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Abstract 

 DNA methylation is essential for healthy mammalian development 

and function, and is involved in important processes such as suppression of 

repetitive elements, genomic imprinting and carcinogenesis. Thus, aberrant 

DNA methylation is linked to some of the adverse outcomes. DNA 

methylation indicates addition of a methyl (CH3) group to fifth position of a 

cytosine within CpG dinucleotides, which forms clusters called CpG islands. 

DNA methylation patterns are established and maintained by DNA 

methyltransferases (DNMTs). Inactivation of certain tumor suppressor 

genes caused by methylation of the promoter region is widely observed in 

various types of cancer. 

 Epigenetic reprogramming, including DNA demethylation, occurs in 

mammalian primordial germ cells (PGCs) and early embryos, and returns 

the cells to pluripotency. Therefore, DNA methylation in human cells has 

long been thought not to be inherited. However, recent studies have raised 

the possibility that epimutation can occur in human cells.  
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 In chapter 1, I focus on Lynch syndrome, an inherited cancer 

syndrome that is caused by germline mutation of DNA mismatch repair 

(MMR) genes and has an increased risk of colorectal, endometrial and other 

cancers. Recent studies have shown that 25-30% of patients with Lynch 

syndrome have no germline mutation of MMR genes. This raises the 

possibility that epimutation of MMR genes could be an alternative cause of 

Lynch syndrome. Therefore, I investigated epimutation of MMR genes in 

peripheral blood DNA in 106 patients with endometrial cancer, and 

identified patients with Lynch syndrome.  

 Epimutation could be a cause of inherited cancer syndrome and 

sporadic cancer. Some types of cancers show concomitant DNA methylation 

of multiple genes, which is referred to as CpG island methylator phenotype 

(CIMP). In colon cancer, Lynch syndrome and CIMP-positive cancer show 

similar clinicopathological features. However, there are few studies on 

CIMP-positive endometrial cancer, and the causes and features of this 

condition are unknown. In chapter 2, I hypothesized that patients with 
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CIMP-positive endometrial cancer have aberrant DNA methylation 

(epimutation) in normal tissue that is a trigger of carcinogenesis. Therefore, 

I investigated the genome-wide methylation status of DNA from peripheral 

blood cells (PBCs) and cancer tissue in patients with CIMP-positive and 

CIMP-negative endometrial cancer. In DNA from PBCs, the promoter region 

of miR-663a was significantly hypermethylated in CIMP-positive cases 

compared to CIMP-negative cases. 

 These studies provide new knowledge on the relationship between 

epigenetic abnormalities and endometrial carcinogenesis. The findings may 

be applicable to early detection and as a predictive marker. Furthermore, 

DNA methylation is reversible, and future strategies for DNA demethylation 

may contribute to cancer prevention. 
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Abbreviations 

Atypical endometrial hyperplasia: AEH 

CIMP-high: CIMP-H 

CIMP-low: CIMP-L 

CIMP-negative: CIMP(-) 

CpG island methylator phenotype: CIMP  

Differentially methylated CpGs: DMCs 

Differentially methylated regions: DMRs 

DNA methyltransferase: DNMT 

DNA mismatch repair gene: MMR gene 

Methylation specific polymerase chain reaction: MSP 

MicroRNAs: miRNAs 

Next-generation sequencing: NGS 

Peripheral blood cells: PBCs 

Polymerase chain reaction: PCR 

Post-Bisulfite Adaptor Tagging: PBAT 
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Primordial germ cells: PGCs 

Transcription start sites: TSS 
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General Introduction 

 DNA methylation is one of the epigenetic mechanisms used to 

regulate gene expression. Among several mechanisms regulating gene 

expression, DNA methylation is the most common for fixing genes in the “off” 

position. Thus, DNA methylation plays important roles in embryonic 

development, chromosome stability and carcinogenesis. Indeed, the 

relationship between methylation abnormalities and human diseases such 

as cancer, psychiatric disorder and congenital imprinting disorders are 

currently being studied (1). The results of these studies will be important for 

not only treatment of these diseases but also understanding of DNA 

methylation mechanisms and prevention of DNA methylation abnormalities. 

 DNA methylation occurs by the addition of methyl groups to 

cytosine bases in mammalian DNA by DNMTs. In mammals, there are 3 

major DNMTs: DNMT1, DNMT3a and DNMT3b. DNMT3a and DNMT3b 

are de novo DNMTs that show equal affinity for hemi-methylated DNA 

(DNA with one strand methylated) and non-methylated DNA (2). In contrast, 
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DNMT1 is a maintenance DNMT that binds to hemi-methylated DNA at 

CpG sites. After DNA replication, the parent strand remains methylated, 

but the daughter strand is not methylated. DNMT1 binds to these 

hemi-methylated CpGs and methylates the cytosine on the newly 

synthesized daughter strand, and maintains CpG methylation patterns 

through mitosis (3). 

 Unlike animals, plants do not have a separate germline in which 

epigenetic marks are erased and reestablished. Thus, even if DNA 

methylation machinery is restored, epigenetic changes induced in DNA 

methylation abnormalities can be maintained and inherited (4). One of the 

oldest examples of heritable epigenetic change (epimutation) in plants is a 

morphological defect in the development of flower in Linaria vulgaris. The 

mutant phenotype is due to aberrant DNA methylation and transcriptional 

suppression of Lcyc, which is a regulator of dorsoventral asymmetry (Figure 

1). In correlation with the expression recovery by demethylation of Lcyc gene, 

phenotype is restored occasionally (5).  
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 In contrast, methylation patterns of mammalian cells are erased in 

PGCs and at the post-fertilization stage (Figure 2). Therefore, epimutation 

was thought not to occur in mammals. However, there is increasing evidence 

that environmental (nutritional) stimuli can modify DNA methylation and 

affect phenotypic expression of genes. For example, the methylation level of 

the Leptin promoter is significantly increased in oocytes of high-fat diet mice. 

Female offspring from the obese mice showed higher methylation level of 
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c, Face view of a wild-type Linaria  flower compared to a peloric mutant.  
d, Floral diagrams of wild-type (top) and peloric (bottom) flowers showing  
    the relative positions of different organs.  
Adapted from Cubas, P. et al. :Nature, 401: 157-161, 1999  �
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Leptin promoter in the liver than normal mice. Expression level of Leptin 

was also significantly decreased in the liver of these offspring (6). Examples 

of epigenetic inheritance in mice raise possibility that occurs similar event in 

humans.  

 

 

 To examine this issue further, I focused on Lynch syndrome, which 

is an inherited cancer syndrome caused by germline mutation of DNA 

conducting standard molecular studies in germ cells and
especially oocytes, which can only be obtained in small
numbers. In this review we report our current understand-
ing of the molecular mechanisms associated with the es-
tablishment of DNA methylation patterns in germ cells,
especially oocytes. We describe which sequences become
methylated, their intrinsic characteristics, and what pro-
tein factors are known to be involved. We shall focus
particularly on specific regions of the genome termed
CpG islands (CGIs) that are associated with key regulatory
elements of gene expression, including many promoters.
We shall discuss recentmajor advances concerning the link
between histone modifications, transcription and the de
novo DNA methylation machinery. Lastly, we shall con-
sider what the future holds in this important and challeng-
ing research area, particularly with the development of
high-throughput sequencing techniques.

The dynamic nature of DNA methylation in germ cells
and its fate in the embryo
Erasure of epigenetic marks in primordial germ cells
Soon after the onset of gastrulation in the mouse embryo,
the precursors of germ cells, or primordial germ cells
(PGCs), emerge from the epiblast (embryonic day E7.25)
as a founder population of <50 cells. They proliferate,
migrate to and colonise the genital ridge, from which the
gonads develop (E10.5-E11.5). Because PGCs originate
from embryonic cells that have started to adopt a somatic
fate, extensive remodelling of histone modifications and

DNA methylation marks towards the requirements of a
germ cell is essential ([3,7–10] for more details). Pre-exist-
ingDNAmethylation patterns are comprehensively erased
during PGC migration, such that by E13.5 the overall
methylation level is <10% [11] (Figure 1); for comparison,
the same study measured the methylation level of the
entire embryo to be >70%. However, some regions escape
epigenetic remodelling in PGCs and retain DNA methyla-
tion marks; for example, retrotransposons of the intracis-
ternal A-particle class (IAPs) remain highly methylated
[11,12]. The consequence of wholesale DNA methylation
erasure in PGCs is that de novo DNA methylation during
germ-cell development takes place on a largely blank slate.

Establishment of specific DNA methylation landscape in
germ cells
Following sex-determination of the embryo (!E12.5), new
DNA methylation patterns are established, differently in
male and female germ cells, resulting in distinct methyla-
tion profiles of mature oocytes and sperm. This asymmetry
is related to the fact that de novo DNA methylation takes
place in distinct cellular contexts in male and female germ
cells (Figure 1). In the female germline de novo methyla-
tion takes place during the postnatal growth phase of
oocytes arrested in meiotic prophase I. In the male germ-
line it initiates before birth in mitotically arrested prosper-
matogonia, before the onset of meiosis (Box 1).

Various sequences are the target of the de novo DNA
methylation machinery in germ cells (Box 2). DNA
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Figure 1. DNA methylation changes during developmental epigenetic reprogramming. Primordial germ cells (PGCs) emerge in embryos at E7.5 and, concomitant with their
proliferation and migration towards the genital ridge, DNA methylation is globally erased (black line). Following sex-determination, new DNA-methylation landscapes are
established in germ-cell precursors in an asymmetrical fashion in male and female embryos. In the male embryo (blue line), de novo methylation takes place before meiosis
in mitotically arrested cells (G1-phase; prospermatogonia) and is completed before birth. In the female embryo (red line), primary oocytes enter meiosis and arrest in
prophase-I (diplotene stage); DNA methylation is established after birth during the follicular/oocyte growth phase. At puberty, under specific endocrine triggers, fully-grown
germinal vesicle (GV) oocytes resume the first meiotic division. After extrusion of the first polar body, oocytes arrest in metaphase of the second meiotic division (MII
oocytes) and meiosis is completed only upon fertilisation. Following fertilisation, a new wave of DNA demethylation takes place that is distinct on the parental genomes. In
the zygote, DNA methylation of the paternal genome is rapidly erased by an active mechanism (blue line). Demethylation of the maternal genome is slower (red line) and is
dependent on DNA replication (passive demethylation). These post-fertilisation demethylation events do not include imprinted gDMRs (green dotted line), resulting in
parental-allele-specific methylation of these elements in early embryos and consequent parental-allele-specific expression of associated imprinted genes. Concomitant with
blastocyst implantation and cell-lineage determination, new methylation landscapes become established, associated with cellular differentiation.

Review Trends in Genetics January 2012, Vol. 28, No. 1

34

Figure 2. DNA methylation changes during developmental epigenetic  
                reprogramming. 
Adapted from Smallwood, SA. et al. : Trands Genet, 28: 33-42, 2012 
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mismatch repair (MMR) genes, most frequently MLH1 and MSH2 (7, 8). 

Lynch syndrome is characterized by increased risk of colorectal, endometrial, 

ovarian and other cancers. In Knudson's two-hit theory, it is required that an 

abnormality (hit) occurs in both alleles of a tumor-suppressor gene for 

disease progression (Figure 3). Germline mutations generally represent the  

 

 

first hit on one allele, while the second hit typically results from a sporadic 

mutation, loss of heterozygosity or methylation. However, germline 
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Figure 3. Knudson’s two-hit theory 
Modified from http://ocw.tufts.edu/data/20/300759/300840_xlarge.jpg 
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mutations of MMR genes are not found in 25-30% of patients with Lynch 

syndrome (9-12). Therefore, it is possible that epimutation of MMR genes 

acts as the first hit in patients with no germline mutation. 

 Evaluation of epimutation of MMR genes to date has been based on 

case studies with insufficient information on families, and epimutation in 

families with endometrial cancer has not been examined. In chapter 1, I 

explored epimutation in cases of endometrial cancer and identified patients 

with Lynch syndrome.  

 Epimutation could be a cause of inherited cancer syndrome and 

sporadic cancer. Aberrant DNA hypermethylation in CpG island is a 

hallmark of cancer and is characterized by tumor-specific hypermethylation 

of numerous CpG islands (13). MLH1 methylation is also observed in cases of 

sporadic colorectal and endometrial cancer (14). These cancers show the 

same phenotype of mismatch repair defect and clinicopathologic 

characteristics similar to Lynch syndrome. Such sporadic colorectal cancer 

also has a close relationship with cancer with a CpG island methylator 
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phenotype (CIMP) (15) (Figure 4). CIMP was first proposed by Toyota et al. 

in 1999 (16). They defined a subgroup of colorectal cancers with concurrent  

 

 

multiple promoter hypermethylation of tumor-related genes as CIMP.  

CIMP has subsequently been reported in gastric (17, 18), lung (19, 20), liver 

(21) and ovarian (22) cancer. Recent studies revealed that CIMP is 

negatively associated with genetic mutations in colorectal cancers (23, 24), 
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,
CIMP3posi=ve,,

endometrial,cancer,
�

MLH1,methyla=on,
Microsatellite,instability,(MSI),,
Epimuta=on,?�

Figure 4. Relationship between Lynch syndrome and CIMP-positive  
                endometrial cancer�
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which suggests that it can provide an alternative oncogenic pathway. This 

findings supported that epimutation may be one of the cause of CIMP 

positive cancer. Thus, I hypothesized that normal tissue of CIMP-positive 

endometrial cancer has features which are prone to get DNA methylation, 

and that such features play important roles in carcinogenesis in this cancer. 
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General Discussion 

 Lynch syndrome is one of the most prevalent hereditary cancer 

syndromes in humans and is caused by inherited defects in MMR genes (89, 

90). In the last two decades, increased appreciation of epigenetic 

mechanisms in tumorigenesis and identification of constitutional 

epimutations underlying Lynch syndrome have laid the foundation for the 

epigenetic era (11). Epimutation is regarded as secondary if induced by an 

adjacent genetic alteration, and otherwise as primary (33). Lynch syndrome 

offers one of the first examples of cancer-associated constitutional 

epimutation, namely primary epimutation of MLH1 (11). Recent 

observations of constitutional epimutations as the first hit and promoter 

methylation as the second hit in Lynch syndrome emphasize the increasing 

significance of epigenetic events, especially as methylation as the second hit 

is associated with a more generalized CIMP in tumors (91). 

 CIMP was first explained by Toyota et al. in 1999 (16). CIMP occurs 

in a subset of colorectal cancers that are characterized by vast 
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hypermethylation of promoter CpG island sites, resulting in inactivation of 

several tumor suppressor genes or other tumor-related genes (92). Many 

studies have found an association between CIMP status and other important 

epidemiological and molecular factors, such as smoking, age and genetic 

mutations (93-95). 

 In chapter 1, I tried to identify MMR genes epimutation positive 

patients from 106 endometrial cancer patients. According to our preliminary 

experiment, 1% of endometrial cancer patients show MLH1 epimutation, but 

no cases of epimutation-positive endometrial cancer were found in this 

study.   

 I also identified two patients with Lynch syndrome among the 106 

patients with endometrial cancer, based on the Amsterdam II criteria and 

revised Bethesda guidelines (diagnostic criteria for Lynch syndrome using 

family and personal history). One of these patients had a novel MSH6 

nonsense mutation. Since colon cancer in patients with Lynch syndrome is 

characterized by mutations in MLH1 and MSH2, rather than MSH6, 
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endometrial cancer with Lynch syndrome may have a different 

carcinogenetic pathway. 

 Next, I focused on the relationship between epigenetic alteration 

and sporadic endometrial carcinogenesis. Many studies have shown that 

DNA methylation is related to endometrial cancer, especially in the early 

stages of carcinogenesis. Moreover, some types of cancer, including 

endometrial cancer, show a CIMP phenotype. These findings suggest that 

DNA methylation plays important roles in carcinogenesis and in cancer 

phenotypes, but it is still unclear whether such DNA methylation is a cause 

or a result of cancer. 

 I succeeded in identifying aberrant DNA methylation, which is a 

potential cause of CIMP-positive endometrial carcinogenesis. The MiR-663a 

promoter region in PBC DNA of CIMP-H patients was significantly 

hypermethylated compared to that of CIMP(-) patients. Consistent with this 

methylation pattern, miR-663a expression in PBCs of CIMP-H patients was 

lower than that in CIMP(-) patients. The miR-663a promoter region is a 
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hypomethylated region in normal human adult tissues, and therefore 

miR-663a DNA methylation identified in this study may be a novel 

epimutation candidate. 

 This study provides new findings on the involvement of epigenetic 

abnormalities in hereditary and sporadic endometrial cancer. Detection of 

abnormal DNA methylation using a blood specimen can be performed 

quickly and conveniently, and thus is useful as a cancer prediction and 

diagnostic marker. Furthermore, since methylation of DNA is reversible, 

site-specific demethylation may contribute to prevention of cancer. 
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