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An easily implemented method to estimate impervious surface area on a large 

scale from MODIS time-series and improved DMSP-OLS nighttime light data 

 

Abstract 

It is important for researchers and policy-makers to frequently update the amount and spatial 

distribution of impervious surface area (ISA) on earth, because the level of imperviousness not only 

indicates urbanization, but is also a key indicator of ecological conditions. In this study, we 

developed an easily implemented method for estimating the ISA percentage (ISA%) from 

vegetation index data obtained from a moderate resolution imaging spectroradiometer (MODIS) 

and nighttime light data obtained from the Defense Meteorological Satellite Program’s Operational 

Line-scan System (DMSP-OLS). The proposed method consists of four major steps. First, a 

non-vegetation fraction map was generated from 16-day composited time-series MODIS 

normalized difference vegetation index data using the temporal mixture analysis method. Second, 

the enhanced-vegetation-index-adjusted nighttime light index (EANTLI) was used to overcome the 

saturation problem and blooming effects in the original DMSP-OLS data. Third, the relationship 

between ISA% and EANTLI was derived based on a statistical analysis of the non-vegetation 

fraction image and the EANTLI image to obtain a preliminary ISA% map. Finally, the final ISA% 

map was obtained by selecting smaller values from the preliminary ISA% map and non-vegetation 

fraction map for each pixel. The validation results showed that the developed method has promising 

accuracy for estimating the ISA% in our study area (mainly consisting of four Southeast Asian 

countries: Thailand, Laos, Cambodia, and Vietnam), with a root mean square error value of 0.111, a 

systematic error value of 0.061, and a determination coefficient of 0.87. Another important finding 

is that there are two relationships between ISA% and improved nighttime light (i.e., EANTLI): the 

natural logarithmic function is suitable for ISA% values between 0% and 50%, and the quadratic 



3 
 

polynomial function should be used for ISA% values larger than 50%. The developed method has 

high potential for application to the generation of global ISA% maps with frequent updates due to 

its easy implementation and the ready availability of input data. 

 

Keywords: impervious surface area, temporal mixture analysis, EANTLI, MODIS, DMSP-OLS 

 

1. Introduction 

  

The term impervious surfaces describes all the man-made types of land cover on the Earth’s 

surface, including rooftops, roads, sidewalks, parking lots and so on. This man-made land cover 

prevents water from infiltrating into the soil, and thus has different surface characteristics from 

natural land cover. Increases in the impervious surface area (ISA) in a watershed have a major 

impact on the hydrological and thermal characteristics of the watershed. Therefore, the ISA is 

considered a useful index for evaluating urbanization and watershed function (e.g., Arnold and 

Gibbons, 1996) as well as impact of environmental factors on climatology stations (e.g., Gallo and 

Xian, 2016).  

 Remote sensing techniques have been widely used to estimate ISA since the 2000s (see the 

extensive review by Weng, 2012). One challenge in applying these techniques is that many mixed 

pixels exist in satellite imagery, especially imagery with medium to coarse resolution. To solve this 

problem, a large number of studies on estimating ISA at a sub-pixel level have been conducted, and 

numerous methods have been developed (see Table 1 for a summary of the major existing methods). 

Among them, the mixture analysis technique is one of the main approaches for remotely estimating 

ISA with medium to coarse resolution imagery (Weng, 2012). Generally, the mixture analysis 

technique can be further separated into two sub-categories: spectral mixture analysis (SMA) and 
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temporal mixture analysis (TMA). The main difference between SMA and TMA is that the former 

uses spectral information while the latter uses temporal information for each endmember (i.e., pure 

land cover type). Because it uses temporal information, the TMA can only be applied to satellite 

imagery with coarse resolution, since the revisit time is longer for satellite imagery with medium to 

high spatial resolution. For example, Wu and Murray (2003) obtained the reflectance spectra of four 

endmembers (i.e., vegetation, soil, impervious surface with low albedo, and impervious surface 

with high albedo) from a Landsat/TM image to estimate the ISA in an American city (an example of 

the use of SMA); Yang et al. (2012) obtained the temporal profiles of three endmembers (i.e., forest, 

crop, and ISA) from the moderate resolution imaging spectroradiometer (MODIS) normalized 

difference vegetation index (NDVI) time-series datasets to estimate the ISA for all of Japan (an 

example of the use of TMA). Compared to SMA, TMA can efficiently reduce endmember 

variability, which is one of the largest sources of error in mixture analysis, and thus achieve 

improved ISA estimation (Somers et al., 2011; Yang et al., 2012). However, TMA has usually 

suffered from bare land effects when it has been used to estimate the ISA in a large area that 

contains more than one type of non-vegetation land cover, leading to an overestimation of ISA 

(Yang et al., 2014).  
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Nighttime light (NTL), which can be obtained from the Defense Meteorological Satellite 

Program’s Operational Line-scan System (DMSP-OLS), is another data source that is widely used 

for estimating ISA (e.g., Elvidge et al., 2007) or improving ISA estimation (e.g., Lu et al., 2008; 

Yang et al., 2014). However, pixel saturation in city cores and pixel blooming in suburbs are two 

obstacles to the successful application of DMSP-OLS data. Recently, several attempts have been 

made to address this issue (Lu et al., 2008; Zhang et al., 2013; Zhuo et al., 2015; Liu et al., 2015). 

The common concept underlying these efforts is the generation of a new index using a combination 

of the DMSP-OLS NTL and MODIS data-based indices. For example, Lu et al. (2008) proposed a 

human settlement index (HSI) determined through the combined use of a normalized DMSP-OLS 

NTL and the maximum MODIS-NDVI between April and October in 2000; Zhang et al. (2013) 

Table 1 Major methods for estimating ISA percent  at sub-pixel level from satellite sensors with medium to coarse spatial resolution

Category Sub-category Approach Descriptions Major Limitations References for
Example

Empirical method  Vegetation
distribution-

based

Build a relationship between ISA percent
and vegetation indices (or greenness) by
considering the inverse correlation between
impervious surface and vegetation cover in
urban areas

Model performacne
strongly depend on
calibration data

Bauer et al., 2008; Lu
et al., 2008

ANN Build a relationship between ISA percent
and reflectance spectra using  neural
network techniques

Model performance
strongly depend on
training data

Lee and Lathrop,
2006; Weng and Hu,
2008

Nighttime light-
based

Build a relationship between ISA percent
and DMSP-OLS data

Model performacne
strongly depend on
calibration data

Elvidge et al., 2007; Lu
et al., 2008

Mixture analysis
method

SMA Estimate ISA percent using mixture analysis
techniques based on spectral information
obtained from satellite data

Suffer from spectral
similarity among non-
vegetation land cover
types and spectral
variability within
endmembers

Wu and Murray, 2003;
Wu, 2004; Lu and
Weng, 2006; Powell et
al., 2007; Yang et al.,
2010

TMA Estimate ISA percent using mixture analysis
techniques based on temporal information
obtained from satellite data

Suffer from temporal
similarity among non-
vegetation land cover
types, and only suitable
for coarse resolution
imagery

Knight and Voth,
2011; Yang et al,
2012; Yang et al.,
2014; Li and Wu,
2015

ANN: artificial neural network; SMA: spectral mixture analysis; TMA: temporal mixture analysis
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modified the HSI to develop a vegetation-adjusted NTL urban index (VANUI) to overcome the 

drawbacks of the HSI; Zhuo et al. (2015) developed another index by combining the DMSP-OLS 

NTL with the MODIS enhanced vegetation index (EVI), which was named the EVI-adjusted NTL 

index (EANTLI), to further improve the performance of the HSI and VANUI; in the same year, Liu 

et al. (2015) also reported a new index by combining the DMSP-OLS NTL with the MODIS EVI 

and normalized difference water index (NDWI) and named it the normalized urban areas composite 

index (NUACI), which also showed better performance than the HSI and VANUI.  

Coarse spatial resolution images are suitable for estimating ISA on a large scale (regional or 

global) because their processing is not time or labor intensive and thus the product can be frequently 

updated (Xian and Homer, 2010). Another important point is that the use of coarse spatial 

resolution images (usually having high temporal resolution) allows users to benefit from the merits 

of the TMA. In addition, it can be considered that the saturation problems and blooming effects in 

the original DMSP-OLS NTL data will limit its usefulness, while the improved DMSP-OLS NTL 

data (i.e., EANTLI) will help us to more efficiently mitigate the bare land effects in TMA-based 

ISA estimation. Consequently, the objective of this study is to propose an easily implemented 

method that can accurately estimate ISA on a large scale from MODIS time-series and the 

improved DMSP-OLS NTL data.  

 

2. Study area  

 

 The study area mainly consisted of four southeast Asian countries (Thailand, Laos, Cambodia 

and Vietnam; Fig. 1) and contained several metropolitan areas, including Bangkok (Thailand), 

Hanoi (Vietnam), Ho Chi Minh City (Vietnam), Vientiane (Laos), and Phnom Penh (Cambodia). Six 

MODIS tiles (h27v6, h27v7, h27v8, h28v6, h28v7 and h28v8) were needed to cover the study area. 
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The study area is characterized by a monsoon climate with a dry season and wet season of more or 

less equal length. The distribution of mean annual rainfall over this area is highly variable, ranging 

from more than 3000 mm in north-central Laos to less than 1000 mm in the much drier areas of 

northeast Thailand (MRC, 2011). A part of the study area annually experiences flooding, with 

inundation lasting between two and six months. Three broad land use types were identified in the 

region, i.e., paddy fields, mixed forest, and land cultivated for cash crops (MRC, 2011).  
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Fig. 1. Location of the study area and the six MODIS tiles used in this research. 
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3. Data sources 

 

3.1. MODIS data 

 Three MODIS products were used in this study. These products were all acquired from the 

U.S. Geological Survey website (http://glovis.usgs.gov/), and reprojected using the MODIS 

Reprojection Tool to meet the projection of the DMSP-OLS NTL data (i.e., geographic projection 

with datum of WGS84). The first product was the MODIS 16-day composited NDVI with a spatial 

resolution of 1 km (MOD13A2) for 2001. There are 23 elements in total for one year which can 

provide temporal information about the land surface. The downloaded MODIS NDVI temporal 

profiles were stacked as one multi-layer file and further smoothed using a Savitzky-Golay 

filter-based method to minimize the remaining cloud/noise effects and/or effects caused by 

atmospheric variability and imperfect sensor calibration (Chen et al., 2004). The smoothed NDVI 

data were then sorted in ascending order, and the last 12 maximum NDVI elements were extracted. 

This is because previous studies have shown that the sorted NDVI temporal profiles (especially for 

high NDVI value zones) can reduce endmember variability and thus result in more accurate 

estimation of ISA (Yang et al., 2012; Yang et al., 2014).  

 The second product was the MODIS monthly composited EVI with a spatial resolution of 1 

km (MOD13A3). This product was used together with the DMSP-OLS NTL data to calculate the 

EANTLI (Zhuo et al., 2015). The third product was the MODIS Land Water Mask with a 250-m 

spatial resolution (MOD44W). This product was used to mask water pixels before the ISA 

estimation was performed.  

 

3.2. DMSP-OLS NTL data 
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 The global DMSP-OLS NTL stable light product of 2001 (version 4; geographic projection 

with datum of WGS84; spatial resolution: 1 km) from DMSP satellite F15 was downloaded from 

the NOAA website (http://ngdc.noaa.gov/eog/index.html). The area corresponding to the study area 

was then cut out. The effects of moonlight, stray light, clouds, ephemeral fires, and gas flares have 

been removed from the product to ensure that the lights are almost all from human settlements 

(Elvidge et al., 2007). The light saturation problem in urban centers and the blooming effects in 

suburban areas were mitigated by combining the data with MODIS EVI data (Zhuo et al., 2015).  

  

3.3. Historical images from Google Earth 

 

 The reference ISA data for accuracy assessment were collected from high-resolution Google 

Earth images of 2001-2004. In total, 97 stratified random samples were collected in order to 

evaluate the accuracy of the ISA estimation in a full dynamic range (i.e., ISA between 0% and 

100%). For each reference sample, a 3 km x 3 km sampling unit (corresponding to 3 x 3 pixels of 

MODIS products or DMSP-OLS NTL data) was utilized to reduce the impact of geometric errors 

associated with different datasets. The 97 extracted sample polygons (3 km x 3 km) were then 

classified as ISA or non-ISA using the unsupervised classification method with visual interpretation 

or the visually digitizing method in ENVI 5.2. Finally, the ISA fraction was calculated for each 

reference sample. 

 

4. Development of an easily implemented method for estimating ISA from MODIS and 

DMSP-OLS NTL data 

 

     A flowchart of the proposed method is shown in Fig. 2. The method contains four major steps, 
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which will be described in subsections 4.1 (Step 1 in Fig. 2), 4.2 (Step 2 in Fig. 2), and 4.3 (Steps 3 

and 4 in Fig. 2).  

 

Fig. 2. Flowchart of the proposed method. Min (A, B) represents the selection of smaller value 

between images A and B. 

 

MODIS NDVI
time-series image

MODIS EVI yearly
composite image

DMSP-OLS NTL
image

Temporal mixture analysis
(Yang et al., 2012)

Reduce saturation and blooming 
effects in original nighttime light
(Zhuo et al., 2015)

EANTLI image
Fractional image of
non-vegetation (A)

Build relationship between 
ISA and EANTLI based on
statistical analysis

Preliminary ISA 
fractional image (B)Min(A , B)

Final ISA fractional
image 

Step 1 Step 2

Step 3

Step 4
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4.1. Estimating the non-vegetation fraction from time-series MODIS NDVI data using the TMA 

method 

 

In the TMA method, the NDVI value of a mixed pixel is considered to be the linear 

combination of the NDVI values of the endmembers and can be mathematically written as (Yang et 

al., 2012): 

 NDVI୫୧୶ ൌ ෍ ௜݂NDVI୧

௡

௜ୀଵ

൅ ε (1)

where NDVImix is the temporal profile of the NDVI of the target pixel, NDVIi is the temporal NDVI 

signature of endmember i, fi is the fraction of endmember i, and ε is the residual representing the 

model error. The fractions of the endmembers are commonly constrained by: 

 ෍ ௜݂ ൌ 1

௡

௜ୀଵ

and ௜݂ ൒ 0 (2)

 In this study, the fraction of each endmember was estimated using the constrained_min 

function in ver. 8.4 of the Interactive Data Language (IDL; Exelis Visual Information Solutions Inc., 

Boulder, CO). 

 A minimum noise fraction (MNF) transform was carried out for the last 12 maximum NDVI 

values in sorted NDVI temporal profiles to facilitate the selection of endmembers. The scatter plots 

of the first three MNF components were used to guide the selection of the endmembers (Fig. 3). 

 From Fig. 3, four endmembers were identified. They were forest, multi-crop, single-crop and 

non-vegetation (ISA and/or bare land). The temporal profiles of the selected endmembers are shown 

in Fig. 4. It can be seen that the NDVI temporal profile of forest showed almost no change at high 

NDVI values, whereas the NDVI temporal profile of non-vegetation showed almost no change, but 

showed low NDVI values. In contrast, the NDVI temporal profiles of crops (both single- and 
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multi-crop) showed increasing trends in the NDVI values, which indicated the presence of 

phenological characteristics different from those of the other two endmembers (i.e., forest and 

non-vegetation).  

 

Fig. 3. Feature space representations of the first three minimum noise fraction (MNF) components. 

Four endmembers were identified: forest, multi-crop, single-crop and non-vegetation (including 

impervious surface and bare land).  
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Fig.4. NDVI temporal profiles of endmembers for temporal mixture analysis. 

 

The fraction image of the non-vegetation endmember was calculated by Eq. (1) using the 

constraints of Eq. (2). In addition, since the purpose of this study was to estimate ISA, the pure 

vegetation pixels (i.e., pixels with NDVI values larger than 0.8 for all 12 elements) were identified 

and masked out before the fraction estimation to save computation time. 

 

4.2. Calculating EANTLI from MODIS EVI and DMSP-OLS NTL data 

 

The EVI-adjusted NTL index (EANTLI) developed by Zhuo et al. (2015) is used to overcome the 

two main problems in the original DMSP-OLS NTL data (i.e., light saturation in urban centers and 

the blooming effect in suburban regions). It is known that the light saturation in urban centers 

conceals light intensity variations and spatial details, while the blooming effect leads to the 

overestimation of the lighted area in suburban regions (Lu et al., 2008; Zhang et al., 2013; Zhuo et 

al., 2015). Mathematically, the EANTLI can be written as (Zhuo et al., 2015): 
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 EANTLI ൌ 	
	1	 ൅	൫ሺNTLሻ୬୭୰୫ െ	ሺEVIሻ൯

1	–	൫ሺNTLሻ୬୭୰୫ െ	ሺEVIሻ൯
ሺNTLሻ (3) 

 

where (NTL)norm represents the normalized DMSP-OLS NTL value (divided by the maximum value 

of 63), (NTL) is the original DMSP-OLS NTL value, and (EVI) is derived from the monthly 

MODIS-EVI products. According to Eq. (3), it is clear that the EANTLI can enlarge the original 

NTL digital number (DN) values when (NTL)norm is larger than (EVI) (i.e., the potential saturated 

area) and reduce the NTL DN values when (NTL)norm is smaller than (EVI) (i.e., the potential 

blooming area), and thus corrects the light saturation in urban centers and mitigates the blooming 

effects in suburban regions. The details of the rationality and performance of EANTLI can be found 

in Zhuo et al. (2015).  

     The EANTLI image was generated from the MODIS EVI product and DMSP-OLS NTL data 

using Eq. (3). 

 

4.3. Building a relationship between ISA and EANTLI 

 

     Figure 5 shows the results of a statistical analysis of the original and improved (i.e., EANTLI) 

DMSP-OLS NTL for 10 non-vegetation fraction groups ranging from 1% to 100% divided into 

deciles (i.e., 1-10%, 11-20%, 21-30%, 31-40%, 41-50%, 51-60%, 61-70%, 71-80%, 81-90% and 

91-100%). The non-vegetation fractions were obtained from the results of Section 4.1. The NTL or 

EANTLI values from the lower to the upper limit at the 5th, 25th, 50th, 75th, and 95th percentiles are 

shown for each non-vegetation fraction group. Figure 5 shows that: (1) very low NTL or EANTLI 

values appeared even for some pixels with a higher non-vegetation fraction (e.g., larger than 50%); 

(2) a light saturation problem appeared in Fig. 5a when the non-vegetation fraction was larger than 
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50%; (3) the light saturation problem disappeared if EANTLI was used instead of NTL (Fig. 5b); 

(4) higher NTL values can be observed even for pixels with a very low non-vegetation fraction (e.g., 

less than 20%); (5) this problem was mitigated if EANTLI was used instead of NTL; (6) the 

EANTLI values at the 95th percentile line are in direct proportion to the non-vegetation fractions. 

The first finding indicates that the TMA method suffered from the problem of the mixture of ISA 

and bare land in a MODIS pixel. The second to fifth findings suggest the improvements obtained by 

using EANTLI instead of NTL. The sixth finding provides a hint as to how to build a relationship 

between ISA and EANTLI. 

     Generally, NTL should become brighter with the increase of the ISA percentage (ISA%) 

because both the ISA and the NTL are good indicators of urbanization (Elvidge et al., 2007). From 

Fig. 5, it can be seen that only the EANTLI values at the 95th percentile line can maintain the 

positive correlation of ISA% with NTL. In addition, the pixels with maximum EANTLI values in 

each non-vegetation fraction group should probably only include ISA as non-vegetation land cover 

(i.e., the non-vegetation fraction can be considered to be the ISA fraction for these pixels), whereas 

the pixels with smaller EANTLI values probably include both ISA and bare land as non-vegetation 

land cover. In this study, the EANTLI value at the 95th percentile line was used instead of the 

maximum EANTLI value in each group to build the relationship between ISA% and EANTLI. This 

was done for two reasons. First, the EANTLI values probably varied slightly even for the same 

ISA% (e.g., they varied from the 95th percentile line to the maximum). Second, the maximum 

EANTLI values were probably due to the imperfect removal of ephemeral lights from fires from 

those pixels (e.g., gas flares and forest fires; Elvidge et al., 2007). The sensitive analysis results 

shown in Fig. 6 also indicate that the use of EANTLI values at the 95th percentile line is reasonable. 

From Fig. 6, it can be seen that the highest correlation coefficient and the smallest error index 

among the tested percentile lines occurred at the 95th percentile, except for the case of a 
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non-vegetation fraction of less than 50% (which occurred at the 100th percentile line).  

  

Fig. 5. Statistics of DMSP-OLS NTL values (a) and EANTLI values (b) for 10 non-vegetation 

fraction groups ranging from 1% to 100% divided into deciles. For each group, the 5%, 25%, 50%, 

75%, 95% percentiles are shown. 
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Fig. 6. Sensitivity of relationship between ISA% and EANTLI values to the use of EANTLI values 

at different percentile lines. (a) Correlation coefficients between ISA% and EANTLI values at each 

tested percentile line. (b) Root mean square error (RMSE) of estimated ISA% using the relationship 

at each tested percentile line. <50%: the case for ISA% less than 50%; >50%: the case for ISA% 

larger than 50%.  
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that the EANTLI values increased slowly with the ISA% values when the EANTLI values were less 

than 64 (corresponding to an ISA% value of 40%), but there appears to be a breakpoint at the 

EANTLI value of 236 (corresponding to an ISA% value of 50%) where the curve trend changed 

(i.e., above 236, the EANTLI values increased dramatically with the increase of ISA% values). This 

finding indicates that there exist two relationships between the EANTLI and ISA% values. The first 

relationship can be represented by a natural logarithmic function for the EANTLI range between 0 

and 236, and the second relationship can be represented by a polynomial function for EANTLI 

values larger than 236. The equations for the two relationships can be expressed as: 

 

 ISA% = 8.5651· ln(EANTLI) + 1.0063    (EANTLI<236) (4)

 

 ISA% = −0.00005·EANTLI2 + 0.1329· EANTLI + 19.224    (EANTLI≥236) (5)

 

The constant term in Eq. (5) was slightly adjusted from 20.464 to 19.224 to allow the two equations 

to give the same ISA% values at the breakpoint of EANTLI=236. 

     A preliminary ISA% map was then generated from the EANTLI image using Equations (4) 

and (5). The preliminary ISA% map was further compared to the non-vegetation fraction map, and 

the lower value was selected as the final ISA% value for each pixel. This is because non-vegetation 

land cover contains both ISA and bare land, and thus the ISA% should be equal to or smaller than 

the fraction of non-vegetation estimated using the TMA method.  
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Fig. 7. Two relationships between the EANTLI and ISA% values. 

 

4.4. Accuracy assessment 

 

 Two indices, namely the root mean square error (RMSE) and systematic error (SE), were used 

in accuracy assessment. These indices are defined as follows: 

 RMSE ൌ ඨ
1
݊
෍ ൫ISAୣୱ୲,୧ െ ISA୰ୣ୤,୧൯

ଶ௡

௜ୀଵ
 (6)

 SE ൌ
1
݊
෍൫ISAୣୱ୲,୧ െ ISA୰ୣ୤,୧൯

୬

୧ୀଵ

 (7)

where ISAest,i is the estimated fraction of the ISA from the MODIS and DMSP-OLS data, ISAref,i is 

the referenced data in the sampling window i, and n is the total number of sampling windows for 

validation (a total of 97 samples were collected in this study). The RMSE denotes the sample 

standard deviation of the differences between the estimated values and the reference/observed 

values, while the SE denotes the average bias in the estimation. The coefficient of determination 

y = 8.565ln(x) + 1.0063
R² = 0.9045
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(R2) between ISAest,i and ISAref,i was also calculated.  

 

5. Performance of the proposed method 

 

Figure 8 shows the fraction map of non-vegetation based on the TMA method (Fig. 8a), the 

preliminary fraction map of ISA obtained using Equations (4) and (5) (Fig. 8b), and the final 

fraction map of ISA obtained through selection of the smaller fraction values between the above 

two maps (Fig. 8c). The EANTLI map is shown in Fig. 8d for reference. From Fig. 8a, it can be 

clearly seen that bare lands made quite a large contribution to the non-vegetation fraction, 

especially for the areas without any NTL (also see Fig. 8d). The effects of bare lands on ISA 

estimation were greatly reduced through the combination of the non-vegetation fraction map and 

the EANTLI image (Fig. 8b). These improvements occurred not only in areas without NTL (e.g., 

areas along the Mekong River denoted as Area 1 in Fig. 8a; also see Figs. 9a-9c for a comparison of 

the details), but also in areas with NTL (e.g., the areas surrounding Bangkok, Hanoi, Ho Chi Minh 

City, Vientiane, and Phnom Penh; also see Figs. 9d-9f for an enlargement of Area 2 in Fig. 8a 

showing Phnom Penh city and its surrounding areas). Some slight changes were found when the 

final ISA fraction map (Fig. 8c) was compared to the preliminary ISA fraction map (Fig. 8b), such 

as in the areas in or surrounding Bangkok and Hanoi (also see Figs. 9g-9i for an enlargement of 

Area 3 in Fig. 8a and the Google Earth image in Fig. 9j for three special cases in Bangkok; the 

colors changed from yellow or red to green for these three cases). 

To quantitatively evaluate the performance of the proposed method, 97 samples (3 km × 3 km 

for each sample) from the historical images in Google Earth were interpreted and compared with 

the estimated ISA% values (Fig. 10a). The corresponding 97 values for the non-vegetation fraction 

(TMA-based results, Yang et al., 2012) were also compared with the Google-Earth-image-based 
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reference values for ISA% (Fig. 10b). The RMSE of the proposed method was 0.111, with slight 

overestimation (SE=0.061). In addition, 87% of the variance in the ISA% estimations determined 

by the proposed method corresponded with the estimations from Google Earth images (R2=0.87). In 

contrast, the TMA-based results showed larger scatter (RMSE=0.263) and overestimation 

(SE=0.203), especially in low ISA% areas (i.e., less developed areas). The coefficient of 

determination was 0.58, which was also lower than that of the proposed method. 

Figure 11 provides a further demonstration of the proposed method using a selected sample 

from Fig. 10. The Google Earth image was collected on February 12, 2001 from a rural area near 

Bangkok, Thailand (Fig. 11a). From the Google Earth image, it can be seen that the major land use 

type of this sample is cropland with several small areas of ISA (e.g., some houses and roads, 

ISA%= 4.44% by visual interpretation). However, the TMA-based result showed a larger fraction of 

non-vegetation due to the presence of large amounts of bare land (Fig. 11b, N-V%=40.78%). 

Although the overestimation of ISA% from the TMA-based method was largely improved by the 

proposed method, a slight underestimation resulted because 5 of the 9 pixels had no lights but 

contained a small portion of ISA (gray pixels in Fig. 11c, ISA%=3.58%).  
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 Fig. 8. Distribution maps of (a) non-vegetation fraction based on temporal mixture analysis 

method; (b) preliminary ISA fraction estimated using Equations (4) and (5); (c) final ISA fraction 

obtained through the selection of the smaller fraction values between (a) and (b); (d) EANTLI 

calculated using Equation (3). Three example areas (Area 1 to Area 3) were enlarged in Fig. 8 for 

comparison of the details. 
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Fig. 9. Comparison of non-vegetation fraction map, preliminary ISA fraction map, final ISA 

fraction map, and EANTLI map for three example areas shown in Fig. 8a. One Google Earth image 

was also shown for further visual comparisons of three small areas (black boxes).  

  

Fig. 10. Accuracy assessment. (a) Estimated ISA% by the proposed method are assessed by 

interpretation of the corresponding Google Earth images; (b) Estimated non-vegetation fraction 

based on TMA method (Yang et al., 2012) are assessed by interpretation of the corresponding 

Google Earth images.  
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Fig. 11. Distribution maps for a sample selected from Fig. 10 for visual comparison. (a) Reference 

image from Google Earth; (b) non-vegetation fraction (N-V%) estimated using the TMA method; 

(c) ISA% estimated using the method proposed in this study. The area of each map is 3 km by 3 km.  

 

6. Discussion 

  

     Building the relationship between ISA% and NTL is a key element in the proposed method. 

To do this, reference datasets of the ISA% and corresponding NTL values are necessary. Landsat 
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TM/ETM+ data have generally been used to generate a reference dataset of ISA% in previous 

studies (Elvidge et al., 2007; Lu et al., 2008; Liu et al., 2015; Huang et al., 2016). However, there 

are some drawbacks to the use of Landsat data for this purpose. First, the Landsat data still suffer 

from the mixed pixel problem in the ISA% estimation. Even though an SMA-based method was 

used to estimate ISA% from Landsat data, it remains a challenge to efficiently reduce endmember 

variability in the SMA-based method to provide a more accurate ISA% estimation due to the 

spectral complexity of each endmember (Yang et al., 2010; Somers et al., 2011). Second, additional 

time and labor are needed for processing Landsat data. This drawback will limit the application of 

this method for estimating ISA% on a large scale (e.g., regional or global). Furthermore, since 

Landsat data processing is time-consuming, it is not easy to frequently update a new regional or 

global ISA% product. 

     In this study, ISA% reference data were obtained by statistically analyzing the non-vegetation 

fraction and corresponding EANTLI data to avoid the need for Landsat data (Fig. 5). The 

non-vegetation fractions were estimated from MODIS NDVI time-series data using the TMA 

method. The term “non-vegetation” was used in place of the term “ISA” in this step, because ISA 

and bare land have similar NDVI temporal profiles and thus can be considered the same 

endmember (Yang et al., 2014). It can be assumed that, in each non-vegetation fraction group, some 

pixels with the maximum EANTLI value only include ISA as the non-vegetation land cover (i.e., 

without bare land effects). According to this assumption, the non-vegetation fractions for these 

pixels can be considered ISA% reference data. The validation results shown in Fig. 10 indicate that 

this assumption was reasonable in our study area. In addition, there are two advantages to using the 

TMA method instead of the SMA method for estimating the non-vegetation fraction: (1) the TMA 

method provides an efficient reduction of endmember variability; and (2) this method is suitable for 

application on a large scale over a long term because it can be applied to MODIS time-series data 
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(Yang et al., 2012).  

For NTL, it is well known that two large obstacles (i.e., the light saturation problem and the 

blooming effects) have emerged in the application of the original DMSP-OLS data (Lu et al., 2008; 

Zhang et al., 2013; Zhuo et al., 2015). From Fig. 5a, it can also be seen that the highest light 

intensities do not vary when the non-vegetation fraction is larger than 50%, and the higher light 

intensities are still found even when the non-vegetation fraction is smaller than 20%. These two 

problems can be solved through the use of the EANTLI image instead of the original DMSP-OLS 

image (Fig. 5b). As mentioned in section 4.3, the EANTLI values at the 95th percentile line were 

used in this study instead of the maximum EANTLI values. This led to 5% of the pixels in each 

non-vegetation fraction group with EANTLI values being larger than the EANTLI values used for 

building the relationships (i.e., Eq. (4) and Eq. (5)), and thus the ISA% values of these pixels in the 

preliminary ISA fraction map will be larger than the values of the corresponding non-vegetation 

fraction. In addition, imperfectly removed blooming effects can also cause overestimations in the 

preliminary ISA% map. These overestimations can be mitigated through the addition of the fourth 

step (e.g., Area 3 in Figs. 8a-8c; also Figs. 9g-9j). 

 Lu et al. (2008) reported a natural-logarithmic-function-based regression model for estimating 

ISA% (i.e., referred to as “fractional settlements” in their paper) from the HSI values. However, the 

natural logarithmic function was only found to be suitable for the range of ISA% values between 

0% and 50% in our study area (Fig. 7). For ISA% values larger than 50%, the light intensities 

increased quickly with the increase of ISA%, and thus a quadratic-polynomial-function-based 

model was used to replace the natural-logarithmic-function-based regression model (Eq. 5). Similar 

relationships between the ISA% and EANTLI values were also found by analyzing MODIS and 

DMSP-OLS data for 2006 and 2012 using the same method (results not shown). These results 

probably indicate that different light use efficiencies existed between the developed and 
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undeveloped regions in our study area.  

     Since global MODIS NDVI/EVI products are available for the year 2000 up to the present, a 

yearly non-vegetation fraction map can be generated on a global scale for the same period based on 

the TMA method. On the other hand, yearly DMSP-OLS datasets are available from 1992 to 2013, 

and new NTL data (Suomi NPP-VIIRS: Suomi National Polar-Orbiting Partnership – Visible 

Infrared Imaging Radiometer Suite) have been collected since 2011. Therefore, it is possible to 

generate a yearly distribution map of ISA% values from 2000 to the present on a global scale using 

the proposed method. However, the size of the area that is the most appropriate for building the best 

relationship between ISA% and NTL should be further studied, for two reasons. First, the existence 

of a sufficient number of pixels with only ISA as a non-vegetation land cover is required for each of 

the 10 non-vegetation fraction groups (defined by deciles from 1% to 100%). Therefore, a larger 

area is necessary to meet this requirement. Second, the light use efficiency probably differs among 

countries or regions of the world due to different levels of economic development. Therefore, it is 

better to use different relationships to obtain more accurate ISA% estimations for each country or 

region, and thus a smaller study area should be selected. These two considerations are contradictory. 

In addition, although the MODIS NDVI/EVI products are only available from year 2000, the NDVI 

time-series data can be extended to the 1980s by using the data from the Advanced Very High 

Resolution Radiometer of the NOAA (NOAA/AVHRR). Therefore, it is possible to obtain a global 

ISA% map since 1992 if the NDVI is used to replace EVI in Equation (3). However, how the 

replacement influences the performance of NTL data should be further investigated in a future study. 

Moreover, inter-annual correction should also be implemented to reduce temporal inconsistency 

between spatially enhanced DMSP-OLS time-series data (i.e., EANTLI in this study, Xie and Weng, 

2017). 
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7. Conclusions 

 

 In this study, an easily implemented method was developed for estimating ISA% on a large 

scale. The developed method includes four major steps and requires three major products from two 

satellite sensors. The four major steps are: (1) estimate the non-vegetation fraction from MODIS 

NDVI time-series products using the TMA method; (2) obtain improved NTL data by calculating 

EANTLI from the monthly MODIS EVI product and DMSP-OLS NTL data; (3) generate a 

preliminary ISA% map by building a relationship between ISA% and EANTLI based on the 

statistical analysis of the maps from the first and second steps; (4) obtain a final ISA% map by 

comparing the preliminary ISA% map to the non-vegetation fraction map and selecting the smaller 

values. The validation results showed that the developed method has promising accuracy for 

estimating the ISA% in our study area (which mainly consists of four Southeast Asian countries: 

Thailand, Laos, Cambodia, and Vietnam), with an RMSE value of 0.111, an SE value of 0.061, and 

a determination coefficient of 0.87. Another important finding is that there are two relationships 

between ISA% and the improved NTL (i.e., EANTLI): the natural logarithmic function is suitable 

for ISA% values between 0% and 50%, and the quadratic polynomial function should be used for 

ISA% values larger than 50%. The developed method shows high potential for use in generating a 

global ISA% map with frequent updates because of its easy implementation and readily available 

input data. 
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