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1. General Introduction 

1.1 Ancestor of Oryza sativa L. 

Oryza sativa was domesticated from its progenitor O. rufipogon and differentiated into two 

subspecies groups, indica and japonica (Morishima et al., 1963; Oka, 1974; Zhu et al., 2007). 

On the other hand, Chang (1976) reported that O. sativa was divided into three groups, indica, 

javanica and japonica.  And it probably occurred  between 8,000 and 10,000 years ago 

(Diamond et al., 2003; Normile, 2004).  

There are two hypotheses on how rice has been domesticated.  Phylogenetic data 

revealed that there were genetic differences between indica and japonica, suggesting multiple 

domestication events which came from different populations of O. rufipogon (Second 1982; 

Londo et al. 2006; Sweeney and McCouch 2007). However, recent studies using single 

nucleotide polymorphisms (SNP) markers suggested that the two subspecies originated from 

a single population of O. rufipogon (Molina et al. 2011; Huang et al., 2012).   

Dispersal and characteristics of Oryza rufipogon and O. sativa  

Oryza rufipogon grows in tropical Asia (southern China, South and Southeast Asia, and 

Papua New Guinea) and the north part of Australia, (Vaughan, 1994). It was no surprise that 

some researchers believed that ancient O. sativa came from South China and the mainland of 

Southeast Asia (Li, 1970; Tanaka, 1995; Londo et al., 2006). Konishi et al. (2006) suggested 

that japonica originated from southern part of Indochina, Indonesia or the Philippines.  

Oryza rufipogon has characteristics such as perennial type, photoperiod sensitivity and 

deep water habitat. The other characteristics of this wild species are tufted and scrambling 

herb with nodal tillering, spikelets usually 8-9 mm, anther usually >3 mm, reaching 7 mm or 

more; awn usually 6-10 cm long. It is diploid (2n=24) with  AA genome (Vaughan, 1994; 

OECD, 1999).  

Oryza sativa became an important crop as staple food for more than half the population 

in the world (OECD, 1999; UNCTAD, 2011) due to the adaptability to different 

environmental conditions in nature and human efforts such as immigration and selection. It 

grows at various altitudes in tropical and temperate climate conditions (latitude) (Chang, 

1976). Four major ecosystems of rice are generally recognized as follows: irrigated, rain-fed 

lowland, upland and flood-prone (Khush, 1984). In the terms of soil condition, rice can grow 

in a wide range of soil types including saline, alkaline and acid-sulfur soils (Oka, 1988; 
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OECD, 1999). And characteristics of O. sativa could be divided based on three traditional 

groups (Vaughan, 1994; OECD, 1999):  

1. Indica varieties with usually slender, awnless grains, light green leaves and many 

tillers; 

2. Temperate japonica varieties with usually roundish pubescent grains, dark green 

leaves and few tillers; 

3. Tropical japonica (javanica) with usually large, rounded, awned, pubescent spikelets; 

low shattering and few tillers. 

Classification of Oryza sativa 

Glaszmann (1987) classified Asian cultivated rice into 6 groups and showed that javanica 

group (bulu and gundil types) were involved in japonica group and are now named as 

tropical japonica based on isozyme polymorphism. Among these six groups, group I, II, III, 

IV and V belonged to the indica and group VI belonged to japonica consisting temperate and 

tropical japonica in comparison with conventional groups. 

 Group II corresponds to aus which is characterized by very early maturing and 

drought-tolerance, and the aus varieties are growing in March–June in Bangladesh and West 

Bengal state in India. Floating rice in Bangladesh and India called Ashinas and Rayadas 

belongs to Groups III and IV, respectively. Group V consists of aromatic rice in the Indian 

subcontinent. 

Selection for desirable genes on domestication 

During domestication, some genes were selected naturally and artificially including qsh1 and 

sh4 genes, which are genes controlling the level of seed shattering (Konishi et al., 2006; Lin 

et al., 2007), wx gene controlling amylose synthesis in endosperm and pollens (Sano et al., 

1986; Olsen et al., 2006), grain size (Shomura et al., 2008) and Hd1 and GHD7 genes for 

heading date (Yano et al., 2000; Xue et al., 2008). The selection of these genes during 

domestication was not recorded on history, but it reveals in the DNA changes of the crop by 

the molecular markers in the recent century (Sweeney and McCouch, 2007; Izawa et al., 

2009). 

 

1.2      Landrace in Indonesian rice germplasm 

There was limited study on history of Indonesian landrace as well as puzzle on revealing 

origin of rice itself. However, Tanaka (1998) revealed some possibilities for the origin of 
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Southeast Asian rice including Indonesia based on archeological study. He suggested that 

Indonesian rice is probably one of ancient Southest Asian rice as well as rice from Southwest 

China. Refer to old classification of rice; he also suggested that Indonesian indica (tjereh) 

was introduced by Indian when there has been cultivated javanica (bulu and gundil).   

Commonly, traditional rice in Indonesia is cultivated in upland and highland by 

swidden farming system (Marten 1990; Tanaka 1995; Iskandar and Ellen 1999). Iskandar and 

Ellen (1999) reported that cultural practices of tribe in Java Island as representative tribe in 

Indonesia served  to maintain diversity in traditional rice landrace because of a traditional 

system, a religious obligation and a form of cultural identity. Rice landrace is mainly used for 

performing rituals and in the custom accompanying them. For example, glutinous (pare 

ketan) landrace is generally superior for culinary purpose because cooked glutinous rice has a 

pleasant smell and stickiness. It is predominantly used for making traditional cakes and is 

consumed in rituals and ceremonies. Thomson et al. (2007) using SSR markers clarified that 

genetic diversity of Indonesian rice has been maintained. Glutinous rice is commonly 

classified as tropical japonica group as reported by Thomson et al (2009) using glutinous 

landrace in Kalimantan, Indonesia. 

1.3. History of rice breeding in Indonesia 

International Rice Research Institute (IRRI) was established in 1960 in cooperation with the 

Government of the Philippines to improve rice production and productivity. In 1966 IR8 was 

released as the first variety with excellent yield potential in the tropics (Khush, 1997). A 

recessive semi-dwarf1 gene (sd1) was used to develop IR8 (Sasaki et al., 2002). This variety 

was introduced to many Asian countries and it was used for developing new cultivars. 

Indonesia is one of Asian countries that have collaborative research projects with IRRI to 

improve Indonesian varieties. Rice breeding history in Indonesia is divided into three stages 

according to this collaboration (Susanto et al., 2003): 

(1) The first stage (1943-1969); Varieties at this stage were bred using Cina variety, 

originally from China, Latisail variety from India and Benoang variety from Indonesia 

(before collaboration with IRRI). 

(2) The second stage (1969-1985); In this stage, Indonesia released two famous varieties, 

PB5 in 1968 and PB8 in 1967 and PB5 related varieties, Pelita I-1 and Pelita I-2. 

Several collaborative programs with IRRI were performed as activities in the 

International Network for the Genetic Evaluation of Rice (INGER), International Rice 
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Tungro Nursery (IRTN), International Rice Blast Nursery (IRBN), International Rice 

Brown Planthopper Nursery (IRBPHN), and International Rice Bacterial Blight 

Nursery (IRBBN).  

(3) The third stage (1986 ~ presently); A representative variety in this stage was IR64 as 

one of parents in developing new varieties, which possessed a wider genetic 

background than IR8 and had genes for resistance to insects and diseases. 

In fact, most of the varieties which have been released in Indonesia during 1969 to 

presently are the result from crosses among the varieties which are closely relative. Besides, 

the IRRI varieties have been extensively used as breeding materials to breed new varieties 

(Susanto et al., 2003). Hence, these programs may give negative effect on genetic diversity of 

Indonesian rice germplasm. The continuous use of elite varieties in breeding caused the 

stagnation of rice yield, due to genetic uniformity (Tanksley and McCouch, 1997). They also 

argued that many beneficial alleles have been left due to the bottleneck effect during 

domestication and selection in modern breeding in the recent century 

 1.4 Objectives  

Indonesia is an archipelagic country that comprises five main islands: Sumatra, Java, 

Kalimantan, Sulawesi and Irian Jaya (now Papua), two major archipelagos Nusa Tenggara 

and the Maluku Islands, and 50 smaller archipelagos (FRD, 2011). This condition is ideal to 

reveal micro-evolutionary forces in the differentiation of Indonesian rice germplasm. 

Understanding the source of diversity for adaptation could give information on the factors 

required to maintain genetic diversity in natural populations (Barton and Keightley, 2002).   

The distribution of genetic diversity in populations is strongly affected by micro-

evolutionary forces such as gene flow, selection, phylogenetic history of populations (Schaal 

et al., 2003) and mutation (Fisher, 1930). In diversity study of rice germplasm, some 

researchers compared the diversity of rice (O. sativa) with that of wild relatives (O. 

rufipogon), and they concluded that the bottleneck effect was the reason why caused the loss 

of diversity in O. rufipogon (Sun et al., 2001; Zhu et al., 2007). In particular, Sun et al. (2001) 

used Indonesian wild relatives and reported that O. rufipogon from the archipelago of 

Indonesia and the Philippines is still higher diversity than improved varieties from all Asian 

countries and it was due to bottleneck effect. On the other hand, the genetic diversity of this 

species was also affected by hybridization within and among species. Vaughan et al. (2008) 

suggested that the current genetic diversity of O. sativa was a product of gene flow within 
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and among species and artificial selection by farmers. The evidence of hybridization between 

this species was reported in Laos (Kuroda et al., 2005) and in China (Song et al., 2006).  

Furthermore, gene flow from O. sativa may reduce the genetic diversity of O. rufipogon and 

lead to population extinctions (Kiang et al., 1979). 

The information on the mechanism how Indonesian rice was diversified and 

differentiated is currently limited. This study was carried out to answer the question “are 

there in Indonesian rice germplasm, mutation, hybridization through gene flow, natural 

selection and artificial selection?” 
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2. Diversity analysis of Indonesian rice landrace and improved varieties as revealed by 

morphological traits 

2.1 Introduction 

Selection is one of the ways to understand the genetic diversity that is a major source of 

varieties’ improvement (Harlan, 1992). Selection for plant architecture was essential for rice 

domestication (Jin et al., 2008). Since 1966, the modification of plant architecture 

(semidwarf) has succeeded in increase of the yield potential in rice and wheat, for example, 

plants were selected for reduced plant height, increased number of tillers (shoot), and  erect 

plant type instead of droopy leaves (IRRI, 2001). Rice plant architecture is mainly 

determined by related traits to plant height, leaf shape and yield traits (Yang and Hwa, 2008) 

Within O. sativa, a wide range of morphological, ecological and physiological variation 

exists. As a result of selection for adaptations to different habitats and growing conditions 

across the globe, O. sativa includes about 120,000 different varieties, ranging from traditional 

varieties preserved by local farmers to modern varieties developed during the green 

revolution (Khush, 1997).  

Diversity study in rice landrace in many countries using morphological traits reported 

that variation still exists: for example West Java landrace in Indonesia (Iskandar and Ellen 

1999), Japanese upland rice  in Brazil (do Nascimento et al., 2011); Pokhara valley landrace 

in Nepal (Tripathi et al., 2013); West Bengal landrace in India (Sinha and Mishra, 2013); and 

Vrihi landrace in India (Ray et al., 2013). Furthermore, in Vietnam, it was reported that the 

use of a morphological grouping could not provide convincing discriminatory evidence in the 

classification of rice (Fukuoka et al., 2006). It only provided a sort of minimum distance 

among  groups of varieties; it was also reported in Philippines archipelago by Rabara et al. 

(2014). However, improved rice varieties in Indonesia was reported to derived from more 

than 2000 ancestors in the pedigree, IRRI cultivars such as IR8 and IR64 showed as the 

largest part of the genetic background (>50%)  (Yoshida et al., 2009) and they could cause 

low diversity of rice as reported in Philippine rice (Caldo et al., 1996). Similar results were 

reported for improved varieties of Cuba (Fuentes et al. 2005), Africa (Ogunbayo et al. (2005), 

and India (Kunusoth et al. 2015). 

According to the facts, in several countries, there has been a reduction in the diversity 

of improved rice varieties. The study of the genetic relationships among Indonesian improved 

rice varieties is important and, thus far, few studies have used morphological traits to 
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examine relationship between Indonesian rice landrace and improved varieties. This 

information could be used for future rice improvement, particularly in Indonesia.  

2.2 Materials and methods 

Plant materials and cultivation 

A total of 200 Indonesian rice varieties consist of 100 landrace and 100 improved cultivars 

(Table 2. 1, 2. 2 and Figure 2. 1). The Indonesian varieties were chosen from the rice 

germplasm collections at the Indonesian Center for Rice Research (ICRR Subang, Indonesia).  

The plant materials were grown at a paddy field at the University of Tsukuba from May 

to November in 2009 and 2010. The seeds were sown in a nursery box before 30-day-old 

seedlings were transplanted, with a 15 x 30 cm spacing, with 25 plants per variety. Seventy-

eight of one hundred improved varieties were recorded at different growth stages according 

to the IRRI (1980) recommendations for O. sativa L. (1980) (Table 2. 3).  Twenty-two of 

improved varieties and forty eight out of 100 landrace in 2009 and fifty two out of 100 

landrace in 2010 could not reach to heading and they were discarded from the evaluation.  

Statistical analysis 

A statistical analysis of morphological data was conducted using two kinds of software: JMP 

5.1 (JMP 2000) and Modicos software (Carvajal-Rodríguez, Rodríguez, 2005).  JMP 5.1 was 

used to create clusters within improved varieties by Ward’s hierarchical methods. 

Furthermore, this software was also used to observe the contribution of morphological traits 

with standardized data on clustering by principal component analysis (PCA) and bi-plot 

analysis. Besides, Levene’s test, coefficient of variation (CV) and mean test were used 

(Tukey-Kramer HSD). Modicos software was used to calculate phenotypic divergence among 

different source locations of landrace (Qst), Qst = Vpop / (Vpop+2Vind), in which Vpop was the 

variance among population and Vind was the variance within population. We used data 

recorded in 2009 and 2010 as replication.  

2.3 Results  

The dendrogram of Ward’s hirarchical in 2009 was divided overall into two clusters, in 

which the first cluster mostly consisted of landrace, and was divided into two sub-clusters. 

The second cluster was divided into two sub-clusters and the majority in this cluster was the 

improved variety (Figure 2. 2). The dendrogram in 2010 (Figure 2. 3) displayed a similar 

pattern to that of 2009. However, some varieties were misclassified between the two years 
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based on 130 varieties and 10 traits in 2009, and based on 126 varieties and 10 traits in 2010 

(Figs. 2, 3).  We found that some varieties released in the first stage (1943-1969) were 

characterized by consistent appearance together with landrace group, Bengawan, Dewi Ratih, 

Kartuna and Synta variety (Table 2.1).  

The sum of three PCAs based on 10 traits of the 130 Indonesian varieties  used in 2009 

explained the total variation at 70.49 %, involving 42.59 % in PC1, 15.04 % in PC2 and 

12.85 % in PC3 (Table 2. 4). Three traits showed high contributions and positive values on 

PC1: plant height, culm length and length of leaf. On PC2, two traits width of leaf and width 

of flag leaf showed positive and high contribution, while length of leaf, length of flag leaf and 

heading period showed high contribution and negative values. On PC3, high and positive 

values were shown for panicle length, width of leaf, width of flag leaf and heading period. 

The grouping based on ten morphological traits using ward hierarchical method analysis was 

shown in PCA, and the bi-plot analysis could divide into two groups. The characteristics of 

varieties in group B (improved varieties) were smaller in plant height, culm and panicle 

length, width of leaf and flag leaf. Group A, in which the majority was landrace showed 

characteristics of large size in leaf length, flag leaf, sheath leaf, angle of flag leaf and late 

flowering. Most of the IRRI varieties belong to group B (Figure 2. 4) in which indicated 

smaller size in both years.  

A total of three PCs indicated that 10 traits using 126 Indonesian rice varieties in 2010 

explained 78.19% of total variation in which PC1 is 54.49 %, PC2 is 14.76 % and PC3 is 

8.46 %, as shown in Table 2. 5. The three traits that have high contribution and positive values 

on PC1 were plant height, culm length and length of sheath leaf. Meanwhile on PC2, the highest 

positive contributions were length of flag leaf and heading period while angle of flag leaf showed 

high contribution in negative value. On PC3, the highest contribution was panicle length. As in 

2009, this PCA consisted of two groups based on ten morphological traits using ward hierarchical 

method analysis.  Group B consisting of improved varieties as majority had characteristics of 

smaller size in plant height, panicle length, width of flag leaf and erectness of flag leaf, and early 

flowering, while the group A had longer size in plant height, panicle length, length of leaf, flag 

leaf, sheath leaf, greater width of leaf and flag, late flowering and a non-erect flag leaf and this 

group consisted of landrace as majority (Figure 2. 5).  

Landrace indicated larger in size in six of 10 traits than improved varieties in 2009 

(Table 2. 6). In particular, landrace showed higher mean values for plant height, culm length, 

length of leaf, length of sheath leaf and angle of flag leaf..  The highest significant coefficient 
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variation (CV) was observed in plant height, length of flag leaf and angle of flag leaf. In 2010, 

nine out of 10 traits showed significance in mean values between landrace and improved 

varieties (Table 2. 7), and indicated that landrace was larger in size and all of CV were higher 

than improved varieties, indicating significant difference between them in plant height, culm 

length, length of leaf, width of leaf, length of sheath leaf, length of flag leaf, width of flag 

leaf and angle of flag leaf.   

To analyze the level of the selection in each island, we divided the landrace into six 

groups. The result of Levene’s test showed that in 2009 four traits were significant: length of 

leaf, length of sheath leaf, angle of flag leaf and heading period (Table 2. 8). In 2010, we 

found seven traits were significant: plant height, culm length, length of leaf, length of sheath 

leaf, length of flag leaf, angle of flag leaf and heading period (Table 2. 9). Based on CV in 

2009, we found high CV on angle of flag leaf (91.08 %) in Sulawesi landrace, and the lowest 

CV was in angel of flag leaf in Bali Nusa landrace (0.00 %). In 2010, length of flag leaf  in 

Kalimantan landrace showed the highest CV (41.04 %), and the lowest CV was on angle of 

flag leaf  (0.00%) in Kalimantan landrace (Table 2. 9).  

Most of phenotypic divergence (Qst) showed low level even negative value of 

differentiation among landrace from different source locations. However we found the most 

divergent  and positive value of Qst at least one pairwise between different landrace places in 

four traits, such as pairwise between landrace from West-Java and Bali-Nusa, between 

landrace from West-Java and Kalimantan, between landrace from West-Java and Sulawesi 

and between landrace from Sumatra and Sulawesi (Table 2. 10).  

2.4 Discussion 

In this study, we revealed that landrace was discriminated from improved varieties and it had 

larger sizes of vegetative traits than improved varieties. These phenomena might occur 

because of stronger artificial selection for improved varieties compared with landrace. In 

modification of plant architecture (morphology),  rice varieties were  selected for reduced 

plant height, increased tillers (shoot) and erect plant type (IRRI, 2001; Yang and Hwa, 2008).  

It seems that a semi-dwarf variety affects Indonesian rice varieties using IRRI varieties. In 

our study it was showed by tall stature of improved varieties before introducing IRRI 

varieties as breeding material, Bengawan, Dewi Ratih, Kartuna and Synta variety.  Reduced 

plant stature was a target trait of improved rice varieties, and most of the released varieties 

had a semi-dwarf1 (sd1) gene that came from the Dee-gee-woo-gen variety (Hargrove et al., 
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1988) and IR8 (Sasaki et al. 2002). . However, the traits varied in 2009 and 2010 due to 

environmental changes. Micro-environment and field management influenced clustering of 

varieties based on morphological traits (Fukuoka et al., 2006; Mokuwa et al., 2014).  

Furthermore, the high value of coefficient of variation (CV) in particular traits of landrace 

from each island indicated that Indonesian farmers have maintained the diversity of rice 

landrace in islands.   

The differentiation using dendogram by Wards method and PCA showed that most of 

rice landrace were grouped in group A in 2009 and 2010. For example, more than 80% of the 

landrace from West Java were grouped in group A. This result indicated that rice landrace 

had big in size in most of morphological traits as explained in bi-plot analysis. Iskandar and 

Ellen (1999) reported that Baduy tribe in West Java has been maintained. They recorded 89 

varieties which have been maintained from generation to generation. These varieties are 

important for the customary tradition and each rice variety has a purpose for obligation in 

their tradition. In this study, the result of the morphological traits revealed that there was no 

strong selection while improved varieties were strongly selected as explained above.  The 

varieties released before collaboration with IRRI were big in size compare with the varieties 

released after collaboration with IRRI.  

IRRI varieties that were used in this study showed the distribution in each subgroup of 

group B in both years. However, these varieties distributed in a different place in each year 

and IR65 variety was in group A in 2010. These results indicated that IRRI varieties had 

favorite plant type by rice breeders   in Indonesia in developing new varieties. . The change 

of micro-environmental in the field affected instability of phenotypic performance of IRRI 

varieties in both years, suggesting that IRRI varieties are sensitive to environmental change. 

Jagadish et al. (2014) reported that IR64 is sensitive to fertilizer and heat temperature. 

According to the temperature data that recorded in the field, the daily temperature in summer 

ranged from 27 to 36oC.  

Phenotypic divergence (Qst) showed that lack of selection occurred in each trait in 

pairwise between different landrace, however landrace from West Java showed high positive 

value in at least 3 pairwises in more than three traits 
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Figure  2. 1.  Map of Indonesia generated by DIVA-gis software and source locations of landrace. We 

divided our materials into 7 groups; Sumatra Island into two groups (North-Sumatra and South-

Sumatra), Java Island into two groups (West-Java and Central-Java), Bali-Nusa group, Kalimantan 

group and Sulawesi group on calculation of diversification and differentiation of Indonesian rice 

landrace. 
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Figure 2. 2.  Dendrogram using Ward’s method based on 10 morphological traits in 2009.                 

The different markers on landrace indicate different islands: + is West Java, x is Bali Nusa, ○ is 

Central Java, Y is Kalimantan, z is Sumatra, and     is Sulawesi. Improved varieties indicated by    . 
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Figure 2. 3.  Dendrogram using Ward’s method based on 10 morphological traits in 2010.   

The different markers on landrace indicate different islands: + is West Java, x is Bali Nusa, Y is 

Kalimantan, z is Sumatra, and     is Sulawesi. Improved varieties indicated by     . 
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Figure 2. 4.  Principal component analysis (PCA) (A) and bi-plot analysis (B) based on 10 

morphological traits in 2009.  

Purple color indicates landrace, green color indicates improved varieties, and blue color indicates 

IRRI varieties. The different markers on landrace indicate different islands: + is West Java, x is Bali 

Nusa, □ indicates Central Java, z indicates Sumatra, and ○ indicates Sulawesi. Abbreviations of the 

traits are seen in Table 2.5. 
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Figure 2. 5.  Principal component analysis (PCA) (A) and bi-plot analysis (B) based on 10 

morphological traits in 2010. 

Purple color indicates landrace, green color indicates improved varieties, and blue color indicates 

IRRI varieties. The different markers on landrace indicate different islands: + is West Java, x is Bali 

Nusa, □ indicates Central Java, ◊Kalimantan, z indicates Sumatra, and ○ indicates Sulawesi. 

Abbreviations of the traits are seen in Table 2.5. 
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Table 2. 1. Name of improved variety, year of release and classification based on morphological traits 

in 2009 and 2010. 

 

No. Name of variety 
Year of 

release 
2009 2010 No. Name of variety 

Year of 

release 
2009 2010 

1 Bengawan 1943 A A 51 Way Rarem 1994     

2 Remaja 1954 A B 52 Cibodas 1995     

3 Seratus Malam 1960 B B 53 Memberamo 1995 B B 

4 Kartuna 1963 A A 54 Cilamaya Muncul 1996     

5 Synta 1963 A A 55 Cilosari 1996 B B 

6 PB 5 1967 B B 56 Cirata 1996 B B 

7 Dewi Ratih 1969 A A 57 Digul 1996 B B 

8 Pelita I-1 1971     58 Banyuasin 1997 B B 

9 Gata 1976 B B 59 Lalan 1997 B B 

10 Gemar 1976 B B 60 Way Apo Buru 1998 B B 

11 Asahan 1978 B B 61 Batanghari 1999 B B 

12 IR36 1978 B B 62 Dendang 1999 B B 

13 Cisadane 1980     63 Ketonggo 1999 B B 

14 IR42 1980 B B 64 Limboto 1999 B B 

15 Barito 1981 B A 65 Towuti 1999 B B 

16 Cipunagegara 1981 B B 66 Widas 1999     

17 Krueng Aceh 1981 B B 67 Ciherang 2000 B B 

18 Atomita 2 1983 B B 68 Cisantana 2000 B B 

19 Bahbolon 1983 B B 69 Indaragiri 2000 B A 

20 Citanduy 1983 B B 70 Punggur 2000 B B 

21 Mahakam 1983 B A 71 Tukad Balian 2000 B B 

22 Sadang 1983 B B 72 Tukad Petanu 2000 B B 

23 Singkarak 1983 B B 73 Tukad Unda 2000     

24 Batang Ombilin 1984 B A 74 Angke 2001 B B 

25 Kapuas 1984 B A 75 Batutegi 2001 B A 

26 Bahbutong 1985 B B 76 Cimelati 2001     

27 Cisanggarung 1985 B B 77 Ciujung 2001 B B 

28 Cisokan 1985 B B 78 Conde 2001 B B 

29 Maninjau 1985 B B 79 Danau Gaung 2001 B A 

30 IR48 1986 B B 80 Konawe 2001 B B 

31 IR64 1986 B B 81 Lambur 2001 B B 

32 IR65 1986 B A 82 Mendawak 2001     

33 Dodokan 1987 B B 83 Silugoggo 2001     

34 Batur 1988 B B 84 Sintanur 2001     

35 Ciliwung 1988 B B 85 Wera 2001     

36 Danau Atas 1988 B B 86 Woyla 2001     

37 Batang Sumani 1989 B B 87 Setail 2002     

38 IR66 1989 B B 88 Situ Patenggang 2002 B B 

39 IR70 1989 B B 89 Situbagendit 2002 B B 

40 Lusi 1989 B B 90 Sunggal 2002     

41 Walanai 1989     91 Batang Piaman 2003 B B 

42 Way Seputih 1989 B B 92 Ciapus 2003 A A 

43 Barumun 1991 B B 93 Cibogo 2003 B B 

44 Cenranae 1991 B B 94 Cigeulis 2003 B B 

45 Danau Tempe 1991     95 Diah Suci 2003     

46 Sutugintung 1992 B B 96 Fatmawati 2003 B A 

47 Bengawan Solo 1993 B B 97 Rojolele 2003     

48 Gajah Mungkur 1994 B B 98 Winongo 2003     

49 Jatiluhur 1994 B B 99 Mekongga 2004     

50 Kalimutu 1994 B B 100 Sarinah 2006     
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Table 2. 2. Accessions number, name, origin of landrace and classification based on morphological 

traits in 2009 and 2010. 

 

No 
Accession 

number 
Name of Variety Province District 2009 2010 

1 2213 Abang Jawa Tengah Pekalongan (Kab)     

2 498 Aceh-Aceh Riau Kepulauan Riau (Kab)     

3 2420 Angsa Jeletuk Bali Karangasem (Kab)     

4 3779 Are Sera Nusatenggara Timur Ende (Kab)     

5 4676 Ase Puteh Sulawesi Selatan Pinrang (Kab) B B 

6 503 Asemandi Sulawesi Selatan Gowa (Kab) B   

7 3882 Badik/Gadih Kabalai Sumatera Barat Bukit Tinggi (Kodya) B A 

8 4669 Bandang Bujur Sumatra Barat Agam (Kab)     

9 2860 Beton Nusatenggara Barat Lombok Tengah (Kab)     

10 1047 Beurgeum Dadapan Jawa Barat Sukabumi (Kab)     

11 3145 Bintang Landang Jawa Timur Malang (Kab) B B 

12 538 Bujang Inai Kalimantan Tengah Kotawaringin Timur (Kab)     

13 3027 Bulang Sulawesi Selatan Gowa (Kab) B B 

14 PN06-17 Bulu Bodas Jawa Barat Garut (Kab) A   

15 3833 Burung Kuning Nusatenggara Barat Sumbawa (Kab)   B 

16 2600 Cempo Abang Ner Jawa Barat Cirebon (Kab) A A 

17 2386 Cempo Beluluk Jawa Tengah Karanganyar (Kab) A   

18 2368 Cempo Telouluk Jawa Tengah Kebumen (Kab)     

19 3389 Cere Beureum Jawa Barat Sukabumi (Kab) A A 

20 2247 Cere Mentik Jawa Barat Purwakarta (Kab) A A 

21 2347 Cere Welut Merah Jawa Tengah Banjarnegara (Kab) A A 

22 PN06-20 Ciburuy 1 Jawa Barat Garut (Kab) B B 

23 2548 Cicih Ijo Gading Bali Gianyar (Kab)     

24 4707 Daliah Putih Jawa Barat Indramayu (Kab)     

25 2450 Deli Jawa Tengah Wonosobo (Kab)     

26 2352 Dusel Jawa Tengah Batang (Kab) B B 

27 3385 Enud Jawa Barat Sukabumi (Kab)   B 

28 1375 Genjah Emer Jawa Barat Kuningan (Kab)     

29 2365 Genjah Welut Jawa Tengah Pekalongan (Kab) A A 

30 561 Gonggoi Sulawesi Tengah Poso (Kab) A A 

31 2625 Jaran Mas Sumatra Utara Labuhan Batu (Kab)     

32 3935 Jemadi Jambi Batang Hari (Kab) A A 

33 1372 Jidah Bodas Jawa Barat Kuningan (Kab) A A 

34 2779 Jimbruk Joloworo Jawa Tengah Boyolali (Kab)     

35 1827 Kalingga Rara Nusatenggara Timur Sumba Barat (Kab) A A 

36 2381 Kangkungan Jawa Tengah Banjarnegara (Kab) A A 

37 PN06-4 Kapas Jawa Barat Garut (Kab) A A 

38 3720 Katik Taram Sumatera Barat Tanah Datar (Kab)     

39 2813 Kaya Merah Kalimantan Barat Kapuas Hulu (Kab)     

40 2812 Kaya Terabah Kalimantan Barat Kapuas Hulu (Kab)     

41 2239 Ketan Bayong Banten Serang (Kab)     

42 PN06-39 Ketan Bodas Jawa Barat Garut (Kab) A A 

43 2415 Ketan Bulu Putih Bali Karangasem (Kab)     

44 PN06-16 Ketan Gajih Jawa Barat Garut (Kab) A A 

45 3986 Ketan Gondil Lampung Lampung Selatan (Kab)     

46 4636 Ketan Huma Jawa Barat Garut (Kab) A    

47 1250 Ketan Keuyeup Jawa Barat Kuningan (Kab) A   

48 4637 Ketan Langgar Sari Banten Lebak (Kab) A A 

49 PN06-14 Ketan Wuluh Jawa Barat Garut (Kab)     

50 1388 Kewal Jawa Barat Ciamis (Kab)     
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No 
Accession 

number 
Name of Variety Province District 2009 2010 

51 3978 Kuntu Kuranyi Sumatra Barat Tanah Datar (Kab) B B 

52 611 Laka Nusatenggara Timur   B A 

53 613 Laka Tesan A Nusatenggara Timur Manggarai (Kab) B B 

54 3100 Lantiak Sumatra Barat Lima Puluh Kota (Kab) A A 

55 3629 Lapang Sulawesi Selatan Maros (Kab)     

56 3945 Markos Jawa Barat Tasikmalaya (Kab) B   

57 4754 Mencrit Beureum Jawa Barat Kuningan (Kab) A A 

58 638 Mentik Sleman Yogyakarta (DI) Sleman (Kab) B B 

59 1829 Mete Kawicho Nusatenggara Timur Sumba Barat (Kab) A B 

60 1816 Nobu Bisara Nusatenggara Timur Flores Timur (Kab) B B 

61 1418 Omad Jawa Barat Garut (Kab)     

62 PN06-28 Osog Jawa Barat Garut (Kab) A A 

63 3031 Padi Elo Sulawesi Selatan Gowa (Kab) B B 

64 2287 Padi Rabig Jawa Barat Cianjur (Kab)     

65 2733 Padi Serai Kalimantan Timur Kutai (Kab)     

66 3741 Padi Sibur Sumatra Selatan Ogan Komering Ilir (Kab)     

67 670 Pae Daya Indobye Sulawesi Tenggara Kendarai (Kab) A   

68 4714 Pajar Lampung Lampung Utara (Kab)     

69 2776 Pala Idang merah Aceh (DI) Aceh Utara (Kab) A A 

70 1596 Pandan Wangi (leher II) Jawa Barat Cianjur (Kab) A A 

71 668 Pandan Wangi Cianjur Jawa Barat Cianjur (Kab) A B 

72 2876 Pangraman Aceh (DI) Aceh Barat (Kab)     

73 1001 Pare Mota Jawa Barat Garut (Kab) A   

74 4614 Plastik Kalimantan Timur Kutai (Kab) B A 

75 2865 Pulut Gaca Aceh (DI) Aceh Barat (Kab)     

76 4616 Pulut Kutai Kalimantan Timur Kutai (Kab) B A 

77 3030 Pulut Pagae Sulawesi Selatan Gowa (Kab) A B 

78 683 Pulut Tomene Sulawesi Tengah Palu (Kodya)     

79 3934 Raden Kuning Jambi Batang Hari (Kab)     

80 3958 Ranggong Kalimantan Selatan Kotabaru (Kab) B B 

81 1319 Rauk Neya Jawa Barat Bandung (Kab) A A 

82 2596 Remaja Jawa Barat Majalengka (Kab)     

83 2859 Rembang Nusatenggara Barat Lombok Timur (Kab)     

84 4609 Sabai Kecil Kalimantan Timur Kutai (Kab) A A 

85 3466 Saigon Jawa Tengah Pati (Kab)     

86 3890 samek Sumatra barat   B A 

87 1015 Sari Kuning Jawa Barat Subang (Kab)     

88 1430 Segon Nyonya Jawa Barat Sumedang (Kab)     

89 1541 Segon Saga Jawa Barat Garut (Kab) A B 

90 4010 Sekemiling Lampung Lampung Tengah (Kab)     

91 4018 Sepadan Lampung Lampung Tengah (Kab)   A 

92 3928 Serepet Tinggi Jambi Batang Hari (Kab) A A 

93 4635 Seuweu Jawa Barat Garut (Kab) A A 

94 2318 Si Ampera Sumatra Utara Deli Serdang (Kab)     

95 4685 Si Awak Sumatra Selatan Bangka (Kab)   A 

96 1800 Sintang Pulau Pisau Kalimantan Tengah       

97 1130 Sri Putih Jawa Tengah Sukoharjo (Kab)     

98 2188 Tampai Jambi Tanjung Jabung (Kab)     

99 2971 Teratai Kalimantan Barat Ketapang (Kab)     

100 1549 Torondol Kuning Jawa Barat Garut (Kab) A A 

Note; A and B are the classification of varieties could grow and measured for morphological traits according to dendogram 

Figure 2.2 and 2.3, Utara is North, Selatan is South, Timur is East, Barat is West and Tengah is Central 
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Table 2. 3.  Description of 10 morphological traits (IBPGR-IRRI, 1980). 

No Traits Description No Traits Description 

1 
(PH) plant 

height 

Measured from ground 

level to the top of the 

panicle (n = 5) after 

heading in centimeters 

6 

(LoSL) 

length of 

sheath leaf 

Measured from the basal of 

blade leaf to the basal of sheath 

leaf in centimeter 

2 
(CL) culm 

length 

Measured in centimeters 

from ground level to the 

base of the panicle (n = 5) 

after heading 

7 

(LoFL)  

length  of 

flag leaf 

Measure length of the flag leaf, 

from the ligule to the tip of the 

blade, on five representative 

plants. Calculate average to 

nearest cm. Stage: 7 days after 

anthesis in centimeter 

3 

(PL) 

panicle 

length 

Measured in centimeters 

from the base to the tip of 

the panicle on near 

maturity in centimeter 

8 

(WoFL)  

width of 

flag leaf 

Measure width at the widest 

portion of the flag leaf on five 

representative plants.  Calculate 

average to nearest cm. Stage: 7 

days after anthesis in centimeter 

4 

(LoL) 

length of 

leaf 

Measured from the top 

most leaf blade below the 

flag leaf on the main culm 

(n = 5) on late vegetative 

stage in centimeter 

9 

(AoFL) 

angle of 

flag leaf 

Measured near collar as the 

angle of attachment between the 

flag leaf blade and the main 

panicle axis (n = 5); 1 (erect), 3 

(intermediate), 5 (horizontal), 7 

(desedence) 

5 

(WoL) 

width of 

leaf 

Measured at the widest 

portion of the blade on the 

leaf below the flag leaf (n 

= 5) on late vegetative 

stage in centimeter 

10 

(HD) 

Heading 

date 

Number of days from sowing to 

50% heading. 
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Table 2. 4. Three principal components, eigenvalue and cumulative of 

 variation in 10 traits in 2009. 

Traits 
Eigenvectors 

PC 1 PC 2 PC 3 

PH (cm) 0.417 0.179 -0.328 

CL (cm) 0.394 0.159 -0.420 

PL (cm) 0.191 0.133 0.377 

LoL (cm) 0.387 -0.331 0.096 

WoL (cm) 0.142 0.583 0.404 

LoSL (cm) 0.377 -0.062 -0.128 

LoFL (cm) 0.333 -0.349 0.179 

WoFL (cm) 0.272 0.343 0.390 

HD (day) 0.150 -0.483 0.428 

AoFL (0) 0.339 0.003 -0.135 

Eigenvalue 4.259 1.504 1.285 

Cumulative of variation (%) 42.591 57.636 70.487 

Note: PH (plant height), CL (culm length), PL (panicle length), LoL (length of leaf), WoL (width of leaf), 

LoSL (length of sheath leaf), LoFL (length of flag leaf), WoFL (width of flag leaf), HD (heading Date), and 

AoFL (angel of flag leaf). 
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Table 2. 5. Three principal components, eigenvalue and  

cumulative of variation in 10 traits in 2010. 

Traits 
Eigenvectors 

PC 1 PC 2 PC 3 

PH (cm) 0.389 -0.109 -0.190 

CL (cm) 0.369 -0.112 -0.394 

PL (cm) 0.224 -0.023 0.821 

LoL (cm) 0.367 0.257 -0.018 

WoL (cm) 0.302 -0.209 0.136 

LoSL (cm) 0.385 0.160 -0.053 

LoFL (cm) 0.349 0.295 0.056 

WoFL (cm) 0.328 -0.250 0.201 

HD (day) 0.121 0.662 -0.131 

AoFL (0) 0.208 -0.502 -0.230 

Eigenvalue 5.498 1.476 0.846 

Cumulative of 

variation (%) 
54.976 69.731 78.188 

Note: PH (plant height), CL (culm length), PL (panicle length), LoL 

(length of leaf), WoL (width of leaf), LoSL (length of sheath leaf), LoFL 

(length of flag leaf), WoFL (width of flag leaf), HD (heading Date), and 

AoFL (angel of flag leaf). 
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Table 2. 6. Mean and coefficient of variation (CV) within improved variety and landrace, and 

homogeneity test between them for 10 morphological traits in 2009. 

Population Improved variety Landrace 

Levene’s 

test 

Tukey-

Kramer 

HSD (5%) 

Ni 78 52 

Traits Mean CV (%) Mean CV (%) 

PH (cm) 112.651 17.143 147.232 17.777 * * 

CL (cm) 87.037 21.777 119.964 20.83 * * 

PL (cm) 25.614 23.816 27.267 16.782 * ns 

LoL (cm) 41.283 12.082 52.879 12.9 ns * 

WoL (cm) 1.454 15.507 1.439 13.734 ns ns 

LoSL (cm) 25.547 18.943 29.874 20.09 ns * 

LoFL (cm) 28.086 24.12 35.689 25.278 * * 

WoFL (cm) 1.655 13.229 1.717 11.326 ns ns 

HD(day) 123.782 12.082 127.788 12.9 ns ns 

AoFL (0) 1.457 23.907 1.780 28.641 ** * 

Note; Ni is number of individual within population, ns is non-significant, * is significant level at p<0.05, and ** is 

significant level at P<0.01(Levene’s test). Abbreviations of the traits are seen in Table 2.5. 
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Table 2. 7. Mean, coefficient of variation (CV) within improved variety and landrace and 

homogeneity test between them on 10 morphological traits in 2010. 

Population Improved variety Landrace 

Levene's 

test 

Tukey-

Kramer 

HSD (5%) 

Ni 78 48 

Traits Mean CV (%) Mean CV (%) 

PH (cm) 109.350 12.820 135.417 19.251 ** * 

CL (cm) 83.635 16.354 106.573 22.717 ** * 

PL (cm) 25.715 19.249 28.844 14.934 ns * 

LoL (cm) 39.178 17.952 49.523 24.951 ** * 

WoL (cm) 1.288 12.522 1.395 16.011 * * 

LoSL (cm) 25.451 13.026 29.793 17.505 ** * 

LoFL (cm) 26.732 23.577 36.345 33.967 ** * 

WoFL (cm) 1.422 14.682 1.635 17.715 * * 

HD (day) 128.731 10.880 130.500 12.144 ns ns 

AoFL (0) 1.402 22.687 1.667 30.985 ** * 

Note; Ni is number of individual, ns is non-significant and ** is significant level at P<0.01 (Levene’s test) 

Abbreviations of the traits are seen in Table 2.5. 
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Table 2. 8. Mean, coefficient of variation (CV) within origin of landrace and homogeneity test among them on 10 morphological traits in 2009.  

Population Improved variety West Java Central Java Bali-Nusa Kalimantan North Sumatra Sulawesi  

F test 

Ni 78 22 7 5 4 7 7 

Traits Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

PH (cm) 112.651 17.143 155.136 16.140 157.186 18.488 141.600 18.934 128.000 21.847 143.679 13.922 131.000 18.289 ns 

CL (cm) 87.037 21.777 127.345 18.644 126.786 22.689 115.320 21.623 105.750 27.346 116.350 17.299 105.000 23.061 ns 

PL (cm) 25.614 23.816 27.791 16.879 30.400 14.907 26.280 16.185 22.250 12.909 27.329 14.008 26.000 16.166 ns 

LoL (cm) 41.283 19.052 53.500 19.685 54.914 27.888 49.500 23.224 49.325 30.502 56.514 25.173 49.700 27.872 * 

WoL (cm) 15.507 0.225 1.483 15.001 1.457 10.376 1.340 23.362 1.300 10.879 1.414 6.362 1.457 10.376 ns 

LoSL (cm) 25.547 18.943 31.938 14.434 30.029 12.332 27.470 13.990 22.850 62.732 30.271 17.884 28.571 15.929 ** 

LoFL (cm) 28.086 24.120 36.693 26.753 40.614 12.442 30.310 21.102 33.450 17.482 36.886 16.972 31.534 40.633 ns 

WoFL (cm) 1.655 13.229 1.768 11.855 1.814 8.673 1.685 8.099 1.600 11.411 1.664 8.623 1.600 13.010 ns 

HD (day) 123.782 12.082 131.090 13.105 131.286 13.431 113.600 2.210 123.000 7.798 137.140 14.821 117.429 5.246 ** 

AoFL (0) 1.744 66.933 3.636 46.130 3.000 66.667 1.000 0.000 2.000 57.735 3.286 54.767 2.140 91.084 ** 

Note; Ni is number of individual within population, ns is non-significant, ** is significant level at P<0.01 (Levene’s test) and the different letter are significantly different by Tukey-

Kramer HSD test. Abbreviations of the traits are seen in Table 2.5. 
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Table 2. 9. Mean, coefficient of variation (CV) within origin of landrace and homogeneity test among them on 10 morphological traits in 2010.  

Population Improved variety West Java Central- Java Bali-Nusa Kalimantan North Sumatra Sulawesi 

F test Ni 78 19 6 6 4 8 5 

Traits Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) Mean CV (%) 

PH (cm) 109.350 12.820 145.520 18.029 132.160 28.860 116.080 13.698 132.000 15.101 139.380 14.609 120.500 15.442 ** 

CL (cm) 83.635 16.354 115.263 20.598 103.000 34.930 90.083 20.179 102.000 18.060 111.250 16.306 93.800 22.228 ** 

PL (cm) 25.715 19.249 30.263 13.695 29.167 10.267 26.000 22.328 30.000 7.201 28.125 12.669 26.700 21.087 ns 

LoL (cm) 39.178 17.952 53.305 25.290 50.617 29.253 40.400 9.022 54.300 29.091 49.013 19.063 41.780 17.396 ** 

WoL (cm) 1.288 12.522 1.486 15.109 1.317 10.095 1.222 9.552 1.475 15.033 1.413 16.684 1.260 19.920 ns 

LoSL (cm) 25.451 13.026 32.156 14.455 29.583 22.407 25.367 11.975 30.800 16.367 29.438 19.122 26.140 10.440 ** 

LoFL (cm) 26.732 23.577 38.379 36.447 37.123 39.626 29.450 14.693 42.300 41.040 38.663 23.579 27.480 10.642 ** 

WoFL (cm) 1.422 14.682 1.724 17.575 1.600 19.764 1.450 22.559 1.600 15.309 1.731 12.630 1.440 11.620 ns 

HD (day) 128.731 10.880 132.680 11.616 129.170 8.696 124.170 12.748 144.250 18.844 127.380 13.296 125.400 4.242 * 

AoFL (0) 1.402 22.687 1.824 29.820 1.411 32.407 1.735 25.109 1.225 0.000 1.796 31.109 1.449 34.585 ** 

Note; Ni is number of individual within population, ns is non-significant, ** is significant level at P<0.01 (Levene’s test) and the different letter are significantly different by Tukey-

Kramer HSD test. Abbreviations of the traits are seen in Table 2.5. 
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Table 2. 10. Mean of phenotypic divergence (Qst). 

Pairwise 
Traits 

PH CL PL LoL WoL LoSL LoFL WoFL HD AoFL 

WJ-BN 0.13 0.105 0.099 0.104 0.168 0.24 0.193 0.122 0.162 -0.411 

WJ-CJ -0.007 0.001 -0.274 -0.038 0.039 0.006 -0.103 -0.181 -0.031 -0.033 

WJ-KM 0.15 0.115 7.83 -0.066 0.106 0.109 -0.095 0.044 -0.062 -0.107 

WJ-Sum -0.012 -0.015 -0.15 -0.032 0.001 -0.036 -0.166 -0.033 -0.013 0.006 

WJ-SLS 0.29 0.291 0.081 0.048 -0.031 0.204 0.219 0.291 0.053 -0.212 

BN-CJ -0.03 -0.048 0.062 -0.016 0.008 0.016 0.267 -0.014 0.109 -1.29 

BN-KM -0.077 -0.08 -0.095 -0.014 -0.18 -0.095 0.096 -0.153 1.48 -0.278 

BN-Sum 0.059 0.025 -0.009 -5.51 0.057 0.146 -5.69 -0.012 0.178 -0.378 

BN-SLS -0.025 -0.018 -0.057 -0.09 0.046 -0.06 -0.097 -0.033 -2.39 -0.055 

CJ-KM -0.018 -0.041 6.67 -0.059 0.027 -0.05 -0.102 0.279 -0.089 0.208 

CJ-Sum -0.057 -0.05 -0.02 -0.014 0.063 -0.04 0.1 2.81 -0.01 0.037 

CJ-SLS 0.068 0.04 0.056 -0.029 0.028 -0.001 0.232 1.91 0.004 -0.186 

KM-Sum 0.081 0.038 -1.45 -0.039 0.031 0.000 -0.071 -0.038 -0.035 -0.034 

KM-SLS -0.053 -0.048 -0.095 -0.04 0.019 -0.095 0.066 -0.019 0.268 -0.235 

Sum-SLS 0.353 0.362 -0.021 0.318 0.05 0.109 2.28 0.141 0.089 -0.161 

Note: the bold font indicated value of Qst is positive. Abbreviation for source location of landrace; WJ is West-Java, BN is 

Bali-Nusa, CJ is Central-Java, KM is Kalimantan, Sum is Sumatra and SLS is Sulawesi   Abbreviations of the traits are seen 

in Table 2.5. 
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3. Diversification and differentiation of Indonesian rice landrace and improved varieties 

as revealed by SSR markers 

3.1 Introduction 

Numerous researchers in an effort to classify rice using several methods reported that 

the presence of intermediate type was observed between two subspecies of O. sativa using 

isozymes (Second, 1982; Sie and Ghesquiere, 1992), morphological traits (Ahmadi et al., 

1991) and molecular markers (Mather et al., 2010). They believed that the intermediate type 

was caused by hybridization between indica and japonica. Mather et al. (2010) found 

evidence of asymmetric migration and gene flow between indica and tropical japonica in 

Madagascar using molecular markers These results clarified that intermediate type (hybrid) in 

grain shape between indica and tropical japonica which previously reported by Ahmadi et al. 

(1991) was caused by asymmetric gene flow between two subspecies.  Asymmetric gene flow 

could affect the diversity in the recipient crops because of the recurrent gene flow from donor 

(Bartsch et al. 1999; Song et al., 2006).  Also, the level of gene flow within and among 

species affects differentiation of crops (Schaal et al., 1998; Schaal et al., 2003).  This fact 

caused inconsistency of genetic structure in rice and is called as gene tree discordance (Yang 

et al., 2012).  

Diversity and differentiation analysis based on morphological traits is generally 

affected by environments. Current DNA markers allow the analysis of a large number of loci 

which widely distribute throughout the entire genome of crops. Molecular markers are 

powerful tools for the assessment of genetic variation and the elucidation of genetic 

relationships within and among species. The diversity of the genus Oryza  has been analyzed 

using random amplified polymorphic DNA (RAPD) (Martin et al., 1997) and restriction 

fragment length polymorphism (RFLP) (Sun et al., 2001). simple sequence repeats (SSR) 

have been more frequently used to analyze genetic diversity and differentiation in rice 

(Mackill, et al., 1995; Powell et al., 1996; Ravi et al., 2003).  Furthermore, SSR markers that 

could identify some alleles were derived from O. sativa in hybrid populations from the cross 

between O. sativa and O. rufipogon in China (Song et al., 2006).   

The existence of intermediate type in Indonesian rice germplasm was reported by 

Khush et al. (2003), indicating 3% of intermediate group in addition to indica (69%) and 

japonica (28%) based on isozyme polymorphism. Also, Thomson et al. (2009) reported that 

there was 2.7% of admixture between indica and japonica in Kalimantan landrace.  However, 
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the role of gene flow in diversification of rice germplasm in Indonesia has not been clarified 

and in this study we focused on analyzing gene flow and other mechanisms to diversify and 

differentiate rice germplasm in Indonesia using SSR markers. We assume that one of the 

mechanisms generating intermediate varieties in Indonesian rice is gene flow between 

subspecies. 

3.2 Materials and methods 

Plant materials 

A total of 200 Indonesian rice accessions involved 100 Indonesian landrace and 100 

improved cultivars (Table 2. 1 and 2. 2). Materials were chosen from the rice germplasm 

collections at the Indonesia Center for Rice Research (ICRR Subang, Indonesia). 

DNA extraction and SSR genotyping 

Plants were grown in nursery boxes in a greenhouse at the University of Tsukuba, Japan, and 

leaf samples were harvested from a single 30-day-old plant of each sample.  Leaf samples 

were crushed in a crusher with a zirconium ball in micro-tubes (2 mL), and DNA was 

isolated using a modified cetyl trimethylammonium bromide (CTAB) method (McCouch et 

al., 1988). 

SSR markers in this study consisted of SSRs used in previous study of Indonesian rice 

(Thomshon et al., 2007) and Chinese rice (Zhang et al. 2011). These SSRs were reported to 

effectively discriminate rice varieties into two groups, indica and japonica. We screened 148 

SSR markers mapped across all 12 chromosomes and screened 32 polymorphic markers. The 

sequences of SSR primers were taken from the Gramene database (http://www.gramene.org/) 

(Table 3. 1). The PCR solution per tube consisted of 1 µL of 10x buffer, 1 µL of dNTPs, 0.1 

µL of Taq polymerase (TOYOBO, Japan), 1 µL primer (created from R and F SSR 

sequences) (Invitrogen, Carlsbad, CA, USA), 1 µL (5 ng) of DNA and 5.9 µL of distilled 

water. The PCR conditions were 5 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at the primer-

specific annealing temperature, 90 s at 72°C; and a final extension at 72°C for 10 min.  These 

SSR markers were genotyped in 200 varieties following electrophoresis in 10% 

polyacrylamide gels at (250 V, 500 mA); genotypes were determined visually from gel 

images. Of the 200 DNA samples, 161 genotypes (78 improved varieties and 83 landrace) 

provided enough data to use.  
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Data analysis 

The molecular marker data were analysed in DARwin 5 (Perrier and Jacquemoud-Collet, 

2006), GenAlEx 6.5 (Peakall and Peter, 2006), Migrate-n (Beerli and Palczewski, 2010) and 

Bayescan v 2.1 (Foll and Gaggiotti, 2008) software. DARwin 5 was used to calculate NJ trees 

based on genetic distance using 1000 bootstrap. GenAlEx 6.5 was used to calculate the 

number of alleles per locus (Na), number of effective alleles (Ne), percentage of polymorphic 

(P), gene diversity (H; Shannon, 1948), allelic richness (Pettit et al. 1998), significance of the 

inbreeding coefficients within subpopulation (Fis) and among subpopulations (Fst) per locus 

were  tested using 999 permutations (Wright, 1978). The gene flow (Nm) by formula (1 – 

FST)/4 (Wright, 1951), genetic distance (D) between populations (indica and japonica) (Nei, 

1972), and genetic differentiation (FST; Nei, 1973) was also tested using 999 permutations.   

Migrate-n was used to calculate direction pattern of gene flow (Nm) by estimating 

posterior distribution mean (θ = 4 Neµ, Ne is the effective population size and µ is the 

mutation rate per site per generation), migration rate (M = m/µ, where m is the rate of 

migration for each locus) and formula (Nm = M θ/4) was used to estimate gene flow (number 

of migrants per generation). We run this software for SSR markers with uniform priors which 

were placed on θ from 0 to 30 and M from 0 to 40 by Bayesian inference strategy for 

Brownian motion (microsatellite model) and starting parameters for migrant values and θ 

were generated from several trials. For Markov chain setting, 5000 steps were recorded and 

followed by 20 sample increments and 10000 burns-in for each chain.  

Bayescan v.2.1 software was used to calculate differentiation among neutral locus 

(FST) and also this software was used to detect candidate loci for divergence based on NJ 

tree, in which outlier loci generated by this software is signs of natural selection. The 

evidence of selection in the range 0.5 < log10 (PO) < 1 is substantial, strong if 1< log10 (PO) 

<1.5 and very strong if 1.5 < log10 (PO) < 2 as explained on manual of this software. In this 

study, we calculated Fis, Fst, outlier loci (FST), direction of migration and gene flow using 

landrace.  Improved rice varieties were excluded from calculation using this method because 

of the complexity in crossings in breeding history to develop new varieties. . 

In this study, landrace in Indonesia could be divided by source locations.  We 

calculated mean values of differentiation among neutral loci (FST) in pairwise between 

different source locations of landrace using Bayescan v. 2.1. These results were compared 

with mean values of phenotypic divergence based on morphological traits (Qst).  
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3.3 Results 

Genetic structure of Indonesian rice germplasm 

Genetic structure analysis using 32 SSR markers, Indonesian rice germplasm was 

divided into two major groups. We call the group involving PB5 and IR36 as indica and the 

group involving Kartuna as tropical japonica.  According to the NJ tree, we identified some 

of varieties as admixture varieties and we call these varieties as C type (intermediate). In 

overall, 82.61 % of varieties used was classified as indica, 15.53% as japonica and 1.86 % as 

intermediate (Figure 3. 1, Table 4. 13), and it seems that indica landrace was separated from 

improved varieties. The clustering showed that improved varieties differentiated from 

landrace and they were divided into five groups, IR36, IR48, IR5, IR64 and japonica groups 

(Figure 3. 2). The landrace also showed the differentiation into three groups, and we call 

them Indonesian indica landrace type I, type II and japonica group (Figure 3. 3). 

The differentiation (FST) and genetic distance (D) based on Nei’s calculation showed a 

significant value of FST in all pairwise comparisons and a high value of D.  FST and D 

between improved varieties and landrace indicated significant values of FST and high value D 

in all pairwise comparisons (Table 3. 2). FST and D between indica landrace and japonica 

landrace were the highest (0.24; 0.22) and FST and D between indica landrace and indica 

improved varieties were the lowest (0.05; 0.06) (Table 3. 2).    

Genome scan analysis to detect outliers loci based on differentiation was conducted 

between indica and japonica landrace, and we found one of 32 SSR marker loci with Log10 

(PO) <1 (0.95) in value of FST (0.09) (Figure 3. 4, Table 3. 3). Inbreeding coefficients 

derived from inbreeding within sub-populations (Fis) and inbreeding coefficient from 

differentiation between sub-populations (Fst) were significantly distant from 0 by SSR 

markers (Table 3.4) and the gene flow (Nm) between indica and japonica is 0.59 (Table 3. 4). 

The mode of migration rates (M) based on direction ranged from 1.613 (from japonica to 

indica) to 6.653 (from indica to japonica) (Table 3.5). The level of gene flow (Nm) based on 

direction ranged from 0.254 (from japonica to indica) to 0.948 (from indica to japonica).     

It seems that the pattern of gene flow between O. sativa subspecies is asymmetric (Table 3. 5).  

Significant values of differentiation (FST) and genetic distance (D) were found in all 

pairwise comparisons between improved varieties and landrace derived from seven source 

locations (Table 3. 6). FST between improved varieties and landrace from South-Sumatra was 

the highest (0.117) and FST between improved varieties and landrace from West-Java was the 

lowest (0.055). D between improved varieties and landrace from South-Sumatra was the 
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highest (0.163) and D between improved varieties and landrace from Bali-Nusa was the 

lowest (0.076).  Within landrace from different source location, FST and D between landrace 

from Sulawesi and South-Sumatra were the highest (0.100; 0.157) and FST and D between 

Kalimantan and West-Java were the lowest (0.036; 0.056).  We found a wide range of mean 

values of differentiation among neutral loci (FST) among landrace from different source 

locations using Bayesian method (Table 3. 7). The mean FST values ranged from 0.062 

(pairwise between West Java and Central Java) to 0.133 (pairwise between Bali-Nusa and 

Kalimantan).   

Diversity of Indonesian rice germplasm 

The polymorphism in Indonesian rice germplasm using 32 SSR markers showed 100% and 

the diversity index Shannon’s H, allelic richness (AR) and private allele (PA) were 0.78, 3.41 

and 1.41, respectively. Within O. sativa, H, AR and PA of landrace (0.82; 3.11; 0.31) were 

higher than H, AR and PA of improved varieties (0.65; 2.87; 0.16) (Table 3. 8).   We found 

that H, AR and PA of japonica (0.56; 1.97; 0.06) were lower than H, AR and PA of indica 

(0.70; 2.85; 0.19). In contrast, H of in improved japonica varieties (0.62) was higher than H 

of indica varieties (0.60), however AR and PA of improved japonica varieties (2.01; 0.00) 

was lower than AR and PA of indica varieties (2.73; 0.09) (Table 3. 9).  

Diversity analysis showed that H and AR in landrace from West Java (0.76; 2.57) was the 

highest and H and AR in landrace from South Sumatra (0.61; 1.94) was the lowest (Table 3. 

10). We found no private allele in rice germplasm from four source locations; Bali-Nusa, 

Kalimantan, Sulawesi and South Sumatra (Table 3. 10). The consisting japonica affected 

diversity, allelic richness and private allele as shown by H, AR and PA of landrace from West 

Java but it was not the highest (0.55; 2.12; 0.031) when we excluded the japonica from 

calculation.  We found no private allele in rice germplasm from five source locations; Bali-

Nusa, Central-Java, Kalimantan, Sulawesi, and South-Sumatra (Table 3. 11). We found 

japonica in each source location except North-Sumatra (Figure 3. 5).  

3.4     Discussion 

This study presented that in our materials of Asian cultivated rice, indica dominated over 

japonica. This study also revealed  that landrace was more diverse than improved varieties in 

agreement with previous studies  by Thomson et al. (2007) who discussed that Indonesian 

farmers has maintained diversity of landrace.  Besides, Iskandar and Ellen (1999) reported 

that cultural practices by people in Java Island served to maintain landrace for traditional, 
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religious and cultural uses. Similar results were reported that the genetic diversity of landrace 

has been maintained by cultural practices in Kalimantan (Thomson et al. 2009).  

The following three possible mechanisms have changed the diversity and 

differentiation in O. sativa in Indonesia, (1) direction of gene flow between two subspecies, 

(2) artificial selection for rice germplasm and (3) natural selection for  improved varieties .   

In this study, the inbreeding coefficient through inbreeding within sub-population (Fis) 

and inbreeding coefficient through differentiation between sub-population (Fst) statistically 

deviated from zero. Even though we found high value of Fis, we revealed various values of 

Fst and it was caused by gene flow (Nm) between sub-population which took place in 

Indonesian rice germplasm. According to Govindajaru classification, the ranges of Nm in this 

study were intermediate (0.59). This study revealed that the pattern of migration and gene 

flow was asymmetric between indica and japonica.  Asymmetric gene flow from donor 

population to recipient population occurred for long period, in particular alleles of the 

recipient population were displaced and alleles of the donor population were replaced, unless 

there was strong selection for donor alleles (Papa and Gepts, 2004).  In the continuous 

asymmetric gene flow, the diversity of recipient population is affected by replacing the gene 

(Haygood et al., 2003). The presence of C type (intermediate varieties) in this study gave 

evidence that hybridization has occurred in Indonesian rice between these two subspecies 

aspresented in J-tree.  The probable reason of the limited asymmetric gene flow between 

indica and japonica is that two subspecies adapt to different ecological environments, in 

Indonesia; japonica rice involving glutinous rice (Beras Ketan) is commonly cultivated in 

highlands (>500m from sea level) by swidden practice, whereas indica rice is cultivated in 

lowlands (Marten, 1990; Tanaka, 1997; Iskandar, Ellen, 1999).  In this study we suggested 

that these conditions were associated with the differentiation between indica and japonica in 

Indonesia.  

The finding of numerous indica compare to japonica in this study corresponded well to 

previous studies (Khush et al., 2003; Thomson et al., 2007), in which showed that japonica 

was less than indica in Indonesian rice germplasm. Glutinous and awned rice varieties were 

involved in japonica by SSR markers, indicating the same result as reported by Thomson et 

al. (2009).   

The diversity in japonica was lower than indica in this study, in which this result was 

different from previous study as reported by Thomson et al. (2007) and in agreement with 
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Glaszmann (1987) and Li and Rutger (2000).  In addition to the asymmetric gene flow, we 

suggested that the lower diversity, less number of effective alleles and fewer private alleles in 

japonica than indica might be affected by selection for particular traits. For example, our 

previous study indicated that selection for seed shattering contributed to differentiation 

between indica and japonica, in which japonica showed poorer seed shattering (Muhamad 

and Okuno, 2013). This selection contributed to allelic difference as revealed by positive 

correlation between differentiation using shattering traits and using SSR markers. The other 

mechanism decreasing diversity in japonica is bottleneck effects as reported in rice 

germplasm in Madagascar (Mather et al., 2010) and in Asia including Indonesia (Molina et 

al., 2011). Sun et al. (2001) suggested that effective alleles have been lost by natural and 

human selection and genetic diversity in cultivated rice has been gradually decreased. In 

addition, the assessment of allelic richness and private allele in this study supported our result 

in diversity analysis when the sample size of reference is small and unbalanced among 

populations as suggested by Foulley and Olliver (2006). The result showed that the pattern of 

H index corresponded well to allelic richness (AR) and indicated that our results were reliable.   

We found one outlier locus by sustainable evidence of selection between indica and 

japonica using Bayesian method. This locus was identified as qDSR11-2 underlying dead 

seedling rate under alkaline stress by QTL analysis using SSR markers (Qi et al., 2008).  This 

result suggested that natural variations caused by mutation affected the differentiation in 

Indonesian rice. In rice, it was reported that agronomically important genes have been 

selected among upland rice (Lyu et al., 2013). The natural selection is one of important 

mechanisms for evolution of population as suggested by Hardy (1908) and Weinberg (1908) 

and is popular as Hardy-Weinberg principle. In addition, this study discovered that most of 

phenotypic divergence (Qst) values were lower than differentiation among loci under neutral 

molecular markers (FST). Our result indicated that the same phenotypes were favoured in 

different populations due to stabilizing selection in the most of pairwise comparison between 

landrace from different source location. However, we found higher Qst than FST in pairwise 

landrace from West-Java and Bali-Nusa in the most of traits which were evaluated in this 

study. These results indicated that the  directional selection occurred between these 

populations. Three scenarios are possible to explain the relation between Qst and FST on 

natural selection. First, a higher divergence in quantitative traits compared with neutral 

molecular markers (Qst> FST) indicated directional selection among populations. Second, 

the opposite scenario (Qst < FST) suggested that the same genotypes were favoured in 
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different populations due to stabilizing selection. Third, if the two measures do not differ 

significantly, the possibilities of genetic drift versus selection cannot be disentangled 

(Pertoldi et al., 2012).  These results supported that landrace in this study could not 

differentiate according to different source locations. This study suggested non-significant 

differentiation and low genetic distance among pairwise landrace from different source 

locations. 

The possible reason why the diversity decreases in improved varieties is the extensive use of 

IRRI varieties as breeding materials. Artificial selection causes the lower level of diversity in 

improved varieties due to the continuous use of elite varieties in breeding program causing 

genetic uniformity (Tanksley and McCouch, 1997). This evidence showed differentiation of 

improved varieties into five groups based on IRRI varieties in agreement with 41.4% 

according to pedigree information (crossing history). The lower diversity in improved indica 

varieties compared with improved japonica varieties was supported by the fact that 

Indonesian breeders have focused on improving indica rather than japonica, and it was also 

shown by lower effective number of alleles in indica than japonica. Changes in allelic 

frequency occur in response to selection (Vieira et al., 2013).  However, allelic richness in 

improved indica varieties is still higher than japonica because indica has more private alleles 

than japonica.  This indicated that improved indica varieties have similar alleles.  On the 

other hand, the result is not strange because japonica variety group has been used as breeding 

materials in Indonesian breeding program such as Bengawan and Peta varieties, which were 

resulted from crossing between Cina and Latisail varieties that were important for developing 

IR8 varieties. Besides, the varieties classified as japonica were developed using IRRI 

varieties such as Banyuasin and Situ Patenggang varieties (http://www.iris.irri.org/).  The rice 

landrace differentiated into three major groups, landrace type I, II and japonica. Seven 

percentage of landrace was not involved in IR5/PB5 and IR36 (type II). This result indicated 

that the landrace has its potential for future rice breeding programs in Indonesia. 

 

http://www.iris.irri.org/
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Figure 3. 1. Neighbor joining tree of Indonesian rice germplasm based on 32 SSR markers.  

LR is landrace and IV is improved varieties. Blue color indicated IRRI varieties and red color is 

Kartuna variety, varietal check for tropical japonica.  
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Figure 3. 2. Neighbor-joining tree of 78 Indonesian improved rice varieties based on 32 SSR markers 
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Figure 3. 3. Neighbor-joining tree of 83 Indonesian rice landrace based on 32 SSR markers.  

Circle of dashed line indicates two groups, group indica and japonica which calculated in this study. 

Abbreviations; WJ is West-Java, CJ is Central-Java, BN is Bali-Nusa, KM is Kalimantan, NS is North-

Sumatra, SS is South Sumatra and SLS is Sulawesi. 
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Figure 3. 4. FST vs Log 10 (PO) displayed outlier loci based on SSR markers. 
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Figure 3. 5. Percentage of composition varietal group of O. sativa in Indonesian rice germplasm based 

on SSR marker.  
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Table 3. 1. List of SSR markers used in this study. 

Locus Chr. Repeat motif PCR primer (5' to 3') 
Annealing 

temp. (0C) 

RM431 1 (AG)16 
f TCCTGCGAACTGAAGAGTTG 

55 
r AGAGCAAAACCCTGGTTCAC 

RM312 1 (ATTT)4(GT)9 
f GTATGCATATTTGATAAGAG  

55 
r AAGTCACCGAGTTTACCTTC 

RM583 1 (CTT)20 
f AGATCCATCCCTGTGGAGAG  

55 
r GCGAACTCGCGTTGTAATC 

RM259 1 (CT)17 
f TGGAGTTTGAGAGGAGGG 

55 
r CTTGTTGCATGGTGCCATGT  

RM154 2 
(GA)21 f ACCCTCTCCGCCTCGCCTCCTC 

60 
  r CTCCTCCTCCTGCGACCGCTCC 

RM452 2 
(GTC)9 f CTGATCGAGAGCGTTAAGGG 

55 
  r GGGATCAAACCACGTTTCTG  

RM71 2 (ATT)10T(ATT)4 
f CTAGAGGCGAAAACGAGATG 

55 
r GGGTGGGCGAGGTAATAATG 

RM240 2 (CT)21 
f CCTTAATGGGTAGTGTGCAC 

55 
r TGTAACCATTCCTTCCATCC 

RM450 2 (AG)17 
f AAACCACAGTAGTACGCCGG 

55 
r TCCATCCACATCTCCCTCTC 

RM489 3 (ATA)8 
f ACTTGAGACGATCGGACACC 

55 
r TCACCCATGGATGTTGTCAG 

RM55 3 (GA)17 
f CCGTCGCCGTAGTAGAGAAG 

55 
r TCCCGGTTATTTTAAGGCG 

RM251 3 (CT)29 
f GAATGGCAATGGCGCTAG 

55 
r ATGCGGTTCAAGATTCGATC 

RM16 3 (TCG)5(GA)16 
f CGCTAGGGCAGCATCTAAA 

55 
r AACACAGCAGGTACGCGC 

RM307 4 (AT)14(GT)21 
f GTACTACCGACCTACCGTTCAC 

55 
r CTGCTATGCATGAACTGCTC 

RM124 4 (TC)10 
f ATCGTCTGCGTTGCGGCTGCTG 

67 
r CATGGATCACCGAGCTCCCCCC 

RM334 5 (CTT)20 
f GTTCAGTGTTCAGTGCCACC 

55 
r GACTTTGATCTTTGGTGGACG 
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Locus Chr. Repeat motif PCR primer (5' to 3') 
Annealing 

temp. (0C) 

RM161 5 (AG)20 
f TGCAGATGAGAAGCGGCGCCTC 

61 
r TGTGTCATCAGACGGCGCTCCG 

RM162 6 (AC)20 
f GCCAGCAAAACCAGGGATCCGG 

61 
r CAAGGTCTTGTGCGGCTTGCGG 

RM454 6 (GCT)8 
f CTCAAGCTTAGCTGCTGCTG 

55 
r GTGATCAGTGCACCATAGCG 

RM402 6 (ATA)7 
f GAGCCATGGAAAGATGCATG 

55 
r TCAGCTGGCCTATGACAATG 

RM586 6 (CT)23 
f ACCTCGCGTTATTAGGTACCC 

55 
r GAGATACGCCAACGAGATACC 

RM11 7 (GA)17 
f TCTCCTCTTCCCCCGATC 

55 
r ATAGCGGGCGAGGCTTAG 

RM118 7 (GA)8 
f CCAATCGGAGCCACCGGAGAGC 

67 
r CACATCCTCCAGCGACGCCGAG 

RM408 8 (CT)13 
f CAACGAGCTAACTTCCGTCC 

55 
r ACTGCTACTTGGGTAGCTGACC 

RM284 8 (GA)8 
f ATCTCTGATACTCCATCCATCC 

55 
r CCTGTACGTTGATCCGAAGC 

RM404 8 (GA)33 
f CCAATCATTAACCCCTGAGC 

55 
r GCCTTCATGCTTCAGAAGAC 

RM215 9 (CT)16 
f CAAAATGGAGCAGCAAGAGC 

55 
r TGAGCACCTCCTTCTCTGTAG 

RM171 10 (GATG)5 
f AACGCGAGGACACGTACTTAC 

55 
r ACGAGATACGTACGCCTTTG 

RM552 11 (TAT)13 
f CGCAGTTGTGGATTTCAGTG 

55 
r TGCTCAACGTTTGACTGTCC 

RM536 11 (CT)16 
f TCTCTCCTCTTGTTTGGCTC 

55 
r ACACACCAACACGACCACAC 

RM19 12 (ATC)10 
f CAAAAACAGAGCAGATGAC 

55 
r CTCAAGATGGACGCCAAGA 

RM277 12 (GA)11 
f CGGTCAAATCATCACCTGAC 

55 
r CAAGGCTTGCAAGGGAAG 
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Table 3. 2. Genetic differentiation (FST) and genetic distance (D) between Oryza sativa subspecies. 

Between O. sativa subspecies Fst D 

indica 

vs 

japonica 0.161** 0.294 

landrace landrace 0.242** 0.218 

improved variety improved variety 0.134** 0.186 

indica indica   

improved variety landrace 0.048** 0.057 

japonica japonica   

improved variety landrace 0.173** 0.268 

Note: ** indicated significant level at P< 0.001 
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Table 3. 3. FST (differentiation), log10 (PO) and Qtl of 4 out of 32 locus detected under indica and 

japonica by Bayescan v 2.1 

No 
Locus 

name 
Chr. FST Log10 (PO) Qtl/function References 

1 RM536 11 0.091 0.945 
qDSR11-2 (dead seedling 

rate) 
Qi et al. (2008) 

2 RM408 6 0.291 -0.759 
qShB6 (sheath bliight 

resistance) 
Jia et al. (2012) 

3 RM552 11 0.29 -0.781 qPS11 (pollen streility) Jing et al. (2006) 

4 RM454 6 0.286 -0.899 
qRsn6 (relative number of 

spikelets per panicle) 
Yue et al. (2006) 
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Table 3. 4. Inbreeding coefficient (Fis and Fst) and gene flow (Nm) between Oryza sativa subspecies 

Population Fis Fst Nm 

Indica and japonica 1* 0.299** 0.585 

Note: ** indicated significant level at P< 0.001, three levels of gene flow in self-pollination crops, high, Nm > 1, 

intermediate, 0.250 < Nm < 0.999; and low, Nm < 0.249 (Govindajaru, 1989)  
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Table 3. 5.  Bayesian estimates of posterior (θ), rate of migration (M) and level of gene flow (Nm) 

calculated by Migrate-n from SSR markers. 

Theta ( ) and direction of migration (M) Mode Range Nm=M.Θ/4 

  indica 0.63 0.12-0.65   

  japonica 0.57 0.06-0.59   

M (japonicaindica) 1.613 0.8-1.64 0.254 

M (indica japonica) 6.653 5.867-6.92 0.948 

Note; three levels of gene flow in self-pollination crops, high, Nm > 1, intermediate, 0.250 < Nm < 0.999; and low, Nm < 

0.249 (Govindajaru, 1989)  
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Table 3. 6. Genetic differentiation (FST) and genetic distance (D) among landrace from different 

source locations in Indonesian rice germplasm. 

Populations FST D 

Improved varieties 

VS 

Bali-Nusa  0.059* 0.076 

 Central-Java  0.082* 0.11 

Kalimantan 0.066* 0.089 

 North-Sumatra 0.058* 0.078 

 South Sulawesi 0.082* 0.119 

 South Sumatra 0.117* 0.163 

 West Java 0.055* 0.079 

Bali-Nusa 

 Central-Java  0.076 0.109 

 Kalimantan  0.071 0.104 

 North-Sumatra  0.046 0.066 

 South Sulawesi 0.077 0.12 

 South Sumatra 0.086 0.121 

 West Java 0.044 0.067 

 Central-Java  

Kalimantan  0.066 0.095 

 North-Sumatra  0.048 0.068 

 South Sulawesi 0.082 0.128 

 South Sumatra 0.087 0.122 

 West Java 0.051 0.079 

 Kalimantan  

 North-Sumatra  0.055 0.082 

 South Sulawesi 0.086 0.141 

 South Sumatra 0.086 0.125 

 West Java 0.036 0.056 

 North-Sumatra  

 South Sulawesi 0.065 0.104 

 South Sumatra 0.082 0.12 

 West Java 0.043 0.069 

 South Sulawesi 
 South Sumatra 0.1 0.157 

 West Java 0.049 0.083 

 South Sumatra  West Java 0.068 0.106 
Note: ** indicated significant level at P< 0.001, * indicated siginificant at level P< 0.01.  
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Table 3. 7. Mean of differentiation among neutral loci (FST) among  

landrace from different source locations. 

Pairwise FST 

West-Java 

VS 

Bali-Nusa 0.075 

Central-Java 0.062 

Kalimantan 0.074 

Sumatra 0.065 

Sulawesi 0.097 

Bali-Nusa 

Central-Java 0.104 

Kalimantan 0.133 

Sumatra 0.105 

Sulawesi 0.118 

Central-Java 

Kalimantan 0.100 

Sumatra 0.079 

Sulawesi 0.114 

Kalimantan 
Sumatra 0.093 

Sulawesi 0.128 

Sumatra Sulawesi 0.103 
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Table 3. 8. Diversity of improved varieties and landrace of Indonesian rice. 

Population N Na H AR PA 
Percentage of 

polymorphism (%) 

Oryza 

sativa 

improved variety 78 3.125 0.647 2.870 0.156 100.00 

landrace 83 3.406 0.816 3.111 0.313 96.88 

O. sativa 161 3.688 0.777 3.413 1.406 100.00 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 3. 9. Diversity of improved varieties and landrace in comparison between subspecies of 

Indonesian rice. 

Population N Na H AR PA 
Percentage of 

polymorphism (%) 

Oryza 

sativa 

indica improved 

varieties 
68 3.031 0.596 2.726 0.094 100.00 

indica landrace 60 3.156 0.695 2.853 0.188 93.75 

japonica improved 

varieties 
8 2.281 0.623 2.009 0.000 81.25 

japonica landrace 16 2.313 0.556 1.972 0.063 87.50 

O. sativa 152 3.625 0.765 3.360 1.375 100 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 3. 10. Diversity among taxa of Indonesian rice and in comparison between from different 

source locations. 

Population N Na H AR PA 
Percentage of 

polymorphism (%) 

Oryza 

sativa 

Improved variety 76 3.125 0.646 2.114 0.156 100.00 

Bali-Nusa 8 2.469 0.655 2.020 0.000 87.50 

Central-Java 8 2.281 0.619 1.869 0.031 87.50 

Kalimantan 8 2.406 0.662 2.081 0.000 87.50 

North-Sumatra 12 2.656 0.694 2.274 0.125 84.38 

Sulawesi 8 2.313 0.673 2.057 0.000 90.63 

South Sumatra 6 2.219 0.605 1.943 0.000 78.13 

West Java 26 2.844 0.763 2.568 0.063 96.88% 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 3. 11. Diversity of Indonesian germplasm in comparison between landrace from different 

source locations (indica only). 

Population N Na H AR PA 
Percentage of 

polymorphism 

Bali-Nusa 7 2.219 0.565 1.884 0.000 0.781 

Central-Java 7 2.000 0.508 1.640 0.000 0.688 

Kalimantan 7 2.219 0.590 1.914 0.000 0.781 

North-Sumatra 12 2.656 0.694 2.274 0.125 0.844 

Sulawesi 5 1.844 0.451 1.652 0.000 0.625 

South Sumatra 5 1.938 0.500 1.724 0.000 0.656 

West Java 17 2.375 0.552 2.115 0.031 0.813 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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4. Diversification and differentiation of Indonesian rice landrace and improved varieties 

as revealed by SNP markers 

4.1 Introduction 

Single nucleotide polymorphism (SNP) markers have been more frequently used for genetic 

analysis instead of SSR markers (Jenkins and Gibson, 2002). Even though SNPs are less 

polymorphic than SSR markers because of their biallelic nature, scientists and breeders have 

used SNPs due to the potential for each SNP, in which a single copy DNA is a potentially 

useful marker and is efficient to monitor genetic diversity over the whole genome (Ganal et 

al., 2009).    

In recent studies in rice, SNP is used to analyze the origin of domesticated rice. The 

study suggested that O. rufipogon is an ancestor of Asian cultivated rice, O. sativa and has 

high diversity. Also, SNP revealed the diversity and relationships between landrace and 

modern varieties (McNally et al., 2009).  Japanese scientists in National Institute of 

Agrobiological Sciences (NIAS), Japan have developed SNP marker sets to successfully 

differentiate 76 rice varieties into four groups: aus, indica, tropical japonica, and temperate 

japonica. Subspecies japonica comprises temperate japonica and tropical japonica, while 

subspecies indica contains indica and aus as revealed using SSR markers (Garris et al. 2005). 

These SNP markers have been validated by SNP genotyping arrays and the results 

corresponded well to McNally et al., (2009).  The sequences, as well as additional 

information such as chromosome and position within chromosome of these SNP markers can 

be found in their study (Yonemaru et al., 2014). 

In this study, we used these SNP markers because of the advantages for SNP markers 

compared with SSR markers and to clarify the results using SSR markers in Chapter 3. SSR 

markers have the high mutation rate, while less mutation rate in SNP markers. It might cause 

inaccuracies and lack of understanding of gene flow among populations. Also, a high 

mutation rate among polymorphic loci could (mistake) to underestimation of differentiation 

among subpopulation. The numerous alleles and high mutation rate of SSR markers have the 

effect on FST value; even there is no gene flow among populations (Balloux et al. 2000). 

These advantages could also provide an opportunity to identify numerous ‘outliers’ loci under 

selection.  Xu et al. (2012) reported that SNP markers could identify a lot of loci between 

wild relatives and rice landrace population.  Polymorphic loci have been selected during the 

process of domestication of rice. The result could provide valuable information for breeding 
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program. Wild relatives and landrace are becoming important due to genes conferring 

resistance to biotic and abiotic stresses and adaptability (Hawkes, 1991). This fact suggested 

that conserving the genetic resource was important. In this study, we used rice landrace in a 

broad range of locations in Indonesia. Indonesia is an archipelago country in Asia in which 

rice landrace has been maintained and O. rufipogon grows in the main islands. The objective 

of this study is to reveal the differentiation and the main mechanism associated with 

differentiation of Indonesian rice germplasm   

4.2 Materials and methods 

Plant materials 

The total of 200 Indonesian rice varieties consisted of 100 Indonesian landrace and 100 

Indonesian improved cultivars from Indonesia Center for Rice Research, Subang, Indonesia 

(Table 2. 1 and 2. 2).  

DNA isolation and SNP genotyping 

Plants were grown in nursery boxes in a greenhouse at the University of Tsukuba, Japan, and 

leaf samples were harvested from a single 30-day-old plant of each cultivar. Leaf samples 

were crushed in a crusher with a zirconium ball in micro-tubes (2 mL), and DNA was 

isolated using a modified cetyl trimethylammonium bromide (CTAB) method (McCouch et 

al., 1988).   

Total genomic DNA isolated from fresh leaf tissue of one plant per genotype was 

quantified and diluted to 50 ng/µL in sterile 10 mM Tris-HCl, pH 8.0, 1.0 mM EDTA, pH 8.0 

(TE). Allele-specific oligonucleotide hybridization used 5 µL of single-use template genomic 

DNA (50 ng/µL) of each genotype. In this study, we used 768 SNP markers. These SNP 

markers were designed by Yonemaru et al. (2014).  Template DNA and a negative control 

(water) were mixed with 768 different SNPs. The PCR conditions were 10 min at 37°C, then 

3 min at 95°C, followed by 34 cycles of 35 s at 95°C, 35 s at 56°C, and 2 min at 72°C, 

followed by a final extension at 72°C for 10 min. These SNP markers were genotyped in 200 

genotypes using the Golden Gate Bead Array technology platform (Illumina, San Diego, CA) 

and we followed the manufacturer’s instructions in all experimental procedures for SNP 

genotyping. Of the 200 DNA samples, 83 landrace and 78 improved varieties provided 

enough data (<15% missing) to use.  Admixtures varieties (C type) were omitted from further 

calculation (Table 4. 12 and 4. 13).   

Data analysis 
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The molecular marker data were analysed in DARwin 5 (Perrier and Jacquemoud-Collet, 

2006), GenAlEx 6.5 (Peakall and Smouse, 2006), Migrate-n (Beerli and Palczewski, 2010) 

and Bayescan v 2.1 (Foll and Gaggiotti, 2008) software. 

DARwin 5 was used to calculate NJ trees based on genetic distance using 1000 

bootstrap. GenAlEx 6.5 was used to calculate the number of alleles per locus (Na), number of 

effective alleles (Ne), percentage of polymorphism (P), gene diversity (H; Shannon, 1948) 

and alleleic richness (Pettitt et al. 1998). Significance of the inbreeding coefficients within 

subpopulation (Fis) and among subpopulations (Fst) per locus was tested using 999 

permutations (Wright, 1978), gene flow (Nm) by formula (1 – FST)/4 (Wright, 1951), genetic 

distance (D) between populations (indica and japonica) (Nei, 1972), and genetic 

differentiation (FST; Nei, 1973) using 999 permutations.   

Migrate-n was used to calculate direction pattern of gene flow (Nm) by estimating 

posterior distribution mean (θ = 4 Neµ, Ne is the effective population size and µ is the 

mutation rate per site per generation), migration rate (M = m/µ, where m is the rate of 

migration for each locus) and formula (Nm = M θ/4) was used to estimate gene flow (number 

of migrants per generation). We run this software for SNP markers, the uniform priors were 

placed on θ from 0 to 0.006 and M from 0 to 5000 by Bayesian inference strategy for 

Hapmap data (SNP model) and starting parameters for migrant value and θ were generated 

from few trials. For Markov chain setting, 1000 steps were recorded and followed by 20 

sample increments and 10000 burns-in for each chain.  

Bayescan v.2.1 software was used to calculate differentiation among neutral locus 

(FST) and also this software was used to detect candidate loci for divergence based on NJ 

tree, in which outlier loci generated by this software were signs of natural selection. The 

evidence of selection in the range 0.5 < log10 (PO) < 1 is substantial, strong if 1< log10 (PO) 

<1.5 and very strong if 1.5 < log10 (PO) < 2 as explained on manual of this software. In this 

study, we calculated Fis, Fst, neutral locus (FST), direction of migration and gene flow using 

O. sativa (landrace).  Improved varieties were excluded from calculation because of 

complexity in crossing during breeding history to develop new varieties. . 

As landrace in Indonesia could be divided by source locations, we calculated mean of 

differentiation among neutral locus (FST) in pairwise between different source locations of 

landrace using Bayescan v. 2.1. These results were compared with mean of phenotypic 

divergence based on morphological traits (Qst).  
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4.3 Results 

Genetic structure of Indonesian rice   

Genetic structure analysis in Indonesian rice germplasm using 768 SNP markers divided 

Indonesian rice into two major groups, indica and japonica as refer to varieties control. We 

call the group involving PB5 and IR36 as indica and the group involving Kartuna as japonica. 

One variety was located in the centre of NJ tree and we call this variety as C type (Figure 4. 

1). SNP markers categorized 88.5% as indica, 11% as japonica and 0.5% as C type (Figure 4. 

1).  Indonesian landrace was divided into three groups, indica landrace type I, II and japonica 

group (Figure 4. 2, Table 4. 12). The clustering showed that improved varieties differentiated 

from landrace and were  divided into 6 groups, IR36 type, IR48 type, IR5 type, IR64 type, 

IR66 type, x type and japonica groups (Figure 4. 3, Table 4. 13). In addition, we found C 

type involving one landrace and two improved varieties when we performed clustering using 

each population 

The significant differentiation (FST) and high value of genetic distance (D) based on 

Nei’s calculation were observed between indica and japonica and among  all pairwise 

comparisons. The FST and D between improved indica variety and indica landrace were the 

lowest (0.054; 0.020), while FST and D between indica landrace and improved japonica 

varieties were the highest (0.517; 0.444) (Table 4. 1). 

Outliers based on the differentiation of indica and japonica by NJ tree have identified 4 

loci with Log10 (PO) >1 (strong) in the range of FST (0.25-0.89). The pattern of haplotype 

mutation in the three loci under natural selection between indica and japonica with the 

evidences of these loci in the range FST > 0.8 and Log10 (PO) >1 was generated by Bayesian 

method and these loci had different function (Figure 4. 4, Table 4. 2 and Table 4. 3). 

Inbreeding coefficients derived from inbreeding within sub-populations (Fis) and 

inbreeding coefficient from differentiation between sub-populations (Fst) were significantly 

distant from 0 (Table 4. 4). We found the low level of gene flow (Nm) between indica and 

japonica (0.12) according to the level Nm of Govindajaru classification.  Govindajaru (1989) 

classified three levels of gene flow in self-pollination crops, high, Nm > 1, intermediate, 

0.250 < Nm < 0.999; and low, Nm < 0.249). We found that the mode of migration rates (M) 

and gene flow (Nm) based on direction from japonica to indica (283.3,  0.123) were  lower 

than M classified as low gene flow and Nm from indica to japonica (3045,  0.990) was 

classified as intermediate  gene flow (Table 4. 5). It seems that the pattern of gene flow 

within cultivated rice was asymmetric.  
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The significant FST and various D values were found in all pairwise comparison 

between improved varieties and landrace from different source locations except between 

improved varieties and landrace from Sulawesi (0.047,  0.024) (Table 4. 6). We found 

significant FST and the highest value of D between landrace from Bali-Nusa and landrace 

from Central-Java (0.141; 0.086) and between Central-Java and North-Sumatra (0.111; 

0.060), while other pairwise comparison showed non-significance for FST (Table 4. 6). 

We found a wide range of mean values of differentiation among neutral loci (FST) in 

comparison with landrace from different source locations using Bayesian method (Table 4. 7). 

The FST values ranged from 0.0005 to 0.247. The comparison between morphological and 

molecular divergence could explain the pattern of natural selection such as directional 

selection (Qst>FST), stabilizing selection and if the Qst=FST, the genetic drift and selection 

could not separate. The result of phenotypic divergence was previously described in Chapter 

2.  

Diversity of Indonesian rice germplasm 

Diversity analysis revealed the percentage of SNP polymorphism (P) was 80% (Table 4.8).  

Shannon’s H and alelleic richness (AR) of landrace (0.39; 1.88) was higher than H and AR of 

improved varieties (0.32; 1.86), while private allele (PA) in improved varieties was higher than 

PA in landrace (0.096; 0.056) (Table 4. 8).  Within landrace, H, AR and PA of japonica (0.214; 

1.378; 0.012) were lower than H, AR and PA of indica (0.233; 1.555; 0.034). In contrast, within 

improved varieties H of japonica (0.360) showed higher than H of indica when AR and PA of 

japonica (1.363; 0.012) showed lower than AR and PA of indica (1.858; 0.057) (Table 4. 9). 

Diversity analysis according to source locations of landrace showed H in landrace from 

Bali-Nusa (0.41) was the highest and H in landrace from Central-Java (0.21) was the lowest.  

Allelic richness (AR) in landrace from West-Java (1.74) was the highest and AR in landrace from 

Central-Java (1.34) was the lowest. We found similar value of private allele on three source 

locations; Kalimantan, North Sumatra and Sulawesi (Table 4. 10). The consisting japonica affects 

diversity, allelic richness and private allele.  H, AR and PA of landrace from Bali-Nusa did not 

show the highest value (0.14) when we excluded the japonica from calculation (Table 4. 11).  

The japonica in each source location was involved (Figure 4. 5). 

4.4 Discussion 

In Indonesian rice landrace, diversity of japonica was lower than indica. This result was 

different from previous study as reported by Thomson et al. (2007) and in agreement with 

Glaszmann (1987) and Li and Rutger (2000).  In contrast, japonica was more diverse than 
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indica in improved varieties. The different result between our study and previous studies is 

due to excluding admixture varieties in japonica group from calculation in this study and 

including them in calculation in previous study by Thomson et al. (2007). Here, we suggested 

that the lower diversity in japonica landrace than indica landrace might be affected by 

selection for particular traits. The other mechanism on decreasing diversity in japonica is 

bottle-neck effects as reported in rice germplasm in Madagascar (Mather et al., 2010) and in 

Asia including Indonesia (Molina et al., 2011). Sun et al. (2001) suggested that effective 

alleles have been lost by natural and human selection and genetic diversity in cultivated rice 

have been gradually decreased. This phenomenon was supported in improved varieties group, 

in which indica was lower diversity than japonica. It indicated that breeding program in 

Indonesia focused on improving indica varieties.  However, alleleic richness of indica in 

improved varieties was increased and it was related to increasing number of private allele. 

This indicated that breeding program generated more alleles but did not affect diversity or 

less number of effective alleles. The result of allelic richness in this study showed the pattern 

of H index corresponded well to allelic richness (AR), suggesting that our results were 

reliable. For example, the pattern of H index and AR in improved indica varieties were 0.25 

and 1.86, while H index and AR in indica landrace were 0.23 and 1.56. These results showed 

that when the H index was high, it (What??) was shown in AR and also that our results were 

reliable even though we used small number of individuals and unbalanced number of 

individuals among population.  The allelic richness and private allele analysis is useful to 

discover diversity when the sample size is small and unbalanced among populations (Foulley 

and Olliver, 2006).  

 The tendency on selection pressure was revealed by molecular markers. The result 

indicated that the continuous use of IRRI varieties as breeding materials caused genetic 

similarities of rice germplasm in Indonesia and it could be clarified by relationship between 

breeding materials and sub-clustering of variety group into 6 groups.  The extensive use of 

elite varieties as breeding materials might cause the decrease of genetic diversity as similarly 

reported in Indian rice by Choudhary et al. (2013) and in Italian rice by Mantegazza et al. 

(2008). 

Inbreeding coefficient through inbreeding within sub-population (Fis) and inbreeding 

coefficient through differentiation between sub-population (Fst) were statistically deviated 

from zero. Even though we found high value of Fis, we also revealed various values of Fst 

which was caused by gene flow (Nm) between sub-population which took place in 
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Indonesian rice germplasm. These results indicated that these sub-populations were deviated 

from the Hardy-Weinberg equilibrium.  According to Govindajaru classification, the ranges 

of Nm in this study were low to intermediate. This study revealed that the pattern of 

migration and gene flow was asymmetric between indica and japonica and japonica received 

more genes from indica. Asymmetric gene flow from donor population to recipient 

population occurred for long period, in particular alleles of the recipient population were 

displaced and alleles of the donor population were replaced, unless there was strong selection 

for donor alleles (Papa and Gepts, 2004).  This evidence supported that appearance of 

admixture varieties in japonica group in this study was due to hybridization. Besides, 

possible reason that might take place low diversity in japonica in Indonesia is due to the gene 

flow. Haygood et al. (2003) reported that the recurrent gene flow could fast replace genes 

even for disfavored crop genes and affect the diversity of recipient crops.  

Two subspecies of Oryza sativa in this study indicated that Indonesian farmers have 

maintained a broad range of O. sativa (landrace germplasm) and extended its diversity during 

the history of rice cropping.  The study of the staple food culture in Southeast Asia reported 

that Indonesian people in Sumatra, Java, Borneo and Celebes has maintained and cultivated 

upland and lowland  rice due  to  very importance of rice for traditional custom and religious 

obligation (Matsuyama, 2009).  

In this study, we identified SNP in Os03t0429800-01 which is a homolog to Xanthine 

dehydrogenase 1 (XDH 1) associated with metabolism under drought in Arabidopsis 

(Watanabe et al., 2010) and SNP in Os04t0504500-01 which is a homolog to protein BABY 

BOOM 1 (BBM 1) that preferentially expresses in developing embryos and seeds in 

Arabidopsis and Brassica (Boutilier et al., 2002).  These results suggested that natural 

variations of SNP in these genes might be related to differentiation between indica and 

japonica in Indonesia by mutation and/or recombination event.  Recent study in rice reported 

that agronomically important genes have been selected between cultivated rice and wild rice 

using Bayesian method to detect potential genes (Xu et al., 2012).   Moreover, the presence of 

these genes has increased genetic diversity in Indonesian rice landrace.  For example, the 

haplotypes A and G in japonica were detected, while only the G haplotype in indica at locus 

ad03009571 wherein this SNP is the homolog to XDH 1. The presence of haplotype A/T in 

japonica, while only T haplotype in indica at locus ad04009074 wherein no information yet 

about the function of this SNP and the haplotype C and T in japonica, while only C haplotype 

in indica at locus P0724 wherein this SNP is homolog to BBM 1. 
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One of other mechanisms on evolution of population as suggested by Hardy-Weinberg 

(1908) is natural selection.  This study discovered that most of phenotypic divergence (Qst) 

values were lower than differentiation among loci under neutral molecular markers (FST). 

Our result indicated that the same genotype was favoured in different populations due to 

stabilizing selection in most of pairwise between landrace from different source locations. 

However, we found higher Qst than FST in pairwise landrace from West-Java and Bali-Nusa 

in most of traits.  These results indicated directional selection between these populations. 

Three scenarios are possible to explain the relation between Qst and FST. First, a higher 

divergence in quantitative traits compared with neutral molecular markers (Qst> FST) 

indicates directional selection among populations. Second, the opposite scenario (Qst < FST) 

suggests that the same genotypes are favoured in different populations due to stabilizing 

selection. Third, if the two measures do not significantly differ, the possibilities of genetic 

drift versus selection cannot be separated (Pertoldi et al., 2012).  These results supported that 

landrace in this study was not differentiated among different source locations.  In addition, 

the differentiation of landrace into three groups, landrace type I, II and japonica indicated 

that the selection pressure caused the appearance of landrace type II without IRRI varieties 

(IR5/PB5 and IR36), suggesting that these varieties are useful for future rice breeding 

program because these landrace showed wide dissimilarity in within group and among the 

landrace type (Figure 4.2).  
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Figure 4. 1. Neighbor- joining tree of Indonesian rice germplasm based on 768 SNP markers.  

LR is landrace and IV is improved varieties  
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Figure 4. 2. Neighbor-joining tree of 83 rice landrace based on 768 SNP markers.  

Circle of dashed line indicates two groups, group indica and japonica which calculated in this study. 

Abbreviations; WJ is West-Java, CJ is Central-Java, BN is Bali-Nusa, KM is Kalimantan, NS is North-

Sumatra, SS is South Sumatra and SLS is Sulawesi. 
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Figure 4. 3.  Neighbor-joining tree of 78 Indonesian improved varieties based on 768 SNP markers. 
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Figure 4. 4. Comparison of SNP haplotypes patterns at 3 loci (Log10 (PO)>0.5) under natural selection 

between indica and japonica (A) and FST vs Log10 (PO) displayed outlier loci based on SNP markers (B). 
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Figure 4. 5.  Percentage of composition varietal group of O. sativa in Indonesian rice germplasm based on 

SNP marker.  
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Table 4. 1.  Genetic differentiation (FST) and genetic distance (D) within and among  

taxa in Indonesian rice germplasm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Between O. sativa subspecies FST D 

indica 

vs 

japonica 0.438 0.398 

landrace landrace 0.517 0.444 

improved variety improved variety 0.364 0.325 

indica 
vs 

indica   

improved variety landrace 0.054 0.02 

japonica 
vs 

japonica   

improved variety landrace 0.112 0.059 
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Table 4. 2. List of outlier loci detected under indica and japonica by Bayescan v 2.1 software. 

No 
Name of 

locus 
Chr. FST 

Log10 

(PO) 
Function Reference 

1 ad03009571 3 0.894 1.519 

Similar to Xanthine 

dehydrogenase 1 (EC 

1.1.1.204) (Os03t0429800-01) 

(chr03:18617619..18630481) 

http://rapdb.dna.affrc.go.jp/      

2 ad04009074 4 0.893 1.461 No 

3 P0724 4 0.891 1.392 

Similar to protein BABY 

BOOM 1 (Os04t0504500-01) 

(chr04:25681455..25685718) 

4 ad04003958 4 
0.264

4 
1.215 No 
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Table 4. 3. Patterns of SNPs showing different haplotype between indica and japonica in Indonesian 

rice landrace according to the high value of FST and Log10 (PO)>1 generated by Bayescan v. 2.1 

software.  

Name of variety Group 

Name of Locus 

ad03009571 ad04009074 P0724 

 (Chr. 3) 

18.628.536bp 

(Chr. 4) 

24.867.463bp 

(Chr. 4) 

25.682.427bp 

Aceh-Aceh 

I n
 d

 i c a
 

G T C 

Angsa Jeletuk G T C 

Are Sera G T C 

Ase Puteh G T C 

Asemandi G T C 

Bandang Bujur G T C 

Beton G T C 

Beurgeum Dadapan G T C 

Bujang Inai G T C 

Bulang G T C 

Bulu Bodas G T C 

Cempo Abang Ner G T C 

Cempo Beluluk G T C 

Cempo Telouluk G T C 

Cere Beureum G T C 

Cere Welut Merah G T C 

Ciburuy 1 G T C 

Daliah Putih G T C 

Deli G T C 

Dusel G T C 

Enud G T C 

Genjah Emer G T C 

Genjah Welut G T C 

Gonggoi G T C 

Jaran Mas G T C 

Jimbruk Joloworo G T C 

Kalingga Rara G T C 

Katik Taram G T C 

Kaya Merah G T C 

Kaya Terabah G T C 

Ketan Bodas G T C 

Ketan Gondil G T C 

Ketan Huma G T C 

Ketan Langgar Sari G T C 

Ketan Wuluh G T C 

Lantiak G T C 

Markos G T C 
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Name of variety Group 

Name of Locus 

ad03009571 ad04009074 P0724 

 (Chr. 3) 

18.628.536bp 

(Chr. 4) 

24.867.463bp 

(Chr. 4) 

25.682.427bp 

Mentik Sleman 

 

G T C 

Mete Kawicho G T C 

Omad G T C 

Osog G T C 

Padi Rabig G T C 

Padi Sibur G T C 

Pandan Wangi 

Cianjur 
G T C 

Pangraman G T C 

Pulut Gaca 

in
d

ica
 

G T C 

Pulut Kutai G T C 

Pulut Pagae G T C  

Pulut Tomene G T C 

Raden Kuning G T C 

Ranggong G T C 

Rauk Neya G T C 

Remaja G T C 

Sabai Kecil G T C 

Saigon G T C 

samek G T C 

Segon Saga G T C 

Sekemiling G T C 

Serepet Tinggi G T C 

Seuweu G T C 

Si Awak G T C 

Sintang Pulau Pisau G T C 

Badik/Gadih Kabalai 

       ja
p

o
n
ica

 

G A T 

Cicih Ijo Gading A A C 

Jidah Bodas G A T 

Ketan Gajih A A T 

Ketan Keuyeup A T/A T 

Kuntu Kuranyi A A C 

Laka A A C 

Nobu Bisara A A T 

Padi Elo G A T 

Pala Idang merah A A T 

Plastik G A T 

Sari Kuning G A T 

Segon Nyonya G A T 

Sepadan G A T 
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Table 4. 4.  Inbreeding coefficient (Fis and Fst) and gene flow (Nm) between subspecies of 

Indonesian rice (Oryza sativa L.). 

Pairwise Fis Fst Nm 

Indica and japonica 0.804* 0.669* 0.124 

Note: * indicated significant level at P< 0.01, Note; three levels of gene flow in self-pollination crops, high, Nm 

> 1, intermediate, 0.250 < Nm < 0.999; and low, Nm < 0.249 (Govindajaru, 1989)  
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Table 4. 5.   Bayesian estimates of posterior (θ), rate of migration (M) and level of gene flow (Nm) 

calculated by Migrate-n from SNP markers. 

Theta ( ) and direction of migration (M) Mode Range Nm=M./4 

 (indica) 0.0017 0.0008-0.00096 

  
 ( japonica) 0.0013 0.0001-0.00030 

M (japonica indica) 288.3 203.3-373.3 0.123 

M (indica  japonica)  3045 2956.7-3126.7 0.990 

Note; three levels of gene flow in self-pollination crops, high, Nm > 1, intermediate, 0.250 < Nm < 

0.999; and low, Nm < 0.249 (Govindajaru, 1989) 
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Table 4. 6.  Genetic differentiation (FST) and genetic distance (D) among landrace from different 

source locations in Indonesian rice germplasm. 

Populations FST D 

Improved varieties  

VS 

Bali-Nusa  0.105** 0.075 

 Central-Java  0.057** 0.023 

 Kalimantan 0.049** 0.025 

 North-Sumatra 0.087** 0.056 

 South Sulawesi 0.047 0.024 

 South Sumatra 0.064** 0.039 

 West Java 0.047** 0.027 

Bali-Nusa  

 Central-Java  0.141** 0.086 

 Kalimantan  0.073 0.049 

 North-Sumatra  0.026 0.019 

 South Sulawesi 0.071 0.049 

 South Sumatra 0.049 0.038 

 West Java 0.044 0.033 

 Central-Java  

 Kalimantan  0.055 0.023 

 North-Sumatra  0.111** 0.06 

 South Sulawesi 0.051 0.021 

 South Sumatra 0.093 0.047 

 West Java 0.054 0.024 

 Kalimantan  

 North-Sumatra  0.048 0.029 

 South Sulawesi 0.024 0.012 

 South Sumatra 0.047 0.028 

 West Java 0.024 0.013 

 North-Sumatra  

 South Sulawesi 0.051 0.032 

 South Sumatra 0.04 0.029 

 West Java 0.03 0.02 

 South Sulawesi 
 South Sumatra 0.049 0.03 

 West Java 0.026 0.015 

 South Sumatra  West Java 0.033 0.022 
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Table 4. 7. Mean of differentiation among neutral loci (FST) among landrace from different source 

locations based on SNP markers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pairwise FST 

West-Java 

VS 

Bali-Nusa 0.002 

Central-Java 0.111 

Kalimantan 0.000 

Sumatra 0.002 

Sulawesi 0.001 

Bali-Nusa 

Central-Java 0.247 

Kalimantan 0.001 

Sumatra 0.001 

Sulawesi 0.039 

Central-Java 

Kalimantan 0.001 

Sumatra 0.008 

Sulawesi 0.118 

Kalimantan 
Sumatra 0.001 

Sulawesi 0.001 

Sumatra Sulawesi 0.007 
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Table 4. 8. Diversity in improved varieties and landrace in Indonesian rice. 

Population N Na H AR PA 
Percentage of 

polymorphism 

Oryza 

sativa 

improved variety 78 1.952 0.320 1.864 0.096 81.38% 

landrace 83 1.935 0.388 1.875 0.059 80.73% 

O. sativa 161 2.046 0.375 1.982 0.969 86.59% 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 4. 9. Diversity between subspecies in comparison landrace and improved varieties. 

Population N Na H AR PA 
Percentage of 

polymorphism 

Oryza 

sativa 

indica improved 

varieties 
70 1.680 0.247 1.859 0.057 59.38% 

indica landrace 62 1.628 0.233 1.555 0.034 55.86% 

japonica improved 

varieties 
6 1.685 0.360 1.363 0.012 64.06% 

japonica landrace 14 1.435 0.214 1.379 0.012 40.76% 

O. sativa 152 2.025 0.368 3.360 0.956 85.68% 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 4. 10.  Diversity between improved varieties  and in comparison between from different source 

location. 

Population N Na H AR PA 
Percentage of 

polymorphism 

Oryza 

sativa 

Improved variety 76 1.949 0.320 1.864 0.098 81.25% 

Bali-Nusa 7 1.706 0.407 1.615 0.003 66.28% 

Central-Java 9 1.406 0.205 1.341 0.004 38.67% 

Kalimantan 9 1.669 0.308 1.544 0.001 63.80% 

North-Sumatra 13 1.716 0.385 1.639 0.001 66.67% 

Sulawesi 8 1.659 0.316 1.538 0.001 61.98% 

South Sumatra 6 1.633 0.326 1.516 0.005 60.55% 

West Java 24 1.828 0.365 1.738 0.010 74.87% 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 4. 11.  Diversity between improved varieties and in comparison between from different source 

location (indica only). 

Population N Na H AR PA 
Percentage of 

polymorphism 

Bali-Nusa 4 1.240 0.142 1.200 0.001 23.18% 

Central-Java 9 1.406 0.205 1.341 0.004 38.67% 

Kalimantan 8 1.392 0.203 1.330 0.003 37.37% 

North-Sumatra 9 1.392 0.191 1.323 0.003 37.89% 

Sulawesi 7 1.358 0.199 1.307 0.001 34.11% 

South Sumatra 5 1.339 0.191 1.283 0.005 32.16% 

West Java 20 1.516 0.227 1.447 0.009 47.27% 

Note: N = number of cultivars, Na = number of alleles, H = Shannon’s diversity index, AR = allelic richness, PA = private 

allele 
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Table 4. 12.  Placement of Indonesian rice landrace based on each neighbor-joining tree using SSR 

and SNP markers. 

No 
Accession 
number 

Name of varieties 
SSR SNP 

Indica japonica C type Indica japonica  C type 

1 498 Aceh-Aceh x     x     

2 2420 Angsa Jeletuk x     x     

3 3779 Are Sera x     x     

4 4676 Ase Puteh* x     x     

5 503 Asemandi   x   x     

6 3882 Badik/Gadih Kabalai* x       x   

7 4669 Bandang Bujur x     x     

8 2860 Beton x     x     

9 1047 Beurgeum Dadapan x     x     

10 538 Bujang Inai x     x     

11 3027 Bulang* x     x     

12 PN06-17 Bulu Bodas x x   x     

13 2600* Cempo Abang Ner* x     x     

14 2386 Cempo Beluluk x     x     

15 2368 Cempo Telouluk ex x     

16 3389* Cere Beureum* x     x     

17 2247 Cere Mentik* x     ex 

18 2347 Cere Welut Merah* x     x     

19 PN06-20 Ciburuy 1*     x x     

20 2548 Cicih Ijo Gading x       x   

21 4707 Daliah Putih ex x     

22 2450 Deli x     x     

23 2352 Dusel* x     x     

24 3385 Enud x     x     

25 1375 Genjah Emer x     x     

26 2365 Genjah Welut* x     x     

27 561 Gonggoi*   x   x     

28 2625 Jaran Mas x     x     

29 1372 Jidah Bodas*   x     x   

30 2779 Jimbruk Joloworo x     x     

31 1827 Kalingga Rara* x     x     

32 2381 Kangkungan* x     ex 

33 3720 Katik Taram* x     x     

34 2813 Kaya Merah x     x     

35 2812 Kaya Terabah x     x     

36 2239 Ketan Bayong x     ex 

37 PN06-39 Ketan Bodas*   x   x     

38 PN06-16 Ketan Gajih*   x     x   

39 3986 Ketan Gondil*   x         

40 4636 Ketan Huma   x   ex 

41 1250 Ketan Keuyeup x       x   

42 4637 Ketan Langgar Sari*   x   x     

43 3978 Kuntu Kuranyi* x     x     

44 611 Laka*   x     x   

45 613 Laka Tesan A* x     x     

46 3100 Lantiak* x       x   

47 3629 Lapang   x   x     

48 3945 Markos x     x     

49 4754 Mencrit Beureum* x     x     
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No 
Accession 

number 
Name of varieties 

SSR SNP 

Indica japonica C type Indica japonica  C type 

50 638 Mentik Sleman* ex x     

51 1829 Mete Kawicho* ex x     

52 1816 Nobu Bisara* x       x   

53 1418 Omad x     x     

54 PN06-28 Osog*   x   x     

55 3031 Padi Elo* x       x   

56 2287 Padi Rabig x     x     

57 3741 Padi Sibur x     x     

58 4714 Pajar x     ex 

59 2776 Pala Idang merah* ex x     

60 1596 
Pandan Wangi (leher 

II)* 
  x       x 

61 668 Pandan Wangi Cianjur* x     x     

62 2876 Pangraman x     x     

63 4614 Plastik*   x     x   

64 2865 Pulut Gaca x     x     

65 4616 Pulut Kutai x     x     

66 3030 Pulut Pagae* x     x     

67 683 Pulut Tomene x     x     

68 3934 Raden Kuning ex x     

69 3958 Ranggong* x     x     

70 1319 Rauk Neya* x     x     

71 2596 Remaja x     x     

72 4609 Sabai Kecil* x     x     

73 3466 Saigon x     x     

74 3890 Samek* x     x     

75 1015 Sari Kuning   x     x   

76 1430 Segon Nyonya x       x   

77 1541 Segon Saga* x     x     

78 4010 Sekemiling x     x     

79 4018 Sepadan x       x   

80 3928 Serepet Tinggi* ex x     

81 4635 Seuweu*   x   x     

82 4685 Si Awak ex x     

83 1800 Sintang Pulau Pisau     x x     
Note: “ex” = excluded from calculation, * = varieties could reach reproductive phase in 2009 and 2010 
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Table 4. 13.   Placement of varieties in relationship between cross combinations, breeding materials 

and clustering based on morphological traits and DNA markers. 

No 
Name of 

varieties 

Cross 

combinations 

Breeding 

materials 

Year of 

release 

Morphology DNA markers 

2009 2010 SSR SNP 

1 Bengawan Cina/Latisail   1943 A A japonica japonica 

2 Remaja 
Baiang/Cina//Cina/

Latisail 
  1954 A A 

IR5, IR66 

and IR70 

IR5 and 

IR65 

3 
Seratus 

Malam 
Lampung   1960 B B IR48 

IR5 and 

IR65 

4 Kartuna 
Introduction from 

Philipine 
  1963 A A japonica japonica 

5 Synta Sigadis/Bengawan   1963 A A 
IR5, IR66 

and IR70 

IR5 and 

IR65  

6 PB5/IR5 Tangkai Rotan/Peta   1967 B B     

7 Dewi Ratih 
22-BC III-20-2 / 

Randah Cupak 
DGWG 1969 A A japonica japonica 

8 Gata 
Shorth 

Sigadis/Syntha 
DGWG 1976 B B 

IR5, IR66 

and IR70 

IR5 and 

IR65 

9 Gemar Jerak/IR8 IR8 1976 B B IR36 IR36 

10 Asahan IR 2042/CR 94-13 IR8 1978 B B 
IR5, IR66 

and IR70 

IR5 and 

IR65 

11 IR36 IR 2042/CR 94-13 IR8 1978 B B     

12 IR42 IR 2042/CR 94-13 IR8 1980 A B     

13 Barito Pelita I-1/B 2393 
IR5 and 

IR8 
1981 B A IR36 

Other 

group II 

14 Cipunagara Unknown Unknown 1981 B B IR36 
IR5 and 

IR65 

15 
Krueng 

Aceh 
Pelita I-1/B2709 

IR5 and 

IR8 
1981 B B IR36 IR36 

16 Atomita 2 mutation of Pelita I-1 IR5 1983 B B 
IR5, IR66 

and IR70 

IR5 and 

IR65 

17 Bahbolon 
IR 14431/IR 2307-

64-22 
IR8 1983 B B 

Other 

group 
IR36 

18 Citanduy IR 5236/IR 5338 IR8 1983 B B 
IR5, IR66 

and IR70 
IR36 

19 Mahakam Pelita I-2/t442-36 IR5 1983 B A 
IR5, IR66 

and IR70 

IR5 and 

IR65 

20 Sadang 
B 459 B-PN-132-9-

3/IR 2071-588-5-6 
IR8 1983 A B IR36 

IR64, 

IR42, 

IR70 

21 Singkarak C22/IR36 
IR36 and 

IR8 
1983 A B 

Other 

group 
IR36 

22 
Batang 

Ombilin 

Kuning 

Galung/IR28 
IR8 1984 A A IR36 

IR5 and 

IR65 

23 Kapuas Pelita I-1/B 2709 
IR5 and 

IR8 
1984 A A 

IR64 and 

IR42 

IR64, 

IR42, 

IR70 

24 Bahbutong C 4-63 GB/PTB 33   1985 B B 
IR64 and 

IR42 

IR5 and 

IR65 
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No 
Name of 

varieties 

Cross 

combinations 

Breeding 

materials 

Year of 

release 

Morphology DNA markers 

2009 2010 SSR SNP 

25 Cisanggarung 
Pelita I-1/B 3063-

2/Pelita I-2//IR36 

IR5 and 

IR8 
1985 B B IR36 

IR64, 

IR42, 

IR70 

26 Cisokan IR36/Pelita I-1 
IR5 and 

IR8 
1985 A B 

IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

27 Maninjau 

B 173 C-PN-24/B 

57 C-MD-3-

3/Tabente Mainti 

IR8 and 

Syntha 
1985 B A IR48 

IR5 and 

IR65  

28 IR48 
IR 4125/IR 2055-

481-2 
IR8 1986 B B     

29 IR64 
IR 5236/IR 5657-

33-2-1 
IR8 1986 B B     

30 IR65 IR 17584/IR 52 
IR36 and 

IR8 
1986 B A     

31 Dodokan 
IR 25509/IR 9129-

209-2-2-2-1 

IR36 and 

IR8 
1987 B B IR36 

IR5 and 

IR65 

32 Batur 
IR 3380-13-17/IR 

5853-162-1-2-3 
IR8 1988 A B IR36 IR66 

33 Ciliwung 
IR 38/2+Pelita I-

1/IR 4744 

IR5 and 

IR8 
1988 B B 

IR5, IR66 

and IR70 
IR66 

34 Danau Atas Lampung   1988 A A IR36 japonica 

35 
Batang 

Sumani 
IR 22657/IR36 

IR36 and 

IR8 
1989 A B 

IR5, IR66 

and IR70 

IR5 and 

IR65 

36 IR66 

IR 13240-108-2-2-

3/IR 9129-209-2-2-

2-1 

IR36 and 

IR8 
1989 B B  japonica   

37 IR70 
IR 25604/IR9828-

36-3 

IR36 and 

IR8 
1989 B B IR36   

38 Lusi 

Pelita I-1//IR 4744-

128-4-1-2/PelitaI-

1/IR38 

IR5 and 

IR8 
1989 A B 

IR5, IR66 

and IR70 
IR66 

39 
Way 

Seputih 
Cisadane/IR36 

IR5 and 

IR8 
1989 B B 

IR5, IR66 

and IR70 

IR5 and 

IR65 

40 Barumun 
IR 17496/IR 3403-

267-1 
IR8 1991 B B IR36 IR36 

41 Cenranae IR5/BR 3 
IR5 and 

IR8 
1991 A B 

IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

42 Situgintung 
mutation of Seratus 

Malam 
  1992 A B 

IR5, IR66 

and IR70 

Other 

group 

43 
Bengawan 

Solo 

Bahbutong/Bogowo

nto 

IR5, IR8 

and IR36 
1993 B B 

IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

44 
Gajah 

Mungkur 

IRAT 13/ Dourado 

Precoce 

Zaire 

variety 
1994 B B  japonica 

IR5 and 

IR65 

No Name of Cross Breeding Year of Morphology DNA markers 
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varieties combinations materials release 2009 2010 SSR SNP 

45 Jatiluhur Tox1011/Ranau IR8 1994 A A IR48 
IR5 and 

IR65 

46 Kalimutu IAC 1246/Tainan 5 
Japanese 

rice 
1994 A B  japonica 

IR64, 

IR42, 

IR70 

47 Memberamo 
B 6555 B-199-

40/Barumun 
IR8 1995 B A 

IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

48 Cilosari SM 268-PSJ/IR36 
IR8 and 

IR36 
1996 A B IR36 IR48 

49 Cirata 

IR 9129-159-

3/2+IR5975-

Sel/IR5975-Sel 

IR8 1996 B B IR36 IR48 

50 Digul 
IR 19661-131-1-3-1-

3/IR 19661/IR64 
IR64 1996 B B IR36 

IR5 and 

IR65 

51 Banyuasin Kelara/Cisadane IR5 and IR8 1997 A B 
IR5, IR66 

and IR70 
japonica 

52 Lalan 
Barito/IR54/IR 

9575/IR 54 
IR5 and IR8 1997 A A  japonica 

IR5 and 

IR65  

53 
Way Apo 

Buru 

IR64/IR 18349-53-

1-3-1-3/2+IR 

19661-131-3-1-3 

IR8, IR42, 

and IR64   
1998 B B IR36 IR36 

54 Batanghari 
Cisadane/IR 19661-

131-1-3-1-3 
IR5 and IR8 1999 B B 

IR5, IR66 

and IR70 

Other 

group 

55 Dendang Osok/IR 5657-33-2 IR8 1999 B B IR36 
IR5 and 

IR65 

56 Ketonggo 

B 4183 E-KP-1/B 

4183 E-KP-1/IR 

28224-Sel 

IR8 1999 B B 
IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

57 Limboto 
Papah 

Aren/IR36/Dogo 

IR8 and 

IR36 
1999 B B IR48 

IR5 and 

IR65 

58 Towuti 

S 499 B-

28/Carreon//IR64/IR6

4 

IR64 and 

IR8 
1999 B B 

IR5, IR66 

and IR70 

Other 

group 

59 Ciherang 

IR64/IR 18349-53-

1-3-1-3/2+IR 

19661-131-3-1-3 

IR8 and 

IR64 
2000 B B IR36 

IR64, 

IR42, 

IR70 

60 Cisantana 
IR64/IR 54742-1-

19-11-8 

IR8 and 

IR64 
2000 B B 

IR5, IR66 

and IR70 
IR36 

61 Indaragiri 

B 6256-MR-3-

5/Barumun//Rojole

le/IR 68 

IR8 2000 B A 
IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

62 Punggur 
BKNFR 76106-

16/Kapuas 

IR5 and 

IR8 
2000 A A 

IR5, IR66 

and IR70 

IR5 and 

IR65 

63 
Tukad 

Balian 

IR 48613-54-3-3-

1/IR 28239-94-2-3-

6-2 

IR36 and 

IR8 
2000 A B 

IR64 and 

IR42 
IR36 

64 Tukad Unda IR 66701/IR64 
IR64 and 

IR8 
2000 B B 

IR5, IR66 

and IR70 

IR64, 

IR42, 

IR70 

No Name of Cross Breeding Year of Morphology DNA markers 
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varieties combinations materials release 2009 2010 SSR SNP 

65 Angke IR 64(6)/IRBB5 
IR64 and 

IR8 
2001 B B IR36 IR36 

66 Batutegi 
B 6876 B-MR10/B 

6128 B-TB-15 
Unknown 2001 A A IR36 IR48 

67 Ciujung 
IR64/RP 1837-715-

3-2 

IR8 and 

IR64 
2001 B B IR36 

IR64, 

IR42, 

IR70 

68 Conde 
IR64+3/IRBB 

7/IR64 

IR8 and 

IR64 
2001 B B 

IR64 and 

IR42 

Other 

group 

69 
Danau 

Gaung 

ARC 10372/B 

6135/Way Rarem 
IR8 2001 A A IR48 

IR5 and 

IR65  

70 Konawe 

S 487 B-75/IR 

19661//IR-131-3-

1///IR64 

IR64 and 

IR8 
2001 B B IR36 

IR5 and 

IR65 

71 Lambur 
Cisadane/IR 9884-

54-3 

IR8 and 

IR5 
2001 B B 

IR5, IR66 

and IR70 

IR5 and 

IR65  

72 
Situ 

Patenggang 

Kartuna/TB 47 H-

MR-10 

IR36 and 

IR8 
2002 A B 

IR5, IR66 

and IR70 
japonica 

73 Situbagendit Batur/S 2823 A 
IR64 and 

IR8 
2002 B B 

IR5, IR66 

and IR70 
IR36 

74 
Batang 

Piaman 

IR25393-

57/RD203//IR2731

6-96/// 

SPLR7735/SPLR27

92 

IR8 and 

IR20 
2003 A B 

IR5, IR66 

and IR70 
IR48 

75 Ciapus 

Memberamo/IR 

66154-52-1-2-

2/Memberamo 

IR8 and 

IR24 
2003 A A IR36 

IR5 and 

IR65  

76 Cibogo 

S 487 B-75/IR 

19661//IR 19661-

131-3-

1///IR64/IR64 

IR8 and 

IR64 
2003 B B IR36 

IR64, 

IR42, 

IR70 

77 Cigeulis 
Ciliiwung/Cikapun

dung/IR64 

IR5, IR8 

and IR64 
2003 B B IR36 

IR5 and 

IR65  

78 Fatmawati 
Maros/BP68-MR-4-

3-2 

IR64 and 

IR8 
2003 A B 

IR64 and 

IR42 

Other 

group  

Note: Font A and B indicated group by morphological traits (Figs 2. 2 and 2. 3) and clustering of DNA markers (SSRs and 

SNPs) based on NJ-tree (Figs 3. 1 and 4. 3). The cross combination and breeding material in this table are according to the 

online data provided by IRRI ((http://www.iris.irri.org/). 
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5. General discussion 

In the present study, landrace showed more diverse than improved varieties in some 

particular traits, indicating Indonesian farmers have maintained landrace diversity.  However, 

according to two groups based on hierarchical and PCA, most of the improved varieties were 

smaller in size than landrace. The varieties developed after the introduction of the IRRI 

varieties as breeding materials belong to this group. It seems that a semi-dwarf variety with 

high yield potential became common for Indonesian rice varieties. Reduced plant stature is a 

target trait of improved rice cultivars, and most of the released varieties had a semi-dwarf1 

(sd1) gene that came from the Dee-gee-woo-gen variety (Hargrove et al., 1988). A recessive 

semi dwarf1 (sd1) gene was used for IR8 (Sasaki et al. 2002). However, we still found some 

varieties that were large in size (tall stature) and these varieties were released in the first stage 

of breeding program without use of IRRI varieties. However, some varieties developed using 

IRRI varieties as breeding materials showed tall stature in the different time of cultivation 

and strong sensitivity to micro-environmental changes.  

The results of diversification and differentiation in Indonesian rice (O. sativa L.) using 

morphological traits corresponded well to the results using DNA markers, in which the 

results indicated that Indonesian farmers have maintained a broad range of rice landrace (O. 

sativa L.) germplasm and extended its diversity during the history of rice cropping. The most 

accessions were indica, followed by japonica and C type as unclassified into two major 

groups. This result corresponded well to previous studies (Khush et al., 2003; Thomson et al., 

2007), in which showed that japonica was less than indica in Indonesian rice germplasm. 

Glutinous and awned rice varieties were involved in japonica by SSR markers as the same 

results as those reported by Thomson et al. (2009).  Iskandar and Ellen (1999) reported that 

cultural practices by people in Java Island served to maintain landrace for traditional, 

religious and cultural uses. Similar results reported that the genetic diversity of landrace has 

also maintained by cultural practices in Kalimantan (Thomson et al. 2009). In this study, 

lower diversity in japonica than indica was confirmed by two kinds of markers, SSR and 

SNP.  This result was different from previous study as reported by Thomson et al. (2007) and 

in agreement with Glaszmann (1987) and Li and Rutger (2000).  The disagreement with 

previous study is due to admixture varieties excluded from japonica diversity calculation.  

We suggested that the lower diversity and less number of effective alleles (Ne) in japonica 

than indica might be affected by selection for particular traits in rice landrace. For example, 

our previous study indicated that selection for seed shattering contributed to differentiation 

between indica and japonica, in which japonica was poorer (Muhamad and Okuno 2013). 
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This selection contributed to allelic difference as revealed by positive correlation between 

differentiation using shattering traits and SSR markers. The revealed limited asymmetric gene 

flow between indica and japonica in this study is one of the evidence that gene flow may 

play a role in diversification and differentiation between these two subspecies and probably 

this mechanism was caused by the presence of few admixture varieties as C type.   The raw 

data of SNP marker at SNP ad01011668 on chromosome 1 showed that the C type has the 

heterozygous allele (A/G) while the other varieties have either allele A or G. The probable 

reason of limited gene flow between two subspecies is due to the different ecological 

environments in Indonesia;  japonica rice involving glutinous rice (Beras Ketan) is 

commonly cultivated in highlands (>500m from sea level) by swidden practice, 

whereas indica rice is cultivated in lowlands (Marten, 1990; Tanaka, 1997; Iskandar and 

Ellen, 1999).  In this study we suggested that these conditions were associated with the 

differentiation between indica and japonica in Indonesia.  In addition, the outlier’s loci found 

by both markers suggested that natural variations might affect differentiation between indica 

and japonica in Indonesia and be caused by mutation and/or recombination in haplotype, 

probably due to the cultivation under different environments between indica and japonica as 

explained above. 

The other mechanism decreasing diversity in japonica is bottle-neck effects as reported 

in Madagascar (Mather et al., 2010) and Asia including Indonesia (Molina et al., 2011). Sun 

et al. (2001) suggested that effective alleles have been lost by natural and human selection 

and genetic diversity in cultivated rice have been gradually decreased.   

Hardy-Weinberg suggested that one of important mechanisms on evolution in the term 

of differentiation among population is natural selection.  Our result indicated that the same 

genotype are favoured in different populations due to stabilizing selection in most of pairwise 

between landrace from different source locations  by value of Qst<FST.  This explained the 

reason why Indonesian landrace was not differentiated based on source locations of landrace.  

Molecular analysis provided evidence that a few improved varieties are japonica, but 

previous study in Indonesian rice germplasm reported that japonica varieties were not found 

in their samples (Thomson et al., 2007).  Our results indicated that Indonesian breeding 

program focused on high-yielding irrigated rice varieties, which are largely indica, rather 

than upland varieties, which tend to be japonica. This assumption was supported by extensive 

use of IRRI varieties as breeding materials and was shown by clustering in the indica group, 

41.4% by SSRs and 31.7% by SNPs based on pedigree information. In improved varieties, 



 

85 

the lower diversity in indica compared with japonica was revealed by both markers and also 

supported by the fact that Indonesian breeders focused on improving indica rather than 

japonica.  Changes in allelic frequency occur in response to selection (Vieira et al., 2013). 

When a gene is subjected to selection pressure by breeder, its frequency changes from parent 

to progeny, thus allelic frequency in the progeny is variable depending on the differential 

effect of selection on parental allelic frequency (Staub, 1994) 

Correlation between morphological traits in two years, between two kinds of DNA 

markers and between morphological traits and DNA markers 

Disagreement between SSR and SNP markers was attributed to the greater information 

content of SSR markers and characteristics of markers. Even though we changed the missing 

allele into the third allele in this study, the percentage of polymorphism based on SNP 

markers was lower than SSR markers. The greater diversification using SSR markers than 

SNP markers was also reported in maize (Hamblin et al., 2007), rice (Singh et al., 2013) and 

grape (Emanuelli et al., 2013) and they required  to increase number of SNP markers to make 

equal information provided by SSR marker.  The reason is that SNP marker is bialleleic and 

SSR marker is multialleic (Rafalski, 2002).   

This evidence was showed by slightly positive correlations r (0.13) between SSR and 

SNP markers (Figure 5. 1 and Table 5. 1). Furthermore, the positive correlation r (0.35 v. 

0.06 in 2009 and 0.19 v. 0.18) between morphological and molecular data depended on the 

kinds of molecular markers. Also, this fact could be also due to the different properties of 

these two markers, although we changed the missing allele in the SNP data to the third allele. 

The slightly positive correlation in this study could be also caused by morphological traits 

associated with a relatively small number of loci, thus the potential difference could be lost in 

the analysis of large amounts of molecular data as suggested by Diederichsen, (2009).  

Besides, the weak correlation in 2 years indicated that evaluation of genetic relationships 

using molecular markers includes difficulties with respect to the effects of different 

management practices and different environments and it was shown by intermediate 

correlation r (0. 58) between morphological traits caused by environmental changes.   

We concluded that gene flow between Oryza sativa subspecies caused the presence of 

type C varieties which could not be grouped into two major groups of cultivated rice. This 

phenomenon may play roles in diversification and differentiation between populations in 

Indonesian rice. Besides, the same genotypes are favoured in different populations due to 
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stabilizing selection during adaptation and this evidence may explain the pattern of 

differentiation in Indonesian rice germplasm. Furthermore, in this study we identified several 

candidate genes that may have been selected during the adaptation of the two cultivated 

subspecies. The further research on these genes in rice is needed to clarify the association 

with adaptation.   

Consequences for maintaining germplasm, genomics and plant breeding  

These findings have consequences for applied maintenance of germplasm, plant breeding and 

genomics approaches. Isolation during maintenance of Oryza sativa, within subspecies of O. 

sativa is important to avoid loss of diversity. Genetic relationships are often the basis of the 

choice of breeding materials for crop improvement strategies and for the design of 

experimental cross combinations. Most of useful landrace were distant from improved 

varieties in rice breeding. The breeders may select for lines to be crossed based on molecular 

marker data and data on important morphological traits. Therefore, additional researches are 

required to develop and assess the better marker type on captures of the variation in each 

subspecies.  So in the end, the molecular markers could be used to track loci which are 

associated with the important agronomic traits as marker assisted selection (MAS). To be 

effective, the markers closely linked to the target locus should be developed based on the 

association between genotying and phenotyping data.   For example, through association 

mapping,   marker sets by scanning whole genome regions are important. Often, association 

mapping required a large number of markers for genotyping and the number of markers 

depends on large part of the genome size and the expected linkage disequilibrium decay.  
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Euclidean (SSR vs SNP)

SSR 
0.04 0.23 0.43 0.62 0.82

SNP

0.00 

0.13 

0.27 

0.40 

0.54 
Euclidean (SSR vs Morph. 2009)

SSR
0.07 0.26 0.45 0.64 0.83

Morph. 2009

2.70 

43.92 

85.13 

126.35 

167.56 

Euclidean (SNP vs Morph. 2010)

SNP

0.00 0.13 0.27 0.40 0.54

Morph. 2010

1.66 

40.28 

78.90 

117.53 

156.15 

Euclidean (Morph. 2009 vs 2010)

Morph. 2009
2.70 42.36 82.02 121.68 161.34

Morph. 2010

1.66 

40.28 

78.90 

117.53 

156.15 

Euclidean (SSR vs Morph. 2010)

SSR

0.07 0.24 0.41 0.59 0.76

Morph. 2010

1.66 

40.28 

78.90 

117.53 

156.15 

Euclidean (SNP vs Morpho. 2009)

SNP
0.01 0.14 0.27 0.40 0.54

Morpho. 2009

2.70 

43.92 

85.13 

126.35 

167.56 

Figure 5. 1. Correlation between Euclidean distance (molecular vs molecular, morphological vs 

morphological and molecular vs morphological) in Indonesian varieties. 
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Table 5. 1. Correlation (r) between genetic similarities using different approach. 

Pairwise of genetic similarity Mantel's test (r)   

Morphology vs Morphology 

2009 vs 2010 0.577 

Morphology vs molecular 

2009 

Morphology vs SSR 0.349 

Morphology vs SNP 0.062 

2010 

Morphology vs SSR 0.185 

Morphology vs SNP 0.177 

Molecular vs molecular 

SSR vs SNP marker 0.125 
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Summary 

The previous study of diversity in Indonesian rice revealed that Indonesian rice landrace is 

higher than improved variety. However, there is no study to clarify how Indonesian rice 

germplasm has diversified and differentiated.  Therefore, the objectives of the present study 

were to reveal diversification and differentiation of Indonesian rice germplasm and the 

possible mechanism of diversification and differentiation of Indonesian rice germplasm using 

morphological traits and DNA markers. The ten important morphological traits were 

measured such as plant height, culm length, panicle length, length and width of leaf, length 

and width of flag leaf, length of sheath leaf, angel of flag leaf and heading date.  F test, 

coefficient variation (CV), dendrogram by Wards methods, PCA and bi-plot PCA were 

calculated using JMP ver. 5.1 software and phenotypic divergence (Qst) using Modicos 

software. The 32 SSR and 768 SNP markers as DNA marker was used to examine the 

diversity index (Shannon H), differentiation (FST) and genetic distance (D) gene flow (Nm) 

and direction of Nm, neighbour joining tree and also differentiation among neutral loci  (FST) 

using several software such DARwin 5, Migrate-n and Bayescan v. 2.1.  

 

インドネシア米の多様性に関するこれまでの研究は、インドネシアの米の土地は改良品種よ

りも高いことを明らかにした。しかし、インドネシアの米生殖質がどのように多様化・差別

化しているかを明らかにする研究はない。したがって、本研究の目的は、形態学的形質およ

び DNA マーカーを用いたインドネシアのイネ生殖質の多様化および分化ならびにインドネ

シアのイネ生殖細胞の多様化および分化の可能なメカニズムを明らかにすることであった。

植物の高さ、稈長、穂の長さ、葉の長さと幅、葉の長さと幅、葉の葉の長さ、葉の葉の葉の

長さと幅などの 10の重要な形態学的形質を測定した。 Fテスト、係数変動（CV）、Wards

法による樹状図、PCAおよびバイプロット PCAを JMP verを用いて算出した。 

 

多様性指数（Shannon H）、分化（FST）および遺伝子距離（D）遺伝子フロー（Nm）お

よび Nm の方向、隣接する樹木の樹木および中性細胞の分化を調べるために、32 個の SSR

マーカーおよび 768個の SNPマーカーを DNAマーカーとして用いた DARwin 5、Migrate-

nおよび Bayescan v.2.1のようないくつかのソフトウェアを使用して、遺伝子座（FST） 
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In the present study, landrace showed more diverse than improved varieties in some 

of particular traits, suggesting that Indonesian farmers have maintained landrace diversity.  

However, hierarchical and PCA analysis indicated that most of the improved varieties were 

smaller in size than landrace. The varieties released after the introduction of the IRRI as 

breeding materials belong to this group. It seems that a semi-dwarf variety with high yield 

potential became common for Indonesian rice varieties. The finding showed that some 

varieties have been developed using IRRI varieties as breeding materials and preferential 

selection for tall stature has been conducted in the different time of cultivation. These 

varieties were very sensitive to micro-environmental changes.  

 

現在の研究では、土地棚は特定の形質のいくつかの品種改良より多様性を示し、イ

ンドネシアの農家が土地の多様性を維持していることを示唆している。 しかしながら、階

層的および PCA 分析は、改善された品種の大部分が土地面積よりもサイズが小さいことを

示した。 育種材料としての IRRIの導入後に発表された品種はこのグループに属する。 イン

ドネシアのイネ品種では、収量の高いセミドワーフ品種が一般的になったようです。 この

発見は、育種材料として IRRI 品種を使用していくつかの品種が開発され、背の高い品種の

優先選択が異なる栽培時間に行われたことを示した。 これらの品種は微環境変化に非常に

敏感であった。 

As well as morphological analysis, molecular analysis also provided evidence that 

Indonesian rice landrace was more diverse than improved varieties.   The results indicated 

that Indonesian breeding program focused on high-yielding irrigated rice varieties, which are 

largely indica rather than upland varieties which tend to be japonica. This assumption was 

supported by the extensive use of IRRI varieties as breeding materials and also supported by 

clustering in the indica group, 41.4% by SSRs and 31.7% by SNPs based on pedigree 

information. The lower diversity in indica compared with japonica was revealed by both 

markers and also supported by the fact that Indonesian breeders focused on improving indica 

rather than japonica.  These results suggested that the lower diversity in improved rice 

varieties was caused by the extensive use of elite varieties as breeding materials, while the 

Indonesian farmers have maintained Indonesian rice landrace due to the custom and religion 

obligation. 

In this study, diversity in japonica landrace was confirmed to be lower than indica 

landrace using two kinds of markers, SSR and SNP.  We suggested that the lower diversity 
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and less allelic richness (AR) in japonica than indica might be affected by selection in 

particular traits.  Besides, the limited asymmetric gene flow between indica and japonica as 

revealed in this study is one of the evidence that gene flow may play a role in diversification 

and differentiation between these two subspecies and probably this mechanism might be 

caused by the presence of few intermediate varieties named as C type.   

The finding of outlier’s loci by both markers suggested that natural variations might 

affect differentiation between indica and japonica in Indonesia and may cause by mutation 

and/or recombination in haplotype. Probably, the different environment of cultivation 

between indica and japonica in Indonesia causes different frequency of the mutation at 

specific loci/locus.  Most of japonica rice varieties are cultivated in upland and high altitude 

>500 m above sea level, while the indica rice varieties in wetland and low altitude.  

Other mechanisms on evolution of population as suggested Hardy-Weinberg is natural 

selection.  Our result indicated that the same genotype is favoured in different populations 

due to stabilizing selection in most of pairwise between landrace from different source 

locations  by value of Qst<FST.  This explained the reason why Indonesian landrace was not 

differentiated based on source locations of landrace. 

.  Disagreement between SSR and SNP markers in this study was attributed to the 

greater information content of SSR markers and characteristic of markers. The weak 

correlation between phenotypic relationships in 2 years indicated that evaluation of genetic 

relationships using molecular markers includes difficulties with respect to the effects of 

different management practices and different environments. 

The further researches on candidate genes underlying adaptation in Indonesian rice 

are needed. Our finding also provides a chance to identify particular genes which have been 

lost during adaptation. We suggested that landrace used in this study and the varieties 

released before 1966 could use as valuable sources to broaden the variability of Indonesian 

rice germpalsm and are useful materials for future rice breeding programs in Indonesia. 
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