

stable and enhance energy efficiency. Thereby, considerable efforts have been devoted 

to address the severe charge overpotential issue and two approaches are generally used. 

One alternative solution is to construct highly active electrochemical catalysts toward 

OER and ORR processes. Transition metal and oxides (Co3O4, MnO2, TiC and TiN) 

and precious metal and oxides (Pt, Au, Ru and RuO2 etc.) are widely investigated as 

electrocatalysts for Li-O2 battery. Earlier studies demonstrated that the electrochemical 

catalyst could efficiently increase the kinetics of Li2O2 decomposition on charge. 

Further, these catalysts supported on carbon-based materials are extensively attempted 

and show increased catalytic activity. We summarize some recent reported work on 

electrochemical catalyst and the obtained performance was listed in Table 1.2. 

Table 1.2. Summary of the performance improvement of non-aqueous Li-air battery 

with electrochemical catalyst. 

Cathode materials Voltage 

(V) 

Specific capacity 

(mAh g-1) 

Cycle life  Ref.  

Pt/C ~ 3.8 750 / [48]  

Au/C ~ 4 1500 / [48]  

PtAu/C ~ 3.6 1300 / [49]  

Pt/MnO2 ~ 3.5 150-250 20 [50]  

Ru/ITO ~ 3.6 2.5 mAh cm-2 50 [51]  

RuO2/CNT ~ 3.5 1800 20 [52]  

RuO2/CNF ~ 3.6 20600 300 [53]  

Pd/Al2O3/C ~ 3.3 > 1000 10 [54]  

α-MnO2 > 4.0 2300 10 [55]  

Nanoporous Au ~ 3.5 330 100 [56]  

Pd/MnO2 ~ 3.6 550 15 [57]  

RuO2/rGO ~ 3.6 > 5000 30 [58]  
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MoN/NGS ~ 4.0 1490 9 [59] 

CoMn2O4/GNS ~ 4.0 3000 7 [60] 

Fe/N/C ~ 3.6 450 50 [61] 

TiN/C ~ 3.8 6000 / [62] 

Co3O4/Carbon sphere ~ 4.0 7000 / [63] 

Co3O4/HGPC ~ 3.55 500 50 [64] 

Mo2C/CNT 3.25-3.4 500 100 [65] 

La0.75Sr0.25MnO3/KB ~ 3.9 1000 130 [66] 

La0.5Ce0.5Fe0.5Ni0.5O3/GNS ~ 3.8 1100 100 [67] 

Pyrochlore ~ 3.8 8000 4 [68] 

Another alternative approach is to incorporate a redox mediator (RM) into electrolyte 

to reduce the charge overpotential.[69] The diffusible RM could easily move around in 

the electrolyte and have sufficiently wet contact with Li2O2 discharge products. The 

reaction mechanism is one in which RM are initially oxidized to the oxidative form of 

Mox during charge process. Subsequently, the oxidized reactors Mox chemically react 

with Li2O2 particles, producing Li+ and O2 gas. At the same time, by oxidizing Li2O2 

the Mox is reduced back to Mred.[70] RM as diffusible catalyst in Li-O2 battery has to 

fulfill several conditions. (1) The redox potential should be compatible with that of 

Li2O2 products formation. In other words, the oxidative potential of RM is required to 

be higher than the redox potential of Li2O2 formation. (2) The oxidation form of RM 

should be capable of oxidizing Li2O2 particles. (3) The redox mediator must not react 

with the electrolyte and Lithium anode. In addition, it should be highly dissolved in the 

electrolyte. Based on the above-mentioned conditions, many redox-active molecules 

have been successfully attempted in Li-O2 batteries, such as tetrathiafulvalene (TTF), 

ferrocene (FC) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The 
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summary of performance improvement of non-aqueous Li-O2 batteries with various 

redox mediators are presented in Table. 1.3. 

Table 1.3. Summary of the performance improvement of non-aqueous Li-O2 batteries 

with redox mediators 

Redox mediator Redox 

potential 

(V) 

Specific 

capacity 

(mAh g-1) 

Cycle 

life 

Reference 

Ferrocene (FC-/ FC) 3.60 / / [71] 

OMAB-/OMAB 3.16 1000 / [72] 

TMPD-/TMPD 3.33 500 50 [71] 

Lithium nitrite (LiNO3) 3.6 1000 50 [73; 74] 

I3
-/I- 3.05 1000 900 [75; 76] 

(FePc)-/ (FePc) 3.55 1000 135 [77] 

Tetrathiafulvalene TTF 3.56 300 100 [71; 78; 79] 

2,2,6,6-

Tetramethylpiperidinyloxyl 

(TEMPO+/ TEMPO) 

3.74 500 / [80; 81] 

Cesium iodide (CsI) 3.6 1500 125 [82] 

Tris[4-(diethylamino)- 

phenyl]amine (TDPA) 

3.4 500 100 [83] 

1.3.3 Safety hazards derived from organic liquid electrolyte 

The Li-O2 batteries have gained extensive interest due to the potential application for 

electrifying transportation. However, there are still many fundamental and technical 

problems associated with Li-air batteries. Among these, some intrinsic problems are 

arisen from the use of organic electrolytes. During discharge process, Li2O2 forms on 
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the air electrode by a stepwise type: O2 →O2
- →O2

2-. The O2
- as supernucleophile could 

readily attack the organic electrolyte, resulting in the formation of Li2CO3 byproduct.[32; 

84] More seriously, the use of combustible organic electrolyte encounters safety issues.[85; 

86] That is, the combustible, flowing and volatile natures of the organic liquid 

electrolytes cause safety issues such as leakage, fire and even explosion.[87] These issues 

are becoming more serious with the increasing size of batteries used in electric vehicles. 

In this regard, developing solid-state Li-air batteries has been studied as the safest and 

the most reliable concept. Various solid electrolytes have been developed to replace the 

organic electrolytes, such as inorganic solid electrolyte, polymer electrolyte and 

ceramic electrolyte.[88-90] Using solid electrolyte also has the advantage that the lithium 

anode can be protect toward air by the solid electrolyte layer. Currently, most studies 

on Li-air batteries have employed pure O2 atmosphere rather than air to avoid unwanted 

side reactions with components in ambient air (H2O, CO2). Namely, the dense solid 

electrolyte has the potential to prevent the corrosion by water and CO2. While the 

further advance of solid-state Li-air battery has been restricted by low ionic 

conductivity, Li ion transfer number and large interfacial resistance. As a result, the 

cycling life and rate capability of these solid systems remains inferior. 

1.4 Target and outline of this dissertation 

1.4.1 Research purpose 

Although many research efforts have been dedicated to reducing the charge 

overpotential, the obtained results are still far from satisfactory, and the energy 

efficiency of Li-air battery requires to be improved. The OER process plays the most 

critical role in the operation of Li-O2 battery and determine whether a rechargeable Li-

O2 battery can be achieved.[43] By the conventional strategies (i.e. RM, electro-catalyst) 

to reduce charge overpotential, the charge potentials are still as high as 3.5- 3.7 V. This 

directly lead to low electric energy efficiency around 60% (calculated based on output 

electric energy/ input electric energy), indicating that the input electric energy far 
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exceeds output electric energy. In the Li-O2 battery with redox mediator, the charge 

voltage is determined by the redox potential of Mred/Mox since the charge process is 

achieved by the chemical reaction between redox mediator and Li2O2, as shown in Fig. 

1.6.  

 

Fig. 1. 6 Energy diagram of non-aqueous Li-O2 battery with LiI redox mediator 

Therefore, we attempt to introduce photocatalyst in air elelctrode to capture solar 

energy into Li-air battery. For this proof-of-concept, we employ the g-C3N4 

photocatalyst coupled with redox mediator to construct the photo-assisted Li-O2 battery. 

In our photo-assisted battery, the discharge process is same with that of a conventional 

battery. While during charge process, the electrochemical conversion of Mred/Mox is 

gained by photoexcited holes oxidation (seen in Fig. 1.7). In other words, upon charging 

under illumination, photoexcited electron-hole pairs would generated on the g-C3N4 

photocatalyst. Thus, the photovoltage would on the g-C3N4 photocatalyst can be used 

to compensate the required charge voltage. As expected, the charge overpotential issue 

is effectively addressed and the side reaction at high voltage can be suppressed. This 

photo-assisted charge strategy is further extended to solid-state Li-O2 battery to 

improve electric energy efficiency.  
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Fig. 1. 7 Energy diagram of photoassisted Li-O2 battery with LiI redox mediator 

1.4.2 Targets of this research 

 To reduce the charge voltage by introducing photocatalyst into Li-O2 battery 

 To simplify the photo-assisted Li-O2 battery configuration and improve cycling 

performance 

 To apply the photo-assisted charge strategy in solid-state Li-O2 battery for high 

electric energy efficiency 

1.4.3 Outline of this thesis 

There are five chapters in this dissertation in total. 

Chapter 1 is the brief background of the research study. It mainly include the critical 

challenge for current LIBs, the necessity to develop high energy-density Li-air battery, 

a general introduction of Li-air battery, the challenges in making practical Li-air 

batteries and reported solutions. The research purpose and targets are also provided. 

In chapter 2, a photo-assisted Li-O2 battery is fabricated by employing g-C3N4 

photocatalyst coupled with LiI redox mediator. It is noted that g-C3N4 acts as a 

photocatalyst and an oxygen reduction reaction (ORR) catalyst simultaneously. By 
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absorbing solar energy via g-C3N4, an ultralow charge voltage of 1.9 V is obtained, 

which is the lowest value so far, resulting in a high electric energy efficiency of 142%.  

In chapter 3, based on our former research, we further continue with the study on 

photo-charge Li-O2 batteries. Although the redox mediators played a critical role in 

reducing the charge overpotential, we discovered serious shuttle effect and side reaction 

related to redox mediators. Hence, we here design and realize a photo-charged Li–O2 

battery without using any RM. The overpotential issue has been effectively addressed 

by absorbing solar energy during charge process. The photo-charge process without 

redox mediators has proved to be efficient by experimental evidence together with 

theoretical analysis. Through this work, we improve the shortcomings in our former 

work, meanwhile, guide a promising avenue for the future development of 

photocharging all-solid-state batteries. 

In chapter 4, due to solid electrolyte-electrode interface, the charge overpotential 

issue in solid-state Li-air battery is even more serious than that in conventional Li-air 

battery. According to the former results, integration of solar energy into non-aqueous 

Li-air battery can effectively reduce the charge overpotential. Hence, we attempt to 

integrate solar energy into solid-state Li-air battery for constructing a photo-assisted 

solid-state Li-O2 battery 

Chapter 5 is the general conclusion and proposed suggestions for further 

improvement on this research work. 
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Chapter 2 Lowering the charge voltage of Li-O2 battery 

by photocatalyst coupled with I-/I3
- redox agent 

2.1 Introduction 

One of the most important objectives is to lower the charge overpotential and reduce 

the energy losses during the charge process to achieve a practical Li-O2 battery.[91-95] 

Practical propulsion batteries are expected to provide “round-trip” energy efficiencies 

of 90%, but current Li-O2 cells only deliver a low value around 60%-70%, primarily 

due to the large charge overpotentials.[26; 96-99] Typically, the charge voltage often climbs 

as high as 4.0 V, which greatly hinders the practical application.[100-104] Therefore，

research has mainly focused on finding solutions for the high overpotential issue, 

including the employment of electrochemical catalyst and redox mediators. Numerous 

cathode catalyst such as Co3O4 and MnO2 have been reported to be catalytically active 

for OER process in Li-O2 batteries.[40; 105-108] These transition metal oxides combined 

with carbon material is proved to drastically improve catalytic activity for Li2O2 

decomposition.[66; 109] This OER process involves several steps including the nucleation 

and growth and requires overcoming a significant reaction barrier, which exhibits as an 

initiation process for the Li2O2 oxidation. With all these efforts, the charge voltage of 

3.5 V is achieved, showing a polarization of ~0.5 V.[101; 110] Another pathway is 

increasing the solubility of Li2O2, which enable the decomposition of Li2O2 take place 

in the electrolyte at the electrode surface, thus maximizing the interaction areas. Several 

research suggested redox mediators as soluble catalyst shows better catalytic activity 

than the solid counterparts. Redox mediators can readily reach the interior of the air 

electrode due to the flowing nature even when the products are electrically isolated. In 

principle, many redox-active molecules show potentials capable for oxidizing solid 

Li2O2. Accordingly, researchers have reported several types of redox mediators to 

successfully recharge the Li-O2 battery and reduced charge voltage is achieved, such as 

TTF, LiI, and TEMPO. With the aid of redox mediators, the charge voltage can be 
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reduced to ~3.5 V. The charge overpotential of 0.5 V exists which is still high for 

achieving satisfied energy efficiency and cycle life. 

In this regard, we focus on the Li-O2 battery with the use of a redox mediator. A 

further reduction on charge voltage of this battery system is highly desired. A very 

recent work showed that incorporation of a dye-sensitized TiO2 photoelectrode greatly 

reduced the charging voltage of Li-O2 battery, delivering a charging voltage of 2.72 

V.[76] We try to introduce a g-C3N4 photocatalyst in the air electrode to capture solar 

energy into the Li-O2 battery.[111-113] Thus the harvested solar energy can be utilized to 

compensate the required electric energy. In our proposed battery system, the 

electrochemical conversion of Mred/Mox is gained by photo-driven oxidative reation. In 

other words, upon charging under illumination, photoexcited electron-hole pairs would 

generated on the g-C3N4 photocatalyst. Due to the high oxidative activity of holes, they 

would oxidize redox mediator to Mox form.[114-116] In the meanwhile, the photoexcited 

electrons aid reduction from Li+ to Li at the anode side. Thus the photovoltage 

generated between photoexcited holes and electrons could compensate the battery’s 

required charge voltage. The photo-assisted charge strategy combined g-C3N4 

photocatalyst with redox mediator has been proposed and demonstrated. The charge 

voltage can be dramatically reduced to 1.9 V and the device stability is also evaluated. 

2.2 Experimental and Characterization  

2.2.1 Preparation of g-C3N4 powder 

G-C3N4 powder was fabricated according to a calcination approach described in a 

previous paper.[117] Detailly, melamine powder (Wako, 99%) was heated at 550℃ for 3 

h in Argon atmosphere with a ramp rate of 2.3℃ min-1; the cooling rate was controlled 

at about 1 ℃ min-1. The resultant yellow agglomerates were grinded into grain powder 

in a mortar. 
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2.2.2 Preparation of g-C3N4 cathode 

In order to obtain the g-C3N4/carbon paper composites, the slurry of the melamine 

and polyvinylidene difluoride (PVDF) in a N-methyl pyrrolidone (NMP) was pasted on 

a carbon paper of 9 mm in diameter, then the composite was heated at 550 ℃ for 3 h in 

an Ar atmosphere accompanied with a flow of 37 ml min-1 at a ramp rate of 2.3 ℃ min-

1; the cooling rate was maintained at around 1 ℃ min-1. The mass loading of g-C3N4 

active material is 0.16-0.2 mg cm-2. 

2.2.3 Preparation of the battery 

All the devices were assembled in the glovebox filled with Ar gas. 0.5 M LiClO4 

(Wako) and 0.05 M LiI (Wako) dissolved in Tetraglyme (G4, Wako) was employed as 

the electrolyte. The photoassisted Li-O2 battery was constructed with a Li metal anode, 

a glass fiber separator (Whatman GF/A) encapsulated with the electrolyte, and a g-

C3N4/carbon paper as oxygen electrode and photoelectrode in a coin cell, which had 

several holes on the top shell. The holes allow the illumination on the photocatalyst. 

The assembled Li-O2 battery was stored in a sealed glass chamber, which is purged with 

pure O2 gas for about 3 hours before electrochemical measurements. 

2.2.4 Measurements and characterization 

X-ray diffraction (XRD) was investigated by employing a Bruker D8 Advanced 

diffractometer with Cu Kα (λ = 1.5406 Å) radiation. Scanning electron microscopy 

(SEM) was observed on a Hitachi S4800. 1H nuclear magnetic resonance (NMR) 

spectrum was recorded on a Bruker 500 MHz spectrometer. The UV-visible absorption 

spectrum measurements were conducted using a Shimadzu UV3101PC. Galvanostatic 

discharge/charge test were performed on a Hokuto discharging/charging system. All the 

electrochemical discharge/charge test were conducted at 25 ℃ under O2 atmosphere. 

For the solar-energy irradiation tests, a XEF-501S Xe-lamp (San-ei Electric Co., Japan) 

was utilized as the light source. 
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2.3 Results and discussion 

2.3.1 Configuration and working mechanism of photoassisted Li-O2 

battery 

As shown in Fig. 2.1a, the photoassisted rechargeable Li–O2 battery consists of a Li 

metal anode, an electrolyte combined with the LiI redox mediator and C3N4 grown on 

carbon paper as an air electrode and a photoelectrode simultaneously. It is worth noting 

that g-C3N4 serves not only as a photocatalyst, but also as an oxygen reduction reaction 

(ORR) electrocatalyst. In the practical operation, the battery assembly was performed 

in a 2032 coin cell with holes on the top shell allowing the direct irradiation on 

photocatalyst, as exhibited in Fig. 2.1b. For the photo-electric conversion tests, a 

sunlight simulated machine was employed as the light source. 

 

Fig. 2. 1 a) The schematic illustration for photoassisted Li-O2 battery b) The schematic 

for experimental operation of photo-electric conversion 

In the photoassisted battery, the discharge process is same to that of a conventional 

Li-O2 battery with the formation of Li2O2 (Fig. 2.2a). On charging under illumination, 

the I- ions are initially oxidized to I3
- ions by photoexcited holes derived from the 

photocatalyst (Reaction 1, Fig. 1.9a),[118] and subsequently I3
- ions diffuse to the surface 

of oxygen electrode and chemically decompose Li2O2 to O2 and reduced back to I- ions, 

thus complete a full redox cycle (Reaction 2, Fig. 2.2a). In the meanwhile, the 
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photoexcited electrons transfer to the anode side via the external circuit, and reduces 

Li+ ions to Li metal (Reaction 3, Fig. 2.2a). Therefore, the charging voltage of a Li–O2 

battery is compensated by the photovoltage on the g-C3N4 photoelectrode. As presented 

in Fig. 2.2.b, the photoassisted charging voltage corresponds to the energy difference 

between the redox potential of Li+/Li and the conduction band potential (CB) of the 

photocatalyst. A proper photocatalyst for the photoassisted rechargeable battery has to 

satisfy two critical conditions: the CB potential should be lower than the O2/Li2O2 redx 

potential (that is, 2.96 V) and the valance band (VB) potential should be higher than the 

I- /I3
- couple potential to drive the oxidative reaction of I- ions to I3

- ions based on Fig. 

2.2b. As a metal-free photocatalyst, g-C3N4 exhibits an conduction band potential of 

1.7 V, much lower than that of TiO2 photocatalyst (2.6 V). By using the g-C3N4 

photocatalyst, the photoassisted charge voltage of the Li–O2 battery can be reduced to 

1.7 V in theoretical.[119-122]
 On the other hand, g-C3N4 has been recently demonstrated 

to be an efficient electrocatalyst for ORR and oxygen evolution reaction (OER).[123; 124] 

 

Fig. 2.2 a) The reaction mechanism for the photoassisted Li-O2 battery b) The energy 

diagram for the photoassisted charging process 

The crystalline structure of g-C3N4 is analysed by X-ray diffraction (XRD) pattern 

(Fig. 2.3a) in which two typical signals are observed, including the peak at 27.5° (2θ), 

assigning to graphite-like layers of 0.326 nm, and the peak at 13.3° (0.713 nm) arising 
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from repeated tri-s-triazine units.27 The bandgap of the condensed graphitic carbon 

nitride is estimated to be 2.7 eV as determined by ultraviolet-visible (UV-Vis) spectrum 

(Fig. 2.3b), showing an intrinsic absorption in the blue region of the visible light. To 

prove that I- ions can be oxidized to I3
- ions by photoexcited holes from g-C3N4, a 

solution composed of 0.05 M I- ions with g-C3N4 powders is illuminated for 1 h and 

then characterized by the UV-Vis absorption spectrum. Fig. 2.3c exhibits two peaks at 

288 and 350 nm featuring the I3
- ions, which suggests that I- ions can be oxidized by 

the photoexcited holes from g-C3N4. Besides, a porous air electrode framework will 

benefit for the rapid transport of I-/I3
- ions and prohibit clogging by the Li2O2 particles. 

Therefore, coupled with LiI redox mediator, g-C3N4 grown on porous carbon fibre 

paper is simultaneously used as an oxygen electrode and a photoelectrode. 

 

Fig. 2.3 (a) XRD pattern and (b) UV-Vis absorption spectrum of the g-C3N4 

photocatalyst. (c) UV-Vis absorption spectrum of 0.05 M I- ions solution with g-C3N4 

powders after 1 h irradiation. 

2.3.2 Reduced charge voltage of photoassisted Li-O2 battery 

Fig. 2.4 shows the comparison of charging/discharging profiles of a normal Li–O2 

battery without the I- ion redox mediator, a Li–O2 battery with the I
- ion redox couple 

and the photoassisted Li–O2 battery tested at 0.01 mA cm-2. The normal Li–O2 battery 

without using I- ion redox mediator shows a typically high charging voltage (ca. 4.1 V), 

by contrast, a reduced charging voltage (ca. 3.55 V) could be attained with the aid of 
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the soluble I- ion redox mediator. After integration of the g-C3N4 photocatalyst, the 

charging voltage decreases dramatically to 1.9 V, which is identical to the theoretical 

prediction of energy difference (ca. 1.7 V) between the CB of g-C3N4 and Li+/Li couple 

potential. The results are consistent well with the theoretical prediction, showing the 

lowest charging voltage for a Li–O2 batteries so far. It is worth noted that the charging 

voltage is much lower than the discharging voltage (2.73 V, as shown in Fig. 2.4), 

resulting in an electrical energy efficiency of 142%. It is clear that such a high energy 

efficiency is owing to the illumination.  

 

Fig. 2.4 The charging/discharging curves of a normal Li–O2 battery without the I- ion 

redox mediator (black line), a Li–O2 battery with the I- ion redox couple (blue line) and 

the photoassisted Li–O2 battery (red line).  

Besides, the stability of G4 solvent under long-term irradiation was also investigated 

to avoid any confusion in the proposed battery system. No detectable change in the 1H 

nuclear magnetic resonance (NMR) spectroscopy of G4 electrolyte can be observed 

after 5 h illumination, as shown in Fig. 2.5, suggesting favorable stability of the 

electrolyte (G4) under long-term illumination. For the proposed photoassisted 

rechargeable battery, the charging process are equivalent to the oxidative process of I- 

to I3
- ions, which could decompose Li2O2 through a chemical reaction. 
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Fig. 2.5 1H NMR spectra of 1M LiClO4 and 0.05 M LiI dissolved in G4 electrolyte (a) 

before and (b) after 5 h irradiation. 

To further demonstrate this reaction, XRD and scanning electron microscopy (SEM) 

were used to detect the discharge product after 8 h discharge at 0.1 mA cm-2 and a 

charge product after 4 h charge at 0.2 mA cm-2, resulting in an equivalent discharge-

charge capacity. The results demonstrate that the discharge product is Li2O2, while the 

peaks corresponding to Li2O2 disappeared after the subsequently photoassisted charge 

(Fig. 2.6), implying that Li2O2 has been completely removed by the I3
- ions at the end 

of charge. 
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Fig. 2.6 (a) XRD patterns of the discharge and charge products. SEM images of 

cathodes observed at pristine (b), after discharge (c) and after photoassisted charge 

processes (d), scale bar is 500 nm. 

2.3.3 Rate capability and cycling stability 

The charging and discharging curves at different current densities are evaluated as 

shown in Fig. 2.7a, b. It is noticeable that the polarization degree does not dramatically 

increase. The photoassisted charging voltage presents as 2.23 V, even at a current of 

0.03 mA cm-2. To investigate the stability of this device, we studied the photoassisted 

charging cyclability (Fig. 2.7c, d). After 50 repeated cycles (1 h photoassisted charging 

and then 1 h discharging), the battery can still maintain a charging voltage around 2.2 

V, indicating the good stability of g-C3N4 photoelectrode. 
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Fig. 2.7 (a) The charging profiles and (b) the discharging profiles of the photoassisted 

Li-O2 battery at various current densities. (c) The charging curves and (d) the 

discharging curves of the photoassisted Li-O2 battery at 0.01 mA cm-2 for 50 cycles. 

2.4 Conclusions 

It is noted that the g-C3N4 plays an important role on the effective realization of the 

photoassisted rechargeable Li-O2 battery. Firstly, the CB potential of g-C3N4 

photocatalyst is inherently lower than most of photocatalysts such as TiO2, ZnS, CuO, 

and Ta3N5, offering an ultralow photoassisted charging voltage in theoretical. Moreover, 

g-C3N4 with a suitable bandgap (~2.7 eV) can directly absorb visible light without the 

further modification with unstable organic dyes. Accordingly, compared with the dye-

sensitized TiO2 photoelectrode, it showed improved cycling performance.[125; 126] More 

importantly, the g-C3N4 can also serve as ORR electrocatalyst for Li-O2 battery and 

thus simplify the device as two-electrode system, which facilitates the practical 

application. 

By introducing a g-C3N4 photocatalyst into Li-O2 battery, we demonstrate that the 

charging voltage can be effectively reduced to 1.9 V, the lowest for a Li-O2 battery up 
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to date. During the photoassisted charging process, the photoexited electrons from g-

C3N4 transfer to the anode side and reduce Li+ to Li and thus the photovoltage on g-

C3N4 is utilized to compensate the battery’s required charging voltage. Meanwhile, I- 

ions redox mediator are oxidized to I3
- by the photogenerated holes and then, in turn, 

chemically oxidize the Li2O2 particles; in this process, I3
- is reduced back to the initial 

I-. The photoassisted charging strategy effectively addresses the high overpotential 

issue facing the Li-O2 battery. It is worth pointing out that the charging voltage is even 

lower than the discharging voltage (～2.7 V), resulting in a 142% electrical energy 

efficiency. The concept of “energy saving” can be extended to other battery systems 

and thus contributes to the progress of advanced energy storage techniques. 
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Chapter 3 Lowering the charge voltage of Li-O2 battery 

via an unmidiated photoelectrochemical method 

3.1 Introduction  

Redox mediators play a critical role in reducing the high charge overpotential issue, 

serving as an electron–hole transfer agent between the solid electrode and solid Li2O2
 

particles.[83; 127-134] As discussed above, numerous redox mediators have been 

successfully applied. Lim et al. introduced LiI as a redox mediator and successfully 

reduced the charge potential to 3.2 V by combining with the hierarchically carbon 

nanotube cathode.[75] Yu et al. demonstrated a low photoassisted charge voltage of 2.72 

V for Li–O2 batteries by employing I- /I3
- redox mediator integrated with a TiO2 

photoelectrode.[76] However, severe side reaction and shuttle effect related to redox 

mediator has been demonstrated. During the charge process, LiI dissolved in 

elelctrolyte can easily be electrochemical oxidized to form I3
-, and can then diffuse to 

lithium anode where they are reduce to LiI. The LiI is then partially dissolved in 

electrolyte and I- ions are oxidized to I3
- again. The above process take place repeatedly 

showing as the “shuttle effect” and has been proved by Zhang et.al.[135]
 Additionally, 

Kwak et al. demonstrated the side reaction of LiOH formation when a high 

concentration of LiI is used.[136] 

In this case, we propose, removing the redox mediator, an unmediated oxidization 

reaction of solid Li2O2 by photoexcited holes derived from the photoelectrode. As a 

result, an ultralow photoassisted charge voltage of 1.96 V and a typical discharge 

voltage of 2.74 V are attained. By this unmediated photooxidation methode, the cycling 

performance of photoassisted Li-O2 battery is enhanced. 
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3.2 Experimental and characterization 

3.2.1 Synthesis of g-C3N4-CP electrode 

Graphitic-carbon nitride, hereafter recorded as g-C3N4, is prepared from a simple 

precursor via a series of thermal polycondensation reactions without any metal 

involvement. The g-C3N4-CP was fabricated as follows: the guanidine hydrochloride 

(GundCl) precursor and polyvinylidene fluoride (PVDF) powder were mixed with a 

mass ratio of 95:5, dissolving in N-methyl pyrrolidine (NMP) solvent, and then grinded 

for 30 min to blend homogeneously.[137; 138] Then the carbon fiber paper (dia. 7 mm) 

was dipped into the obtained solution and pasted with the mix slurry. The g-C3N4-CP 

was finally attained after calcination at 550 ˚C for 3h under Ar atmosphere with a 

heating rate of 2.3 ˚C min-1; The cooling rate was controlled at around 1°C min-1. The 

loading mass of g-C3N4 on g-C3N4/carbon paper cathode is about 0.4 mg cm-2. The 

weight ratio between carbon fiber paper (~2.4 mg) and g-C3N4 (0.4 mg) is about 6 : 1. 

3.2.2 The photoassisted Li-O2 Battery assemble: 

All the battery assembly was carried out in an Ar gas filled glovebox using 2023 coin 

cell with several holes on top, which enable the direct illumination on the 

photoelectrode. The electrolyte was comprised of 1 M Lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI, Sigma) dissolved in Tetraglyme solvent 

(G4, WAKO). The photoassisted rechargeable Li-O2 battery was consisted with a Li 

metal as anode, a glass fiber as separator filled with electrolyte and a g-C3N4-CP as 

oxygen electrode also photoelectrode. The assembled battery was stored in a glass jar 

with a volume of 650 mL, and flow with O2 before the electrochemical investigation. 

The light source used for the solar energy conversion is a XEF-501S Xe-lamp (San-ei 

Electric Co., Japan). The charging/discharging tests for the all devices were conducted 

at various current densities by using a Hokuto electrochemical system. 
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3.3.3 Measurements and characterization 

X-ray diffraction (XRD) analysis was performed by a Bruker D8 X-ray 

diffractometer using Cu Kα (λ=1.54 Å) radiation. The chemical constitution of g-C3N4-

CP was featured by X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250, with 

a monochromatic Al Kα X-ray source). Scanning electronic microscope (SEM) was 

performed on a Hitachi S4800. Galvanostatic discharge/charge was carried out on a 

Hokuto discharging/charging machine. FTIR was attained on a JASCO instrument of 

FT/IR-6200 from 1300 to 900 cm-1 and the resolution is 2 cm-1. 

3.3 Results and discussion 

3.3.1 An unmediated photoelectrochemical oxidation methode 

We studied the shuttle effect caused by redox mediators, with LiI as an example, on 

the metallic Li anode by using Fourier transform infrared (FTIR) measurements. A cell 

was constructed with a Li metal anode, a LiTFSI in G4 electrolyte with 0.1 M LiI 

additive, and a g-C3N4 cathode/photoelectrode. Under illumination, the I- ions in 

electrolyte can be oxidized to I3
- ions by photoexcited holes originated from g-C3N4, 

then I3
- ions transfer onto the Li anode side and thereby form LiI layer. Fig. 3.1a shows 

the FTIR measurements for the surface resultants of Li anode after irradiation. After 6h 

illumination, the peaks at around 1100 cm-1 corresponding to LiI is identified in the 

spectra, proving the shuttle reaction between I3
- ions and Li anode. The LiI formed on 

the surface of the Li anode is further evidenced by scanning electron microscopy (SEM) 

(Fig. 3.1b,c). After illumination for 6h, the surface of Li anode obviously roughened 

due to the accumulation of LiI grains. This shuttle reaction can lead to the decrease of 

the active utilization of I3
- ions and thus result in detrimental influence on the Li anode. 
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Fig. 3.1 (a) The FTIR spectra of the surface of Li anode after irradiation for 6 h in G4 

with LiI, pure LiI and the reference KBr. SEM images of the Li anode (b) before and 

(c) after irradiation for 6 h in G4 with LiI 

Thereby, we proposed an unmediated photoelectrochemical oxidation strategy to 

reduce the charge overpotential of Li-O2 batteries. Owing to absence of redox mediator, 

different from the photoassisted Li-O2 battery reported,  our battery shows a more 

operational flexibility configuration: a metallic Li anode, a separator filled with 

LiTFSI/G4-based electrolyte and g-C3N4-CP simultaneously served as an oxygen 

electrode and a photoelectrode. During the discharge, O2 is reduced and combined with 

Li+, producing insoluble Li2O2 products that deposite evenly as a thin layer on the 

surface of g-C3N4 coating. The working mechanism of the photoassisted charge process 

is schematically illustrated in Fig. 3.2. Fig. 3.2a shows the illustration of a g-C3N4-CP 

interface where the g-C3N4 photocatalyst, is excited upon absorption of photons to 

generate hole-electron pairs, with holes oxidizing Li2O2 to O2 and electrons injecting 

into carbon paper, and aiding the reduction of Li+ to Li metal. At the cathode side, 

photogenerated holes could directly oxidize Li2O2 to produce Li+ and O2 gas due to the 

driving force between valence band (VB) potential (4.4 V (all potentials are referenced 

to Li+/Li couple)) g-C3N4 and Li2O2/O2 redox potential.[139-142] During the charge 

process, the photovoltage on g-C3N4 photocatalyst is utilized to compensate the 

battery ś charge voltage. The theoretical photoassisted charge voltage is determined by 

the energy difference between the Li/Li+ redox potential and conduction band (CB) 

position of g-C3N4 photocatalyst (that is 1.7 V) (Fig. 3.2b).  
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Fig. 3. 2 (a) Illustration of a g-C3N4-CP electrode interface. (b) The theoretical potential 

diagram of the photoassisted charge voltage, equivalent to the energy difference 

between the redox potential of Li+/Li and CB level of g-C3N4 (ca. 1.7 V). 

The photoassisted Li-O2 battery contained g-C3N4-CP cathode was assembled as 

described in the Experimental section. The charge/discharge capability of the battery 

were studied, with and without irradiation, to provide a back-to-back comparison at 

0.01 mA cm-2; the results are presented in Fig. 3.3. The dashed line in the middle 

represents the theoretical charge/discharge voltage for a Li-O2 battery. Without 

illumination, the Li-O2 battery exhibits an initial voltage of 3.61 V based on the 

potential at the half-charge capacity point, which is similar to previously reported 

results employed g-C3N4 as an OER catalyst.32 In sharp contrast, upon charging under 

illumination, the charge voltage drastically decreased to 1.96 V that is even lower than 

the Li2O2/O2 redox potential (~ 2.96 V),[143] thus resulting in a ‘negative’ charge 

overpotential. The obtained charge voltage is well identical to the theoretical energy 

difference between the CB level of g-C3N4 and Li+/Li redox potential (1.7 V). By 

employing g-C3N4-CP as an ORR catalyst, the battery shows a standard discharge 

voltage of 2.74 V. The great voltage gain could contribute to a relatively high electrical 

energy efficiency (ca. 140%). 

 



34 

 

 

Fig. 3.3 The charge/discharge profiles of Li-O2 battery with (red line) and without 

illumination (black line). 

To better understand the photoassisted charge process, we performed ex situ analysis 

on the cathode at different states-of-discharge/charge. At specified points along the 

discharge/charge test (Fig. 3.4a) we disassembled the cells, fetched the cathode from 

those cells, washed away the contained electrolyte, then visualized the Li2O2 discharge 

products by scanning electron microscopy (SEM); we also collected XRD patterns of 

samples to identify the chemical composition of the discharge products. The 

photoassisted rechargeable Li-O2 battery was firstly discharged for 6 h, and 

subsequently charged for 6 h under irradiation at the current of 0.04 mA cm-2. The 

capacity of 600 mAh/gg-C3N4 is considered as a relatively deep discharge. The discharge 

voltage and photoassisted charge voltage present at around 2.69 and 2.42 V, respectively. 

Of note, the battery shows a modest increase in charge voltage because the charge 

transfer between Li2O2 products and the g-C3N4 photoelectrode surface becomes 

increasingly hard with an increase in rate. After discharge for 3h, upon nucleation, small 

islands of Li2O2 particles are distributed uniformly on the surface of g-C3N4 layer. By 

the end of 6 h discharge, the g-C3N4-CP electrode from the battery shows even larger 

Li2O2 particles deposition, up to about 200 nm.[144-147]  

After photoassisted charge for 3h, the Li2O2 particles turn into relatively fine again, 

demonstrating that the photogenerated holes generated upon irradiation do, indeed, go 

on to oxidize Li2O2 particles. By the end of photoassisted charge process, the SEM 
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image validates that Li2O2 particles are completely decomposed, suggesting the 

reversiblility of formation and decomposition of Li2O2 products. XRD analysis was 

conducted to further probe the discharge and charge products with a cutoff time of 6 h 

at 0.1 mA cm-2. After discharge, the typical diffraction peaks assigned to Li2O2 can be 

clearly observed, then disappeared after the photoassisted charge process as shown in 

Fig. 3.4b, indicating that the Li2O2 particles could be completely scavenged by the 

photoassisted charge strategy that agrees well with the SEM images. These results 

verify that the Li2O2 can be efficiently decomposed by the photoexcited holes derived 

from photoelectrode upon irradiation.  

 

Fig. 3.4 (a) The charge/discharge curves of photoassisted Li-O2 battery at 0.04 mA cm-

2. (b) SEM images of discharge products at different stages during charge/discharge test. 

Scale bars, 1 μm. (c) XRD patterns of the discharge/charge products with a cut-off time 

of 6 h at 0.1 mA cm-2. 

3.3.2 Rate capability and cycling stability 

The cycling performance of the photoassisted Li-O2 battery was evaluated by the 

galvanostatic charge/discharge test at 0.01 mA cm-2. The entire 70 cycles voltage 

profiles as well as the magnified 1st and 70 th cycle profiles are as presented in the Fig. 

3.5a,b. The black and red lines in the figure 3.5 represent, respectively, the discharge 

and photoassisted charge voltage profiles. Even after irradiation for 70 h over 70 
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repeated photoassisted charge and discharge circles, the charge voltage is still recorded 

at about 2.35 V. On the other hand, discharge voltage only declines by ~0.06 V after the 

70 repeated cycles, implying that structure of g-C3N4-CP electrode is relatively stable 

even irradiated for a long time. The discharge and photoassisted charge curves of the 

cell at different current densities of 0.01, 0.03 and 0.05 mA cm-2 are shown in Fig. 3.5c. 

Although it is noticeable that the polarization trends during charge process increased 

slightly as the increase of current densities, the voltage plateau can still maintain at 2.4 

V even at 0.05 mA cm-2. We also investigated the cycling ability of the batteries at high 

current densities of 0.05 mA cm-2. Upon 10 cycles, the battery can still record a charge 

voltage of 2.45 V (Fig. 3.5d).  
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Fig. 3.5 (a,b) The photoassisted charge and discharge profiles at the current density of 

0.01 mA cm-2. (c) the discharge and photoassisted charge profiles at various current 

densities. (d) The discharge and photoassisted charge curves at 0.05 mA cm-2 for 10 

cycles. 
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3.4 Conclusions 

Applying the g-C3N4 coating CP structure as both cathode and photoelectrode offers 

direct contact between Li2O2 particles and the g-C3N4 photocatalyst, meanwhile 

promotes photoexcited carriers transportation. Benefit from the proper design, the 

photogenerated holes from the photocatalyst can directly react with the Li2O2 particles 

without the aid of redox mediators. We successfully address the severe charge 

overvoltage challenge of Li-O2 battery via the unmediated photo-oxidative approach. 

Besides, photocharging batteries reported to date have generally coupled photocatalyst 

with liquid redox mediators for solar energy utilization.[148-151] However, due to the 

photo/thermal instability of liquid organic electrolyte under irradiation, all-solid-state 

batteries represent a promising avenue for future solar energy conversion/storage. From 

a broader perspective, this unmediated photo-oxidative approach lay a foundation for 

the further development of photocharging solid-state batteries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Chapter 4 Improving the electric energy efficiency of 

solid-state Li-O2 battery  

4.1 Introduction 

With the increasing requirements imposed by electric vehicle (EV), the energy 

storage devices possessing high capacity and enhanced safety are highly anticipated. 

Li-O2 battery is considered as a competitive candidate among various energy storage 

devices,[152-155] such as Li-ion battery,[156] sodium-ion battery,[157] supercapacitors.[158] 

However, they entail the risks of fire or explosion caused by the use of combustible 

organic electrolytes caused by the use of combustible organic electrolytes. [159; 160] From 

the perspective of safety, the solid-state Li-O2 battery has been demonstrated as a viable 

solution for the power source of EV.[161] While, some fundamental issues in solid-state 

Li-O2 battery are still hang in doubt, especially the large interfacial resistance between 

electrolyte and electrodes and thereby leading to the significant charge transport barrier 

during charging process, high charge overpotential and low energy efficiency. This has 

becomes the bottleneck for the further advance of solid-state Li-O2 batteries. 

Therefore, numerous research efforts are being devoted to reduce the high charge 

voltage derived from severe interfacial behavior, such as the adoption of noble metal as 

electrocatalysts (Ru,[162] Pd,[163] Au[164]) and the design of efficient air electorde 

interface.[165-169] Nevertheless, these methods usually suffer from some undesired 

parasitic reactions (such as shuttle effect, electrolyte decomposition) and high cost. 

Despite these attempts, the high charge voltage (> 4.0 V) of solid-state Li-O2 battery is 

still unfavorable. 

In this study, we therefore focus on improving the electric energy efficiency of solid-

state Li-O2 batteries caused by large interfacial resistance. Based on the previous studies, 

it is suggested that the introduction of photocatalysis into aprotic Li-O2 battery can 

effectively alleviate the overpotential issue since the captured solar energy can be used 

to reduce electric energy input.[170-172] Thanks to its better photo/thermal stability, the 
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integration of solar energy into solid-state Li-O2 battery is an effective pathway to 

address the charge overpotential issue facing in solid-state Li-O2 battery. On the other 

hand, integrating solar energy with solid-state Li-O2 battery provides an inspirational 

avenue for efficient solar energy utilization.[173; 174] The solid-state Li-ion O2 battery 

exhibits an ultralow charge voltage (2.08 V) and high energy efficiency (113%, based 

on output electric energy/input electric energy) under irradiation. Consequently, the 

conversion and storage of solar energy are simultaneously realized through this device, 

which also displays promising implementation in flexible electronic devices. 

 

 

4.2 Experimental and characterization 

4.2.1 Preparation of cathode 

Synthesis of ZnS@CNT composite: The ZnS@CNT composite is prepared based on 

a modified method reported in previous paper[175]. In detail, CNTs (sigma aldrich) are 

homogeneously dispersed in 40 ml of ethylene glycol solution (EG, >99.5% Wako 

Chemicals) using ultrasonication. Next, 0.25 mmol of zinc acetate (Wako Chemicals, 

99%) and 0.25 mmol of thiourea (Wako Chemicals, 99%) were added into the above 

solution and stir for 1 h to blend uniformly. The resultant solution is subsequently 

transferred to a 50 ml autoclave and kept at 180℃ for 6 h. After naturally cooling to 

room temperature, the obtained samples are collected by centrifugation, rinsed with 

deionized water and ethanol repeatedly to remove impurities. Finally, the sample is 

dried in air for over 12 h at 60 ℃.  
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The cathode is fabricated as follow: the obtained ZnS@CNT composite and 

polyvinylidene fluoride (PVDF) powder are mixed with a mass ratio of 9:1, and then 

dissolved in N-methyl pyrrolidine (NMP) solvent to form an uniform slurry. The slurry 

is coated on a carbon fiber paper of 7 mm in dia. Before using, the cathodes are dried 

in vacuum oven at 80 ℃ for 12 h. 

4.2.2 Preparation of anode 

To fabricate the lithiated Silicon (LixSi) electrode, a half cell consisted of Li metal 

anode and Si electrode cathode is assembled wherein the Li+ ions are electrochemically 

insert into Si material.[176] Firstly, the Si electrode is produced by blending the 

commercial Si powder (crystalline, ~ 50 nm, Alfa Aesar), super P carbon and 

polyacrylic acid binder with a ratio of 70 : 20 : 10 wt%. The resultant slurry is then 

pasted onto a Cu foil. The mass loading of Si electrodes is about 0.6 mg cm-2. Prior to 

the battery assembly, the Si electrodes are vacuum dried in an oven at 80℃ overnight. 

The electrolyte is prepared by dissolving 1 M Lithium 

bis(trifluoromethanesulfonyl)imide (LiTFSI, sigma Aldrich, 99.95%) in tetraglyme 

(G4, sigma aldrich, 99%) containing 5 wt% Fluoroethylene carbonate (FEC). Herein, 

FEC is applied as an additive to contribute the formation of solid electrolyte interphase 

(SEI) film on Si electrode surface. In the galvanostatic test, the Si electrode is lithiated 

through discharging Li ion half battery to 0.01 V at 200 mA g-1. Figure S1 shows the 

initial discharge/charge curves at a current density of 200 mA g-1, which corresponds to 

a good coulombic efficiency (84%). We disassembled this half cell, retrieved and rinsed 

the LixSi electrode, which was then employed as anode for the solid-state Li-ion O2 

battery.  

4.2.3 Battery assembly 

All battery assembly are performed in the glovebox flow with Ar gas. The proposed 

solid Li-ion O2 battery is constructed in a 2032 coin cell which has 7 holes on top, 

permitting the irradiation onto the ZnS photoelectrode. In this work, the solid 

electrolyte is comprised of 5 mol% LiTFSI dissolved in succinonitrile (SCN) which 

features as plastic-crystal form with a melting point of 65℃. The as-prepared 
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electrolyte presents as liquid state above 65 ℃ while becomes solid state below 65 ℃. 

Thereby, the LiTFSI/SCN electrolyte is heated to 70 ℃ and becomes liquid state before 

using. The proposed photoassisted solid-state battery is assembled with a LixSi as anode, 

a separator (glass fiber) filled with electrolyte and a ZnS@CNT composite as air 

electrode and photoelectrode. The as-assembled Li-ion O2 battery is put in a glass jar 

flowing with O2 gas for 2 h before electrochemical measurements. 

As to flexible solid-state battery, carbon textile instead of carbon paper, is chosen as 

the current collector. The fabrication of flexible battery is the same as described 

previously. After battery assembly, the flexible cell is attached on a cylindrical glass 

bottle to be fixed under bendable state. 

4.2.4 Characterizations: 

For the photo-electric conversion tests, a sunlight simulated machine employed for 

the irradiation is a XEF-501S Xe-lamp (Sanei Electric Co., Japan). Galvanostatic 

electrochemical tests were conducted on a Hokuto discharging/charging machine. The 

X-ray diffraction (XRD) measurements were conducted on a Bruker D8 diffractometer 

with Cu Ka (λ=1.54 Å) radiation. The chemical state of ZnS@CNT composites is 

investigated by using X-ray photoelectron spectroscopy (XPS, PHI 5000 VersaProbe), 

Scanning electron microscopy (SEM) images are observed via a Hitachi SU-8010. The 

thermogravimetric analysis (TGA) results are attained on BRUKER TG-DTA 2010SA-

G4H. Transmission electron microscopy (TEM) images are visualized by a JEOL JEM-

200CX. The Raman spectra measurement is performed on a JASCO microscope 

spectrometer (NRS-1000DT).  

4.3 Results and Discussion 

A proper photocatalyst is the prerequisite to realize the photo-driven charging 

strategy, which is required to fulfill two conditions: 1) The conduction band (CB) level 

of photocatalyst should lie lower than O2/Li2O2 redox potential for compatibility with 

Li2O2 formation/decomposition (2.96 V vs Li/Li+, all potentials described in this work 

are referred to Li/Li+). 2) The valence band (VB) level should lie higher than the 
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O2/Li2O2 couple potential to drive the chemical reaction between holes and Li2O2 

products. Owing to the specific band positions (CB: 2.0 V, VB: 5.6 V), ZnS is chosen 

as an ideal photocatalyst to realize the solar-driven oxidation of Li2O2 and further 

reduce the high overvoltage in solid-state Li-O2 batteries.[177; 178]Therefore, zinc 

sulfide@carbon nanotube (ZnS@CNT) composite serves not only as an oxygen 

electrode but also a photoelectrode in the battery. Before constructing the photoassisted 

solid battery, the electrochemical performance of ZnS was investigated to avoid any 

misunderstand in the photoassisted charge reactions. According to the discharge/charge 

profiles (as shown in Figure S1), it is demonstrated that ZnS presents negligible 

electrochemical activity, which can hardly contribute electrochemical capacity in this 

study.  

On the other hand, lithium metal is attracted intense attention as anode since the 

guarantee for high energy density. However, it is problematic for practical application, 

such as the inferior Coulombic efficiency and Li dendrite formation during cycling. 

Fortunately, Silicon (Si) has emerged as a promising candidate for replacing Li anode 

because of its large theoretical capacity (4200 mAh g-1). In this regard, replacing Li 

metal with LixSi anode would be a potential way for energy-density improvement as 

well as safety modification.[179; 180] Accordingly, owing to the enhanced capability of Si 

anode prior to lithium anode, the photoassisted solid-state battery is constructed with 

LixSi, which is attained by the electrochemical lithiation of commercial silicon material. 

The LixSi electorde delivers a favorable capacity of 3350 mAh g-1 that is comparable 

to Li anode (3860 mAh g-1) (Figure S2).   

As designed, the proposed photoassisted solid-state battery is assembled with a LixSi 

anode, a plastic-crystalline solid electrolyte (LiTFSI/SCN) and a ZnS@CNT cathode, 

as illustrated in Fig. 4.1a. By utilizing ZnS photocatalyst, the solid-state Li-ion O2 

battery could be charged at an ultralow voltage of 2.08 V under irradiation. Such a 

voltage is even lower than the theoretical value (~2.86 V) with the LixSi/Si couple as 

counter and reference electrodes (seen in Figure 4.1b). The low charge voltage directly 

elevates electric energy efficiency to 113%. Compared with normal solid Li-O2 

batteries which typically show a charge voltage above 4.0 V, 50% of electric energy 
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can be saved thus realizing the electrical energy saving. The reduction on charge 

volatge support for our proposed mechanism, indicating the efficient absorption of solar 

energy. This is ascribe to the photoexcited electron-hole pairs contribute to the 

electrochemical reactions at both electrodes. Thus the photovoltage on ZnS 

photocatalyst is effectively employed to reduce the charge voltage input. As a result, 

the photo-driven charge strategy reveals as a feasible methode to lower the charge 

voltage of solid-state Li-O2 batteries.  

 

Fig. 4.1 (a) The illustration of photoassisted solid-state Li-ion O2 battery. Magnified 

view: the photo-driven charge reaction at the solid electrolyte-electrode interface. (b) 

The comparison of charge voltages between conventional solid-state Li-O2 battery and 

photoassisted solid-state Li-ion O2 battery.  

Fig. 4.2 illustrates the reaction mechanism for photo-driven solid-state Li-ion O2 

battery. The discharge process is primarily similar with that of typical Li-O2 battery 

with Li2O2 as the discharge products, according to the following Equation (1): 

 2LixSi + xO2 → xLi2O2 + 2Si                                (1) 

However the charge process is relatively different, the magnified view in Fig. 4.1a 

gives more details for photo-driven Li2O2 oxidation at the solid electrolyte-electrode 

interface. Photoexcited electron-hole pairs would generated on ZnS upon excited by hv. 

Subsequently, the photogenerated holes would aid Li2O2 oxidation due to its highly 

oxidative reactivity. This reaction proceeds under the driving force between VB level 

of ZnS photocatalyst and O2/Li2O2 couple potential. At the same time, the 

photogenerated electrons in the CB would migrate to the anode along external circuit, 

aiding the Li+ ions insertion into Si, based on the following Equation(2), (3) and (4).  
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Photocatalyst → e- + h+                                                         (2)  

Cathode: 2h+ + Li2O2 → 2Li+ + O2                                            (3) 

Anode: xe- + xLi+ + Si → LixSi                                (4) 

In the photo-driven charge pathway, the absorbed solar energy is used compensate 

the electrical energy input, thus resulting as the reduction on charge voltage. Based on 

the energy diagram, the electrons are elevated to higher energy level by using solar 

energy, and the ZnS photocatalyst enables the photoassisted solid-state Li-ion O2 

battery charged at 1.9 V in theoretical. 

 

Fig. 4.2 Energy diagram for the solar battery integrated with a ZnS photoelectrode. 

After the battery assembly, a typically high charge voltage of 4.09 V is acquired at 

0.026 mA cm-2. In contrast, the charge voltage of solid-state Li-ion O2 battery under 

irradiation is distinctly decreased to 2.08 V, as displayed in Fig. 4.3a. The resultant 

photoassisted charge voltage is in good agreement with theoretical speculation of 1.9 V, 

which is considered to potentially address the inherent defect in solid-state Li-O2 

batteries. Furthermore, the charge voltage (2.08 V) is nearly one times lower compared 

with conventional solid battery (> 4.0 V), and thereby largely improves energy 

conversion efficiency. The rate capability are exhibited in Fig. 4.3b and c. Although the 

profile trend on charge slightly rises because of the increasingly large interfacial 

resistance at high rate. While the resultant charge voltage is 2.5 V at 0.20 mA cm-2 

hv 
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which is much lower than that of conventional batteries. The cycling ability of both 

common and photo-driven solid-state Li-ion O2 batteries were investigated to provide 

more comprehensive comparison.  

 

 

Fig. 4.3 (a) The comparison on the charge/discharge profiles of the solid-state Li-ion 

O2 battery with and without irradiation at 0.026 mA cm-2. (b), (c) The rate capability of 

solid-state Li-ion O2 battery at various current densities. (d), (e) The discharge and 

photoassisted charge profiles of the solid-state Li-ion O2 battery at 0.026 mA cm-2. 

Insert: The comparison on charge voltage between photoassisted and common solid Li-

ion O2 batteries. 
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As presented in Fig. 4.3d and e, the charge voltage of photoassisted solid-state battery 

are kept stable at ~ 2.2 V after 50 cycles. From the comparison with common solid-

state Li-ion O2 battery (inserted in Fig. 4.3d), the introduction of solar energy into solid-

state Li-O2 batteries can resolve the overvoltage issue and thereby elevate the electric 

energy efficiency, which indicates the pivotal role of photo-driven Li2O2 oxidation for 

high battery reversibility. 

More details for the discharge/charge products are presented as Raman spectra, 

which is obtained after discharge and photoassisted charge processes at 0.026 mA cm-

2 for 1 h. As can be seen in Fig. 4.4a, the typical peak variation is well assigned to the 

formation/decomposition of Li2O2 during discharge/charge. The results demonstrate 

that Li2O2 dominates the main discharge product, which can be completely decomposed 

in the proposed photo-driven charge process. Additionally, the morphology of 

discharge/charge products are collected by transmission electron microscopy (TEM). 

Before discharge, it can be observed ZnS photocatalyst particles composed of fine 

grains, which is favorable for the photoexcited carriers transportation from inside to 

surface of ZnS photoelectrode, enhancing the photocatalysis activity. After discharge, 

instead of the classic toroidal-morphology of Li2O2,
[181; 182] the layer products evenly 

covered on the surface of ZnS@CNT cathode can be clearly observed, which is similar 

to the previous results.[183] The thin layer structure could provide plentiful active 

reaction sites for Li2O2 particles and photogenerated holes, and contribute to the 

efficient Li2O2 decomposition under illumination. Subsequently, the resultant thin layer 

completely disappears after photo-driven Li2O2 oxidation process. This TEM result, 

together with Raman analysis, evidences the proposed photo-electrochemical reaction  

and the feasibility of photo-driven Li2O2 oxidation strategy in solid Li-O2 battery.[183] 
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Fig. 4.4 (a) Ex-situ Raman spectra of cathodes analyzed at pristine, after discharge and 

after photoassisted charge processes. TEM images of cathodes observed at pristine (b), 

after discharge (c) and after photoassisted charge processes (d), scale baris 100 nm. 

Thanks to the high ionic conductivity and plasticity, the plastic-crystalline electrolyte 

could enable the proposed solid-state Li-O2 battery to be potentially flexible. In order 

to verify its future application on flexible/wearable electronic devices, a bendable solid-

state Li-O2 battery is proposed and realized, as illustrate in Fig. 4.5a. The assembled 

battery can successfully power light-emitting-diode (LED) under externally bendable 

condition (Fig. 4.5b). As expected, the bendable cell presents a low charge plateau of 

2.15 V under illumination and favorable cycling performance (Figure 5c and d), which 

well maintains the superior electrical energy efficiency under bending state. Upon 

charging at a high current density of 0.13 mA cm-2, the battery voltage could be 

controlled within 2.48 V. It is noted such a voltage is still much lower than that of any 

other traditional Li-O2 batteries without irradiation, as shown in Fig. 4.5e. Based on 

above results, this proposed solid-state Li-O2 battery shows appealing potential on 

flexible/wearable electronic devices. 
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Fig. 4.5 (a) Schematic illustration of the proposed flexible photoassisted solid Li-ion 

O2 battery. (b) Digital image of the assembled flexible solid Li-ion O2 battery powering 

LED lamps. (c), (d) The discharge and photoassisted charge profiles of the flexible 

battery at 0.026 mA cm-2. (e) The discharge profile of flexible photoassisted-solid 

battery at 0.026 mA cm-2 for 10 h and photoassisted charge profile at 0.13 mA cm-2 for 

2 h.  

 

e) 
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4.4 Conclusions 

Although solid-state Li-O2 battery shows attractive improvement on safety, the lack 

of success should be ascribed to the sluggish reaction arising from solid-solid interface. 

In conclusion, a new energy conversion and storage device integrated solar energy with 

solid Li-O2 battery is proposed and achieved. By employing a ZnS photocatalyst to 

capture solar energy, the charge voltage of solid Li-ion O2 battery can be successfully 

decreased to 2.08 V, even lower than the discharge voltage. Such a low charge voltage 

directly leads to an ultrahigh energy efficiency of 113%, which is corresponding to 

electric energy saving of ~50%. Different from conventional solid Li-O2 batteries, the 

proposed photo-driven device can output more electric electric energy (discharge/) than 

input (charge). This work validates an attractive strategy to solve the pressing challenge 

derived from large interfacial resistance in solid-state Li-O2 battery. From a broader 

perspective, this work also demonstrates an attractive route to achieve solar energy 

conversion and storage in solid-state Li-O2 battery.  
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Chapter 5 Conclusions 

In summary, preliminary studies on Li-air batteries do suggest the promise to offer 

much higher gravimetric energy densities than currently achievable. In practical, 

several key obstacles must be resolved before the promise becomes a reality, such as 

high charge potential, low round-trip efficiency, poor cyclability and the safety issue 

arising from the organic electrolyte. Among these drawbacks, the high charge 

overpotential has been considered as the central problem. In this research work, we 

therefore focus on the charge overpotential issue and propose to integrate a photocatlyst 

into nonaqueous Li-O2 batteries for absorbing solar energy. The primary conclusions 

are generalized as follows: 

In Chapter 2, C3N4 photocatalyst was synthesized and used not only as a 

photoelectrode but also as an oxygen electrode for the oxygen reduction reaction. A 

photoassisted rechargeable Li-O2 battery based on C3N4 photocatalyst coupled with LiI 

redox mediator has been successfully proposed and realized. In the photoassisted 

battery, during charging under solar illumination, the I- ions in the electrolyte can 

readily be oxidized to I3
- ions by photogenerated holes from C3N4 photocatalyst. 

Subsequently, the I3
- ions would transfer to the air electrode side and decompose Li2O2 

releasing Li+ ions and O2. Meanwhile, freed from the Coulomb absorption of holes, 

photogenerated electrons from C3N4 photocatalyst move to the anode side reducing Li+ 

to Li thus completing the whole charge process. During this photo-oxidative reaction, 

both of the photoexcited electron-hole pairs participate the charge reaction, and thereby 

solar energy is captured by C3N4 photocatalyst and stored as electrochemical energy in 

the Li-O2 battery. Namely, the photovoltage generated on the g-C3N4 photoelectrode 

compensates the required charge voltage. Finally, the charging voltage of Li-O2 battery 

is decreased to 1.9 V, the lowest value for charge process to date, which is significantly 

lower than that of any other conventional Li–O2 batteries. It is also noted that the 

charging voltage (~1.9 V) is even lower than the discharging voltage (~2.7 V), leading 

to an electric energy efficiency of 142%. This work effciciently addresses the charge 
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overpotential issue in nonaqueous Li-O2 battery. Simultaneously, it provides a 

promising avenue to achieve solar energy conversion and storage in a high energy-

density Li-O2 battery. 

Chapter 3: Substantial efforts have been devoted to reduce the charge overpotentials. 

In addition, photocharging rechargeable batteries reported to date have generally 

employ liquid redox mediators as either the electron–hole transfer agent or 

catholyte/anolyte. Although the redox mediators have become focal points in 

rechargeable Li-O2 battery research for reducing the charge overpotential, serious 

shuttle effect and side reaction related to redox mediator have been discovered. This 

directly leads to the loss of both the RM content and electrical energy efficiency and 

displays as trend in increase of charge voltage and the deterioration of the cycling 

performance. This phenomenon has been further evidenced by FTIR measurement in 

our work. In this respect, removing the LiI redox mediator, an unmediated 

photoelectrochemical method is successfully demonstrated. We then construct a 

photoassisted Li-O2 battery based on the direct photo-oxidative reaction of solid Li2O2 

by photoexcited holes derived from the C3N4 photoelectrode. With the aid of solar 

energy, we here reduced the charge voltage of the Li–O2 battery to 1.96 V without using 

any RM. The direct photo-oxidation reaction of Li2O2 products is illustrated by XRD 

and SEM measurements. We demonstrate an unmediated photoelectrochemical 

approach to effectively address the overpotential issue in Li– O2 batteries. As a result, 

the electrical energy efficiency and the cycling stability of the Li -O2 batteries were 

enhanced greatly by avoiding the side reaction. More importantly, owing to the poor 

photo/thermal stability of the liquid organic electrolyte under irradiation, all-solid-state 

batteries is regarded as an attractive alternative for photocharging energy storage 

systems. Our unmediated photoelectrochemical oxidation approach may provide a 

promising avenue for the further design of photocharging all-solid-state batteries. 

Through this work, we improve the shortcomings in our former work, meanwhile, guide 

a promising direction for the future development of photo-solid-state batteries. 

Chapter 4: Although the solid-state Li-O2 battery with high energy-density and 
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enhanced safety shows appealing potential for electric vehicles applications. It is well 

known that the challenge of high charge overpotential is even more serious on solid-

state systems. The lack of success in solid-state Li-O2 batteries is attributed to high 

charge overpotential derived from the solid-solid interface, which has become the main 

bottleneck for further advance of solid-state Li-O2 battery. Based on our previous results, 

the incorporation of solar energy with solid-state Li-O2 battery is applied and effectively 

decrease the charge voltage of solid-state Li-O2 battery. Accordingly, a photo-assisted 

solid Li-O2 battery is designed and fabricated. In this work, due to the suitable band 

positions, ZnS is chosen as the photocatalyst to realize the photo-driven solid-state Li-

O2 batteries. Finally, the ZnS@CNT composite is used as an oxygen electrode and a 

photoelectrode simultaneously. Additionally, instead of Li metal anode, lithiated silicon 

(LixSi) is employed as the anode for the safety improvement in the proposed solid-state 

Li-ion O2 battery. Owing to the high ionic conductivity (~ 3 mS cm-1 at 25 °C) and 

plasticity, a 5 mol% LiTFSI dissolved in plastic-crystal form of succinonitrile (SCN) 

was utilized as the solid electrolyte. Under the assistance of photogenerated carriers, 

the rate-determining step of charge transfer for the Li2O2 oxidation is largely facilitated, 

enabling a favorable kinetics for oxygen evolution reaction at the solid-solid interface. 

The proposed photoassisted strategy endows the solid-state Li-O2 battery with a low 

charge voltage of 2.08 V and high electric energy efficiency. The cyclability of common 

and photoassisted solid-state Li-ion O2 batteries were both investigated at 0.026 mA 

cm-2. The charging voltage of photoassisted solid-state Li-ion O2 battery can keep stable 

at around 2.2 V after 50 repeated cycles. Compared with solid-state Li-ion O2 battery 

without illumination, the introduction of solar energy into solid-state Li-ion O2 batteries 

can effectively address the overpotential issue arising from the large interfacial 

resistance. 

In this article, the photoassisted charge strategy are integrated with three types of Li-

O2 batteries, that is, 1) Nonaqueous Li-O2 battery with redox mediator, 2) Nonaqueous 

Li-O2 battery 3) Solid-state Li-O2 battery. Next, the application on each battery system 

would be discussed and assessed. For the Li-O2 battery with redox mediator, taking LiI 
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as an example, it serves as the soluble agent transferring between Li2O2 and cathode. 

The photoassisted charge strategy coupled redox mediator with photocatalyst is 

validated to be effective on Li2O2 decomposition. Benefit from the solubility and 

diffusivity, the redox mediator can reach the interior of cathode, and thus promote the 

contact with both Li2O2 and photocatalyst. Different from immobile catalysts, the 

diffusible redox mediator is more capable to completely catalyze the oxidation of Li2O2. 

Despite these advantage of redox mediator, its detrimental effect of shuttle reaction is 

discovered. Accordingly, the unmediated photoassisted charge is proposed and 

achieved by designing a proper coating structure of air electrode. Thus the photoassisted 

charge is applied on simple Li-O2 battery due to the absence of redox mediator. The 

battery performance has been boosted by stabilizing the component. The simplified 

device also implies more application potential from views of cost and stability. For the 

photoassisted charge strategy, replacing organic liquid electrolyte with solid electrolyte 

can improve safety from the root, because the solid electrolyte shows negligible thermal 

instability under illumination. Integration of solar energy with solid Li-O2 battery 

would be more attractive compared with aprotic Li-O2 batteries due to the favorable 

safety, which is the critical factor for practical implementation. 

Although promising, to fully develop the photo-charge energy storage systems, 

challenges will be to achieve real scientific and technological breakthroughs in energy 

density improvement, stable electrolytes discoveries and operation feasibility. 

Substantial research efforts are still required. Last but not the least, a long-standing 

hurdle is how to transform a Li-O2 battery to a ‘real’ Li-air battery, which can be 

operated in the surrounding air. Through the efficient combination with solar energy, 

we are confident to realize a high-efficiency lithium–air batteries with long-lived 

practice application in future. 
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