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Thermal power generation during heat cycle near room temperature
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We demonstrate that a sodium-ion secondary battery (SIB)-type thermocell consisting of two types of Prussian blue analogue (PBA) with different
electrochemical thermoelectric coefficients (SEC 7 ∂V/∂T; V and T are the redox potential and temperature, respectively) produces electrical
energy during heat cycles. The device produces an electrical energy of 2.3meV/PBA per heat cycle between 295K (= TL) and 323K (= TH). The
ideal thermal efficiency (η = 1.0%), which is evaluated using the heat capacity (C = 4.16meV/K) of ideal Na2Co[Fe(CN)6], reaches 11% of the
Carnot efficiency (ηth = 8.7%). Our SIB-type thermocell is a promising thermoelectric device that harvests waste heat near room temperature.

© 2018 The Japan Society of Applied Physics

T
he thermoelectric device, which can convert heat into
electricity and vice versa, is a fascinating technology
for a smart society. In the development of thermoelec-

tric semiconductors, the Seebeck coefficient [S ≡ ΔV=ΔT,
where ΔV (ΔT ) is the voltage (temperature) difference
between the hot and cold electrodes] is a significant material
parameter. Bi2Te3 (S = 0.2mV=K1) at room temperature)
and PbTe (= 0.12mV=K2) at 300K) are prototypical semi-
conductors and exhibit high dimensionless figures of merit
(ZT ≡ S2=ρκT, where T, ρ, and κ represent the temperature,
resistivity, and thermal conductivity, respectively). More-
over, they have practical use for Peltier cooling and power
generation in space vehicles.3) These devices, however,
require a high-grade heat source of several hundred Kelvins
to achieve a thermal efficiency of ∼10%.4)

On the other hand, several thermocells, which consist of
hot and cold electrodes of identical type and solvable redox
couples, were proposed in the 1950s and 1960s. The thermo-
cell converts ΔT into ΔV between the electrodes through
the electrochemical thermoelectric coefficient (SEC ≡ ∂V=∂T,
where V and T are the redox potential and temperature,
respectively). For example, a thermocell using [Fe(CN)6]3+=
[Fe(CN)6]4+ 5) was demonstrated to convert ΔT into ΔV
between the two electrodes. The thermocell, however, needs
a pump to transfer the accumulated species from the elec-
trode region, which results in the loss of a major advantage,
the absence of moving parts. Kobayashi et al.6) proposed a
sodium-ion secondary battery (SIB)-type thermocell, whose
configuration is the same as that of a SIB, except that the
anode and cathode materials are the same. They fabricated
a CR2032-type thermocell made of layered oxides, for
example, Na0.99CoO2 and Na0.52MnO2, and confirmed that
ΔV changes linearly with ΔT. Compared to the aforemen-
tioned thermocell, the SIB-type thermocell utilizes the SEC
value of a redoxable solid, and hence has no moving parts.

If the thermocell is made of two types of redox material
with different SEC, the heating=cooling of the thermocell
changes the cell voltage (Vcell) between the anode and cathode.
In other words, such a thermocell produces electrical energy
during heat cycles, in sharp contrast with the thermoelectric
devices described above. Lee et al.7) and Yang et al.8) demon-

strated that this idea is feasible using solvable redox couples,9)

for example, [Fe(CN)6]3+=[Fe(CN)6]4+ and Cu+=Cu2+, as the
anode and Prussian blue analogues (PBAs) as the cathode.
These thermocells, however, are bulky and heavy because the
electrolyte contains redoxable ions. To overcome this draw-
back, we propose a SIB-type thermocell that consists of two
types of redoxable solid with different SEC. It is possible to
minimize the amount of electrolyte used in this thermocell.
This type of thermocell extends the use of so-called battery
materials from energy storage to energy conversion.

PBAs, whose chemical formulas are LixM[Fe(CN)6]y and
NaxM[Fe(CN)6]y (where M is a transition metal), are prom-
ising candidates for use as the cathode materials in lithium
ion batteries and SIBs.10–21) For example, a thin film of
Li1.6Co[Fe(CN)6]0.92.9H2O shows a high capacity of 132
mAh=g with good cyclability.12) PBAs have face-centered
cubic structure (Fm3m; Z = 4). They consist of a three-
dimensional (3D) jungle-gym-type host framework and guest
Li+ ions, which are accommodated in the nanopores of the
framework. Importantly, the host framework, Fe–CN–M–

NC–Fe, is robust against Li+=Na+ deintercalation and con-
comitant oxidization of M and Fe. In fact, the host framework
of Li1.6Co[Fe(CN)6]0.92.9H2O is stable even if we remove all
of the Li+ from the framework.12) Recently, Magnússon
et al.22) systematically investigated the SEC23) value of
LixCo[Fe(CN)6]y for various x and y.

In this study, we fabricated a SIB-type thermocell with
a thin film of NaxCo[Fe(CN)6]0.713.6H2O (NCF71) as the
anode and a thin film of NaxCo[Fe(CN)6]0.92.9H2O (NCF90)
as the cathode. The SEC values are 0.53 and 1.32mV=K for
NCF71 at x = 0.51 and NCF90 at x = 0.71, respectively.
Owing to the difference in SEC, the device produces an elec-
trical energy of 2.3meV=NCF90 per heat cycle between
295K (= TL) and 323K (= TH). The ideal thermal efficiency
(η = 1.0%) reaches 11% of the Carnot efficiency (ηth ≡ 1 −
TL=TH = 8.7%).

The NCF71 and NCF90 films were synthesized by means
of electrochemical deposition on indium tin oxide transparent
electrodes. Details of the synthesis conditions are described
in the literature.24,25) The chemical compositions of the films
were determined by the inductively coupled plasma method
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and CHN organic elementary analysis (PerkinElmer 2400
CHN Elemental Analyzer). Both the compounds show face-
centered cubic structure (Fm3m; Z = 4) with lattice constants
(a) of 10.3Å (NCF71) and 10.4Å (NCF90). The film thick-
ness is ≈1.0 µm, as determined by a profilometer (Ulvac
DEKTAK3030). The typical area of a film is 1.0 cm2. The
mass of each film was evaluated from the thickness, area, and
ideal density.

Figures 1(a) and 1(b) show the charge and discharge
curves of the NCF71 and NCF90 films, respectively, in an
aqueous solution of 10mol=L NaClO4. The electrochemical
properties of the films were investigated using a potentiostat
(HOKUTO DENKO HJ1001SD8) with a beaker-type cell in
the three-pole configuration. The working, reference, and
counter electrodes were the PBA films, a standard Ag=AgCl
electrode, and Pt, respectively. In NCF71 [Fig. 1(a)], the
discharge curve shows a single plateau (plateau I) at ≈0.55V
versus Ag=AgCl, which is ascribed to the reduction
reaction24) Na0.13Co2+[Fe3þ0:71Fe

2þ
0:29(CN)6]0.71 + 0.71Na+ →

Na0.84Co2+[Fe2+(CN)6]0.71. The discharge capacity is 68
mAh=g, which is close to the ideal value (= 72mAh=g).
In the discharge process, Na+ is inserted into the framework,
which causes the reduction of Fe3+ to maintain charge
neutrality. In NCF90 [Fig. 1(b)], the discharge curve shows
two plateaus (plateaus II and III) at ≈1.0 and ≈0.53V.
Plateau II (x ≤ 0.6) at ≈1.0V is ascribed to the reaction16)

Co3+[Fe3þ0:6Fe
2þ
0:4(CN)6]0.9 + 0.6Na+ → Na0.6Co3+[Fe2+(CN)6]0.9.

Plateau III (x ≥ 0.6) at ≈0.53V is ascribed to the reaction16,25)

Na0.6Co3+[Fe2+(CN)6]0.9 + Na+ → Na1.6Co2+[Fe2+(CN)6]0.9.
The discharge capacity is 115mAh=g, which is close to the
ideal value (= 132mAh=g). We use plateau I of the NCF71
film and plateau III of the NCF90 film in the SIB-type
thermocell because their redox potentials are almost the same.

To determine the SEC values of the NCF71 (plateau I) and
NCF90 (plateau III; x ≥ 0.6) films, we fabricated a specially
designed two-pole cell whose anode (Tanode) and cathode
(Tcathode) temperatures are independently controlled by Peltier
elements. The cathode, anode, and electrolyte were the thin
film, Na metal, and propylene carbonate containing 1mol=L
NaClO4, respectively. We carefully measured V against
Tcathode with Tanode fixed at 295.3K. Figures 2(a) and 2(b)
show the V values of NCF71 at x = 0.51 at plateau I and
of NCF90 at x = 0.71 at plateau III, respectively, against
Tcathode. We evaluated SEC by least-squares fittings with
primary functions, as indicated by the solid straight lines.

Thus, the SEC values are determined to be 0.53 and 1.32
mV=K for NCF71 at x = 0.51 (plateau I) and NCF90 at x =
0.71 (plateau III), respectively. The difference (= 0.79
mV=K) in SEC between NCF71 and NCF90 is significant.

We fabricate a SIB-type thermocell (two-pole beaker-type
cell) whose anode, cathode and electrolyte are the as-grown
NCF71 film, a pre-oxidized NCF90 film, and an aqueous
solution of 10mol=L NaClO4, respectively (inset of Fig. 3).
The NCF90 film was pre-oxidized at Vupper = 0.65V against
Ag=AgCl in an aqueous solution of 10mol=L NaClO4. Here,
we defined TL (= 295K) and TH (= 323K) as the lowest and
highest temperatures, respectively. The as-prepared device,
which showed a finite Vcell (= 0.19V), was discharged to 0V
under a constant current condition (I = 7.3 µA). Then, we
slowly increased the temperature (T ) of the device from TL to
TH. Figure 3(a) shows Vcell against T in this heating process.
As expected, Vcell increases linearly with T at a rate of
0.96mV=K. The increase in Vcell is reasonably ascribed to the
difference in SEC between the anode and cathode. Moreover,
the observed value (= 0.96mV) is close to the difference
(= 0.79mV) in SEC between NCF71 and NCF90. At TH, the
device shows a finite Vcell (= 26mV). Figure 3(b) shows the
first discharge process at TH at I = 2.9 µA. Vcell decreases
linearly to 0V in proportion to the moved charge. The final
moved charge is 0.09 e per NCF90 unit. The electric work
done in this discharge process was 1.2meV=NCF90.

The heat cycle of the SIB-type thermocell consists of four
processes, as shown schematically in Fig. 4: (i) heating from

(a) (b)

Fig. 1. Charge (red broken curve) and discharge (blue solid curve) curves
of (a) NaxCo[Fe(CN)6]0.71 (NCF71) and (b) NaxCo[Fe(CN)6]0.9 (NCF90)
films measured in aqueous solution of 10mol=L NaClO4. For convenience of
explanation, we defined plateaus I, II, and III in the discharge curves. Vupper

and Vlower are the upper and lower cutoff voltages, respectively.

(a) (b)

Fig. 2. Redox potential (V ) of (a) NCF71 at x = 0.51 and (b) NCF90 at
x = 0.71 against temperature (Tcathode) of cathode. Temperature (Tanode) of
anode was fixed at 295.3K. x in NCF71 (NCF90) was evaluated from the
moved charge under the assumption that x = 0.84 (1.6) in the discharged
state and 0.13 (0.0) in the charged state. Solid straight lines are results of
least-squares fitting.

(a) (b)

Fig. 3. (a) Vcell of the SIB-type thermocell against T. TL (= 295K) and TH
(= 323K) are the lowest and highest temperatures, respectively. Inset shows
schematic picture of the thermocell. (b) First discharge process at TH under a
constant current condition (I = 2.9 µA). The moved charge was normalized
by that of NCF90.
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TL to TH, (ii) discharge at TH, (iii) cooling from TH to TL, and
(iv) discharge at TL. Figures 5(a) and 5(b) show the variation
in Vcell and current (I ), respectively, during the first and
second heat cycles. In the heating process [(i)], Vcell gradually
increases with time and eventually reaches Vcell = 26mV at
TH. The discharge process [(ii)] at TH produces an electrical
energy of 1.2meV=NCF90 under a constant current condi-
tion (I = 2.9 µA). In the cooling process [(iii)], Vcell gradually
decreases with time and eventually reaches Vcell = −25mV
at TL. Like process (ii), the discharge process [(iv)] at TL
produces electrical energy. Note that the signs of both the
current and the voltage are opposite for processes (ii) and (iv).

Now, let us discuss the thermal efficiency (η ≡ W=Q,
whereW and Q are the output work and input thermal energy,
respectively) of the SIB-type thermocell. The output work
(W ) is expressed as W = WH + WL, where WH and WL are the
electrical work during the discharge processes at TL and TH.
W = 2WH (= 2.3meV=NCF90), because WL is essentially
the same as WH. The input thermal energy is Ctot(TH − TL),
where Ctot is the sum of the specific heats of the anode
(Canode) and cathode (Ccathode). Here, let us use the calculated
CPBA (= 4.16meV=K) of ideal Na2Co[Fe(CN)6] in the
Dulong–Petit law. Then, Q (= 233meV) is easily evaluated
considering Ctot = Canode + Ccathode = 2CPBA. Thus, we ob-
tained η = 1.0%. Strictly speaking, we should include the
heat capacity of the electrolyte in the thermal efficiency. The
amount of electrolyte, however, is minimized in the SIB-type
thermocell because the thermocell utilizes redoxable solids.

In this sense, η (= 1.0%) is an ideal value. Incidentally,
the Carnot efficiency (ηth ≡ 1 − TL=TH) is 8.7% between
TL (= 295K) and TH (= 323K). Thus, the experimentally
obtained η (= 1.0%) is 11% of the ideal value (ηth = 8.7%).
We will bring η closer to ηth by further development of anode
and cathode materials with high ∣SEC∣ and flatter discharge
curves. The flatter the discharge curve becomes, the more
charge can be moved.

In conclusion, we demonstrate that a SIB-type thermocell
consisting of two types of PBA with different SEC values
can harvest waste heat near room temperature. The device
produces an electrical energy of 2.3meV=NCF90 per heat
cycle between 295 and 323K. The ideal thermal efficiency
(η = 1.0%) reaches 11% of the Carnot efficiency (ηth = 8.7%).
We emphasize that our SIB-type thermocell can be easily
formed into a sheet or a large device at a low cost, because it
has the same device structure as SIBs.

Acknowledgments This work was supported by the Yazaki Memorial
Foundation for Science and Technology and the Nippon Sheet Glass Foundation
for Materials Science and Engineering. This work was also supported by JSPS
KAKENHI (Grant Number JP17H0113). T.S. and W.K. were supported by the
Nanotech Research Professional (NRP) course of the Nanotech Career-up
Alliance in Nanotech (CUPAL) project. The elementary analyses were performed
at the Chemical Analysis Division, Research Facility Center for Science and
Engineering, University of Tsukuba.

1) D. A. Wright, Nature 181, 834 (1958).
2) J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A.

Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
3) H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2010).
4) C. B. Vining, Nat. Mater. 8, 83 (2009).
5) T. Ikeshoji, Bull. Chem. Soc. Jpn. 60, 1505 (1987).
6) W. Kobayashi, A. Kinoshita, and Y. Moritomo, Appl. Phys. Lett. 107,

073906 (2015).
7) S. W. Lee, Y. Yang, H.-W. Lee, H. Ghasemi, D. Kraemer, G. Chen, and Y.

Cui, Nat. Commun. 5, 3942 (2014).
8) Y. Yang, S. W. Lee, H.-W. Lee, H. Ghasemi, J. Loomis, D. Kraemer, G.

Zheng, Y. Cui, and G. Chen, Proc. Natl. Acad. Sci. U.S.A. 111, 17011
(2014).

9) I. Quickenden and Y. Mua, J. Electrochem. Soc. 142, 3985 (1995).
10) T. Matsuda and Y. Moritomo, Appl. Phys. Express 4, 047101 (2011).
11) Y. Moritomo, M. Takachi, Y. Kurihara, and T. Matsuda, Appl. Phys.

Express 5, 041801 (2012).
12) M. Takachi, T. Matsuda, and Y. Moritomo, Jpn. J. Appl. Phys. 52, 044301

(2013).
13) T. Matsuda, M. Takachi, and Y. Moritomo, Chem. Commun. 49, 2750

(2013).
14) Y. Lu, L. Wang, J. Cheng, and J. B. Goodenough, Chem. Commun. 48,

6544 (2012).
15) M. Takachi, T. Matsuda, and Y. Moritomo, Appl. Phys. Express 6, 025802

(2013).
16) M. Takachi, T. Matsuda, and Y. Moritomo, Jpn. J. Appl. Phys. 52, 090202

(2013).
17) D. Yang, J. Xu, X.-Z. Liao, Y.-S. He, H. Liu, and Z.-F. Ma, Chem.

Commun. 50, 13377 (2014).
18) H. W. Lee, R. Y. Wang, M. Pasta, S. W. Lee, N. Liu, and Y. Chi, Nat.

Commun. 5, 5280 (2014).
19) L. Wang, J. Song, R. Qiao, L. A. Wray, M. A. Hossain, Y. D. Chung, W.

Yang, Y. Lu, D. Evans, J.-J. Lee, S. Vail, X. Ahao, M. Nishijima, S.
Kakimoto, and J. B. Torrance, J. Am. Chem. Soc. 137, 2548 (2015).

20) S. Yu, Y. Li, Y. Lu, B. Xu, Q. Wang, M. Yan, and Y. A. Jing, J. Power
Sources 275, 45 (2015).

21) Y. You, X. L. Wu, Y. X. Yin, and Y. G. Guo, Energy Environ. Sci. 7, 1643
(2014).

22) R. L. Magnússon, W. Kobayashi, M. Takachi, and Y. Moritomo, AIP Adv.
7, 045002 (2017).

23) Note that the SEC values reported in Ref. 22 is the difference between
cathode (PBA) and anode (Li) material.

24) F. Nakada, H. Kamioka, Y. Moritomo, J. E. Kim, and M. Takata, Phys.
Rev. B 77, 224436 (2008).

25) K. Igarashi, F. Nakada, and Y. Moritomo, Phys. Rev. B 78, 235106 (2008).

Fig. 4. Heat cycle of SIB-type thermocell against Vcell and T. The heat
cycle consists of four processes: (i) heating from TL to TH, (ii) discharge at
TH, (iii) cooling from TH to TL, and (vi) discharge at TL. The heating and
cooling processes are performed without current (I = 0).

(a)

(b)

Fig. 5. (a) Vcell and (b) I in the SIB-type thermocell against time in the first
and second heat cycles. The lowest (TL) and highest (TH) temperatures are
295 and 323K, respectively. The discharge processes were performed under
a constant current condition (I = 2.9 µA).
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