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Tritium and iodine-129 concentrations in precipitation at Tsukuba, Japan,
after the Fukushima Daiichi Nuclear Power Plant accident

TERUYUKI N[ARUOKA,1>l< TAKAMASA KAWAMUTO,2 TAKESHI OHNO,2 YASUYUKI N[URAMATSU,2
HIROYUKI MATSUZAKI,3 TAKUYA MATSUMOTO* and PRADEEP AGGARWAL*

"Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
2Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro 1-5-1, Toshima-ku, Tokyo 171-8588, Japan
3Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo,

Yayoi 2-11-16, Bunkyo-ku, Tokyo 113-0032, Japan

“Isotope Hydrology Section, International Atomic Energy Agency, Vienna, International Centre, PO Box 100, 1400 Vienna, Austria

(Received November 11, 2015; Accepted April 21, 2016)

The earthquake off the Pacific coast of Japan and the subsequent tsunami on March 11, 2011, triggered a series of
accidents in the Fukushima Daiichi Nuclear Power Plant (FNPP1). The accidents caused the release of a mixture of
radioactive substances into the environment. This study measured the concentration of tritium (*H) and iodine-129 ('*I)
in rainwater samples collected at Tsukuba, 170 km southwest of the plant, during the year following the accident. High *H
concentrations were observed in the rainwater samples collected within one month after the FNPP1 accident. *H concen-
trations decreased steadily over time and returned to the levels before the accident. Concentrations of '*I also decreased
over time. However, pulses of high '?°I concentrations were observed at several other times following the accident. The
12T concentrations were found to be correlated with iron concentrations in rainwater. It is likely that iron oxide, which can
absorb iodate ions (I057), was the carrier of radiogenic iodine. This study concludes that 12T and also '*'1, which is one of
the most harmful radionuclides produced in nuclear reactors, can be redistributed to the atmosphere in the months follow-
ing the deposition of radiogenic iodine on the ground.
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INTRODUCTION

The earthquake off the Pacific coast of Japan and the
subsequent tsunami on March 11, 2011, triggered a se-
ries of accidents in the Fukushima Daiichi Nuclear Power
Plant (FNPP1). Radioactive substances were subsequently
released into the environment. These substances were
produced in the nuclear reactors and were stored in the
spent-fuel (e.g., Hirose, 2012; Steinhauser, 2014).

In light water nuclear reactors, which is the type of
reactors used at FNPP1, *H (¢,,, = 12.32 y; Lucas and
Unterwerger, 2000) is formed from the ternary fission of
nuclear fuels and from neutron activation of lithium and
boron. The total amount of *H stored in FNPP1 was cal-
culated to be 1.81 x 10'3 Bq (Schwantes et al., 2012).
Matsumoto et al. (2013) reported a decrease in ’H con-
centration in rainwater samples, with increasing distance,
at sites ranging from 170 to 700 km from FNPP1. Based
on the observed distance relationship, the atmospheric *H
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level at source during the early stage of the accident was
estimated to be approximately 1500 Bq/m?>. This implies
that significant amounts of *H were released from the
FNPP1 and were deposited on the ground via precipita-
tion. Measuring *H concentrations in rainwater can im-
prove our understanding of the emission and dispersal of
volatile radioactivity after a nuclear accident.

Todine-131(3'7) (t;p = 8.0252 days; Khazov et al.,
2006) is one of the most harmful radionuclides produced
in nuclear reactors; therefore, the activity of B around
the accident site should be precisely evaluated to assess
the impact of radioactivity on public health (e.g., Miyake
et al., 2012; Doi et al., 2013). Some studies have used
Todine-129 (**1) (¢,,, = 1.57 x 107 y; Timar et al., 2014)
to estimate the distribution of 13!1 (e.g., Muramatsu et
al., 2015). 1297 i used because it has a longer half-life
than 131, which is no longer detectable after a few months.
B3IT and '2°T are mobilized together, and therefore, their
distribution and behavior in the environment will be simi-
lar.

In this paper, we report on measured concentrations
of 3H and '?°I from the precipitation samples collected at
Tsukuba, 170 km southwest from the FNPP1 in the year
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Fig. 1. Map of the sampling locality and the FNPP].

following the accident. The purpose of this study is to
improve the understanding of the behavior of these vola-
tile radionuclides.

SAMPLING AND ANALYSIS

Rain samples were collected at University of Tsukuba,
Tsukuba City, Japan, (Fig. 1) over the first year after the
accident. Individual rain samples were collected in pan-
shaped containers.

3H concentrations were measured using about 500 ml
rainwater samples and the residual rainwater (if a suffi-
cient amount of rainwater could be collected) was used
for cation and '*I analysis. *H analysis was carried out
in the Isotope Hydrology Laboratory of the International
Atomic Energy Agency (IAEA) by electrolytic enrich-
ment followed by liquid scintillation spectrometry with a
detection limit of about 0.1 TU (Groning et al., 2009;
Matsumoto et al., 2013).

Concentrations of '?°I were determined using accel-
erator mass spectrometry (AMS) at MALT (Micro Analy-
sis Laboratory, Tandem accelerator) in the University of
Tokyo (Matsuzaki et al., 2007). The standard used for
the determination of '?°I/'*7I ratios was Z94-0596 pre-
pared by Prime Lab., University of Purdue. We also de-
termined the '2°1/'?’I ratio of the KI solution (Kanto
Chemicals Co.) in order to examine the carrier blank value
("°1/'?71 ratio: 1.8 x 107'3). About 150 ml of rainwater
was used for %I analyses of samples collected after May
2011. Smaller amounts of rainwater (1 to 40 ml) were
used for samples collected in March and April of 2011
because these samples had higher concentrations of '*I.

The concentrations of cations (K, Na, Ca, Mg, Al, Fe,
and Mn) and '?’I were determined using ICP-MS/MS
(Agilent 8800; Agilent Technologies, Tokyo, Japan). The
analyses were conducted at Gakushuin University by com-
paring the results to a set of standard samples of known

450 T. Maruoka et al.

1000 T T T T T T

100

=
o

®H concentration (TU)

1000
100}

© =
TN )

0.01}

129 concentration (X10® Bq/kg)

. I . I . I .
0'0010 100 200 300 400

Sampling date (days after March 11, 2011)

Fig. 2. Concentrations of >H (a) and '*°I (b) for individual
rainfall occurences. Gray area in (a) represents pre-accident
H levels ranging from 1.1 and 7.8 TU, which were minimum
and maximum °H concentrations, respectively, obtained by
monthly analyses during 2001 and 2002 at Tsukuba (Yabusaki
et al., 2003). Dotted line in (b) represents the threshold (107
Bgq/kg) between high and low concentrations of '*°I used in this
study.

concentration. The water samples were filtered using a
membrane filter with a pore size of 0.45 um before '*°I
measurements and chemical analysis.

RESULTS AND DISCUSSION

Concentrations of *H, 271, 1291, cations and '2°I/'?"1
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Fig. 4. Cation compositions of the rain water samples: (a) Mg/Na vs. Ca/Na (b) K/Na vs. Mg/Na (c) Mn/Na vs. Mg/Na (d) Al/Na
vs. Ca/Na, (e) Al/Na vs. Mg/Na, and (f) Fe/Na vs. Mg/Na. Three endmembers were proposed. Component “A” represents sea salt
composition. “B” and “C” represent for the chemical compositions for rainwater samples collected on May 17 and 13, 2011,
respectively. Solid and dashed lines connect data points of the components “B” and “C”, respectively, to that of component “A”.
Closed and open circles represent data points for samples with high (>107° Bq/kg) and low (<107° Bg/kg) '*°I concentrations,
respectively.

to pre-accident levels (1.1-7.8 TU in Tsukuba; Yabusaki
et al., 2003). This indicates that the Fukushima-derived
H was washed out from the atmosphere by precipitation
within a month.

Concentrations of '*I also decreased over time after

ratios from rainwater samples are given in Table 1. Higher
H concentrations were observed in the rainwater sam-
ples collected within one month after the FNPP1 acci-
dent (Fig. 2a). The 3H concentrations of subsequent rain-
water samples decreased steadily with time and returned

Tritium and iodine-129 concentrations in precipitation after the FNPP1 accident 451
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Fig. 5. '2°I/Na ratios plotted against Fe/Na ratios. Closed and open circles represent the data for samples with high (>107° Bq/
kg) and low (<107° Bg/kg) '*°I concentrations, respectively. Solid line represent the regressions line determined from 6 data
points for samples with high '*°I concentrations (R? = 0.99). Numbers near data points indicate sampling dates.

the accident; however, several pulses of high 1291 con-
centrations were observed (>107° Bg/kg: more than two
orders of magnitude higher than the minimum concentra-
tion for the year) (Fig. 2b). (This threshold value (107°
Bg/kg) was arbitrarily set to distinguish high and low
concentrations of '?’L.) This means that '?°I entered the
atmosphere not only at the time of the accident, but also
at several times after the accident, even though no evi-
dence of continuous release of radiogenic volatile sub-
stances from the reactor was observed. Similar pulses in
the concentration of '*°T in rainwater collected at
Fukushima were reported by Xu et al. (2013). Except for
these pulses of '?°I, the '*°I concentrations show a gen-
eral correlation with those of *H (Fig. 3); indicating that
1291 derived from the FNPP1 accident was washed out of
the atmosphere by precipitation, as in the case of H.
The composition of cations in the rainwater samples
can be explained by mixing at least three end-members
(Fig. 4): component A (sea salt), component B (higher
Al/Na, Ca/Na, and Mg/Na ratios than component A), and
component C (higher Al/Na ratios than component B). In
Fig. 4, the end-member compositions of components B
and C represent data for precipitation on May 17 and May
13, 2011, respectively. The data points fall along a single
line in the Ca/Na vs. Mg/Na (Fig. 4a), K/Na vs. Mg/Na
(Fig. 4b), and Mn/Na vs. Mg/Na (Fig. 4c) diagrams, be-
cause the mixing lines connecting component A with com-
ponents B and C are colinear in these diagrams. On the
other hand, these three end-members are well resolved in
the Al/Na vs. Ca/Na (Fig. 4d), Al/Na vs. Mg/Na (Fig. 4e),
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and Fe/Na vs. Mg/Na (Fig. 4f) diagrams. In Fig. 4, most
data points are located around the point that represents
the chemical composition of sea salt, while the data points
of the rainwater samples with a high concentration of '*°I
deviated from the cluster of the sea-salt component. Ap-
parently, the sea salt component has only a very limited
influence on the chemical compositions of these high '*°I
samples.

The correlation between '>°I/Na and Fe/Na ratios was
observed for some (not all) of the data for the samples
with high concentrations of '?°I (bold line in Fig. 5). The
data point for the rainfall of September 1, 2011, was also
located on the regression line, although its '?°I concen-
tration (3.91 x 1077 Bq/kg) is slightly lower than the
threshold concentration in this study (i.e., 107° Bq/kg). It
should be noted that a correlation is not expected for the
combination of '*I/Na and other elements. Moreover,
although one of the three proposed end-members (com-
ponent C) has a higher Fe/Na ratio than the other two
components (A and B) (Fig. 4f), the chemical composi-
tion for samples forming the '?’I/Na-Fe/Na correlation
cannot be explained by a mixture of the Fe-enriched com-
ponent (C) and others (Fig. 4). Therefore, the additional
component supplying iron and '*°I is supposed to be in-
dependent of the three proposed end-members (A, B, and
O).

The “pulse” concentrations of '*’T in precipitation were
likely related to the dissolution of iron oxide (hematite
and/or goethite), which can strongly absorb the iodate ion
(I057) (Couture and Seitz, 1983). Although possible io-



dine species in soils are iodide (I7), iodate, and organic
iodine (e.g., Yamada et al., 1999), the iodide fraction was
the major chemical species of '>°I in aerosols collected at
Tsukuba (Xu et al., 2015). However, such an iodide com-
ponent cannot directly produce the observed Fe-'*I cor-
relation because iodide ions are not strongly adsorbed by
iron oxide (Couture and Seitz, 1983; Kaplan et al., 1999,
2000). Therefore, '*°T was likely to be provided (at least
partially) as iodate ion from iron oxide. As some types of
soils are enriched in iron oxide, the '?°I pulses are likely
to have been induced by the dissolution of iron oxide in
soils. Except for the rainfall of May 8, 2011, the prevail-
ing winds were between East and North East during col-
lection of the samples that had the '*°I/Na-Fe/Na correla-
tion (Table 1). Therefore, '*’I-bearing iron oxide was
likely to have been supplied from an East to North East-
erly direction.

CONCLUSIONS

This study analyzed *H and '?°I concentrations in rain-
fall at Tsukuba, Japan. Although the concentrations of both
the radioactive substrates decreased steadily with time
and returned to pre-accident levels, several pulses of high
1291 concentration were also observed. Such high concen-
trations of '>°I coincided with high concentrations of iron.
Because iron oxides readily absorb iodate ions (I0;7) and
are generally rich in soils, at least part of '*°I in precipi-
tation was likely incorporated into rainwaters by dissolu-
tion of iron oxide in soils and could be transported even
after other species of '*°’I were exhausted from the at-
mosphere.
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