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Abstract

Cellular membranes are heterogeneous, and this has a great impact on cellular function.

Despite the central role of membrane functions in multiple cellular processes in sperm, their

molecular mechanisms are poorly understood. Membrane rafts are specific membrane

domains enriched in cholesterol, ganglioside GM1, and functional proteins, and they are

involved in the regulation of a variety of cellular functions. Studies of the functional charac-

terization of membrane rafts in mammalian sperm have demonstrated roles in sperm-egg

binding and the acrosomal reaction. Recently, our biochemical and cell biological studies

showed that membrane rafts are present and might play functional roles in chicken sperm.

In this study, we isolated membrane rafts from chicken sperm as a detergent-resistant

membranes (DRM) floating on a density gradient in the presence of 1% Triton X-100, and

characterized the function and proteomes associated with these domains. Biochemical

comparison of the DRM between fresh and cryopreserved sperm demonstrated that cryo-

preservation induces cholesterol loss specifically from membrane rafts, indicating the func-

tional connection with reduced post-thaw fertility in chicken sperm. Furthermore, using an

avidin-biotin system, we found that sperm DRM is highly enriched in a 60 KDa single protein

able to bind to the inner perivitelline layer. To identify possible roles of membrane rafts,

quantitative proteomics, combined with a stable isotope dimethyl labeling approach, identi-

fied 82 proteins exclusively or relatively more associated with membrane rafts. Our results

demonstrate the functional distinctions between membrane domains and provide compel-

ling evidence that membrane rafts are involved in various cellular pathways inherent to

chicken sperm.

Introduction

Biological membranes are heterogeneous, and this is critical for cellular function. Membrane

rafts are dynamic membrane regions enriched in functional proteins and specific lipids, such

as cholesterol and glycosphingolipid GM1 (GM1). The organization of the membrane domains

relies on biochemical interactions among the constituents. Cholesterol is a key molecule
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regulating both organization and disruption of the micro-domains, suggesting a dynamic

appearance in temporal and spatial scales. Attempts to understand the physiological roles of

the membrane micro-domains have demonstrated that these domains play significant roles in

a variety of cellular functions [1–3]. These tremendous functional aspects of the rafts have

made them of great interest for cell biologists. However, there are numerous difficulties associ-

ated with observing the nature of raft domains because of their small and dynamic appearance.

To avoid these difficulties, biochemical isolation based on resistance to solubilization when

incubated at low temperature with Triton X-100 (TX-100) [4] is often preferred as a starting

point to explore the presence and compositional nature of membrane rafts. Although this

approach led to controversy that these detergent resistant membranes (DRM) might not

exactly represent pre-existing rafts in cellular membranes [5], a strong correlation has also

been demonstrated between the molecules recovered in the DRM and those partitioned into

the raft domains in situ [6]. Furthermore, many of major findings for the functional characteri-

zation of membrane rafts have originated from DRM-based analysis. Therefore, it has been

proposed that DRM-based methodology can be used to identify molecules that tend to be asso-

ciated with membrane rafts [7].

Of the cell types in which membrane domain organization has been studied, mammalian

sperm are unique with respect to the size and stability of the lipid segregations within their

plasma membrane [8]. We have previously shown in live murine sperm that an enormous

membrane domain is enriched in GM1, which is localized to the acrosomal plasma membrane

(APM) region [8]. Furthermore, a recent localization experiment demonstrated that the APM

region consists of multiple membrane domains with focal enrichments of sterols [9]. Consid-

ering that localization is highly conserved between mammalian species [9, 10], these data sug-

gest the presence of membrane rafts in the APM region of mammalian sperm. Several studies

have attempted to demonstrate possible roles in mammalian sperm, including capacitation

[11, 12], binding to the zona pellucida (ZP)[13, 14], and the acrosome reaction [15, 16], which

further makes the functional characterization of sperm rafts of great interest.

Unlike mammalian sperm, there is no capacitation process recognized in avian sperm, but

it is in common to undergo the acrosome reaction by binding to the inner perivitelline layer

(IPVL), which is considered to be a structure that is analogous to the mammalian ZP [17]. In

Japanese quail, it recently was demonstrated that a 45KDa sperm acrosin on APM is responsi-

ble for sperm binding to the IPVL of an ovum [18]. Furthermore, the APM contains multiple

calcium channels involved in induction of the acrosome reaction [19]. Considering that sperm

are transcriptionally and translationally inactive, these highlight the functional role of preas-

sembled cellular machinery into the APM region, as it allows avian sperm to induce fertiliza-

tion competence. We recently reported in chicken sperm that membrane rafts became

localized to the plasma membrane overlying the sperm head, including the APM region [20].

Furthermore, a comparison of membrane properties between fresh and cryopreserved sperm

demonstrated that alteration of membrane rafts occurs concomitantly with cholesterol loss

during cryopreservation, which results in impairment of post-thaw fertilizing ability [21].

These data suggest that membrane rafts play a more substantial role in regulation of sperm

function during fertilization.

Mass spectrometry of the DRM fraction is a powerful tool to screen the functional roles of

membrane rafts. Although several studies were performed in sperm DRM to identify potential

molecules partitioned into membrane rafts [11, 22, 23], it has been pointed out that the associ-

ation of molecules with the DRM remains to be determined with quantitative approaches

because of uncertainty regarding whether molecules are primarily associated with the DRM or

non-DRM [7]. To avoid this limitation, our group has previously performed quantitative

proteomic characterization of membrane rafts in murine sperm, highlighting the functional

Similarity and difference of proteomes between membrane rafts and non-raft in chicken sperm

PLOS ONE | https://doi.org/10.1371/journal.pone.0186482 November 2, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0186482


roles of sperm rafts [24]. However, the proteome associated with membrane rafts remain to be

characterized in any avian sperm. Therefore, in this study, we isolated the DRM and character-

ized the possible functions and proteomes of membrane rafts in chicken sperm. Our biochemi-

cal and quantitative proteomic data indicate a functional distinction between membrane

domains and suggest the functional involvement of membrane rafts in multiple cellular path-

ways inherent in chicken sperm.

Materials and methods

Reagents and animals

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise

noted. The AmplexⓇ Red Cholesterol Assay Kit, cholera toxin subunit B conjugated with

horseradish peroxidase or AlexaFluor 488 (CTB-HRP or–Alexa 488) and NeutrAvidinTM Aga-

rose were obtained from Thermo Fischer Scientific (Waltham, MA, USA).

Fertile Rhode Island Red chickens, raised at the Agricultural and Forestry Research Center,

University of Tsukuba, Japan, were utilized for semen collection using the dorsal-abdominal

massage method [25]. In brief, ejaculatory response was induced by the dorsal abdominal mas-

sage and then semen was collected by gripping the base of the protruded copulatory organ. All

animal work was performed following approval of the University of Tsukuba’s Institutional

Animal Care and Use Committee (Approval number 16–011).

Sperm cryopreservation

Cryopreservation of sperm was performed as described previously [26]. In brief, clean semen

samples collected from multiple males were pooled and diluted three times with Minnesota

Avian buffer (MnA) containing 8% (v/v) glycerol. Samples were snap frozen in liquid nitrogen

for storage after loading into a 0.5 ml straw. For thawing, frozen semen was thawed at 5˚C for

10 min. Semen was rediluted, centrifuged, and then resuspended in MnA.

Separation of the DRM

Membrane rafts were isolated from fresh and thawed sperm as the low density DRM, as

described previously [4]. Sperm (1.5×108) were sonicated and treated with ice cold TNE (50

mM Tris, 150 mM NaCl, 1 mM EDTA, pH7.35) containing 1% TX-100 and protease inhibitor

cocktail (Roche Applied Science, Indianapolis, IN, USA) for 30 min. After removal of sperm

debris by centrifugation at 10,000 g for 10 min, the supernatant was sonicated with three short

bursts and then mixed with 60% (w/v) sucrose to obtain a 40% (w/v) final sucrose concentra-

tion. This mixture (0.75 ml) was placed at the bottom of the tube and overlaid with 2.4 ml of

30% sucrose and 1.0 ml of 5% sucrose and then centrifuged at 200,000 g for 18 h. Fractions

(0.5 ml) were collected from the top (designated 1 to 8 from top to bottom) by careful pipetting

and subjected to quantification of cholesterol, GM1, and protein amount. The density of each

fraction was as follow: fractions 1; 1.016 g/cm3, 2; 1.017 g/cm3, 3; 1.104 g/cm3, 4; 1.131 g/cm3,

5; 1.127 g/cm3, 6; 1.122 g/cm3, 7; 1.142 g/cm3, 8; 1.146 g/cm3.

GM1 quantification

For the determination of GM1 content, fractions were subjected to slot blotting as described

[24]. In brief, 25 μl of each fraction was diluted with 75 μl of TNE and was blotted onto a

PVDF membrane (Immobilon-P; Millipore, Bedford, MA, USA) using a Slot Blot Manifold

(Hoefer, San Francisco, CA, USA). The PVDF membrane was blocked with 5% bovine serum

albumin and incubated with CTB-HRP at a 1:2000 dilution for 1 h at room temperature. The
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GM1 expression was detected by chemiluminescence using the ChemiDoc XRS+ (Bio-Rad,

Hercules, CA, USA), and the resulting bands were subjected to densitometry using ImageJ

1.47v software downloaded from the NIH website (http://imagej.nih.gov/ij/).

Immunoblotting

Proteins from the fractions were extracted by boiling in sample buffer [27] and separated by

SDS-PAGE. Transfer, blocking, and immunodetection of specific proteins were performed

largely as previously described [24]. Dilutions used for the primary antiserum were 1:4,000 for

anti-α-tubulin (EMD Millipore, Millerica, MA, USA) and 1:500 for anti-acrosin (Santa Cruz

Biotechnology, Dallas, TX, USA), and for the biotin-binding probe was 1:100,000 for NeutrA-

vidin-HRP (Thermo Fischer Scientific). A 1:5,000 dilution was used for anti-mouse IgG conju-

gated with HRP (GE Healthcare Life Sciences, Pittsburg, PA, USA). Chemiluminescence was

used to detect immunoreactivity.

Localization of lipids in sperm

Fresh semen and frozen-thawed semen (1 x 107 sperm), which were thawed and suspended in

MnA, were centrifugally washed in PBS, and fixed for 15 min at room temperature with 2%

paraformaldehyde in PBS. Localization of GM1 and sterols was determined as described previ-

ously [8]. In brief, the sperm were washed with PBS and incubated with 10 μg/ml CTB-Alexa

488 or 50 μg/ml Filipin III (Cayman Chemical, Ann Arbor, MI, USA) in 300 μl PBS. The

sperm were then washed with PBS, and viewed with a Leica DMI 4000 B microscope (Leica

Microsystems, Wetzlar, Germany) equipped with Leica DFC 450 camera. Images were cap-

tured with the same exposure times for fresh and frozen-thawed sperm.

Sperm membrane protein-IPVL binding assay

IPVLs were separated from fowl eggs as described [28]. Based on the buoyancy and contents

of cholesterol and GM1, fraction 2 and 3 represented the putative DRM and were pooled

together for a further assay. For assessment of the binding affinity of sperm membrane rafts to

the IPVL, proteins of the low density DRM fraction (fractions 2 and 3) and fraction 8 (repre-

senting non-rafts) were biotinylated, using EZ-LinkTM Sulfo-NHS-LC-Biotinylation Kit

(Thermo Fischer Scientific) as described in the manufacture’s instruction. In brief, the samples

were subjected to desalting and then to a micro-BCA protein assay. Equivalent amounts of

protein were biotinylated and then separated from unbound biotin using a desalting column.

A 1 cm2 square of IPVL was mounted on a glass slide and co-incubated with 150 μg biotiny-

lated protein overnight at 4˚C.

After rinsing with PBS, samples were incubated with FITC-streptavidin (1:70 dilution with

PBS) for 1 h at room temperature and a cover slip was mounted using Antifade Mounting

Medium (Vector Laboratories, Peterborough, UK). The IPVL was viewed as described above.

Images were captured with a constant exposure time. Mean values of fluorescent intensity in

the IPVL were computed from the images using Leica AF6000 imaging software.

For western blotting, the 1 cm2 square of the IPVL was solubilized in sample buffer and

processed for SDS-PAGE.

Protein extraction and dimethyl labeling

The proteins in the DRM (fractions 2 and 3), as well as fraction 8, were extracted in 10% tri-

chloroacetic acid on ice for 30 min and centrifuged at 20,000 g for 1h. The precipitated pellets

were washed with acetone twice.

Similarity and difference of proteomes between membrane rafts and non-raft in chicken sperm

PLOS ONE | https://doi.org/10.1371/journal.pone.0186482 November 2, 2017 4 / 17

http://imagej.nih.gov/ij/
https://doi.org/10.1371/journal.pone.0186482


25 μg protein from the DRM and fraction 8 were reduced with DTT and alkylated by iodoa-

cetamide treatment. Samples were treated with 2.5 μg trypsin overnight and then evaporated

to dryness in a speed vacuum centrifuge. Digested samples were reconstituted in 150 μl of 100

mM TEAB. A mixture of 6 μl of 4% CH2O and 6 μl of 0.6M NaBH3CN was added to the sam-

ple solution for the light labeling, and a mixture of 6 μl of 4% 13CD2O and 6 μl of 0.6M

NaBD3CN was added in the heavy labeling. Both solutions were incubated for 2 h. The reac-

tions were quenched with 1% ammonia and two differentially labeled samples were acidified

with formic acid (FA). They were pooled and applied to solid-phase extraction using the Oasis

MCX Cartridge (Waters Corporation, Milford, MA). Samples were dissolved in 0.1% trifluor-

oacetic acid (TFA) and desalted with the Sep-Pak C18 Vac Cartridge (Waters Corporation).

NanoLC-MS/MS analysis and quantification

nanoLC-MS/MS analysis was carried out using UltiMate3000 RSLCnano (Dionex, Sunnyvale,

CA) coupled to an Orbitrap Fusion (Thermo Fisher Scientific) mass spectrometer equipped

with a nanospray Flex Ion Source. The sample was loaded onto an Acclaim PepMap 100 C18

trap column (5 μm, 100 μm × 20 mm, 100 Å, Thermo Fisher Scientific) with nanoViper Fit-

tings with 0.5% FA at 20 μL/min for 1.7 min and then separated on an Acclaim PepMap C18

nano column (3 μm, 75μm x 25cm, Thermo Fisher Scientific) and eluted in a 120 min gradient

of 5–90% Solvent B. For quality control purposes, a10 fmol injection of standard BSA digest

mixture was run as well.

The Orbitrap Fusion operated in positive ion mode with nano spray voltage set at 1.7 kV.

The Orbitrap full MS survey scan (m/z 375–1575) was followed by Top 3 second data-depen-

dent Collision Induced Dissociation (CID) MS/MS scans for precursor peptides with 2–7 char-

ges above a threshold ion count of 10,000. All data were acquired by the Xcalibur 3.0 operating

software and Orbitrap Fusion Tune Application v. 2.1 (Thermo Fisher Scientific).

MS data analysis

All MS and MS/MS raw spectra from each sample were searched using Proteome Discoverer v

1.4 (Thermo-Fisher Scientific) using a protein database for Gallus gallus downloaded from

NCBI on March 15, 2016, with 46,000 entries. The peptide search was performed by two

Sequest HT nodes, with the only difference being in static light dimethyl (+28.031Da) and

heavy dimethyl (+36.076Da) of any lysine and peptide N-Terminus. The enzyme specificity

was set to trypsin with two missed cleavages allowed. The peptide mass tolerance and fragment

mass tolerance values were 10 ppm and 0.8 Da, respectively. A fixed carbamidomethyl modifi-

cation of cysteine and variable methionine oxidation and deamidation of asparagine/gluta-

mine were applied. Identified peptides were filtered for a maximum 1% false discovery rate

(FDR) and minimum peptide confidence–high. Proteins were validated based on the presence

of two or more unique peptides identified.

For relative quantitation of heavy/light samples, the peak areas of detected precursor ions at

each specific m/z corresponding to heavy and light peptides were generated from the precursor

ion-based methyl-duplex algorithm in PD 1.4, with a mass tolerance at 4 ppm.

Statistical analysis

Multiple comparisons were carried out with two-way analysis of variance (ANOVA) and one-

way ANOVA followed by Turkey’s HSD test. Pairwise comparisons were performed with a t-

test. Results are expressed as means ± SEM. Probability values lower than 0.05 were considered

significant.
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Results

Biochemical characterization of membrane rafts in chicken sperm

Although membrane rafts have been isolated from mammalian sperm, their biochemical and

functional properties in avian sperm have not been characterized. Previously, we found in

chicken sperm that cryopreservation induced the loss of cholesterol from the membranes,

leading to an early apoptotic event [21, 29]. Considering other studies in culture cells which

have demonstrated that cholesterol loss from membrane rafts induced early cellular apoptosis

[30–32], cholesterol depletion in cryopreserved sperm is deduced to happen in membrane

rafts. However, the compositional changes that occur in membrane rafts remains unknown.

To compare the biochemical nature of membrane rafts between fresh and frozen-thawed

chicken sperm, the low density DRM was isolated using TX-100 and sucrose density centrifu-

gation, and subjected to cholesterol and GM1 quantification. This approach resulted in the for-

mation of an opalescent band at the 5–30% density interface of the gradient in both sperm.

This is a characteristic of a low density DRM detected in sperm from several species [11, 33–

35]. In fresh sperm, higher cholesterol content was observed in fraction 2 (density; 1.017 g/

cm3) than the bottom fraction (fraction 8, density; 1.146 g/cm3), although there was no differ-

ence in cholesterol content among the remaining fractions (Fig 1A). GM1 content was higher

in fractions 2 and 3 (density; 1.104 g/cm3) than in fraction 8 (Fig 1B). Protein content in frac-

tion 2 and 3 was only 7% of total protein separated on sucrose density centrifugation (S1 Fig),

consistent with preferential association of a subset of membrane proteins with membrane rafts

[36]. Immunoblot analysis revealed that fraction 8 contained a tremendous amount of α-tubu-

lin while others were devoid of it (Fig 1C), suggesting that the bottom fraction mainly con-

sisted of high density non-raft membranes. Taken together, our results suggest that fractions 2

and 3 were representative of the putative DRM and could be categorized into at least 2 types of

lipid composition: fraction 2 showed high cholesterol and GM1, and fraction 3 showed low

cholesterol but high GM1. Of note, when sperm were cryopreserved, the sterol content in frac-

tion 2 of the DRM fractions significantly decreased although there was no significant change

in other fractions (Fig 1A). However, GM1 content did not differ between fresh and cryopre-

served sperm throughout fractions (Fig 1B). Consistent with these observations, when the sub-

cellular distribution of sterols was examined in fresh sperm using Filipin, strong signal was

observed in the plasma membranes with particular intensity in the sperm head region (Fig

1D). However, a feeble signal was observed in cryopreserved sperm. In contrast to this, when

the sub-cellular distribution of GM1 was detected using CTB-Alexa488, there was no visible dif-

ference between fresh and cryopreserved sperm in terms of the localization and intensity of

the signal (Fig 1E). These results suggest that cryopreservation induced cholesterol efflux from

membrane rafts.

In vitro binding analysis of membrane raft protein to the IPVL

Our biochemical analyses showed that chicken sperm DRM consists of two different types of

lipid composition. Several lines of evidence suggest that a subset of glycolipids and proteins in

the DRM fraction possesses the ability to adhere to the ZP [14, 22]. Furthermore, in addition

to mammals, DRM associated molecules were found to mediate the binding to the egg in sea

urchin [37] and ascidian sperm[38], resulting in the prospect that membrane rafts represent

platforms for the organization of molecules involved in the sperm−oocyte interactions [37, 39,

40]. Therefore, we pooled fractions 2 and fraction 3 that displayed distinct lipid composition

together and examined the binding affinity of the low density DRM (fractions 2 and 3) and the

non-raft membrane fraction (fraction 8) to the IPVL. Interestingly, proteins in the DRM
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fraction were found to bind to the IPVL more strongly than the non-raft membrane fraction

(Fig 2A and 2B). In contrast, the non-raft fraction and control (IPVL labeled with only FITC-

streptavidin) failed to bind to the IPVL. To determine the profile of the DRM protein bound

to the IPVL, western blot analysis was performed using NeutrAvidin-HRP, showing that the

DRM fraction contained a single protein around 60 KDa able to bind to the IPVL while no

protein in the non-raft fraction was bound to the IPVL (Fig 2C). These results suggest that

membrane rafts are involved in sperm-IPVL interaction in chicken sperm.

Mass spectrometric analysis for relative quantification of the DRM

protein

To facilitate the characterization of the protein composition of the low density DRM fraction,

we performed duplex quantitative proteomic analysis using a stable isotope dimethyl labeling

approach, which enabled us to identify 258 proteins, including 15 DRM-specific (not identi-

fied in non-raft fraction), 67 DRM-enriched (1 < non-raft/DRM), 139 non-raft enriched

(1> non-raft/DRM), and 37 non-raft specific (not identified in DRM fraction) proteins (S1

Table). The set of identified proteins, unique peptides, distinct peptides, and the percentage of

proteins with transmembrane domain is summarized in Table 1.

Of 15 DRM-specific proteins, 14 were shown to be present in sperm by either proteomic

analysis or immuno-detection (Table 2). However, the functional roles of these molecules are

largely unknown in sperm of any species. Together with this, our results suggest functional

regulation of these molecules by membrane rafts in sperm. Furthermore, tectonic-1 has not

been identified with regard to their presence in the sperm of any species. Our results of the

Fig 1. The distribution of lipid contents in the sucrose gradient of DRM isolated from fresh and cryopreserved sperm. Sperm DRM were

separated into fractions based on their relative buoyancies. Numbers denote fractions from top (1) to bottom (8) of the tube, with fraction 1

representing the lowest density. Quantification of cholesterol (A) and GM1 (B) was performed in the 8 fractions as described. Data are expressed

as mean ± SEM (n = 3–6). The different letters denote significant differences between the fractions of the same set (P < 0.05). Asterisks denote

significant differences between fresh and cryopreserved sperm (P < 0.05). Fractions of sperm DRM were processed for SDS-PAGE and subjected

to immunoblotting for presence of β-tubulin (C). Fresh and cryopreserved sperm were labeled with Filipin III (D) or CTB-Alexa 488 (E). Images

were acquired with a same exposure time between fresh and cryopreserved sperm (n = 3). Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0186482.g001

Fig 2. Binding affinity of the low density DRM to the IPVL. The DRM (fraction 2 and 3) and non-raft (fraction 8) proteins were biotinylated and

then co-incubated with the IPVL. After washing away unbound proteins, the IPVL was treated with FITC-conjugated streptavidin (A). The binding

affinity of the DRM and non-raft proteins were measured by quantification of fluorescence intensity using LAS AF software, as described (B). IPVL

binding proteins of the low density DRM and non-raft were purified using the NeutrAvidin-biotin system and were processed for immunoblotting.

Data were expressed as mean ± SEM (n = 3). The different letters denote significant difference (P < 0.05). Bar = 20 μm.

https://doi.org/10.1371/journal.pone.0186482.g002
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proteomic comparisons add to the body of knowledge regarding the function of membrane

rafts and provide a mechanistic insight into the regulation of sperm function in birds.

Characterization of protein profiles

To determine the known molecular functions and biological processes with which the identi-

fied proteins are associated, a functional characterization was performed using a PANTHER

analysis (S2 Fig)[http://www.pantherdb.org/]. For this analysis, GI accession numbers pro-

vided from the NCBI database were converted to each corresponding gene ID manually.

Although DRM-enriched, non-raft-enriched, and non-raft specific proteins shared two major

functions (binding and catalytic activity), the structural molecule activity was comprised pri-

marily of a large percentage of raft-specific proteins, consistent with a functional role for mem-

brane rafts in scaffolding. Transporter activity was found in all categories, with particular

Table 1. Quantitative proteomic analysis for relative protein abundance between DRM and non-raft

fraction.

Proteins (ratio of non-raft to raft) Unique Pepa Pepb Tmc(%)

Identified proteins 258

DRM specific 15 30 30 33

DRM enriched (< 1) 67 221 225 40

Non-raft enriched (> 1) 139 472 484 10

Non-raft specific 37 77 77 27

aThe number of peptide sequences unique to a protein group.
bThe number of distinct peptide sequences in the protein group.
cThe presence of transmembrane helices in a protein predicted by SOSUI software (http://bp.nuap.nagoya-

u.ac.jp/sosui/).

https://doi.org/10.1371/journal.pone.0186482.t001

Table 2. DRM-specific proteins.

Accession Description MW Cov1 Pep2 Ref3

50760928 PREDICTED: CD320 molecule isoform X3 12.5 28.7 2 [41]

971421427 PREDICTED: iron-sulfur cluster assemblyenzyme ISCU, mitochondrial 16.7 17.09 2 [42]

971410655 PREDICTED: protein phosphatase inhibitor 2 isoform X1 23.4 16.51 2 [43]

971444830 PREDICTED: transmembrane protein 120A-like 17.4 14.38 2 [44]

45382787 tetranectin precursor 22.2 11.44 2 [44]

363745270 PREDICTED: cob(I)yrinic acid a,c-diamide adenosyltransferase, mitochondrial isoform X2 25.1 11.21 2 [45]

310750337 proteasome subunit alpha type-4 29.5 9.58 2 [46]

971373773 PREDICTED: prohibitin-2 isoform X1 32.1 7.27 2 [47]

971394300 PREDICTED: heparan-alpha-glucosaminide N-acetyltransferase 68.7 5.65 2 [45]

71895915 GMP reductase 1 37.3 5.51 2 [41]

513210178 PREDICTED: tectonic-1 61.3 4.6 2 -

971410677 PREDICTED: probable cation-transporting ATPase 13A4 isoform X1 108.8 2.94 2 [45]

71895471 acylamino-acid-releasing enzyme 81.2 2.32 2 [48]

971396225 PREDICTED: attractin isoform X3 139.3 2.24 2 [49]

971400272 PREDICTED: cytoplasmic dynein 1 heavy chain 532.8 0.6 2 [42]

1Number Sequence coverage (%)
2Number of unique peptides
3Citations refer to demonstrations of the protein in either testis or sperm

https://doi.org/10.1371/journal.pone.0186482.t002
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enrichment in DRM-specific and DRM-enriched proteins. Receptor activity was detected in

DRM-enriched, non-raft enriched, and non-raft specific proteins, and enzyme regulator activ-

ity was shared between non-raft enriched and non-raft specific proteins. Unclassified proteins

were the most prevalent in all fractions.

In terms of biological processes, cellular process and metabolic processes were the two

major functions across all categories. Although cellular component organization for biogenesis

and localization were found in all categories, the later comprised relatively large percentages in

DRM-specific and DRM-enriched proteins, suggesting the distinction in protein localization

between DRM and non-raft proteins. Unclassified proteins were the most prevalent in all

fractions.

Discussion

In this study, we isolated a low density DRM from chicken sperm to characterize the biochem-

ical composition and functional roles of membrane rafts. Our findings show that membrane

rafts play an important role in multiple functions of chicken sperm. This led us to perform

proteomic analysis of the relative abundance of DRM to non-raft proteins. These results clearly

demonstrated the functional importance of membrane rafts in chicken sperm and provide a

foundation to reveal the molecular mechanisms behind sperm functions necessary for fertiliza-

tion in birds.

To date, the isolation of DRM with TX-100 at low temperature has been widely used for

characterization of the compositional and functional nature of membrane rafts in a variety of

cell types. This operation was originally generated based on evidence that the profile of parti-

tioned molecules in the liquid-ordered domain of artificial membranes correlates well with its

recovery in the DRM fraction [50]. Although caution is warranted when assessing the results

of compositional analysis of the DRM fraction [3, 51, 52], this methodology is useful for identi-

fying cellular pathways regulated by the organization of membrane rafts [53]. In the current

study, we characterized both lipid and protein composition in the low density DRM and non-

raft fractions separated on a density gradient. The result of quantitative proteomic compari-

sons agreed with the notion that only a subset of proteins identified in the low density DRM

was enriched in DRM relative to the non-raft fraction and thus suggest the functional distinc-

tion between membrane domains in chicken sperm.

Our quantification of cholesterol revealed that cholesterol levels are specifically decreased

in the low density DRM fraction following cryopreservation. Similarly, the localization of ste-

rols using Filipin showed a sharp decrease in sterol content in the membranes of cryopreserved

sperm. In accordance with our previous findings that cryopreservation-induced sterol loss

causes an early apoptotic events [21], resulting in a decline of fertilizing ability in chicken

sperm [29], the results of present study suggest that a compositional rearrangement of mem-

brane rafts specifically occurs in response to cryopreservation-induced sterol loss, leading to

the functional damage in chicken sperm via an induction of an early apoptosis. However, GM1

quantification showed no difference in the low density DRM, although there was a tendency

for decreasing the amount in the fraction with a lower buoyant density, such as in fractions 4

and 5. There would be a possibility to explain this phenomenon. Firstly, this might represent

the heterogeneity of membrane rafts. Because DRM association of proteins and lipids reflects

only the end result of the extraction process, it has been suggested that the association does not

necessarily manifest in the same domains in living cells [36]. Previous studies demonstrated in

T lymphocytes that several proteins and sphingolipids localize into different membrane

domains of the cells even though they are all associated with the same DRM fraction [54].

Therefore, our results suggest the possibility that chicken sperm possesses multiple membrane
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raft sub-types each with a different lipid composition. In support of this conclusion, we previ-

ously reported in murine sperm that membrane rafts consist of at least three different sub-

types with varying lipid and protein composition [24]. Thus, it is possible to assume that the

GM1-enriched DRM fraction might be derived from both cholesterol-independent and choles-

terol-dependent membrane rafts. Studies using a small intestinal brush border membrane

have shown that cholesterol is dispensable for the formation of the DRM when a high concen-

tration of sphingolipids is present in the membranes [55], which also supports a previous

study that modeled liposomal membranes [56]. These previous results, combined with our

finding that a tremendous amount of GM1 was present in chicken sperm DRM, suggest that

chicken sperm possesses stable GM1-enriched membrane rafts. Further study will be required

to determine the roles of these GM1-enriched domains.

In this study, we found that the chicken sperm DRM proteins possessed a high affinity for

binding to the IPVL. Together with previous studies of the functional involvement of mem-

brane rafts in sperm−oocyte interaction in vertebrates [14, 22, 38]and invertebrates [37], our

data corroborates the possibility that the role of membrane rafts in sperm−egg binding is con-

served across phyla. Earlier biochemical studies in Japanese quail demonstrated that a 45 KDa

sperm acrosin plays an important role in the binding of sperm to the IPVL during fertilization

[18]. Therefore, we examined which proteins in chicken sperm DRM were capable of binding

to the IPVL. Interestingly, our results showed that a 60 kDa single protein enriched in the

DRM relative to the non-raft fraction was able to bind to the IPVL. Although several mammai-

lan sperm proteins were found to mediate binding to the ZP to compensate for losses of func-

tion [57, 58], only acrosin has been shown to be responsible for sperm binding to the IPVL in

birds [18]. This motivated us to perform immunoblotting for the presence of acrosin in

chicken sperm DRM. We found that acrosin was absent from the DRM but was abundant in

the non-raft fraction (S3 Fig), suggesting the emergence of a new candidate molecule that

mediates the binding of sperm to the IPVL in birds. In fact, a literature search of proteomic

characterization of mammalian sperm rafts showed that PH-20, basigin, and the cysteine-rich

secretory protein 1, which are known to be involved in the sperm binding to the ZP, also are

associated with membrane rafts [11, 24, 59]. In addition, glioma pathogenesis-related 1-like

protein 1, which plays a role in sperm-egg interaction, is enriched in bull sperm DRM [60].

Although it cannot be ruled out that species differences might exist, our results provide a

potential foundation for revealing the complexity of redundant mechanisms involved in

sperm-egg recognition in avian species.

Quantitative mass spectrometry has been used to compare the complex profiles and relative

abundance of proteins between different membrane domains [61]. Using quantitative proteo-

mic analysis combined with stable isotope dimethyl-labeling approaches in chicken sperm, we

found that 82 proteins were either exclusively or relatively more highly associated with the

DRM than other regions. In addition, it is intriguing that we found enrichment of a variety of

ion transporters/channels in the DRM. For example, plasma membrane Ca2+ ATPase (PMCA)

1 and 4 were prominently associated with the DRM. In murine sperm, the PMCA family plays

a primary role in the maintenance of cytosolic Ca2
+ concentration which is important for

induction of the acrosome reaction and hyperactivated motility [62]. Previous studies in

murine sperm revealed that PMCA4 is highly expressed and localized to the APM and the

principal piece of the tail, suggesting the involvement of PMCA4 with multiple functions in

sperm [63, 64]. In fact, the DRM association of PMCA4 was reported by previous proteomic

studies performed with murine and human sperm [14, 23]. In addition, functional characteri-

zation of the bull sperm membrane rafts demonstrated that PMCA4 is present in membrane

rafts and its activity appears to be regulated by membrane raft-enriched lipids [65]. Taken

together, our results suggest the functional importance of PMCA4 in chicken sperm.
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Previously, sodium/potassium transport of ATPase (Na+/K+-ATPase) activity was shown

to play a role in the induction of the acrosome reaction, the maintenance of flagellar motility,

and fertilizing ability in mammalian sperm [66–69]. It is noteworthy that we found that multi-

ple subunits (α1, α3, β1) of Na+/K+-ATPase is enriched in the DRM with the close relative

abundance to those in the non-raft fraction. Considering that α1 and β1 subunits assemble the

complex of Na+/K+-ATPase [70], this result supports the accuracy of the proteomic analysis in

the current study. Previous localization experiments performed in bovine sperm demonstrated

that α1 and β1 subunits are localized to the APM, while α3 subunit is present in both the APM

and post-acrosomal plasma membranes [71]. An electrophysiological study in motoneurons

demonstrated the difference in localization and affinities for Na+/K+-ATPase between α1 and

α3 subunits [72], suggesting the functional discrimination of these subunits. Therefore, these

results suggest that investigations of the functional roles of these subunits in sperm will be of

great interest.

In this study, we found that some of mitochondrial proteins were relatively abundant in

DRM fraction to non-raft fraction. In fact, the presence of membrane rafts in mitochondrial is

controversial in somatic cells. Because previous quantitative proteomic study of membrane

rafts isolated from cultured cells suggested that mitochondrial proteins could be contaminants

that are simply co-isolated with raft domains during separation process[73]. However, there

are several reports suggesting that intracellular organelles such as mitochondrial might possess

membrane rafts in somatic cells[74–76]. In sperm, multiple proteomic studies for characteriza-

tion of membrane rafts identified mitochondrial proteins associated with membrane rafts.

One possibility resulting in this discrepancy is difference in mitochondrial membrane between

cell types[14, 22, 59]. Sperm are well known to possess mitochondria that differs from somatic

cells in morphology, localization, interaction with the membranes of other sub-cellular com-

partments. Furthermore, recent studies demonstrated in somatic cells that mitochondrial

membranes possess raft-like microdomains formed by membrane scrambling between endo-

plasmic reticulum and mitochondria [77]. Therefore, our results, combined with previous pro-

teome profiling of sperm membrane rafts, suggest a potential investigation for compositional

and structural nature of mitochondrial membranes in sperm.

In summary, our results provide compelling evidence that membrane rafts play important

roles in a variety of cellular processes in chicken sperm by restricting the functional molecules

to the membrane domains. Biochemical and cell biological analysis of the DRM demonstrated

that membrane rafts appear to be involved in several important functions, including mecha-

nisms involved in the impairment of post-thaw fertility after cryopreservation and the binding

of sperm to the IPVL. Quantitative proteomic comparison for estimating the abundance of

DRM relative to non-raft proteins identified a total 258 proteins. Our results indicate that

there are significant functional distinctions between membrane domains, providing a founda-

tion for further investigation involving the cellular and molecular basis for the regulation of

sperm functions in birds.

Supporting information

S1 Fig. Protein contents in membrane fractions. Sperm membranes were isolated under

presence of 1% TX-100, and separated into 8 fractions following by sucrose density gradient

centrifugation. Protein amount was quantified by micro BCA assay (n = 4). a-dP < 0.05.

(PDF)

S2 Fig. Molecular function and biological process associated with DRM.

(PDF)
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S3 Fig. Immuno-detection of acrosin. Protein of low density DRM (fractions 2 and 3) and

non-raft (fraction 8) were extracted with 4% trichloroaceticacid on ice, and subjected to

immunoblotting for the presence of acrosin. Sperm (2x107) were utilized as a control.

Immuno-reactivity in sperm was found at predicted molecular weight. No acrosin was

detected in DRM although it was found in non-raft.

(PDF)

S1 Table. Proteome comparison for relative protein abundance between DRM and non-

raft.

(PDF)
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