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Abstract

Introduction and Objectives

Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small

molecule inhibitors in bladder cancer (BC). Because FGFR3 and TACC3 genes are located

very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in

situ hybridization) is not a feasible option. In this study, we developed a novel RNA-FISH

assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed

paraffin-embedded (FFPE) human BC samples.

Materials and Methods

The RNA-FISH assay was developed and validated using a mouse xenograft model with

human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104

human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tis-

sues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-

FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3

mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE

sections.

Results

FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse

xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines
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have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH

were positive in 2/60 (3%) of non-muscle-invasive BC (NMIBC) and 2/44 (5%) muscle-inva-

sive BC (MIBC) patients. The results of RT-PCR of all 104 patients were identical to those of

RNA-FISH. FGFR3 mutations were detected in 27/60 (45%) NMIBC and 8/44 (18%) MIBC

patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were

mutually exclusive.

Conclusions

We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE sam-

ples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-

TACC3 fusion transcripts has the potential to identify additional patients that can be treated

with FGFR inhibitors.

Introduction

Activation of fibroblast growth factor receptor 3 (FGFR3) has been reported to play important

roles in several malignancies, including uterine cervix carcinoma and multiple myeloma as

well as bladder cancers (BC)[1][2]. Ninety-seven percent of activating FGFR3 mutations

observed in BC are clustered in either exon 7 (codons 248 and 249), exon 10 (codons 372, 373

and 375), or exon 15 (codon 652)[3]. Mutations in exons 7 or 10 create unpaired cysteines in

the proximal extracellular region, leading to the formation of disulfide bonds between adjacent

receptors, thereby inducing ligand-independent dimerization and activation[4][5]. Mutations

within the kinase domain, such as codon 652, are thought to induce a conformational change

in the activation loop, resulting in constitutive autophosphorylation of the receptor[6].

Recently, FGFR3-transforming acidic coiled-coil 3 (TACC3) fusions have been identified in

glioblastoma[7], head and neck carcinoma[8], and lung cancer[9], as well as urothelial cancer

(UC)[10]. FGFR tyrosine kinase inhibitors have been developed and shown to be effective in

cell lines harboring not only an activating FGFR3 mutations, but also an FGFR3-TACC3 fusion

gene in vitro and in vivo[11]. These include the S249C mutation in human BC cells 97–7[12],

Y375C mutation in human BC cells MGH-U3[13], and FGFR3-TACC3 fusion in human gli-

oma stem cells GIC-1123[11]. In addition, significant clinical responses to an FGFR inhibitor

were reported in FGFR3-TACC3 fusion-positive patients with cervical cancer[14] or glioma

[11] in Phase I clinical trials. Thus, detection of not only the activating FGFR3 mutations, espe-

cially in exons 7, 10 and 15, but also the FGFR3-TACC3 fusion in BC patients could be clini-

cally important to identify responders to FGFR kinase inhibitors.

DNA fluorescent in situ hybridization (DNA-FISH) is widely used to detect fusion genes

from genomic DNA[15][16]. However, genomic DNA-FISH is not a feasible option to detect

an FGFR3-TACC3 fusion. Generally, fusion detection assays of DNA-FISH are based on 2

strategies, dual fusion or break apart. In the dual fusion strategy, 2 colored probes are designed

to span the breakpoint of the 2 genes involved in the fusion. These probes are visually distinct

in normal cells but appear merged by the specific fusion event. However, this strategy is not a

feasible option for FGFR3-TACC3 fusion detection because the 2 genes map very closely, at a

distance of only 48 Kb on chromosome 4p16.3, and thus the 2 probes appear merged in both

normal cells and fusion-positive cells. In the break-apart strategy, probes are designed to target

opposite sides of the translocation break point for a given gene, each labeled by a different
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color. These probes generate signals in normal cells that are co-localized and appear merged.

Following a translocation, the signals are no longer co-localized but appear to be separate. This

strategy is also not a feasible option for FGFR3-TACC3 fusion detection. According to Parker

et al., the FGFR3-TACC3 fusion is caused by tandem duplication of a 70 kb region on 4p16.3

[17]. This is confirmed by performing genomic DNA capillary sequencing of tandem duplica-

tion boundaries[17]. Therefore, fluorescent probes appear merged in both normal and fusion-

positive cells.

Recently, several RNA-ISH based assays have been applied to detect mRNA transcripts of

fusion genes, which include padlock probes/rolling circle amplification (RCA), “smFISH,” and

“branched DNA (bDNA)-FISH”. For example, TMPRSS2-ERG fusion transcripts were identified

by padlock probes/RCA[18]. However, the padlock probe/RCA approach needs an in situ cDNA

preparation, which would pose additional technical difficulty when using formaldehyde-fixed

paraffin-embedded (FFPE) tissue slides due to degradation and modification of nucleic acids.

“smFISH” systems using single fluorophore-labeled probes are also applied to detect mRNA

transcripts of fusion genes[19][20]. Following smFISH, “bDNA-FISH” system has been applied

to detect mRNA transcripts of fusion genes[21]. In “bDNA-FISH,” sequential hybridization of a

series of oligonucleotide probes generates signal amplification. This contrasts with “smFISH,”

which lacks a signal-amplification step. The bDNA probes are commercially available as a ’View-

RNA’ system (Affymetrix, Santa Clara, CA, USA) or an ’RNAscope’ system (Advanced Cell

Diagnostics, Hayward, CA, USA). “bDNA-FISH” and “smFISH” demonstrate the same accu-

racy, but “bDNA-FISH” yields brighter spots with a better signal-to-noise ratio[22]. Neither

“smFISH” nor “bDNA-FISH” assay has been applied to detect FGFR3-TACC3 fusion yet.

Here, we sought to develop an RNA-FISH assay using bDNA probes to detect

FGFR3-TACC3 fusion gene transcripts in FFPE tissue, which are the most widely available

specimens in clinical settings. In this study, we first applied an RNA-FISH assay using bDNA

probes to detect FGFR3-TACC3 fusion transcripts in human FFPE BC tissue. We also analyzed

the relationship between the FGFR3 mutation, FGFR3-TACC3 fusion status, and clinical infor-

mation in a prospective multicenter cohort of more than 100 patients with the clinical diagno-

sis of BC.

Materials and Methods

Patients and tissue samples

This study was conducted as a prospective multicenter cohort study including 144 patients

from 7 institutions with the clinical diagnosis of UC. The participating hospitals were Tohoku

University Hospital, Akita University Hospital, Kyoto University Hospital, Kagawa University

Hospital, Hitachi General Hospital, Tsukuba Medical Center Hospital, and Tsukuba Univer-

sity Hospital. Primary cancer tissue samples obtained from 106 patients with non-metastatic

BCs were stored as frozen and FFPE tissues. The remaining 38 cases were metastatic UC

includes bladder, ureter, and renal pelvis cancer. For these metastatic UC patients, archival

FFPE samples of the primary tumors were used if fresh frozen tissues were not available.

This research protocol was approved by the Ethics Committee of Tsukuba University Hos-

pital (Approval number: H25-116). This study was also reviewed and approved by the Ethics

Committees of the following institutes: Tohoku University Hospital, Akita University Hospi-

tal, Kyoto University Hospital, Kagawa University Hospital, Hitachi General Hospital, and

Tsukuba Medical Center Hospital. Tumor specimens, blood, and clinicopathologic informa-

tion were collected with written informed consent.

Portions of tissue samples were frozen and stored at −80˚C, and the remainder of the sam-

ple was fixed in 10% formaldehyde for 12–24 hours at room temperature and embedded in
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paraffin for diagnostic assessment. Hematoxylin and eosin staining (H&E) was performed,

and the slides were reviewed by a pathologist. Tumors were staged according to the 2009

UICC 7th TNM Classification system. Tissue sections that showed malignant tumor cell nuclei

in 10% or more cells on the whole specimen were included in this study. A total of 144 patients

were enrolled, 7 patients were excluded from this study due to a low tumor fraction in the

whole specimen (less than 10%). Two patients were excluded because their tumors were not

malignant. One sample was excluded due to a lack of genomic DNA yield from the FFPE sam-

ple. Thirty samples were excluded because fresh frozen tissues were not available. Finally, 104

BC patients were included. The patient characteristics are summarized in Table 1. Of the 104

patients, 60 were classified as non-muscle invasive BC (NMIBC) and 44 as muscle-invasive BC

(MIBC) according to the pathological findings.

Cell lines and cell culture

Three human BC cell lines (RT112[23], FGFR3-TACC3 fusion-positive[10]; RT4[24], FGFR3-
TACC3 fusion-positive[10]; and T24[25], FGFR3 wild type[10]) and HSC-39 (human signet

ring cell gastric carcinoma cell line[26], FGFR3 wild type) were used. All cells were cultured in

RPMI 1640 (Wako, Osaka, Japan) supplemented with 10% fetal bovine serum (FBS) at 37˚C in

5% CO2 and 20% O2.

Subcutaneous xenografts and FFPE slide preparation

For establishment of tumor xenografts, log-phase RT112, RT4, T24, and HSC-39 cells were

implanted intradermally (5×106 cells per mouse in 0.1 mL PBS) into the backs of female

BALB/c-nu/nu mice (Charles River Laboratories, Wilmington, MA, USA) at 5 to 6 weeks old.

All surgery was performed under ether anesthesia, and all efforts were made to minimize suf-

fering. Mice were euthanized by cervical dislocation while under anesthesia when tumor size

exceeded 200 mm3 in size. Tumors were excised from mice and divided into 2 pieces. One

piece was dip-washed in saline, blotted dry, snap frozen in liquid nitrogen, and stored at

−80˚C until analysis. The other piece was fixed in 10% formaldehyde for 24 hours at room

temperature before embedding in paraffin for tissue sections. All experiments were performed

Table 1. Characteristics of bladder cancer patients

NMIBC MIBC Total

N 60 44 104

Age (years) Median (range) 69 (30–87) 72 (42–87) 70 (30–87)

Gender Male (%) 55 (92) 32 (73) 87 (84)

Female (%) 5 (8) 12 (27) 17 (16)

T stage Ta (%) 43 (72)

Tis/T1 (%) 17 (28)

≧T2 (%) 44 (100)

M stage M1 (%) 0 (0) 4 (10)

Grade High grade (%) 26 (47)

Low grade (%) 34 (53)

Multiplicity Solitary (%) 24 (40) 23 (52)

Multiple (%) 33 (55) 15 (34)

Unknown (%) 3 (5) 6 (14)

Tumor size <3 cm (%) 41 (68) 9 (20)

>3 cm (%) 19 (32) 35 (80)

doi:10.1371/journal.pone.0165109.t001
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in compliance with the relevant Japanese and institutional laws and guidelines and approved

by the University of Tsukuba Animal Ethics Committee (authorization number 15–162).

Detection of fusion transcripts by RNA-FISH

In situ detection of FGFR3 and TACC3 transcripts in FFPE sections was conducted using a

QuantiGene1 ViewRNA ISH Tissue Assay Kit (Affymetrix) with a modified protocol for cus-

tom-made probes. For TACC3, Alexa 546 (Excitation = 556 nm and Emission = 573 nm) was

used, and for FGFR3, Alexa 647 (Excitation = 650 nm and Emission = 668 nm) was used as a

fluorescent dye; both were purchased as custom-made products (namely type 1 for TACC3
and type 6 for FGFR3) from Veritas (an Affymetrix sales representative in Japan). A step-by-

step protocol is provided as the S1 Protocol. In brief, FFPE sections were treated according to

the manufacturer’s protocol of QuantiGene1 ViewRNA ISH Tissue Assay Kit before adding

the labeled probe solution. In order to detect the mRNA signal with high resolution, the fluo-

rescent label reagent (label probe mix) from a QuantiGene ViewRNA ISH Cell Assay Kit (Affy-

metrix) and its compatible custom-made probes described above were used.

The target sequence of the FGFR3-specific oligonucleotide probes was located in exons 3 to

11 corresponding to nucleotide numbers 395–1595 in the sequence of NM_000142.3 of FGFR3
except for exons 8, 9 and 10, which are variable in alternative splicing. Thus the probes specifi-

cally hybridize to all three variants of human FGFR3 mRNA. The target sequence of the

TACC3-specific oligonucleotide probes was located in exons 12–16 corresponding to the

nucleotide numbers 2200–2838 in the sequence of NM_006342.1 of TACC3. Fig 1 shows a

schematic representation of how FGFR3-specific probes and TACC3-specific probes were

designed. The probe sets for each gene consisted of around 15 to 20 pairs of probes. One pair

Fig 1. Schematic representation of how FGFR3-specific probes and TACC3-specific probes were designed.

doi:10.1371/journal.pone.0165109.g001
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consisted of 2 of about 20 base oligonucleotide probes. The 2 probe pairs are designed to

hybridize to adjacent segments on the target RNA, allowing further hybridization of a pream-

plification probe (Affymetrix) for signal amplification by labeled probes. This “double Z”

structure assures the specificity to the target mRNA because this construction of a “double Z”

structure by 2 adjacent probes is required for signal amplification. A schematic figure explain-

ing how this bDNA-FISH-based assay works is shown in Fig 2.

After fluorescent label probe hybridization, slides were dried and mounted with ProLong1

Gold Antifade Reagents (Thermo Fisher Scientific, Waltham, MA, USA). Ten non-overlap-

ping fields of view of fluorescent signal images per slide were obtained for each fluoresce with

×630-fold magnification with a confocal laser microscope (LSM700; Carl Zeiss, Zena, Ger-

many). For FGFR, a Cy5 (Excitation/Emission = 650/670 nm) filter was used, and for TACC3,

a Cy3 (Excitation/Emission = 552/570 nm) filter was used. Each field of view was obtained

from a different part of the tissue portion in which cancer cells were present. The presence of

cancer cells was confirmed by comparing DAPI-stained nucleic images with H&E stained

Fig 2. A schematic figure explaining how bDNA-FISH works.

doi:10.1371/journal.pone.0165109.g002
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images. These images were analyzed using IN Cell Investigator Developer Toolbox 1.9.2 which

is the image analysis software used with IN Cell Analyzer 2000 (GE Healthcare, Amersham,

UK) to obtain the number of signals for each probe (FGFR3 and TACC3) and to examine

whether each signal dot from each probe overlapped or not. Overlapped/co-localized dots

were recognized as “overlapped/co-localized” when 50% of the area from each signal over-

lapped with another signal. When overlapped/co-localized signals were observed, the number

of such overlapped/co-localized dots were counted. These image analyses were performed

unbiasedly and automatically by software with a fixed protocol every time. A schematic repre-

sentation of how co-localized signals were detected by IN Cell Investigator is shown in S1 Fig.

The overlapped signals could be detected not only from real fusion mRNA, but also from prox-

imity of the 2 target RNAs simply by chance. Actually, a small number of overlapped signals

were detected in the negative control HSC-39. These accidentally overlapped signals could be

increased in direct proportion to the total number of FGFR3 signals and TACC3 signals. To

overcome this problem, the number of overlapped signals was divided by the number of

FGFR3 and TACC3 signals. These processes were repeated for each 10 non-overlapping fields

of view per one sample. The co-localization ratios were defined as the ratio of the co-localized

count number per total number for each probes, and this co-localization ratio for 10 non-over-

lapping fields in each slide was plotted as in a scatter diagram and used for detection of the

presence of fusion transcripts.

RNA extraction and cDNA synthesis

Total RNA was extracted from frozen tissues using TRIzol (Thermo Fisher Scientific), and

from FFPE tissues using an RNeasy FFPE kit (Qiagen, Hilden, Germany). First strand cDNA

was synthesized using Superscript Ⅲ Super Mix and oligo dT primers (Thermo Fisher Scien-

tific) according to the manufacturer’s instructions. The quality of the cDNA from FFPE tissue

was tested for the presence of the hypoxanthine guanine phosphoribosyltransferase (HPRT)

housekeeping gene (152 bps amplified product; forward primer, 5’-GACTTTGCTTTCCTTG

GTC-3’ and reverse primer, 5’-AGTCAAGGGCATATCCTAC-3’). The quality of cDNA from

frozen tissue was tested for the β-actin housekeeping gene (539 bps amplified product using

forward primer 5’-GTGGGGCGCCCCAGGCACCA-3’ and reverse primer 5’-CTCCTTAA

TGTCACGCACGATTTC-3’).

Identification of FGFR3-TACC3 fusion transcripts by RT-PCR and DNA

sequencing

We designed a reverse transcription-PCR (RT-PCR) assay for the detection of all known and

possible new variants of FGFR3-TACC3 fusions that retain the mRNA sequences coding for

the key FGFR-tyrosine kinase domain and transforming acidic coiled-coil domain required

for oncogenic activity of the fusion protein. Previously reported FGFR3-TACC3 fusions were

exons 18 or 19 of FGFR3 and exons 4–13 of TACC3, and a short intron was inserted in some

cases[27]. To detect FGFR3-TACC3 fusion gene transcripts, we performed RT-PCR using our

original primers as follows: the forward primer, FGFR3 exon2-Forward: 5’- CCTGAGGACGC

CGCGGCCCCCGCCCCC-3’ and the reverse primer, TACC3 exon16-Reverse: 5’-TGACCTC

CACGGAGCCGCTGTCCCCGC-3’; amplification conditions were 94˚C for 2 min (98˚C for

5 sec/68˚C for 3 min) for 40 cycles, then 72˚C for 5 min. PCR-amplified products were diluted

1:50 in sterile water, and then used for nested PCR amplifications with internal primers. For

the nested PCR, primer pairs were FGFR3 exon 2-Forward: 5’- GCCATGGGCGCCCCTG

CCTGCGCCCTC-3’ and TACC3 exon 16-Reverse: 5’- GACCTCATCTCCAAGATGGAGAA

GATC-3’. A schematic representation of RT-PCR primer positions is shown in Fig 3A. All
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designed primers were BLASTed against the human genome to make sure they were not com-

plementary to other regions of the genome[28]. After amplification of the fusion gene specific

template by PCR, the finding was confirmed by agarose gel electrophoresis according to the

expected length of the amplicon (RT112; 2850 bps and RT4; 4461 bps). The PCR products

obtained as described above were purified and sequenced by the Sanger method. Conventional

fluorescent dye chemistry sequencing was performed on an ABI Prism 3130xl Genetic Analyzer

(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions.

Mutation analysis

Genomic DNA was extracted using a QIAamp DNA FFPE Tissue Kit (Qiagen) according to

the manufacturer’s instructions. The DNA concentration for each sample was assessed by a

Qubit fluorometer (Thermo Fisher Scientific). Genomic DNA with more than 1.5 ng/μL

according to the Qubit fluorometer was subjected to further mutation analysis. The presence

of mutations in FGFR3 was analyzed by targeted sequencing using Ion AmpliSeq Cancer Hot-

spot Panel v2 (Thermo Fisher Scientific). The targeted FGFR3 mutations are listed in S1 Table.

For data analysis, Torrent Suite 4.0.2 was used, and mutations were detected by the Variant

Caller plugin 4.0–6 with somatic/high stringency configuration provided by Ion Torrent

(Thermo Fisher Scientific).

Statistical analysis

Differences among groups were analyzed using Fisher’s exact test. P values of<0.05 were con-

sidered to be statistically significant. Statistical analyses were performed using Jmp11 software

(SAS Institute Inc., Cary, NC, USA).

Results

Identification of FGFR3-TACC3 fusion transcripts by sequencing and

RNA-FISH from xenograft FFPE tissue using human bladder cancer cell

lines

To develop methods to detect FGFR3-TACC3 fusion transcripts, we first tried RT-PCR meth-

ods using mouse xenograft models of the human BC cell lines RT112 and RT4. Both cell lines

were reported[10] to harbor FGFR3-TACC3 fusion genes. Xenograft tissues were divided into

2 fractions; one was stored frozen, and the other was stored as FFPE tissue. The amplified

products of the HPRT housekeeping gene (152 bps) were identified in FFPE samples as well as

in frozen tissues. PCR products of FGFR3-TACC3 fusion genes were found at about 2800 bps

and 4500 bps in frozen tissues from xenografts of RT112 and RT4, respectively, but not in

FFPE samples (Fig 3B). Sequencing of PCR products confirmed that both cell lines harbored

the same break-point sequence as previously reported[10] (Fig 3C). Next, we tried RNA-FISH

to detect FGFR3 and TACC3 signal using xenograft FFPE tissues of RT112 (fusion-positive

control) and RT4 (fusion-positive control) and HSC-39 cells (fusion-negative control). Fluo-

rescent signals for FGFR3 and TACC3 were detected in FFPE samples of all three xenografts.

Overlapped/co-localized signals were abundant in xenograft FFPE sections with RT112 and

RT4, but barely detected in HSC-39 cells (Fig 4).

Detection of FGFR3-TACC3 fusion genes from clinical FFPE samples

by RNA-FISH

To examine whether RNA-FISH is applicable to human samples, we analyzed 104 BC samples

independently by RNA-FISH and Sanger sequencing to detect FGFR3-TACC3 fusions as a

RNA-FISH Assay for FGFR3-TACC3 Fusion Genes Detection from FFPE Samples
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Fig 3. FGFR3-TACC3 fusion transcript detection by RT-PCR. (A) Schematic representation of FGFR3-TACC3 fusion mRNA and PCR primers position.

(B) Agarose gel separation of the FGFR3-TACC3 fusion specific RT-PCR amplicons. (C) Sanger sequencing chromatogram of FGFR3-TACC3 fusion

specific RT-PCR products. The arrowhead and solid bar indicate breakdown point or region of the 2 genes.

doi:10.1371/journal.pone.0165109.g003

RNA-FISH Assay for FGFR3-TACC3 Fusion Genes Detection from FFPE Samples

PLOS ONE | DOI:10.1371/journal.pone.0165109 December 8, 2016 9 / 19



prospective cohort study. Tumor samples were freshly collected, and parts of the samples were

fixed in 10% formaldehyde for 12–24 hours at room temperature and then embedded in paraf-

fin. For detection of the fusion transcript by RNA-FISH, the number of overlapped/co-localized

signals was divided by the number of FGFR3 signals and TACC3 signals, and the quotients were

plotted in a scatter graph (Fig 5). The original result of signal count analysis by IN Cell Analyzer

2000 are described in S2 Table. Four of 104 samples and positive controls are plotted in the

right upper quadrant (both ratios of co-localized dot count/FGFR3 dot count and co-localized

dot count/TACC3 dot count are greater than 0.2). These 4 cases were thought to be fusion posi-

tive. A representative photomicrograph of RNA-FISH in the FGFR3-TACC3 fusion-positive

sample TKB014 is shown in Fig 6. Small gray dots in Fig 5 represent the cases that were thought

to be negative for the fusion gene. Fluorescent signals were very weak in 2 cases (KYT004 and

TMC001), so these cases were suspended from fusion analysis by RNA-FISH result. To assess

the sensitivity and specificity of RNA-FISH, frozen tissues from all 104 BC were tested using

RT-PCR methods. RT-PCR products around 2800–4500 base pairs were identified in all 4 cases

with positive signals for fusion genes in RNA-FISH (Fig 7A). Sanger sequencing demonstrated

that these 4 cases indeed had FGFR3-TACC3 fusion genes with different break-point sequences

(Fig 7B). Two cases were NMIBC, and the remaining 2 cases were MIBC. Positive rates of

FGFR3-TACC3 fusion were 2/60 (3%) and 2/44 (5%) in NMIBC and MIBC patients, respec-

tively. The other 98 patients were fusion negative with both PCR and RNA-FISH. The 2 sus-

pended cases of FISH analysis (KYT004 and TMC001) were determined as fusion negative by

the RT-PCR result.

Relationship between FGFR3 mutation, FGFR3-TACC3 fusion, and

clinical information

FGFR3 hotspot mutations were detected in 27/60 (45%) and 8/44 (18%) of NMIBC and MIBC

cases, respectively (Fig 8A). No mutation was detected in FGFR3 coding regions in 3 of the 4

Fig 4. FGFR3-TACC3 fusion transcript detection by RNA-FISH. RNA-FISH image of RT112 and RT4 (fusion-positive controls) and HSC-39 (negative

control) xenograft FFPE tissue. mRNAs of FGFR3 and TACC3 were detected by RNA-ISH using fluorescent probes (Alexa 647 for FGFR3 and Alexa 546 for

TACC3, respectively), and signals from FGFR3 and TACC3 were shown as red and green, respectively, in the figure. The small boxed areas are enlarged in

the adjacent large boxes. Fusion mRNAs appeared in microscope images as yellow, which are merged signals from red and green colors. Cell nuclei was

stained with DAPI and shown as blue. Scale bars in the figure are 10 μm. For the detection of fusion signals for each sample, image data from 2 fluorescent

probes were analyzed with IN Cell Analyzer 2000 and the number of overlapped/co-localized signals was counted and divided by the total number of FGFR3

signals and TACC3 signals and plotted in a scatter graph.

doi:10.1371/journal.pone.0165109.g004
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patients with an FGFR3-TACC3 fusion. One case (TKB025) with an FGFR3-TACC3 fusion

gene also had a concomitant mutation in FGFR3 (S249C). In this case, the FGFR3-S249C

mutation was detected from tumor FFPE tissue-derived genomic DNA by Ion AmpliSeq Can-

cer Hotspot Panel v2. However, the corresponding codon in the full-length FGFR3-TACC3
fusion transcript was not altered.

Among NMIBC cases, FGFR3 mutation/fusion were more frequent (Fig 8A) in low-grade

tumors (21/34; 62%) than in high-grade tumors (7/26; 27%) (P = 0.0066). In a subgroup analy-

sis of NMIBC tumors by T stage, FGFR3 mutations/fusions were more frequent in Ta tumors

(25/43, 58%) than in T1 tumors (3/16, 19%) (P = 0.034) (Fig 8B). The presence of an FGFR3
mutation/fusion was not associated with tumor size or tumor multiplicity in either NMIBC or

MIBC patients.

Discussion

Generally, fusion genes are detected by immunohistochemistry (IHC), FISH, and RT-PCR.

IHC assays have demonstrated a wide variation in sensitivity and specificity in FFPE tissues

[29]. Specimen processing, antigen retrieval, and immunodetection systems have significant

effects on the results of IHC staining[30]. In addition, positive IHC staining does not represent

the chimeric fusion protein itself but the expression level of one of the fusion partner genes. In

glioblastoma, possible associations between IHC staining of FGFR3 protein and the presence

Fig 5. Detection of FGFR3-TACC3 fusion genes in FFPE clinical samples by RNA-FISH. Scatter diagram of FGFR3-TACC3 co-localization ratios of 10

non-overlapping fields for each sample. The number of co-localized signals was divided by the number of FGFR3 signals and TACC3 signals, and the

quotients were plotted in Y- and X-axis, respectively. Four samples in the right upper quadrant were thought to be fusion positive by RNA-FISH, and were

confirmed as fusion positive by RT-PCR analysis. Small gray dots represent cases that were thought to be negative for the fusion gene.

doi:10.1371/journal.pone.0165109.g005
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Fig 6. Representative RNA-FISH images of fusion-positive case TKB014. The small boxed areas are enlarged in the adjacent large boxes. Scale

bars in the figure are 10 μm.

doi:10.1371/journal.pone.0165109.g006
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of FGFR3-TACC3 fusion were reported[11][17]. In the present study, 75% of FGFR3-TACC3
fusion-positive tumors showed a high level of FGFR3 protein staining (S1 Appendix). Further

studies are needed to confirm this association. In addition, the FGFR3 protein expression level

and FGFR3 mutation status were found to be significantly associated[31][32], but 15–26% of

FGFR3 mutant tumors showed low levels of FGFR3 expression by IHC. In the present study,

12% of FGFR3 mutant tumors showed a low level of FGFR3 protein staining (S1 Appendix).

These cases could be missed if IHC is used as a screening tool for the detection of patients who

bear an FGFR3 mutation or FGFR3-TACC3 fusion.

As mentioned in the introduction, genomic DNA-FISH is not a feasible option to detect

FGFR3-TACC3 fusion. RNA-FISH is another option to detect fusion transcripts from FFPE tis-

sue. There are several technologies that can be used to detect mRNA transcripts, which include

padlock probes/RCA, “smFISH,” and “bDNA-FISH,” as summarized in a previous article[33].

Femino et al. were the first to describe the visualization of single RNA molecules by FISH[34].

Raj et al. improved the original single-molecule RNA FISH (smFISH) using short oligos each

labeled with a single fluorophore[35]. “smFISH” was applied by Semrau et al. (FuseFISH)[20]

and Markey et al. (Fusion FISH)[19] to detect oncogenic fusion transcripts. In “bDNA-FISH,”

multiple pairs of primary probes are required to hybridize in a juxtaposed position (double Z

Fig 7. Detection of FGFR3-TACC3 fusion transcripts in clinical samples by RT-PCR. (A) Agarose gel separation of the FGFR3-TACC3 fusion-specific

RT-PCR amplicons. (B) Sanger sequencing chromatogram of FGFR3-TACC3 fusion-specific RT-PCR products. Arrowheads indicate breakdown points of

the 2 genes.

doi:10.1371/journal.pone.0165109.g007
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design) in order to proceed with branched DNA hybridization for signal amplification (Fig 2).

This contributes increased specificity and reduced background signal. This method is com-

mercially available as a QuantiGene1 VeiwRNA kit (Affymetrix) or RNAScope1 kit

(Advanced Cell Diagnostics). Battich et al. reported that “smFISH” and “bDNA-FISH” dem-

onstrate the same accuracy, but that bDNA-FISH yielded brighter spots with a better signal-

to-noise ratio(22).

Here we used this bDNA-FISH-based “QuantiGene1 ViewRNA ISH Tissue Assay Kit” to

detect fusion mRNA. This assay is suitable for not only fresh tissue, but also archival FFPE tis-

sues. Urdinguio et al. assessed 124 FFPE human colon cancer tissues that had been stored

more than 5 years. They confirmed that GM-CSF (granulocyte-macrophage colony-stimulating
factor) mRNA was overexpressed in human colorectal cancer using this assay[36]. Weier et al.

evaluated the expression level of ETV4 and ETV5 in 83 FFPE human prostate cancer tissue

samples that had been stored 8 to 19 years[37]. In this study, we developed an RNA-FISH

assay using bDNA probe to detect FGFR3-TACC3 fusion and assessed its sensitivity and speci-

ficity using FFPE human samples. The results of RNA-FISH using FFPE sections were identi-

cal to those obtained by RT-PCR using frozen tissues, indicating that RNA-FISH is a feasible

assay for screening for FGFR3-TACC3 fusion. Our data suggested that an RNA-FISH for

fusion genes might be feasible for screening other fusion genes when genomic DNA-FISH

lacks utility.

RT-PCR was thought to be another option to detect FGFR3-TACC3 fusion transcripts in

FFPE tissue. To detect all known and possibly new variants of FGFR3-TACC3 fusions, the for-

ward primer needs to recognize a sequence upstream of exon 18 of the FGFR3 and the reverse

primer downstream of exon 13 of the TACC3. The size of the PCR amplicon using this primer

pair varies by case from between 100 to more than 1,000 base pairs. RNA obtained from FFPE

Fig 8. FGFR3 mutation and FGFR3-TACC3 fusion status. (A) The heatmap shows the distribution of FGFR3 mutations and FGFR3-TACC3 fusions with

respect to T stage and pathological grade. (B) Subgroup analysis of NMIBC by T stage.

doi:10.1371/journal.pone.0165109.g008
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tissues is generally highly degraded, making it difficult to detect a PCR amplicon of several

hundred base pairs or more. Even if we design a multiplex PCR primer to cover to all

known combinations of exons on the FGFR3 and TACC3, the expected length of the PCR

amplicon varies by case for the following reasons. First, the genomic break point could be

different in each case. Second, introns could be inserted between the genomic break point

of the FGFR3 and TACC3 genes in some cases[27]. Actually, 36 bps of intron 10 of the

TACC3 gene were inserted into fusion mRNA in TKB014 in our study. Thus, the expected

lengths of PCR amplicons of the ready-made multiplex PCR primer for each exon were

unequal and predisposed to give a false negative. Recently, targeted sequencing using next-

generation sequencing was applied for detection of fusion genes. Ross et al. applied targeted

sequencing to FFPE tissues of 35 UC patients, and the FGFR3-TACC3 fusion was detected

in one patient[38]. Targeted sequencing might be an option to detect fusion genes when

fusion partners are already known.

In previous studies, the frequencies of FGFR3 mutations were 60–80% of the low-grade

NMIBC and 5–20% of the invasive tumors[2][39][40][41][42], which is consistent with the

results of the present study. As reported in many previous studies[43][44], the proportion of

cases having an FGFR3 mutation decreased with increasing stage and grade. In this study,

FGFR3-TACC3 fusion genes were present in 2/60 (3%) of NMIBC and 2/44 (5%) of MIBC

cases. In previous studies, the fusion was detected in 6% (1/17) of NMIBC cases[45] and 2–4%

(3/129[46], 2/46[10], 1/25[45], and 1/35[38]) of MIBC cases. These results are consistent with

the present study. Both FGFR3-TACC3 fusion and FGFR3-S249C mutation were positive in

case TKB025. The full-length FGFR3-TACC3 fusion transcript in this case did not involve a

FGFR3-S249C mutation. This result may indicate the presence of tumor heterogeneity of a

wildtype codon 249, fusion-positive clone and codon 249 mutant, fusion negative clone. In

another study, 2 different FGFR3 mutations were detected in a single case[47]. The association

between the presence of an FGFR3-TACC3 fusion gene and the prognosis of UC is still unclear.

We plan to follow the subjects of this prospective study with detailed clinical information for

three years. In the future, we hope we can provide additional evidence.

The selection of an optimal drug is determined by the genetic profile of some cancers,

including lung cancer, breast cancer, and leukemia. Patient selection by molecular foundation

is not yet indicated for metastatic UC. Significant clinical responses were reported in

FGFR3-TACC3 fusion-positive cervical cancer patients and glioma patients treated with an

FGFR inhibitor[11][14]. However, the FGFR3 mutation is not very frequent among metastatic

UC patients, comprising about 6–18% (2/35[38], 2/11[47], and 3/33[48]). The screening of not

only the FGFR3 mutation, but also the FGFR3-TACC3 fusion gene makes it possible to find

additional responders to FGFR inhibitors.

A limitation of this method is that it cannot detect fusions other than FGFR3-TACC3.

BAIAP2L1(BAI1-associated protein 2-like 1) was reported as another fusion partner of FGFR3
in lung cancer patients[49] and BC cell lines[10]. The fusion gene leads to a constitutive activa-

tion of the FGFR3 tyrosine kinase domain. An FGFR3-BAIAP2L1 fusion-positive cell line

showed sensitivity to an FGFR inhibitor in vitro[50]. In this study, the FGFR3-BAIAP2L1
fusion gene was not examined. The association between the FGFR3-BAIAP2L1 fusion and clin-

ical stages of UC is still unclear. The importance of the detection for this fusion will be deter-

mined by further investigation of its frequency in BC. The BAIAP2L1 gene is located on

chromosome 7 at position 7q22.1, which is a different chromosome from the location of the

FGFR3 gene. The FGFR3-BAIAP2L1 fusion has been detected by DNA-FISH, which is easily

applied to clinical cases[10][50].
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Conclusions

In this study, we applied an RNA-FISH assay to detect FGFR3-TACC3 fusion transcripts

in 104 FFPE BC tissues. We demonstrated that RNA-FISH is a feasible assay to screen for

the FGFR3-TACC3 fusion. We also analyzed the association of FGFR3 mutation/fusion

status and clinical information in a prospective multicenter cohort of 104 patients with a

clinical diagnosis of BC. The efficiency of the bDNA-FISH assay needs to be confirmed in

a larger series of cases and possibly compared with the smFISH methodology that has also

been reported to be an accurate approach for the detection of fusion transcripts, before it

could be considered the technique of choice to identify additional responders to FGFR

inhibitors.
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