氏	名	NGO THAI BICH VAN			
学位の種業	類	博士(医学)			
学位記番	号	博甲第 8385 号			
学位授与年	月	平成 29年 9月	25 \exists		
学位授与の要	件	学位規則第4条第1	項該当		
審 査 研 究 🕫	科	人間総合科学研究科	ŀ		
学位 論 文題 目 Physiological functions of the phospholipid-metabolizing				abolizing	
enzyme Phospholipase D2 in anti-tumor immunity:					
regulation of ${ m CD8^+}$ T lymphocyte proliferation					
(腫瘍免疫におけるリン脂質代謝酵素 PLD2 の生理機能:					
CD8 ⁺ Tリンパ球の細胞増殖制御)					
主	査	筑波大学教授	博士(医学)	渋谷	彰
副	査	筑波大学准教授	博士(医学)	松本	功
副	査	筑波大学講師	博士 (医学)	小島	崇宏
副	査	筑波大学助教	博士(医学)	濱田	理人

論文の内容の要旨

Abstract of thesis

In this thesis, Ms. NGO THAI BICH VAN described the role of the phospholipid-metabolizing enzyme Phospholipase D2 in anti-tumor immunity. The abstract is as follows:

【材料と方法 Materials and Methods】

The applicant subcutaneously transplanted cancer cells into wild-type and *Pld2*-knockout mice to form tumors and analyzes tumor-infiltrating CD4⁺ and CD8⁺ cells by immunostaining. She also analyzed T cell population in the thymus and spleen by flow cytometry and applied bone marrow transplantation to investigate the effects of PLD2 on immune cells. *In vitro* proliferation of primary CD8⁺ T cells under co-stimulation of CD3/CD28 is examined by using Carboxyfluorescein succinimidyl ester (CFSE) assay. CD3/CD28-dependent phosphorylation of Erk in primary CD8⁺ T cells is also analyzed by Western blot analysis. Ras activation was detected by pull-down assay.

【結果 Results】

The applicant found that the growth of the tumor formed by subcutaneously transplanted cancer cells was enhanced in *Pld2^{-/-}* mice. Unlike PLD1, PLD2 was dispensable for tumor angiogenesis in mice. In line with the increase of tumor size, cell apoptosis was inhibited in tumors formed in *Pld2^{-/-}* mice. The result of bone marrow transplantation indicated that PLD2 in bone marrow- derived cells showed a suppressive function in tumor growth.

Thus, the applicant examined the function of PLD2 in T lymphocytes as they were the major components of adaptive immunity, being recruited into the tumor microenvironment together with other immune cells to eliminate tumor cells. Interestingly, the number of CD8⁺ T cells, which are known to induce cancer cell death, was significantly decreased in $Pld2^{-/-}$ tumor sections. In addition, CD3/CD28-stimulated proliferation of primary cultured CD8⁺ T cells isolated from the $Pld2^{-/-}$ spleen was significantly suppressed compared to that of WT CD8⁺ T cells. On the other hand, no significant difference was seen in proliferation between WT and $Pld2^{-/-}$ CD4⁺ T cells. Furthermore, CD3/CD28-dependent phosphorylation of Erk1/2 and Ras activation were inhibited in $Pld2^{-/-}$ CD8⁺ T cells. Production of Interleukin-2 (IL-2), one of the downstream target gene of Erk, which is known to promote CD8⁺ T cell proliferation, was also decreased in $Pld2^{-/-}$ CD8⁺ T cells.

【考察 Discussion】

Previous reports provided evidences for the central role of CD8⁺ T cells in anti-tumor immunity and are consistent with the notion that impaired CD8⁺ T cell infiltration into tumor microenvironment in *Pld2^{-/-}* mice promoted tumor growth. In the present study, the applicant focused on the function of PLD2 in CD4⁺ and CD8⁺ T cells. In dissecting the signaling pathway involved in PLD2-mediated T cell proliferation, she found that PLD2 wa required for CD3/CD28-stimulated Ras activation and Erk phosphorylation in primary CD8⁺ T cells. Other reports showed that PLD2 can activate Ras through the action of RasGEF. Taken together, it was reasonable to speculate that, upon TCR engagement of CD8⁺ T cells, PLD2 recruits a Ras GEF to the specific compartment such as the plasma membrane, inducing compartmentalized and temporal activation of Ras-Erk signaling to promote cell proliferation and survival.

審査の結果の要旨

Abstract of assessment result

【批評 General Comments】

The applicant provided evidence that PLD2 promotes CD8⁺ T cell proliferation upon TCR engagement in the spleen through the activation of Ras-Erk pathway and IL-2 production, thereby potentiating the anti-tumor immune response. The findings revealed a novel function of PLD2 in the immune system, which may contribute to eliminate cancer cells.

【最終試験の結果 Assessment】

The final examination committee conducted a meeting as a final examination on June 5, 2017. The applicant provided an overview of dissertation, addressed questions and comments raised during Q&A session. All of the committee members reached a final decision that the applicant has passed the final examination.

【結果 Conclusion】

Therefore, the final examination committee approved that the applicant is qualified to be awarded Doctor of Philosophy in Medical Sciences.