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Abstract: Quercus acutissima Carruth. is an economically important species that has long been
cultivated in Japan, so is a valuable subject for investigating the impact of human activities on
genetic variation in trees. In total, 2152 samples from 18 naturally regenerated populations and 28
planted populations in Japan and 13 populations from the northeastern part of Eurasia, near Japan,
were analyzed using six maternally inherited chloroplast (cpDNA) simple sequence repeat (SSR)
markers. Although 23 haplotypes were detected in total, both the Japanese natural and artificial
populations exhibited much lower genetic diversity than the continental populations. The level
of genetic differentiation among natural populations in Japan was also much lower (G’ST = 0.261)
than that on the continent (G’ST = 0.856). These results suggest that human activities, such as
historical seed transfer, have reduced genetic diversity within and among populations and resulted
in a homogeneous genetic structure in Japan. The genetic characteristics of natural and artificial
populations of Quercus acutissima in Japan are almost the same and it is likely that most of the natural
populations are thought to have originated from individuals that escaped from plantations.

Keywords: genetic structure; human impact; seed transportation; artificial forest

1. Introduction

Genetic diversity and genetic structure reflect the evolutionary process, including aspects such as
colonization history and adaptation to the environment over long periods. Ecological characteristics,
such as the mating system, seed dispersal and hybridization with related species, are also reflected
in the genetic variation of tree species. However, historical human activities, such as the transfer of
seeds and saplings, breeding, domestication and environmental impacts may also be reflected in the
genetic structure of tree species. Relatively few studies have examined tree species strongly affected by
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human activities over a long period [1–5]. Appropriate and sustainable use and management of forest
systems, however, requires an understanding of the effects of human activities on genetic structure
and population demography. For example, olive (Olea europaea L.) and cork oak (Quercus suber L.)
are species that were considered to have been greatly influenced by human beings in Europe.
Besnard et al. [6] reported five clades in a chlorotype consensus phylogram of olive populations
in Africa and the Mediterranean, with each located in a specific geographic zone. However, within the
Mediterranean area, the chlorotype originated in the east and had spread west, indicating seed
transportation by humans. On the other hand, cork oak retains clear phylogeographic structure in the
western Mediterranean and much less human impact than expected was detected [7]. This may be
because cork oak has approximately the same distribution today as it did prior to the Neolithic [7]
and seed transportation by humans has been rare. These studies suggest that the relationship between
historical human activities and genetic structure of valuable tree species is complicated and their
pattern is not always as expected.

Molecular makers are very useful tools to clarify the genetic structure patterns exhibited by tree
species. Among the many molecular makers available, chloroplast DNA (cpDNA) is particularly
useful for determining colonization routes, because (i) it does not recombine, therefore haplotypes
remain mostly unchanged when passed to the next generation; and (ii) in angiosperms it is generally
transmitted through seed only [8–10] because of its maternal inherited mode, so colonization
patterns which derive from seed dispersal are not obscured by pollen flow [11]. Thus, levels of
among-population genetic differentiation are expected to be much higher for cpDNA markers than for
nuclear DNA markers [12]. However, detecting useful polymorphisms at the population level is often
difficult because of the low level of substitutions in the chloroplast genome; chloroplast microsatellites
represent potentially useful markers to circumvent this problem and, to date, studies have
demonstrated high levels of inter- and intra-specific variability [7,13–15]. There are many studies
which employed chloroplast microsatellites, so called cpSSR markers, to clarify the phylogeography of
oak species widely in the world (e.g., [16–18]).

Quercus acutissima Carruth., Lepidobalanus Sect. Cerris, is one of the most economically and
ecologically important deciduous tree species growing in Satoyama, a traditional Japanese rural
forest and agricultural landscape. It is an anemophilous species and its seeds are dispersed by
gravity and animals such as rodents [19]. This species is found in the warm-temperate zone from
East Asia to the Himalayas [20], but the range is considered to be heavily influenced by human
activities because of its long cultivation history, like that of European chestnut, Castanea sativa Mill.
The origin of Japanese populations of Q. acutissima is unknown. Unlike other Japanese oak species,
Q. acutissima is seldom observed in mountainous areas, but is found in and around human settlements
in Japan. Kurata [21] questioned whether Q. acutissima is native to Japan. Fukamachi et al. [22] also
suggested that Q. acutissima is an introduction from China, because it is less common than the native
oaks Quercus serrata Murray and Quercus crispla Blume in woodlands, and it is usually pollarded,
whereas the native oaks are coppiced in the Satoyama landscape. Although there is no available
pollen fossil data specific to Q. acutissima in Japan, during the last glacial, warm-temperate evergreen
broadleaved forest, in which Q. acutissima grows, was restricted to the Paleo-Yaku Peninsula, around the
southern island of Kyushu, based upon pollen and plant macrofossil data [23]. Moreover, a recent study
based on ecological niche model by Zhang et al. [24] revealed that Q. acutissima could not distribute in
the main archipelago of Japan during the last glacial maximum (ca. 21,000 years BP). About 6000 years
ago, when the climate was warmest, the evergreen forest extended to Kanto area, central Japan [25].
The plant residue of Q. acutissima or Quercus variabillis Blume (Lepidobalanus Sect. Cerris) has been
found in the Japanese archipelago as fossil wood from the Jomon era, from approximately 16,500
to 3000 years ago [26]. The timber was used as a building material [26] and the seeds as food [27].
In recent years, especially since the 1960s, the demand for fresh Shiitake mushrooms has grown and
Q. acutissima logs for cultivation have become more scarce, so the species has been planted widely in
Japan [28].
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In Japan, there are 15 native Quercus species [20] and they are widely distributed from south to
north and from the coasts to the mountains. They are familiar to forest researchers and many ecological
studies have been conducted on them, especially in the temperate zone (e.g., [29,30]). However, only a
few reports have examined the phylogeographic characteristics of oak trees (e.g., [31–33]) and the
genetic variation in Q. acutissima in Japan has not been investigated.

The aims of the study reported here were (1) to clarify the genetic diversity and structure of
Q. acutissima using chloroplast microsatellite; (2) to detect evidence of the impact of human activity
on genetic diversity and structure; and (3) to compare genetic variation in naturally regenerated
and planted populations in Japan and continental populations in eastern Eurasia (South Korea and
Northeast China).

2. Materials and Methods

2.1. Sampling of Plant Populations

Leaves of Q. acutissima of adult individuals were collected from 18 populations that had
regenerated naturally along rivers (except for two populations, GO and SM) and two Gene
Conservation Forests (Japanese natural populations) and 28 planted populations in Japan, covering the
species’ entire distribution (Table 1, Figure 1). Naturally regenerated populations were seldom found
except for in sunny river valleys; they were small populations containing several to several dozen
individuals. We selected the individuals separated by at least 10 m from the next tree in river side
areas and 30 m in mountain areas. Every planted population was a subcompartment of a private
forest without information of seed source and all of them were older than 40 years according to
the forest registers. In order to compare Japanese populations with natural continental populations
in mountainous areas or hillside, thirteen populations from northeastern Eurasia (referred to as
continental populations, hereafter) (Table 1, Figure 1) were sampled, where possible, separated by at
least 30 m from the next tree. In total, 59 populations, consisting of a total of 2152 individuals were
sampled. Leaves were dried with silica gel in plastic bags before DNA extraction.

2.2. Chloroplast SSR Analysis

Total DNA was extracted from dried material using the modified CTAB method [34]. Each extract
was then amplified by polymerase chain reaction (PCR) using a multiplex PCR Kit (Qiagen,
Hilden, German) with six maternally inherited cpSSR primer pairs—µcd4, µcd5, µdt1, µdt3, µdt4,
and µkk4 [35]—developed for Quercus. All primers were included in the same reaction mixture.
Each 5.0-µL amplification reaction mixture contained 2.5 µL of MasterMix solution (Qiagen, Hilden,
German), 1.5 µL of RNase-free water, 0.5 µL of the primer mix solution (including the six pairs
of primers, each at 0.5 pmol/µL), and 0.5 µL of the extracted DNA (5–100 µg/mL). The reaction
program was as follows: 15 min denaturation at 95 ◦C followed by 25 cycles of 30 s, denaturation at
94 ◦C, annealing for 90 s at 48 ◦C, and extension for 60 s at 72 ◦C, followed by a final extension at
60 ◦C for 30 min. CpSSR PCR products were analyzed using an ABI3100 Genetic Analyser (Thermo
Fisher Scientific Inc., Waltham, MA, USA), and the sizes of the amplified alleles were estimated using
GeneMapper software (Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.3. Genetic Data Analysis

Haplotypes were determined based on the fragment length of the six cpSSR markers. The level of
polymorphism within populations was estimated using haplotypic diversity based on unordered (hs)
or ordered haplotypes (vs) following Pons and Petit [36], taking the number of differences in the repeats
of cpSSR haplotypes into account. In the overall sample, total haplotypic diversity statistics based on
unordered alleles which assumes that new allele is generated randomly, and ordered alleles assuming a
stepwise mutation model, for the mutations of the SSR (ht and vt, respectively) [37], were also calculated
following Pons and Petit [36]. Haplotypic richness was calculated using RAREFAC [38] software.
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Figure 1. Chloroplast haplotype distribution of Quercus acutissima Carruth. for (a) 18 natural
populations in Japan, (b) 28 artificial populations in Japan and (c) 13 continental populations. The color
of haplotype is same as Figure 2.

Population differentiation at chloroplast loci was then evaluated in terms of unordered alleles
(GST) [39] and ordered alleles, which assumes a stepwise mutation model of the SSR (RST [40]).
Moreover, NST [36] was also employed to evaluate population differentiation. If a bias in homoplasy or
multistep mutation of the SSR is large enough, it is better to employ NST, which considers the number
of shared cpSSR loci with an identical allele as genetic distance among haplotypes. Following Pons
and Petit [36], 1000 random haplotype permutations among populations were used to test whether
the RST and NST values were significantly higher than the GST values. These calculations and tests
were conducted using software PERMUT/CpSSR ver 2.0 [36]. Because GST, the index of the genetic
differentiation values, is dependent on the level of genetic variation, standardized values of GST and
G’ST [41], which can range from 0 (no differentiation) to 1 (complete differentiation) regardless of
polymorphism of examined markers, were also calculated. To determine phylogenetic relationships
among the chloroplast DNA haplotypes, a Neighbor-net [42] was constructed with the software
SplitsTree4 [43]. To clarify the genetic relationships between populations, a neighbor joining tree was
constructed based on the genetic distance of (δµ)2 [44] using Populations ver.1.2.30 [45] and visualized
on a hypometric map using Mapmaker and GenGIS2 software [46].
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Table 1. Populations and sample size of Quercus acutissima Carruth. forest and detected haplotypes.

Region Forest Type Code Latitude (N) Longitude (E) Sample Size Detected Haplotype

Japan

Natural

KK 39◦16′ 141◦07′ 53 20
GO 38◦45′ 141◦23′ 16 20

ARD 36◦07′ 139◦19′ 41 6, 20
KO 36◦02′ 140◦01′ 32 20
KM 35◦39′ 138◦30′ 13 20
KA 35◦10′ 138◦90′ 4 20
TR 34◦48′ 137◦49′ 14 20
KN 34◦14′ 135◦09′ 15 20
YR 35◦17′ 135◦19′ 13 20
KZ 35◦54′ 136◦38′ 15 20
YS 34◦06′ 134◦30′ 13 20
TH 34◦52′ 133◦33′ 6 20
SM 34◦53′ 133◦25′ 12 20
OG 33◦35′ 130◦39′ 19 7, 9, 20
TG 33◦20′ 130◦50′ 8 20
SK 32◦46′ 130◦36′ 14 20
MK 32◦42′ 130◦36′ 13 20
GK 32◦39′ 131◦25′ 21 7,20

Artifical

IW 39◦46′ 141◦08′ 37 20
MF 38◦20′ 140◦59′ 33 6, 7, 19, 20, 38
MA 38◦38′ 140◦59′ 49 20
MS 38◦21′ 141◦00′ 22 20
TT 36◦31′ 140◦13′ 46 20
TM 36◦30′ 140◦12′ 46 20
TI 36◦29′ 139◦59′ 48 20
TU 36◦29′ 139◦55′ 48 7, 20
GT 36◦17′ 139◦04′ 40 20
GM 36◦16′ 138◦45′ 48 20
TO 35◦38′ 139◦18′ 50 20
IZ 34◦53′ 139◦06′ 40 20
IO 35◦01′ 138◦59′ 50 4, 20
YY 35◦30′ 138◦28′ 50 20
YK 35◦28′ 138◦30′ 50 20
ME 34◦21′ 136◦29′ 50 20
KY 34◦57′ 135◦32′ 50 20
HY 34◦55′ 135◦27′ 46 20
WK 34◦11′ 135◦17′ 50 20
WM 34◦02′ 135◦13′ 31 20
YA 34◦16′ 131◦18′ 50 20
EH 33◦37′ 132◦49′ 50 20
FU 33◦47′ 130◦53′ 42 20
OH 33◦19′ 130◦57′ 48 3, 7, 16, 19, 20
OK1 33◦11′ 131◦16′ 50 3, 5, 7, 10, 15, 20
OK2 33◦08′ 131◦16′ 50 20
KS 33◦02′ 130◦50′ 48 20
KH 33◦04′ 130◦53′ 47 20

Continent Natural

SA 37◦36′ 128◦01′ 41 3
SU 37◦19′ 127◦01′ 47 3, 5, 7, 12, 16, 19, 20
F 37◦12′ 126◦59′ 50 3, 6, 7, 12, 15, 16, 19, 20

CD 36◦50′ 127◦57′ 49 7, 15, 19, 20, 21, 26
CH 36◦24′ 127◦15′ 49 7, 12, 15, 19, 20, 21
SG 36◦22′ 128◦08′ 46 3, 7, 12, 15, 19, 20, 21
GE 35◦44′ 127◦47′ 46 3, 5, 7, 12, 15, 19, 20, 21
HA 35◦38′ 127◦17′ 39 5, 7, 9, 19, 20, 32
KW 35◦09′ 126◦56′ 28 7, 19, 20
Che 33◦31′ 126◦32′ 14 1, 26, 39, 41
XI 40◦23′ 123◦18′ 54 3, 7, 20, 26
MI 39◦55′ 116◦24′ 47 6, 20
DA 38◦55′ 121◦21′ 51 7, 9, 15, 19, 20, 26, 34, 36, 37, 40

3. Results

3.1. Haplotypes

The six chloroplast microsatellite primers assayed for 2152 individuals in 59 populations (Table 1)
gave 22 different alleles: µcd4, three alleles; µcd5, two alleles; µdt1, four alleles; µdt3, five alleles;
µdt4, five alleles; and µkk4, three alleles. Thus, 23 haplotypes were identified (Table 2) and the
haplotypes were divided into three groups on the Neighbor-net (Figure 2). Seven, eight and eight
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haplotypes belonged to Group I, II and III, respectively. In the total sample, haplotype 20 of group III
and haplotype 7 of group I were the most common, with frequencies of 72.2% and 11.9%, respectively.
Haplotype 20 was dominant in Japan and haplotype 7 was dominant on the continent (Table 2, Figure 1).
In total, there were four haplotypes in the Japanese natural populations, twelve in the plantation
populations, and twenty in the continental populations (Table 2). The number of haplotypes unique to
each population group was three (haplotypes 4, 10, 38) in the Japanese plantations and ten (haplotypes
1, 12, 21, 32, 34, 36, 37, 39, 40, 41) in the continental populations. There were no haplotypes that only
occurred in Japanese natural populations.
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Figure 2. A Neighbor-net of 23 Chloroplast haplotypes for Quercus acutissima. Haplotypes of Group
I were distributed mainly in Korea, haplotypes of Group II were in China and northern Korea and
haplotypes of Group III were dominant in Japan.
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Table 2. The 23 chloroplast haplotypes revealed by the six simple sequence repeat (SSR) markers and
the fragment length of each marker, and frequency of each haplotype.

Haplotype
Maker Haplotype Frequency *

µcd4
(VIC)

µcd5
(FAM)

µdt1
(PET)

µdt3
(FAM)

µdt4
(PET)

µkk4
(NED)

Japan
Continent Total

Natural Artificial

20 101 81 90 129 139 115 0.957 0.965 0.037 0.7217
7 101 81 90 128 136 115 0.028 0.018 0.399 0.1190
19 101 81 90 129 138 115 - 0.006 0.121 0.0353
3 101 81 90 126 137 115 - 0.002 0.112 0.0307
6 101 81 90 127 137 115 0.006 0.002 0.084 0.0237
9 101 81 90 127 138 115 0.009 0.001 0.061 0.0177
21 102 82 91 128 137 115 - - 0.052 0.0135
26 101 81 89 128 136 115 - - 0.027 0.0070
5 100 81 90 127 138 115 - 0.001 0.020 0.0056
16 102 81 90 129 136 115 - 0.001 0.018 0.0051
12 102 81 90 128 136 115 - - 0.018 0.0046
15 102 81 90 127 138 115 - 0.002 0.012 0.0042
32 102 81 90 129 138 115 - - 0.014 0.0037
36 101 81 89 127 138 115 - - 0.012 0.0033
10 101 81 90 128 137 115 - 0.002 - 0.0009
39 101 81 89 129 138 115 - - 0.004 0.0009
4 101 81 90 127 136 115 - 0.001 - 0.0005
38 101 81 89 129 135 115 - 0.001 - 0.0005

1 101 81 89 128 136 113 - - 0.002 0.0005
34 101 82 88 129 138 115 - - 0.002 0.0005
37 101 81 89 128 139 115 - - 0.002 0.0005
40 101 82 88 130 139 116 - - 0.002 0.0005
41 101 81 90 130 139 116 - - 0.002 0.0005

Total number
of allells 3 2 4 5 5 3

VIC, FAM, PET, NED, Fluorescent Dye; *, The haplotype frequencies were rounding off four decimal place. The total
of frequencies of raw data is 1.000 in each area.; -, no detection.

3.2. Geographical Distribution of Haplotypes of Q. acutissima

The relationship between geographical distribution and genetic variation is shown in Figure 1
and Tables 1 and 2. Haplotype 20 was found at high frequencies in all natural and artificial plantations
in Japan and was also present at low frequencies in 11 of 13 continental populations, at most 10.7%
occurrences in KW and 8.7% in SG in South Korea. On the other hand, 87.5% of the occurrences of
Haplotype 7 were in 10 of 13 continental populations and only six of the 46 Japanese populations
contained this haplotype. Ten of the 23 haplotypes were unique to a single population. On the
continent, haplotypes 1, 39 and 41 were only found in Che; haplotypes 34, 36 and 40 were only
found in DA; and haplotype 32 was only found in HA. In Japan, haplotype 38 was only found in
MF, haplotype 4 only in IO and haplotype 10 only in the OK1 plantation. In Japan, 11 haplotypes,
i.e., all except haplotype 20, were found at low frequencies and they were concentrated in eight of
the 46 populations. Although no phylogeographic structure was detected because of the fixation of
haplotype 20 in Japan, haplotypes of Group II were distributed mainly in China and northern Korea
and haplotypes of Group III were dominant only in HA on the continent (Figure 3).
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Figure 3. Three chloroplast haplotype group distribution of Q. acutissima for (a) 18 natural populations
in Japan; (b) 28 artificial populations in Japan and (c) 13 continental populations.

3.3. Genetic Diversity within Populations and Differentiation between Populations of Q. acutissima

Most populations, both natural and artificial, in Japan were monomorphic, containing only
haplotype 20; in contrast, on the continent, all populations except for SA were polymorphic.
Within population variation is shown in Table 3. All calculated parameters were higher on the continent
(hs: 0.488; vs: 0.482) than in Japan (hs: 0.055, 0.059; vs: 0.053, 0.057 in natural and artificial populations,
respectively). In Japan, the values were almost the same in the natural and artificial populations.
Although the number of haplotypes in artificial populations is more than in natural populations,
most of the artificial populations were also dominated haplotype 20 (Table 1). Only five artificial
populations had multiple haplotypes (Figure 1).The level of population subdivision was relatively
low, for the natural and artificial populations in Japan, and the continental populations, respectively.
These values were low for both types of population in Japan. RST was not significantly larger than GST

for any dataset. Only in the continental populations was high population differentiation (G’ST = 0.856)
shown, and NST was significantly higher than GST, suggesting phylogeographic structure.
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Table 3. Genetic diversity and genetic differentiation in the three population groups of Quercus
acutissima Carruth.: Natural and artificial populations in Japan plus natural continental populations.

Region Forest
Type

No. of
Populations

Sample
Size As hs vs ht vt GST G‘ST RST NST

Japan Natural 18 322
1.111 0.055 0.053 0.073 0.073

0.246 0.261 0.238 0.238(0.076) (0.037) (0.037) (0.051) (0.050)

Japan Artificial 28 1269
1.122 0.059 0.057 0.072 0.072

0.180 0.191 0.201 0.179(0.061) (0.029) (0.028) (0.035) (0.035)

Continent Natural 13 561
2.088 0.488 0.482 0.843 0.844

0.421 0.856 0.429 0.480 *(0.159) (0.067) (0.063) (0.054) (0.099)

As, haplotypic richness; hs, unorderd haplotypic diversity; vs, orderd haplotypic diversity; ht, unorderd total
haplotypic diversity; vt, orderd total haplotypic diversity; GST, unorderd population differentiation index;
G’T, standardized value of GST; RST, orderd alleles based population differentiation index; NST, ordered loci
based population differentiation index; standard errors in parentheses; * NST is significantly larger than GST
(p < 0.05).

3.4. Genetic Relationship between Populations of Q. acutissima

A Neighbor-Joining tree for 59 populations was constructed based on the genetic distance
(δµ)2 [44] (Appendix A). Two clades were recognized: one representing Japanese natural and artificial
populations and the other continental populations. This suggests that Japanese populations and
continental populations are genetically differentiated. Only OG, a Japanese natural population,
belonged to the continental clade. No phylogeographic structure was apparent in the Japanese clade.
However, the other clade had two subclades, one consisting of populations from northern Korea and
China and the other of South Korean populations (Figure 4). Thus genetic structure was shown on the
edge of the Eurasian continent.
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4. Discussion

In total, 59 Q. acutissima populations from Japan and Eurasia (South Korea and Northeast China),
were analyzed using cpSSR markers and 23 haplotypes were detected in total and the markers used
were highly polymorphic.
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4.1. Genetic Characteristics of Q. acutissima Natural Populations in Northeast Asia

Genetic diversity was much lower in the Japanese populations than in the continental ones.
Most populations were fixed for haplotype 20 alone, and genetic diversity with respect to chloroplast
DNA was lacking in Japan despite the polymorphic markers. In tree species, the same haplotype
or genetically related haplotypes are sometimes located close to each other geographically (e.g.,
Betula maximowicziana Regel [47], Fraxinus angustifolia Vahl. [48]); this is referred to as phylogeographic
structure. Among the oak species present on the Japanese archipelago, Q. crispra, Q. serrata,
Quercus dentata Thunb. and Quercus aliena Blume, all of them are autochthonous in Japan, do exhibit
clear phylogeographic structure reflecting the presence of a refugium during the last glacial maximum
and subsequent migration based on chloroplast DNA variation [31,32]. In this study, there was no
phylogeographic structure identified for Q. acutissima in Japan. Thus the haplotype distribution of
Q. acutissima is completely different from that found in these four native oak species. Q. variabilis
in Japan, related species of Q. acutissima, also fixed for haplotype 20 as same as Q. acutissima [49].
Q. variabilis is inferred that the distribution was influenced by human activity as same as Q. acutissima.
It must be chloroplast capture but it could not be determined which species incited the capture.
Although it is not known when the introgression happened, it must have happened before they
expanded over the Japanese archipelago. The haplotype distribution patterns of C. sativa [2] and
Prunus avium L. [8] in Europe, which have both been influenced greatly by human activities, are similar
to Q. acutissima in Japan, with one major haplotype covering almost all the distribution range.
Alternatively, the absence of phylogeographic structure throughout Japan could be attributed to
the monomorphism of cpDNA and long distance gene flow with seed among populations [5].

Japanese horse chestnut (Aesculus turbinate Blume), which is also a tree species used by human
beings, has several haplotypes on the Japanese archipelago but one of these has a wide distribution
extending circa 900 km [50]. The authors of that study discuss the discrepancy between a distribution
range predicted based on migration capability and the actual distribution range, which is known
as Reid’s Paradox [51], and note that rare long-distance seed-dispersal events could account for
more rapid colonization [50]. Similarly, in the case of Q. acutissima, haplotype 20 is present in all
populations extending across a range of almost 1400 km. Acorns of Q. acutissima are transported
by rodents and the maximum reported distance is 38.5 m [19]. The youngest reproductive age of
the species is four years [52]. Based on these figures, if refugia of Q. acutissima during the last
glacial maximum (LGM) existed around the southern part of Japan (e.g., Paleo-Yaku Peninsula) as
suggested by the paleoecologial study [23], more than 300,000 years would be needed to cover the
entire current distribution range. However, a recent study clearly suggested that Q. acutissima did
not distribute in the main archipelago of Japan during the LGM [24]. Thus, it is difficult to explain
the modern distribution of Q. acutissima only by natural population colonization although natural
rare long-distance seed-dispersal events could account for rapid colonization. Indeed, haplotype 7,
common on the continent, was also found in six Japanese populations. Although this may suggest
the long distance dispersal, it would be more likely that this continental haplotype was introduced to
Japan via past human activities, as discussed below.

4.2. Genetic Structure and Population Differentiation

Since most of the Q. acutisima populations in Japan were fixed for one haplotype, this tree
species experienced a severe bottleneck when Q. acutissima expanded its distribution to the Japanese
archipelago either naturally or artificially. On the other hand, some populations, mainly on Kyushu
Island, have multiple haplotypes and these populations must have experienced several introductions of
seeds from the continent. However, these seeds did not spread to other regions of Japan, as happened
with haplotype 20. It is possible that these haplotypes arrived after haplotype 20 and after it had spread
across the Japanese archipelago. There are plantations which were made by Korean seed sources
in 1970s in Kyushu Island for the high demand of logs of Q. acutissima for Shiitake cultivation [53].
The haplotypes, except for haplotype 20, might have come over to Japan quite recently. Furthermore,
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there may not have been enough time for mutations to accumulate after haplotype 20 was spread over
the archipelago.

The level of population differentiation was very low for Q. acutissima, particularly in Japan.
Aguinagalde et al. [54] reviewed genetic structure associated with maternally inherited markers
in European trees and shrubs, and the average for three species that are cached by animals
(Corylus avellana L., Fagus sylvatica L., Quercus robur L.) was GST = 0.83 ± 0.05 SD (standard deviation)
and for 15 wind dispersed species was GST = 0.56 ± 0.07 SD. In contrast, Duminil et al. [55] found
that species with gravity-dispersed seeds had significantly higher GST values based on maternal
DNA, although no significant relationships were identified between GST and the other modes of seed
dispersal. The genetic differentiation revealed by maternal DNA markers for native tree species in
Japan is summarized in Table 4, and there does not appear to be any link between seed dispersal mode
and GST value, as Duminil et al. [55] described. Most species have values higher than 0.9 for GST and
0.97 for G’ST and are highly differentiated because of restricted gene flow by seed. The values for
Japanese natural populations of Q. acutissima (GST = 0.251, G’ST = 0.261) are much lower than those
for other Japanese species. Even Q. gilva, which was heavily influenced by human activity in Japan,
because of its edible acorns and valuable timber, showed much higher differentiation (G’ST = 0.754) [56]
than this study. In general, seed or seedling transfer by humans reduces genetic differentiation and
degrades genetic structure in the same way as high gene flow. C. sativa (GST = 0.43) [2] and P. avium
(GST = 0.29) [5] also exhibit low genetic differentiation (Table 4). Both of these species are used by
humans and their distributions have been influenced accordingly. The value of GST for Q. robur is
much lower in roadside plantations than natural populations [4]. As described above, Q. variabilis,
heavely influenced by human activity as same as Q. acutissima, has no cpDNA variation in Japan [49].
These support the suggestion that some non-natural factor influenced the current genetic structure of
Q. acutissima, possibly human transport of seeds and plants over a long period. Moreover, a recent
study by Zhang et al. [24] reconstructed the past distribution of Q. acutissima and they revealed that
there was little distribution of the species during the LGM in the current land area of Japan. Thus,
it is reasonable to consider that Q. acutissima started to distribute after the LGM in Japan. This also
supports that this species was possibly transported through human impact.

Table 4. Genetic differentiation of organelle DNA of five Japanese tree species, which are little used by
humans and two European tree species, which are intensively used.

Species Dispersal
Type

No. of
Populations

No. of
Individuals DNA GST G’ST Reference

Quercus acutissima G and A 18 322 C 0.246 0.261 This study
Quercus gilva G and A 25 135 C 0.668 0.754 [55]

Quercus mongoloca G and A 33 501 C 0.857 0.979 * [32]
Fagus crenata G and A 17 409 M 0.963 0.996 * [57]
Fagus crenata G and A 21 351 C 0.95 - [58]

Betula maximowicziana W 25 400 C 0.950 0.977 [47]
Picea jezoensis W 33 264 M 0.901 0.974 * [59]
Prunus avium G and A 23 211 C 0.29 0.44 * [5]
Castanea sativa G and A 38 181 C 0.43 0.70 * [2]

G, gravity; A, animal; W, wind; C, Chloroplast; M, Mitochondria; *, G’ST is calculated in this paper.

Although the continental populations of Q. acutissima exhibited relatively low differentiation in
GST (0.421), the standardized G’ST value was high (0.856). Thus, the much lower value of GST on
the continent was due to high polymorphism of the examined cpSSRs, as Hedrick [41] pointed out.
Moreover, GST-NST tests suggested the existence of phylogeographic structure on the continent and
indeed the NJ tree supports this finding, showing two groups. Thus, although human impact might
affect the genetic structure of Q. acutissima on the continent, it is likely to have been much less than the
influence on Japan populations.
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5. Conclusions

Based on our results, it is probable that the genetic structure of Q. acutissima is heavily influenced
by human activities in Japan and it is difficult to reconstruct the past introduction routes to Japan
from the continent because of complicated multiple introductions including secondary transportation
within Japan. The genetic characteristics of natural and non-natural populations in Japan are almost
the same and it is likely that the natural populations originated from individuals that escaped from
plantations. Thus, at least considering cpDNA variation, modern seed transfer may not affect the
current genetic structure of this species, except for some populations on Kyusyu Island. A future study
not only based on bi-parental nuclear DNA genetic variation but also on human geographic study of
usage of this tree species, would provide more information on past demographic history of this species
in Japan in order to propose a management program for these genetic resources.
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