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A Language Model Adaptation Method for Fixed Phrases by Emphasizing

N-gram Subsets

Tomoyosi AKIBAT, Katunobu ITQUH !, and Atsushi FUJILTH T

H5E L BRADHE L BREE Y A5 AD7H0 Nogram B 7V R T b FHREBETS. &
MISEDANG, BHR Yy 7 BT 205 L, KM ibh s 8RR ICEERR (BRRA) » 68K
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B, BMEELAF A0 E LD EMCERORMER LT, AFHoEMELRELL.
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ho, LorL, MEBRATHLIOPEEETLIBEES
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TwWh, 20720, BEEANIL 2EBBEY A5 A
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MEEMHEFHT 22 LT HETH S,

BELT, TR L NFCHE L ERE
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HEETRET L, REFHE, gBEHYA LA
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BSR4 A T R4 L, 9% L7z Negram %
BRERT A, BERMICE, —fo— AR BEpaiRE L,
— % — %A B & O N-gram % BHHAR S A
LT, BRRBHMEEEE (MAPH#E) “XoTH
BEFNOI AL HGEAT) T LIHET S, XD
SEETMBIEFENYEBML LEFETH 700
AL, RIS T 58 (BRER) CH
Bt 2 EDRE 5,

BT, 2. TREFEL FONBHTRLHE TS,
8, TREFELEMILOENEBIER L 72 £EIC
Lo TEDHEWEEFRT. 4. CEBEEFNVOY A 2
BT 2 REROFHEZBBL, FFEOMBER I
HIZT 5,

2, ERRBAOL2 I VEGFE

2.1 # E
RETLHFROMELR 1 0RT, HHEHE, S
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BB R D L KN T 24530 Nogram ¥ 47
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2.2 ERRRICUMBT 5 N-gram O3HER
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READ, iz, SHONLEERTLHERY P LT3,
DL EERER~OY AL BHOBEHNL, §€ Spp
A S IHIY MTHRER P3) BHMIZE L,
3 € 8Srp(=85—S8pp) BBHL s ITHH LY THHER
P'(s) 3L P(s) DR OEFME) 2TE5
EUERLE PP akosZeThad, LT, PE)»
b P'(3) ~OBERMES P(s) OHROBE®, Wi
DEIVER & FRA,

FEREH by, FETLY
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DERMERE, KO LI A TE S,

B 1 #Ha% N-gram OMIRIZ L2 ¥ A 2 IS
Fig.1 Task adaptation by emphasizing selected N-
gram subsets.
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ﬁo

pN-2|Wp— 11
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(0

(Wpr N1 |ilp

("I’q|wq N+1)P(wq+1hﬁ§_N+z) T
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F OMEREHIMICELTIO LA s ~ORIE

HEMEs720104d, BUFRAOBRE 0, - b, I

DWT, £ N-gram HEHEAHEBHICE LB L)

2 N-gram OWRSMrBEETREL W, bbb,

P(8) ##HT 5 Negram 09 b, RO (1) & (2) I2

#4795 Negram OEE BT 5.

+N%)(

P('wp|wp-N+1) - Plabpy n-a|wp-11

N-2
~pt )

P(tpyn— li'w wawq N+1) (2)

F (1) i, BE N @ N-gram (22WT, EHEHO
EEASL N LHEVEERESOMETDHY, FM45
OFRAB T - HERER U OEFENEN L, & (2)
i, AEAS N BB OMETHY, £
ML EREBDMFOA TR ENS,
DEOHRZBHEETL-0, TR IHE
EOBELF, KIEAy 2 FTAA=V Vv 28R
Fh.

2.3 BWIREBNBEIE

AT KM oBHERIL, +o—fntk
FOELESHL0, —Fa-NALFIhTwEE
WETEREN LicdtoT, BURHOMSHUEF
oW TH N-gram 2EET 500, 215 04
FHCH ST B N-gram HERIE, Nyt 7A6-V Y
FiXoT, L Negtam 128y 7478305 >
LB, BT, ERRFRBLIREU LD (EH
WARBHEERN L0, ThUBEEREA N ©)
N-gram OMIEZG 247218, BRRBEZ U XOR
REHLLT, Hﬁk%@%ﬁ%ﬁi&wi«®MW
HEMisz btk s,

— I NAPLBLEE n(l <n < N)DON-
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(1) BRRROHFEFHIEFNLTH, HKIEHHE
FIRL LD SO N-gram % Ml § %, HEEHERY
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5 wz1 HM b2 owT, BTFORTEW ) HEEE % i
15,

- — k-2
P iy (Bpa - 1wy~ i4kw5+ )
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VP (tp i [l 7 DR
tri-gram EF A DO E, T T O MR B FEH
Wy_gWy1 K2NWT, KOLICEHERS ORI HEE
fE=ihERd 5.
P’ML(S)('prﬂlwp—lﬁ’p)
= Ba(wp—1Up) - TPrL3) (Wpt1|wp—11p)
P’ parizy (Wpalidp)
= Ba(Wp) - YPmL(2)(Dp1tDp)
PIML(S)(mple—2wP"1)
= fa(wp-2wp—_1) - YParr(a) (Dplwp—2wWp-1)
P’ pp2) (Dp|wp—1)
= Pa{wp—1) + YPr 12y (p|wp-1)
= fi (e} YParrL()ftdp)
(2) BEFRPOBIH D SO LTI D HEESI
AL Tid, b EVvy Nogram 7 2R3 5,

P ppgy(tp)
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Abstract. Speech recognition has of late become a practical Lechnol-
ogy for real world applications. Aiming at speech-driven text retrieval,
which facilitates retrieving information with spoken queries, we propose
a meathod to integrate speech recognition and retrieval methods. Since
users speak contents related to a target collection, we adapt statistical
language models used lor specch recognition based on the target collec-
tion, so as to improve both the recognition and reirieval accuracy. Ex-
periments using existing test collections combined with dictated queries
showed the effectiveness of our method.

1 Introduction

Automatic speech recognition, which decodes human voice to generate bran-
scriptions, has of late become a practical technology. It is feasible that speech
recognition is used in real world computer-based applications, specifically, those
agsociated with hmman language, In fact, a number of speech-based methods have
been explored in the information retrieval communiby, which can be classified
into the following two fundamental categories:

— spoken document retrieval, in which written queries are used to search speech
{e.g., broadeast news audio) archives for relevant speech information [§, 6,
15-17, 19, 20],

— speech-driven (spoken query) retrieval, in which spoken gueries are used to
retrieve relevant textual information 2, 3]

Initiated partially by the TREC-6 spoken document retrievat (SDR) track [4],
various methods have been proposed for spoken document retrieval. However, a
velatively small number of methods have been explored for speech-driven text
retrieval, although they are associated with numerous keyboard-less retrieval
applications, such as telephone-based retrieval, car navigation systems, and user-
friendly interflaces.
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Barnett et al. [2] performed comparative experiments relaled to speech-driven
retrieval, where an existing speech recognilion system was used as an inpul inter-
face for the INQUERY text retrieval system. They used as test inputs 35 queries
callected from the TREC 101-135 topics, dictated by a single male speaker.
Crestani [3] also used the above 35 gueries and showed that conventional rele-
vance feedback technigques marginally improved the aceuracy for specch-driven
text retrieval.

These above cases focused solely on improving text retrieval methoeds and did
not address problems of improving speech recognition accuracy. Tn fact, an ex-
isting speech recognition system was used with no enhancement. In other words,
speech recognition and text retrieval modules were fundamentally independent
and were simply connected by way of an input./oulputl protocol.

However, since most speech recognibion systems are trained based on specific
domains, the accuracy of specch recognition across domains is not satisfactory.
Thus, as can easily be predicted, in cases of Barnett et al. [2] and Crestani [3], a
relatively high speech recognition error rale considerably decreased the retrieval
accuracy. Additionally, speech recognition with a high accuracy is crucial for
interactive retrieval.

Motivated by these problems, in this paper we integrate (not simply connect)
speech recognition and text retrieval to improve both recognition and retrieval
accuracy in the context of speech-driven text retrieval.

Uunlike general-purpose speech recognition aimed to decode any spontaneous
speech, in the case of speech-driven text retrieval, users usually speak contents
associatett with a target collection, from which decuments relevant to their in-
formation need are retrieved. In a stochastic speech recognition framework, the
accuracy depends primarily on acoustic and language models [1]. While acoustic
models are related to phonetic properties, language models, which represent lin-
guistic cantents to be spoken, are strongly related to target collections. Thus, it
is intuitively feasible that language models have to be produced based on target
collections.

To sum up, our helief is that by adapting a language model based on a target
IR collection, we can improve fhe speech recoguition and text retrieval accuracy,
simultaneously.

Section 2 describes our prototype speech-driven text retrieval system, which
is currently implemented for Japanese. Section 3 elaborates on comparative ex-
periments, in which existing test collectious for Japanese text retrieval are used
to evaluate the effectiveness of our system.

2 System Description

2.1 Overview
Figure 1 depicts the overall design of our speechi-driven text retrieval system,

which consists of speech recognition, text retrieval and adaptation modules. We
explain the retrieval process based on this fgure.
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In the off-line process, the adaplation module uses the entire target collection
(from which relevanl docuinents are retrieved) to produce a language model, so
that user speech related to the collection can be recognized with a high accuracy.
On the other hand, an acoustic model is produced independent of the target
collection.

In the on-line process, given an information need spoken by a user, the speech
recognition module uses the acoustic and language models to generate a tran-
scription for the user speech. Then, the text retrieval module scarches the collee-
tion for documents relevant to the transcription, and outputs a specific number
of top-ranked documents according to the degree of relevance, in descending
order.

These documents are himdamentally inal onbputs. However, in the case where
the target collection consists of multiple domains, a language model produced in
the off-line adaptation process is not necessarily precisely adapted to a specific
information need. Thus, we optionally use top-ranked documents obtained in
the initial retrieval process for an on-line adaptation, becauwse these documents
are associated with the user speech more than the entire collection. We then re-
perform speech recognition and text retrieval processes Lo obtain final oulputs.

In other words, our system is based on the two-stage retrieval principle [8],
where top-ranked documents relrieved in the first stage are intermediate results,
and are used to improve the accuracy for the second (final) stage. From a different
perspective, while the off-line adaptation process produces the global language
model for a target collection, the on-line adaptation process produces a local
lapguage model based on the user speech.

In the following sections, we explain speech recognition, adaptation, and text

retrieval modules in Figure 1, respectively.
Acoustic
maodel
<

Langunge
model

Clransc rEliuD

Adaoptation

off-ling (global)
adaptation

Text retrieval

i adlaptation

Fig. 1. The overall design of our speech-driven text retrieval system.
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2.2 Speech Recognition

The speech recognition module generates word sequence W, given phoneme se-
quence X. In the stochastic speech recognition framework, the task is to output
the W maximizing P(W|X), which is transformed as in equation (1) through
use of the Bayesian theorem.

arg max P(W|X)=arg max P(X|W)- P(W) 1

Here, P(X|W) models a probability that word sequence W is transformed into
phoneme sequence X, and P(W) models a probabilily that W is linguistically
acceptable. These factors are usually called acoustic and language models, re-
spectively.

For the speech recognition module, we use the Japanese dictation toolkit [7)1,
which includes the “Julius” recognition engine and acoustic/language models
trained based on newspaper articles. This toolkit also includes development soft-
wares, so that acoustic and language models can he produced and replaced de-
pending on the application. While we use the acoustic model provided in the
toolkit, we use new language models produced by way of the adaptation process
{see Section 2.3). ‘

2.3 Language Model Adaptation

The basis of the adaptation module is to produce a word-based N-gram (in our
case, a combination of bigram and trigram) model by way of source documents.

n the of-line (global) adaptation process, we use the ChaSen morphological
analyzer [10] to extract words from the entire target collection, and produce the
global N-gram model,

On the other hand, in the on-line (local) adaptation process, only top-ranked
documents retrieved in the first stage are used as source documents, from which
word-based N-grams are extracted as performed in the off-line process. How-
ever, unlike the case of the off-line process, we do not produce the entire lan-
guage model. Instead, we re-estimate only statistics associated with top-ranked
documents, for which we use the MAP (Maximum A-posteriori Probability) es-
timation method [9].

Although the on-line adaptation theoretically improves the retrieval accuracy,
[or real-time usage, the trade-off between the retrieval aceuracy and computa-
tional time required for the on-line process has to be considered.

Our method is similar to the one proposed by Seymore and Rosenfeld [14] in
tle sense that both methods adapt language models based on a small number of
documents related to a specific domain {(or topic). However, unlike their method,
owr method does not require corpora manually annotated with topic tags.

! http://winnie kuis.kyoto-u.ac.jp/dictation/
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2.4 Text Retrieval

The text retrieval module is based on an existing probabilistic retrieval methed [13],
which computes the relevance score between the transcribed query and each doc-
wment in Lhe colleclion. The relevance score lor document i is computed based
on equation (2).

5 [ g 2 @
aﬁ)ffén +Th mal

Here, t's denote terms in transcribed queries. TF, ; denotes the frequency that
term ¢ appears in document 7. DF, and N denote the number of documents
containing term ¢ and the total number of documents in the collection. DL,
denotes the fength of document i (i.e., the number of characters contained in i),
and avglen denotes the average length of documents in the collection.

We use content words extracted from documents as terms, and perform a
word-based indexing. For this purpose, we use the ChaSen morphological ana-
lyzer [10] to extract content words, We extract terms from transcribed queries
using the same method.

3 Experimentation

3.1 Test Collections

‘We investigated the performance of our system based on the NTCIR workshop
evaluation methodology, which resembles the one in the TREC ad hoc retrieval
track. In other words, each system outputs 1,000 top documents, and the TREC
evaluation software was used to plot reeall-precision curves and calenlate non-
interpolated average precision values.

The NTCIR workshop was held twice (in 1999 and 2001}, for which two dif-
ferent test collections were produced: the NTCIR-1 and 2 collections [11,12]%
However, since these collections do not include spoken queries, we asked four
speakers (two males/females) to dictate information needs in the NTCIR collec-
tions, and simulated speech-driven text retrieval.

The NTCIR collections include documents collected from technical papers
published by 65 Japanese associations for varions fields. Each document consiats
of the document. 1D, title, name(s) of author(s), name/date of conlerence, hosting
organization, abstract and author keywords, from which we used titles, abstracts
and keywords for the indexing. The number of documents in the NTCIR-1 and
2 collections are 332,918 and 736,166, respectively (the NTCIR-1 documents are
a subset of the NTCIR-2).

The NTCIR-1 and 2 collections also include §3 and 49 topics, respectively.
Each topic consists of the topic ID, title of the topic, description, narrative.
Figure 2 shows an English translation f{or a fragment of the NTCIR topies?,

2 http:/ /research.nii.ac.jp/ ntcadm/index-en.html
? The NTCIR-2 collection contains Japanese toplcs and their English translations.
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where each field is Lagged in an SGML form. In general, titles are not informative
fot the retrieval. On the other hand, narratives, which usually consist of several
sentences, are too long to speak. Thus, only descriptions, which consist of a
single phrase and sentence, were dictated by each speaker, so as to produce four
different sets of 102 spoken queries.

<TOPIC q=0118>

<TITLE>TV conferencing</TITLE>

<DESCRIPTIDN>Distance education support systems using TV
conferencing</DESCRIPTINN>

<NARRATIVE>A relaevant document will provide imformation on

the development of distance education support systems using TV
conferencing. Preferred documents would present examples of using
TV conferencing and discuss the results. Any reported methods

of aiding remots teaching are relaevant documents (for example,
ways of utilizing satellite communication, the Internet, and ISDN
circuits).</NARRATIVE>

</TOPIC>

Fig. 2. An English translation for an example topic in the NTCIR collections.

In the NTCIR collections, relevance assessment was performed based on the
pooling method [18]. First, candidates for relevant documents were obtained with
multiple retrieval systems. Then, for cach candidate document, human expert(s)
assigned one of three ranks of relevance: “relevant,” “partially relevant” and
“irrelevant.” The NTCIR-2 collection also includes “highly relevant” documents.
In our evaluation, “highly relevant” and “relevant” documents were regarded as
relevant ones.

3.2 Comparative Evaluation

In order to investigate the effectiveness of the off-line language model adaptation,
we compared the performance of the following different retrieval methods:

— text-to-text retrieval, which used writéen descriptions as queries, and can be
seen as the perfect speech-driven text retrieval,

— speech-driven text retrieval, in which a language model produced based on
the NTCIR-2 collection was used,

— speech-driven text retrieval, in which a language model produced based on
ten years worth of Mainichi Shimbun Japanese newspaper articles {(£991-
2000) was used.

The only difference in producing two different language models (i.e., those based
on the NTCIR-2 collection and newspaper articles) are the source documents.
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In other words, both langnage models have the same vocabulavy size (20,000,
and were produced using Lthe same soflwares.

Table 1 shows statistics related to word tokens/types in two different source
corpora for language modeling, where the line “Coverage” denotes the ratio of
word tokens contained in the resultant langnage model. Most of word tokeus
were covered in both language models.

Table 1. Statislics associated with source words for language modeling.

NTCIR News
# of Types 454K 315K
# of Tokens 175N 262M
Coverage 97.9% 96.5%

In cases of speech-driven text retrieval methods, queries dictated by four
speakers were used individually. Thus, in practice we compared nine different
vetrieval methods. Although the Julius decoder outputs mere than one tran-
scription candidate for a single speech input, we used only the one with the
greatest probability score. The results did not significantly change depending on
whether or not we used lower-ranked transcriptions as quertes.

Table 2 shows the non-interpolated average precision values and word error
rate in speech recognition, for different retrieval methods. As with existing ex-
periments for speech recognition, word error rate {(WER) is the ratio between
the number of word errors (l.e., deletion, insertion, and substitution) and the
total number of words. In addition, we also investipated error rate with respect
to query terms (i.e., keywords nsed for retrieval), which we shall call “term error
rate (TER).”

In Table 2, the first line denotes results of the text-to-text retrieval, which
were relatively high compared with existing results reported in the NTCIR work-
shops [11,12],

The remaining lines denote results of speech-driven text retrieval combined
with the NTCIR-based language model (lines 2-5) and the newspaper-based
model (lines 6-9), respectively. Here, “Mx" and “T'x" denote male/female speak-
ers, respectively. Suggestions which can be derived from these results are as
follows.

First, for both language models, results did not significantly change depend-
ing on the speaker. The best average precision values for speech-driven text re-
trieval were obtained with a combination of queries dictated by a male speaker
(M1) and the NTCIR-based language model, which were approximately 80% of
those with the text-to-text retrieval,

Second, by comparing results of different language models for each speaker,
one can see that the NTCIR-based model significantly decreased WER and TER
obtained with the newspaper-based model, and that the retrieval method using
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Table 2, Results for difterent retrieval methods (AP: average precision, WER: word
error rate, TER: term arror rate).

NTCIR-1 NTCIR-2

MMethod AP WER  TER AP WER TER
Text 0.3320 — - 0.3118 - —
M1 (NTCIR) 0.2708 0.1659 02190 0.2504 0.1532 0.2313
M2 (NTCIR) 0.2471 0.2034 0.2381 02114 02180 0.2799
F1 (NTCIR) 0.2276 (.1961 (.2857 0.1873 0.1885 0.2500
F2 (NTCIR) 02642 0.1477 0.2222 02376 0.1635 0.2388
M1 (News) 0.1076 0.3547 0.5143 0.0790 0.3594 0.5149
M2 (News) 0.1257 0.4044 0.5460 0.0601 0.5022 0.6343
F1 {(News) 01156 0.3801 0.6238 0.0798 0.4418 0.5709
F2 (News) 0.1225 03317 0.5016 0.0017 0.4080 0.5858

the NTCIR-based model significantly outperformed one using the newspaper-

based model. In addilion, these results were observable, irrespective of the speaker.
Thus, we conclude that adapting language models based on target collections

was quite effective for speech-driven text retrieval.

Third, TER was generally higher than WER. irrespective of the speaker.
In other words, speech recognition for content words was more difficult than
functional words, which were not contained in query terms.

We analyzed transcriptions for dictated queries, and found that speech recog-
nition error was mainly caused by the out-of-vocabulary problem. In the case
where major query terms are mistakenly recognized, the retrieval accuracy sub-
stantially decreases. In addition, descriptions in the NTCIR topics often contain
expressions which do not appear in the documents, such as I want papers
about...” Although these expressions usually do not affect the retrieval accu-
racy, misrecognized words affect the recognition acenracy for remaining words
including major query tertms. Consequently, the retriaval accuracy decreases due
to the partial misrecognition.

Finally, we investigated the trade-off between recalt and precision. Figures 3
and 4 show recall-precision curves of different retrieval methods, for the NTCIR-
1 and 2 collections, respectively. In these figures, the relative superiority for
precision values due to different langnage models in Table 2 was also observable,
regardless of the recall.

However, the effectiveness of the on-line adaptation remains an open question
and needs to be explored.

4 Conclusion
Alming at speech-driven text retrieval with a high accuracy, we proposed a

method to integrate speech recognition and text retrieval methods, in which
targel Lexl collections are used to adapt statistical language models [or speech
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Fig. 3. Recall-precision curves for different retrieval methods using the NTCIR-1 col-
lection,
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TFig. 4. Recall-precision curves for different retrieval methods using the NTCIR-2 col-
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recognilion. We also showed the effectiveness of our method by way of experi-
menis, where dictated information needs in the NTCIR collections were used as
queries to retrieve technical abstracts. Future work would include experiments
on various collections, such as newspaper articles and Web pages.

5
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Abstract

We propose a cross-media lecture-on-demand system, in which
users can selectively view specific segments of lecture videos
by submitting text queries. Users can easily formulate queries
by using the textbook associated with a target lecture, even if
they cannot come up with effective keywords. Our system ex-
tracts the audio track from a target lecture video, generates a
transcription by large vocabulary continuous speech recogni-
tion, and produces a text index. Experimental results showed
that by adapting specch recognition to the topic of the lecture,
the recognition accuracy increased and the retrieval accuracy
was comparable with that obtained by human transcription.

1. Introduction

The growing number of multimedia contents available via the
World Wide Web, CD-ROMSs, and DVDs has made informa-
tion technologics incorporating speech, image, and lext pro-
cessing crucial. OFf the various types of contents, lectures (au-
diofvideo) are typical and a valuable multimedia resource, in
which specches (i.c., oral presentations) are usually organized
based on text materials, such as resumes, slides, and textbooks.
In lecture videos, image information, such as flip charts, is often
also used, In other words, a single lecture consists of different
types of compatible multimedia contents.

Because a single lecture often refers to several topics and
takes a long time, it is useful to obtain specific segments (pas-
sages) selectively so that the audience can satisfy their infor-
mation needs at minimum cost, To resolve this problem, in this
paper we propose a lecture-on-demand system that retricves rel-
evant video/andio passages in response to user queries, For this
purpose, we utilize the benefits of different media types to im-
prove retrieval performance.

On the one hand, text has the advantage that users can
view/scan the entire contents quickly and can easily identify
relevant passages using the layout information (e.g., text struc-
tures based on sections and paragraphs). In other words, fext
contents can be used for random-access purposes. On the other
hand, speech is used mainly for sequential-access purposes.
Therefore, it is difficult to identify relevant passages unless tar-
get video/audio data includes additional annotation, such as in-
dexes. Even if the target data are indexed, users are not nec-
essarily able to provide effective queries. To resolve this prob-
lem, textbaoks are desirable materials from which users can ex-
tract effective keywords and phrases. However, while textbooks
are usunily concise, speech has a high degree of redundancy
and therefore is easier to understand than textbooks, especially

_ where additional image informalion is provided.

In view of the above, we model our lecture-on-demand
(LOD) system as follows. A user selects text segments {key-
words, plirases, sentences, and paragraphs) that are relevant to

their information needs from a textbook for a target lecture, By
using selected segments, a text query is generated automati-
cally, That is, queries can be formulated even if users cannot
provide effective keywords. Users can also submit additional
keywords as queries, if necessary. Video passages relevant to
a given query are retrieved and presented to the user. To re-
trieve the video passages in response to text querics, we extract
the audio track from a lecture video, generate a transcription
by means of large vocabulary continuous speech recognition,
and produce a text index, prior to system use. Our system is
a cross-media system in the sense that users can retrieve video
and audio information by means of text queries.

2. System Description
2.1, Overview

Figure ) depicts the overall design of our lecture-on-demand
system, in which the left and right regions correspond to the on-
line and off-line processes, respectively. Although our system
is currently implemented for Japanese, our methodology is fun-
damentally language independent. For the purpose of research
and development, we tentatively target lecture programs on TV
for which textbooks are published. We explain the basis of our
systemn using Figure 1.

In the off-line process, given the video data of a target lec-
ture, audio data are extracted and segmented info a number of
passages. Then, a speech recognition system transcribes each
passage. Finally, the transcribed passages are indexed as in
conventional text retrieval systems, so that each passage can
be retrieved efficiently in response to text queries. To adapt
speech recognition to a specific leclurer, we perform upsuper-
vised speaker adaptation using an initial speech recognition re-
sult (i.e., a transeription). To adapt speech recognition fo a spe-
cific lopie, we perform language model adaptation, for which
we search a general corpus for documents relevant to the text-
book related to a target lecture. Then, retrieved documents (i.e.,
a topic-specific corpus) are used to produce a word-based N-
gram language model. We also perform image analysis to ex-
tract text (e.g., keywords and phrases) from flip charts. These
contents are also used to improve our language model.

In the on-line prodess, a user can view specific video pas-
sages by submitting any text queries, i.e., keywords, phrases,
sentences, and paragraphs, extracted from the textbook. Any
queries not in the textbook can alse be used. The current imple-
mentation is based on a client-server system on the Web. Both
the off-line and on-line processes are performed on servers, but
users can fccess our system using Web browsers on their own
PCs,

Figure 2 depicts a prototype interface of our LOD system,
in which a lecture associated with *nenlinear multivariate anal-



ysis” is given. In this interface, an clectronic version of a text-
book is displayed on the lefl side, and a lecture video is played
on the right side. In addition, users can submit any text queries
in the input box, which is not depicted in Figure 2, In this sce-
nario, a text paragraph related to “diseriminant analysis” was
copied and pasted into the query input box, and top-ranked tran-
scribed passages for the query were listed according to the de-
gree of relevance (in the lower part of Figure 2). Users can
select (click on) transcriptions to play the corresponding video
passage.

1t should be noted that unlike conventional keyword-based
retrieval systemns, in which users usually submit a small num-
ber of keywords, in our system users can easily submit longer -
queries using textbooks. Where submitted keywords are mis-
recognized in transcriptions, the retrieval accuracy decreases,
However, longer queries are relatively robust for speech recog-
nition errors, because the effect of misrecognized words is over-
shadowed by the large number of words correctly recognized.

topis-specilic

]

selecting passage

segmentalion

N-gram
modeling

language madel

user speech recognilion

speaker adaplation

presentation

on-line process

off-line process

Figure I An overview of our lecture-on-demand system,

2.2, Passage Segmentation

The basis of passage segmentation is to divide the entire video
data for a single lecture into more than one unit to be retrieved.
We call these smaller units “passages”. For this purpose, both
speech and itmage data can provide promising clues. However,
in lecture TV programs, it is often the case that o lecturer sit-
ting still is the main focus and a small number of Mip chatts are
used occasionally, In such cases, image data is less informative.
Therefore, fentatively we use only speech data for the passage
segmentation process. However, segmentation can potentially
vary depending on the user guery. Thus, it is diflicult to prede-
termine a desirable segmentation in the off-line process.
Because of the above problems, we first extract the audio
track from a target video and use a simple pause-based segmen-
tation method to obtain minimal speech units, such as sentences
and long phrases. In other words, speech units are continuous
audio segments that do not include pauses longer than a certain
threshold, Finally, we generate variable-length passages from
one or more speech units, To put it more precisely, we combine

IHEWETSES RREAFHTL IRTVH REGTT R R 5 T

B AN

SRIMLT_MOALLY. S
B Test LR

Bers INE k5 AR TS
QIHELEH KOS

FTARNE RSN

T T R A T S o i e

Flgure 2; The interface of our LOD system over the Web,

N speech units into a single passage, with N ranging from 1 to
5 in the current implementation.

2,3, Speech Recognition

The speech recognition module generates word sequence TV,
given phone sequence X, In a stochastic framework, the task is
to select the W maximizing P{1¥|X), which is transformed as
in Equation (1) through the Bayesian theorem.

argnwxP(W|X} = arg max PX|W) -P(W) (I}

P(X|W) models the prabability that the word sequence W is
transformed into the phone sequence X, and P{W') models the
probability that W is linguistically acceptable. These facters
are called the acoustic and language models, respectively.

We use the Japanese dictation tooikit!, which includes the
Julius decoder and acoustic/language models. Julius performs
a two-pass (forward-backward) search using word-based for-
ward bigrams and backward trigrams, The acoustic model was
produced from the ASJ specch database, which contains ap-
proximately 20,000 sentences nttered by 132 speakers includ-
ing both gender groups. A 16-mixture Gaussian distribution
triphone Hidden Markov Model, in which states are clustered
into 2,000 groups by a state-tying method, is used., We adapt
the provided acoustic model by means of an MLLR-based un-
supervised speaker adaptation method, for which in practice we
use the HTK toolkit?.

Existing methods to adapt language models can be classi-
fied into two fundamental categories. In the first category —
the integration approach — general and topic-specific corpora
are integrated lo produce atopic-specific language model [1, 2],
Because the sizes of those corpora differ, N-gram statistics are
calculated using the weighted average of the statistics extracted
independently from (hose corpora. However, it is difficult o de-
termine the optimal weight depending on the topic. In the sec-
ond category — the sefection approach —~ a topic-specific subsel
is selected from a general corpus and is used to produce a lan-
guage model. This approach is effective if general corpora con-
tain documents associated with target topics, but N-gram statis-

e peftwinnie. kuis.kyoto-w.ac jp/dictations
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tics in those documents are overshadowed by other documents
in resultant language models,

We followed the selection approach, because the 10M Web
page corpus [3] containing mainly Japanese pages associated
with various topics was publicly available. The quality of the
selection approach depends on the method of selecting topic-
specific subsets, An existing method [4] uses hypotheses in
the initial speech recognition phase as queries to retrieve topic-
specific documents from a general corpus. However, errors in
the initial hypotheses have the potential to decrease the retrieval
accuracy. Instead, we use textbooks related to target lectures as
queries to improve the retrieval accuracy and consequently the
quality of the lnnguage model adaptation.

2.4, Retrieval

Given transcribed passages and text queries, the basis of the
retrieval module is the same as that for text retrieval, We use
an existing probabilistic text retricval method [5] to compute
the relevance score between the query and each passage in the
database. The relevance score for passage p is computed by
Equation (2).

(K"'l)'ft,p Ne—ni+05
> Jea a@ o 0
n KAQ -0+ oo} + frp e O
(2

where fi,, and fi,p denote the frequency with which term ¢ ap-
pears in query g and passage p, respectively. /N and n, denote
the total number of passages in the database and the number of
passages containing term 2, respectively. dl, denotes the length
of passage p, and evgd! denotes the average length of passages
in the database. We empirically set K = 2.0 and b = 0.8,
respectively, We use content words, such as nouns, extracted
from transcribed passages as index terms, and perform word-
based indexing. We use the ChaSen morphological analyzer®
to extract content words, The same method i3 used to extract
terms from queries.

However, retrieved passages are not disjoint, because top-
ranked passages often overlap with one another in terms of the
temporal axis. It is redundant simply to list the top-ranked re-
trieved passages as they are. Therefore, we reorganize those
overlapped passages into a single passage. The relevance score
for a group (a new passage) is computed by averaging the scores
of all passages belonging to the group. New passages are sorted
according to the degree of relevance and are presented 1o users
as the final result.

3. Experimentation
3.1. Methodology

To evaluate the performance of our LOD system, we produced
a test collection (as a benchimark data set) and performed ex-
periments partinlly resembling a task performed in the TREC
spoken document retrieval (SDR) track [6]. Five lecture pro-
grams on TV (each lecture was 45 minutes long), for which
printed textbooks were also published, were videotaped in DV
and were used as target lectures. Each lecture was manually
transcribed and sentence boundaries with tesnporal information
{i.e., comect speech units) were also identified manually, Each
paragraph in the comresponding textbook was used as a query
independently. For each query, a human assessor (a graduate
student not an author of this paper) identified one or more rele-
vant sentences in the human transcription,

Myup:Hichasen, aist-nate.ac.jp/

Using owur test collection, we evaluated the accuracy of
speech recognition and passage retrieval. For the five lectures,
our system used the sentence boundaries in human transcrip-
tions to idenlify speech units, and performed speech recog-
nition, We also used human transcriptions as perfect speech
recognition results and investigated the extent to which speech
recognition errors affect the retrieval accuracy, Our system re-
tricved top-ranked passages in response to cach query. Note
that the passages here are those grouped based on the temporal
axis, which should not be cenfused with those obtained from
the passage segmentation method.

3.2, Results

To evaluate the accuracy of speech recognition, we used the
word error rate (WER), which is the ratio of the number of
word errors (deletion, insertion, and substitution) to the total
number of words. We alse used test-set out-of-vocabulary rate
(OOV) and trigram test-get perplexity (PP) to evaluate the ex-
tent to which our language mode] adapted to the target topics.
We used human transcriptions as test set data, For example,
OO0V is the ratio of the number of word tokens not contained in
the language model for speech recognition to the total number
of word tokens in the transcription. Note that smaller values of
QOV, PP, and WER are obtained with better methods.

The final cutpuls {i.e., retrieved passages) were evaluated
based on recall and preeision, averaged over all queries. Recall
(R) is the ratio of the number of correct speech units retrieved
by our system to the total number of correct speech units for the
query in question. Precision (P) is the ratio of the number of
correct speech units retrieved by our system to the total number
of speech units retrieved by our system. To summarize recall
and precision into a single measure, we used the F-measure (F).

Tabie 1 shows the accuracy of speech recognition (WER)
and passage retrieval (R, P, and F), for each lecture. In this
table, the columns “HUM” and “ASR™ correspond to the re-
sults obtained with human transcriptions and automatic speech
recognilion, respectively. The column “+LA” denotes results
for ASR combined with language model adaptation, The col-
umn “Topic™ denotes topics for the five lectures.

To adapt language models, we used the textbook corre-
sponding to a target lecture and searched the 10M Web page
corpus for 2,000 relevant pages, which were used as a source
corpus. In the case where the language mode! adaptation was
not performed, all 10M Web pages were used as a source cor-
pus. In cither case, 20,000 high frequency words were selected
from a source corpus to produce a word-based trigram language
model, We used the ChaSen morphological analyzer to extract
words (morphemes) from the source corpora, becanse Japanese
sentences lack lexical segmentation.

[n passage reirieval, we regarded the top NV passages as the
final outpwts. In Table 1, the value of N ranges from 1 to 3.
As the value of &V increases, the recall improves, but potentially
sacrificing precision.

3.3, Discussion

By comparing the results of ASR and +LA in Table 1, for some
cases OOV and PP increased by adapting language models.
However, WER decreased by adapting language models to tar-
get topics, irrespective of the lecture.

The values of QOV, PP, and WER for lecture #1 were gen- -
crally smaller than those for the other lectures, One possible
reason is that the fecturer of #1 spoke more fluently and made
fewer erroneous utterances than the other lecturers.



Table 1: Experimental results for speech recognition and passage retrieval,

ID #1 #2 #3 7] 5
Topic Criminal law Circck history Domestic relations Food and body Solar system
HUM ASR  +LA  HUM ASR +LA~ HUM ASR +LA HUM ASR +LA HUM ASRK FLA
ooV — 044020 — 073 082 — 039 049 — 0533 041 — 051 051
PP —_ 489 432 — 122 96.7 — 136 132 - 89.3 108 — 163 130
WER — 209 133 — Sl6 423 — 604 543 — 488 416 - 637 482
R 695 726 732 449 258 551 632 291 505 451 2200 357 296 138241
N=1 P 534 548 S19 377 319 386 479 362 464 Al4 277 337 529 358 436
F 604 624 607 AI0 286 454 545 322 484 432 245 347 .379 200 311
R 847 858 .83% 663 el 674 791 464 67T T 655 80 463 482 228 421
N=2 P 44] A48 458 301 211 34 372 273 353 321 247 239 462 332 409
F 580 588 591 414 266 429 506 343 464 431 00 316 472 270 415
R 879 868 874 J6d 438 JOB 827 495 M8 S 392 604 637 280 527
N=3 P 410 405 401 269  .163 252 363 215 38 297 188 235 466 280 385
F 560 553 .550 398 237 37  .505 J00 44l 420 254 338 538 285 445

Recall, precision, and F-measure increased by adapting lan-
goage models for lectures #2-5, irrespective of the number of
passages retrieved. For lecture #1, the retrieval accuracy did
not significantly differ whether or not we adapted the language
maodel to the topic. One possible reason is that the WER of fec-
ture #1 without language model adaptation (20.9%) was suffi-
ciently small to obtain a retrieval accuracy comparable with the
text retrieval [7]. The difference between HUM and ASR was
marginal in terms of the retrieval accuracy. Therefore, the effect
of the language model adaptation method was overshadowed in
passage retrieval,

The retrieval accuracy for lecture #1 was higher than those
for the other lectures. The story of lecture #]1 was organized
based primarily on the textbook, when compared with the other
lectures. This suggests that the performance of our LOD system
is dependent of the organization of target lectures,

Surprisingly, for lectures #1 and #2, recall, precision, and
F-measure of +LA were better than those of HUM. This means
that the avtomatic transcription was more effective than hu-
man transcription for passage retrieval purposes. One pos-
sible reason is the existence of Japanese variants (i.e., more
than one spelling form corresponding to the same word), such
as “girisha/girishia (Greece)”. Because the language model
was adapted by means of the textbook for a target lecture, the
spelling in automatic transcriptions systematically resembled
that in the queries exiracted from the textbooks, In condrast,
it is difficult to standardize the spelling in human transcriptions.
Therefore, relevant passages in automatic transcriptions were
more likely to be retrieved than passages in the human tran-
seriptions.

We conclude that our language model adaptation method
was effective for both speech recognition and passage retrieval,

4, Conclusion

Reflecting the rapid growih in the use of multimedia contents,
information technologies appropriate to speech, image, and text
processing are crucial. Of the various content types in this pa-
per we focused on the video data of lectures with their organiza-
tion based on textbooks, and proposed a system for cross-media
on-demand lectures, in which users can formulate text queries
using the textbook for a target lecture to retrieve specific video
passages.

To retricve video passages in response 4o text queries, we
extract the audio track from a lecture video, generate a tran-

scription by large vocabulary coatinuous speech recognition,
and produce a text index, prior to system use,

We evaluated the performance of our system experimen-
tally, for which five TV lecture programs in various topics were
used. The experimental results showed that the accuracy of
speech recognition varied depending on the topic and presen-
tation style of the lecturers, However, the accuracy of speech
recognition and passage retrieval was improved by adapting lan-
guage models to the topic of the target lecture. Even if the word
error rate was approximately 40%, the accuracy of retrieval was
comparable with that obtained by human transcription.
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Abstract

This paper describes a test collection (benchmark data) for re-
trieval systems driven by spoken queries. This collection was
produced in the subtask of the NTCIR-3 Web retrieval task,
which was performed in a TREC-style evaluation workshop,
The search topics and decument collection for the Web retrieval
task were used to produce spoken queries and language mod-
els for speech recogaition, respectively, We used this collection
to evaluate the performance of our retrieval system. Experi-
mental results showed that (a) the use of target documents for
language modeling and (b) enhancement of the vocabulary size
in speech recognition were effective in improving the system
performance, ‘

1, Introduction

Automatic speech recognition, which decodes the human voice
to generate transcriptions, has recently become a practical tech-
nology. A number of speech-based methods have been explored
in the information retrieval (IR} community, which can be clas-
sified into the following two fundamental categorles:

¢ spoken document retrieval, in which written queries
are used to search speech (e.g., broadcast news audio)
archives for relevant speech information,

o speech-driven retrieval, in which spoken queries are used
to retrieve relevant textual information.

Initiated partially by the TREC-6 spoken document retrieval
(SDR) track [1], various methods have been proposed for spo-
ken document retrieval. However, a relatively small number
of methods [2, 3, 4] have been explored for speech-driven text
retrieval, although they are associated with numerous keyboard-
less retrieval applications, such as telephone-based retrieval, car
navigation systems, and user-friendly interfaces.

In the NTCIR-3 workshop', which is a TREC-style evalu-
ation workshop, the Web retrieval main task was organized to
promoate text-based Web IR [5]. Additionally, optional subtasks
were also invited, in which a group of researchers voluntarily
organized a subtask to promote their common research area. We
made use of this opportunity and organized the “speech-driven
retrieval” subtask to produce a remsable test collection for ex-
perimental of Web retrieval driven by spoken queries.

Section 2 describes the test collection produced for the
specch-driven retricval subtask. Section 3 describes our speech-
driven retrigval system, and Scetion 4 elaborates on comparative
experiments, in which we evaluated our system in terms of the
speech recognition and retrieval accuracy. '

Thitp:/ivescarch.nii.ac.jp/ieir/index-cn.btmi

2. Test Collection for Speech-Driven IR
2.1, Overview

The purpose of the speech-driven retrieval subtask was to pro-
duce reusable and publicly available test collections and tools,
so that researchers in the information retrieval and speech pro-
cessing communities can develop technologies and share scien-
tific knowledge concerning speech-driven information retrieval.
In principle, as with conventional IR test collections, test col-
lections for speech-driven reirieval are required to include test
queries, target documents, and refevance assessment for cach
query. However, unlike conventional text-based IR, queries are
speech data uttered by humans. In practice, because producing
the entire collection is prohibitive, we produced speech data re-
lated to the Web retrieval main (texi-based) task. Thus, target
documents and relevance assessment in the main task can be
used for the purpose of speech-driven retrieval.

However, participants for the NTCIR workshop are mainiy
researchers in the information retrieval and natural language
processing communities, and are not necessarily experts in de-
veloping and operating speech recognition systems, Thercfore,
we also produced language models that can be used with an
existing speech recognition engine (decoder), which helps re-
searchers to perform experiments similar to those described in
this paper, All above data are included in the NTCIR-3 Web
retrieval test collection, which is publicly available.

2,2. Spoken Queries

For the Web retrieval main task, 105 search topics were pro-
duced, for each of which relevance assessment was performed
with respect to two different document sets: the 10GB and
100GB collections. The 10GB and 100GB collections corre-
spond approximately to 1M and 10M documents, respectively.

Each topic is in S8GML-style form and consists of the
topic ID (<NUM>), title of the topic (<TITLE>), description
{<DESC>), narrative (<NARR>), list of synonyms related to the
topic (<CONC>), sample of relevant documents (<RDOC>), and
a brief profile of the user who produced the topic (<USER>).
Figure 1 depicts a transtation of an example topic. Although
Japanese topics were used in the main task, English translations
are also included in the Web retrieval collection mainly for pub-
lication purposes.

Participants in the main task were allowed to submit more
than one retrieval result using one or more fields. However,
participanis were required to submit results obtained with the
title and description fields independently, Titles are lists of key-
words, and descriptions are phirases and sentences.

From the viewpoint of speech recognition, titles and de-
seriptions can be used to evaluate word and continuous recog-
nition methods, respectively. Because state-of-the-art speech



<TOPIC>

<NUM=0010</NUM>

<TITLE CASE="b"»Aurcora, conditionsa, obser-
vation</TITLE>

<QESC>For ohaervation purposes, I want to
know the conditions that glve rise to an
auroras</DESC»

<NARR><BACK>I want to observe an aurora
so I want to know the conditions neces-
sary for ita cccurrence and the mechanism
behind it.«</BACK><RELE>Aurora observation
records, etc. 1list the place and time

s¢ only decuments that provide additional
information such as the weather and tem-
perature at the time of occurrence are
ralevant. </RELEx</NARR>

<CONC>Aurcra, occurrence, cenditions,
observation, mechanism</CONC>
<ROCC=NWO03I201843, NWOO1129327,
NW0026929585</RDOC>

<[JSER»1at year Master’s Btudent, female,
2.5 years search experience</USER»>
</TOPIC>

Figure 1; An example topic in the Web retrieval collection.

recognition is based on a continuous recognition framework, we
used only the description fleld. For the first speech-driven re-
trieval sublask, we focused on diciated (read) speech, although
our ultimate goal is to recognize spontaneous speech. We asked
ten speakers (five adult males and five adult females) to dictate
descriptions in the 105 topics. The ten speakers also dictated
50 sentences in the ATR phonetic-balanced sentence set as refs
erence data, which can potentially be used for speaker adap-
tation, However, we did not use this additional data for the
purpose of the experiments described in this paper. The above-
mentioned spoken queries and sentences were recorded with the
same close-talk microphone in a noiseless office. Speech waves
were digitized at a |6KHz sampling frequency and a quantiza-
tion of 16 bits. The resulting data are in the RIFF format.

2.3. Language Models

Unlike general-purpose speech recognition, in speech-driven
text retrieval, wsers usually speak contents associated with a
target collection, from which documents relevant to user needs
are retrieved. In a stochastic speech recognition framework, the
accuracy depends primarily on acoustic and language models.
Whercas acoustic models are related to phonetic properties, lan-
guage models, which represent linguistic contents to be spoken,
are related to target collections. Therefore, itis feasible that lan-
guage madels have to be produced based on target collections,
In summary, our belief is that by adapting a language model to
a target IR collection, we can improve the speech recognition
accuracy and, consequently, the retrieval accuracy. Motivated
by this background, we used target documents for the main task
to produce the language models. For this purpose, we used only
the 100GB coliection, because the 10GB collection is a subset
of the 100GB collection.

We produced two language models of different vocabulary
sizes o that the relation between the vocabulary size and system
performance can be investigated. In practice, 20K and 60K high
frequency words were used independently to produce word-
based trigram models. We shali call these models “Web20K”
and “Web60K™, respectively. We used the ChaSen morphologi-
cal analyzer” to extract words from the 100GB collection. To re-
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sofve the data sparseness problem, we used a back-off smooth-
ing method, in which the Witten-Bell discounting method was
used to compute back-off coefficients. In addition, through pre-
timinary experiments, cut-off thresholds were empirically set at
20 and 10 for the Web20K and Web60K models, respectively.
Trigrams whose frequency was above the threshold were used
for language modeling. Language models and dictionaries are
in the ARPA and HTK formats, respectively.

Table | shows the stalistics related to word tokens/types
in the 100GB collection and ten years of “Mainichi Shimbun™
newspaper atticles from 1991 to 20060, We shall use the term
“word token" to refer 1o occurrences of words, and the term
“word type” to refer to vocabulary items, The size of the 100G
collection {*Web") is approximately 10 times that of 10 years
of newspaper articles {“News"), which was one of the largest
Japanese corpora available for the purpose of research and de-
velopment in language modeling. This means that the Web is a
vital, as yet untapped, corpus for language modeling.

Table 1: The statistics of corpora for language modeling.

Web (100GB)  News (10 yeats)
# of Word types 2.5 0.32M
# of Word tokens 2.44G 0.26G

3. System Description
3.1. Overview

Figure 2 depicts the overall design of our speech-driven text re-
trieval system, which consists of speech recognition and text
retrieval modules. In the off-line process, a target IR collection
is used to produce a language model, so thaf user speech related
to the collection can be recognized with high accuracy. How-
ever, an acoustic model was produced independently of the tar-
get collection. In the on-line pracess, given an informatton re-
quest spoken by a user (i.e., a spoken query), the speech recog-
nition module uses acoustic and language models to generate a
transeription of the nser speech. Then, the text retricval mod-
ule searches the target IR collection for documents relevant to
the transcription, and cutputs a specific number of top-ranked
documents according to the degree of relevance in descending
order, In the following two sections, we describe the speech

recognition and text retrieval modules,
#  Acoustic
madel
v r L=t}
model I

Text redrieval Target IR
collection

eirieved docume)

Speech recognition

Figure 2: An overview of our speech-driven retrieval system.
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3.2. Speech Recognition

We used the Japanese dictation toolkit' including the Julius de-
coder and acoustic/language models. Julius performs a two-
pass {forward-backward) search using word-based forward bi-
grams and backward trigtams, The acoustic model was pro-
duced from the ASJ specch database, which contains 20,000
sentences uitered by 132 speakers including both genders.
A 16-mixture Gaussian distribution triphone Hidden Markov
Model, in which the states are ciustered into 2,000 groups by
a state-tying method, is used. The language model is a word-
based trigram model produced from 60,000 high frequency
words in 10 years of Mainichi Shimbun newspaper articles,
This toolkit also includes development software so that acous-
tic and language models can be produced depending on the
application, While we used the acoustic model provided in
the toolkit, we used new language models produced from the
[00GB collections, that is, the Web20K and Web60K models.

3.3. Text Retrieval

The retrieval module is based on an existing reiricval
method [6], which computes the relevance score between the
transcribed query and each document in the collection. The rel-
evance score for document o is computed by Equation (1).
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where fi , and f: 4 denote the frequency that term ¢ appears in
query ¢ and document d, respectively; N and n, denote the
total number of documenis in the ¢ollection and the number
of documents containing term &, respectively; dla denotes the
length of document d, and avgd! denotes the average length of
documents in the collection. We empirically set K = 2.0 and
b = (0.8, respectively.

Given transcriptions (i.e., speech recognition resulis for
spoken queries), the retrieval module searches a target IR col-
lection for relevant documents and sorts theim in descending ot-
der according to the score. We used confent words, such as
nouns, extracted from documents as index terms, and performed
word-based indexing, We used the ChaSen morphological an-
alyzer to extract content words. We also extracted terms from
transcribed queries using the same method. We used words and
bi-words (i.e., word-based bigrams) as index terms,

4, Experimentation

In the Web retrieval main task, different types of text retrieval
were performed. The first type was “Topic Retrieval” resem-
bling the TREC ad hoc retrieval. The second type was “Similar-
ity Retrieval”, in which documents were used as queries instead
of keywords and phrases. The third type was “Target Retrieval”,
in which systems with a high precision were highly valued. This
feature provided a salient contrast to the first two retrieval types,
in which botly recall and precision were used equally as evalva-
tion measures,

Although the spoken queries produced can be used for the
fiest and third task types, we focused solely on Topic Refrieval
for the sake of simplicity. We used the 47 topics for the Topic
Retrieval task to retrieve the 1,000 top documents, and we used
the TREC evaluation software to calculate the mean average
precision (MAP) values (l.e., non-interpolated average preci-
sion values, averaged over the 47 topics).

3http: /fwinnie.kuis kyoto-n.ac. jp/dictation/

Relevance assessment was performed based on four ranks
of relevance: highly relevant, relevant, partially relevant and
irrelevant. In addition, unlike conventional retrieval tasks, doc-
uments hyperlinked from retrieved documents were optionally
used for relevance assessment, In summary, the following four
assessment types were available to caleulate the MAP values:

¢ (highly) relevant documents were regarded as correct an-
swers, and hyperlink information was not used (RC),

¢ (highly) relevant documents were regarded as correct an-
swers, and hyperlink information was used (RL),

e partially relevant documents were also regarded as cor-
rect answers, and hyperlink information was not used
(PC),

e partiaily relevant documents were also regarded as cor-
rect answers, and hyperlink information was used (PL},

In the formal run for the main task, we submitted results ob-
tained with different methods for the |0GB and 100GB col-
lections. The best performance was obtained when we used
description (<DESC>) fields as querics and we used a combina-
tion of words and bi-words as index terms.

The purpose of the experiments for speech-driven retrigval
was two-fold. First, we investigated the extent to which a lan-
guage model based on a target document collection contributes
to an improvement in performance. Second, we investigated the
impact of the vocabulary size for speech recognition on speech-
driven retrieval, Therefore, we compared the performance of
the following four retrieval methods:

¢ text-to-text retrieval, which used written queries, and can
be secn as the perfect speech-driven text retricval method
(“Text"),

¢ speech-driven text retrieval, in which the Web60K madel
was used (*Web60K"™),

¢ speech-driven text retrieval, in which a language model
produced from 60,000 high frequency words in ten
years of Mainichi Shimbun newspaper articles was used
(*News60K™),

» speech-driven text retrieval, in which the Web20K model
was used (“Web20K™).

For text-to-text retrieval, we used descriptions (<DESC>) as
queries, because the spoken queries used for speech-driven re-
tricval methods were descriptions dictated by speakers.

For speech-driven text retrieval methods, queries dictated
by the ten speakers were used independently, and the final result
was obtained by averaging the results for all speakers. Although
the Julius decoder used in the speech recognition module gen-
erated more than one transcription candidate (hypothesis) for
a single speech, we used only that with the greatest probabil-
ity score. All language models were produced by means of the
same softwares, but they were different in terms of the vocab-
ulary size and the source documents. Table 2 shows the MAP
values with respect to the four relevance assessment types and
the word error rate in speech recognition, for different retrieval
methods targeting the 10GB and 100GB collections.

As with existing experiments for speech recognition, the
word error rate (WER) is the ratio between the number of word
errors (i.c., delction, insertion, and substitution) and the total
number of words, In addition, we investigated the error rate
with respect to query terms (j.e., keywords used for retrieval),
which we shall call the term error rate (TER). Note that unlike
MAP, smaller values of WER and TER are obtained with bet-
ter methods. Table 2 also shows the test-set out-of-vocabulary



Table 2: Experimental results for different retrieval methods targeting the 10GB and 100GB collections (OOV: test-set out-of-
vocabulary rate, WER: word error rate, TER: term error rate, MAP: mean average precision).

MAP (10GRB) MAP (100GB)
Method OOV WER TER RC RL PC PL RC RL PC PL
Text — — - 14700 (i286 1612 1476 0855 0982 1257 1274
Web6OK 0073 (1311 .2162 0966 .0916 .0973 1013 .0542 0628 .0766 .0809
NewsGOK 0157 ,1806 .2991 0701 .068F .0790 .0779 .031 .0404 0503 0535
Web20K 0423 1642 2757 0616 .0628 0571 0653 0315 .0378 0456 0485

rate (OOV), which is the ratio of the number of words not in-
cluded in the speech recognition dictionary to the total number
of words in the spoken queries, Suggestions that can be derived
from the results in Table 2 are as follows,

Looking at the WER and TER columns, News60K and
Web20K were comparable in speech recognition performance,
but WebGOK outperformed in both cases, However, the differ-
ence between News60K and Web20K in OOV «id not affect
WER and TER, In addition, TER was greater than WER, be-
cause in computing TER, functional words, which are generally
recognized with a high accuracy, were excluded,

Whereas the MAP values of News60K and Web20K were
compatable, the MATP values of Web60K, which were approxi-
mately 60-70% of those obtained with Text, were greater than
those for NewsS0K and Web20K, irrespective of the relevance
assessment type. These results were observed for both the
10GB and 100GB collections.

The only difference between News60K and Web60K was
the source corpus for language modeling in speech recognition,
and therefore we conclude that the use of target collections to
produce a langnage mode! was effective for speech-driven re-
trieval. In addition, by comparing the MAP values of Web20K
and Web60K, we conclude that the vocabulary size for speech
recognition was also influential for the performance of speech-
driven retrieval,

We analyzed specch recognition errors, focusing mainly
on those attributed to the out-of-vocabulary problem. Table 3
shows the ratic of the number of out-of-vocabulary words 1o
the total number of misrccognized words {or terms) in fran-
scriptions. However, it should be noted that the actual ratio
of errors due to the OOV problem can potentially be higher
than those figures, because non-O0V words collocating with
QO0V words are often misrecognized. The remaining reasons
for speech recognition errors are associated with insufficient N-
gram statistics and the acoustic model. As predicted, the ra-
tio of OOV words (terms) in Web20K was much higher than
the ratios in Web60K and News60K, However, by comparing
News60K and Web20K, WER and TER of News60K. in Table 2
were higher than those of Web20K. This suggests that insuf-
ficient N-gram statistics were more problematic in News60K,
compared to Web20K.

Table 3: The ratio of the number of OOV wordy/terms to the
total number of misrecognized words/terms.

Word Term
Web6DK 0704 1838
MNews60K 0966 2143
Web20K 2855 5049

5. Conclusion

In the NTCIR-3 Web retrieval task, we organized the speech-
driven retrieval subtask and produced 105 spoken queries dic-
tated by ten speakers. We also produced word-based trigram
language models using approximately 10M documents in the
100GB collection wsed for the main task. We used those qucries
and language models to evaluate the performance of our speech-
driven retrieval system. Experimental results showed that (a)
the use of target documents for language modeling and (b) en-
hancement of the vocabulary size in speech recognition were
effective in improving the system performance. Future work
will include experiments using spontaneous spoken queries.
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Abstract

In support of speech-driven question answering, we propose a
method to construct N-gram language models for recognizing
spoken questions with high accuracy, Question-answering sys-
tems receive queries that ofien consist of two parts: one conveys
the query topic and the other is a fixed phrase used in query
sentences. A language model constructed by using a target col-
lection of QA, for cxample, newspaper articles, can model the
former part, but cannot mode! the latter part appropriately. We
tackle this problem as task adaptation from language models ob-
tained from background corpora (e.g., newspaper articles) to the
fixed phrases, and propose a method that does not use the task-
specific corpus, which is often difficult to obtain, but instead
uses only manually listed fixed phrases. The method empha-
sizes a subset of N-grams obtained from a background corpus
that corresponds to fixed phrases specified by the list. Theoret-
ically, this method can be reparded as maximizing a posteriori
probability (MAP) estimation using the subset of the N-grams
as a posteriori distribution, Some experiments show the effec-
tiveness of our method.

1. Introduction

Question answering (QA) was first evaluated largely at TREC-
8[11]. The goal in the QA task is to retrieve small snippets
of text that contain the actual answer to a question rather than
the document lists traditionally returned by text retrieval sys-
tems. We are trying lo extend question-answering systems as
traditional text retrieval systems[3] that accept spoken queries.
In this paper, we address issues related to tanguage modeling
for the speech recognition subsystem of speech-driven question-
answering systeins.

Question-answering systems receive queries that often con-
sist of a part that conveys various query contents about, for
example, newspaper articles, and a part that represents a fixed
phrase for query sentences. For example, the following query
may be submitted,

seN / kyu~/ hyaku/ nana 7 ju- / roku / neN / ni / kasei
i/ nalN / chalwrikn / shita / taNsaki / wa / naN / o
£ yu- / nenae fdesu / ka

{(What was the name of the spacecraft that landed
safety on Mars in 19767)

The first half of the query, i.e., “seN kyu- hyaku nana ju- roku
neN ni kasel ni naN chakuriku shita taNsaki wa (the space-
craft that landed safely on Mars in 1976)", conveys the topic of
the retrieval, and is best dealt with by using an N-gram model
trained with the target documents of QA systems. In this paper,

The second and third authors are also members ¢f CREST, Japan
Science and Technology Corporation.

newspaper articles are used for the target documents[4}. On the
other hand, the latter haif of the query, i.e., *'naN to yu- namae
desu ka (What was the name?)”, is a fixed phrase typically used
in interrogative questions, but is not very frequent in newspaper
articles. Thus, we require language models that can deal with
both types of fragments.

Note that recognizing the fixed phrases with high accuracy
is crucial to success in question answering, because they con-
vey clues to determine the query type[6). For example, a fixed
phirase mighit indicate that the answer should be a name of some
object as in the last example, while another might indicate that
the answer should be a date of some event (e.g., in English, “On
what date was..."}.

There has been work on language model adaptation in which
language models for a specific task were constructed from both
a large general-purpose corpus and a relatively small task-
specific corpus, Using this approach, we can construct a lan-
guage model for question answering from both a large number
of generic newspaper articles and a small number of query sen-
tences for QA.

One issue that should be considered when using this ap-
proach is how the fask-specific corpus should be acquired. If
the corpus does tot exist already, it must be collected somehow
or other, and collecting a new corpus directly from practical
use is always expensive, even if the resulting corpus is small,
Alternative methods have been proposed to obtain a consider-
able amount of task-specific corpus indirectly, including such
methods as: automatically generating sentences from a hand-
made task-specific grammar[5]; incorporating a task-specific
grammar-based model into the background N-gram{1]; and uti-
lizing the results of speech recognition using a general-purpose
language model[8, 9].

In our case, the number of the fixed phrases used in QA is
small enough for all the patterns to be enuwmerated by hand.
Thus we can inexpensively prepare a list of phrases instead of
collecting a corpus of query sentences. In this paper, we pro-
pose & methed of constructing language models for question an-
swering from a target coflection (e.g., newspaper articles) and a
list of the fixed phrases typically used in interrogative questions.
The method emphasizes N-gram subsels corresponding to the
fixed phrases and can be considered as a variant of a maximum a
posteriori probability (MAP) estimation using the N-gram sub-
sets of a background corpus as an a posteriori distribution,

2. The Method

Figure | illustrates our proposed method of adapting a language
model for fixed phrases. The list of fixed phrases is used to se-
lect the subset of N-prams related to the phrases, Then, adding
the subset to the original N-grams produces the adapted model.
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2.1. Language model adaptation for fixed phrases

Let S be a set of sentences. Let Spp be a subset of S that con-
sists only of sentences that have the fixed phrases specified by
the list. Let P be a language model for generating sentences
s(€ S) obtained from a general-purpose background corpus.
The aim of the language model adaptation for the fixed phrases
is to obtain the adapted language model F’, which gives rela-
tively high probabilities to the sentences § € Spp but preserves
the order retations on the sentences s € § — Srp as much as
possible.

The generative probability that the sentence § includes a
fixed phrase wp - - -1, is:

P& = []Pleidwi - wis)
=1

= Plun)Plwshw) -

. -1
P('wpiwg_;v+1)P(WJJ+1|WP_N+2WP—1) e
- N

w,’,f* H...

P (wliw‘—N+1

v+ P(tlpt -2 fwp—
v Pl -1 85T
"P(Wq|wq_w+1)P(wq+l|wq—N+2)
"P(wrn|“”:;::fv+1)

The following components of the above equation are important
in obtaining P";

(wp|'w N+l) P(mp+N—2|wp—lwp+N 3)1 (a)

ntN-— 2)

Pyt —11dy P(w,,|w N+1) (b}

The component (a) corresponds to the generative probabili-
ties of the prefix words of the fixed phrases, each of which, in its
condition part, has one or more words other than those that con-
sist of the fixed phrases. The component (b} corresponds to the
generative probabilities of the intermediate words of the fixed
phrases, each of which has only the words of the fixed phrases
in its condition part.

The adapted model P’ is calculated using the following two
steps.

i. Revise the maximum likefihcod estimates of P:
Prypgy (1) Pay gy (wifwy =13 -+

which are calculated for each length n{1 < n < N).

ii. Apply back-off smoothing to integrate the revised ML es-
timates Pypy o) (wilwiZl (1 <0 < N)

Prgson (wikw{ Ty g ),

The proposed method emphasizes only the carefully selected
Py 1n)8 that are meaningful for following back-off smoothing
calculation, to make the produced meodel harmless to the other
generative probabitities assigned to the sentences that do not
have the fixed phrases.

2.2, Revision of the maximum iikelihood estimate

For all lengths n(1 € n € N), the maximutn likelihood es-
timates Ppyggny(wifwiZh, ) of the N-gram probabitity P ob-

tained from the background corpus are revised to P a1 by the
following procedure.

(D). If the postfix wi_gpr--uy(l < bk < n) of the
word sequence Wi_nqy---Wi Is equal to the prefix

1y« Wpen—1 of one of the fived phrases i, - - - 14, then
emphasize the Py as follows:
' # m1 o apbke2y
P iy (pgk-a pr ntlp )=
n— +p+k—2
B (1 ' n+kwp )
-t k—2
VPapiry (Bpr-rjwl T 05T

Otherwise, go to step (2).

For example, for tri-grams, for ail context word sequences
Wp_gWp—1, We have;

P'ML(a)(ﬁ’p+1|w; —llf’p) =

Ba{wp-11p) - ¥ Paspioy (Bpa [wp—1105)
P ser (prhitp) =

Balthp) - TPy sy {Bpsa|thn)
P yiny (Bplwp—nwp-1) =

Ba{wp—owp_1} YParpes) (Bplwp-2wp-1)
P pry(plwp—-1) =

Aa(wp-1) - YParr2) (tpltwp-1)
Pl (ip) = Bile) - vParnony (ip)

(2). If the word sequence Wi_psy -+ w; is equal fo the
subsequence Wi a1+ Wi of one of the fived phrases
Wp -+ iy then emphasize only the longest N-gram proba-
bility Pagpiny as follows:

e i1
Parnon (Dl #iZ yyy) =

B (BN a1) - PPMLon (@B hgy)

Orherwise, go to step (3).

For example, for tri-grams, only the tri-gram probability
should be emphasized:

Py (il ibieatbioy) =
Ba(i—aWi-1) - ¥ Parpga) (di[diaiii-1)
(3). Forall n (1 < n < N), the revised probability is:

P pimy (i g gy) =

- .
Ba(wiZnan) - Parngmy (WilwiZae 1)
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Figure 2: Emphasizing N-gram Counts {for tri-grams)

where v(=> 1) is a multiplier that emphasizes the sclected N-
grams, and () - - - On (i}, )} are normalized coefficients
that make the probabilities sum to one,

This can be seen as the task adaptation process by maximum
a posteriori probability (MAP) estimation[2] using the N-gram
subsets corresponding to the fixed phrases as task specific data
for adaptation, because P'pry is equivalent to the maximum
likelihood estimate calculated from the N-gram counts C'y, of
each length n(1 < n < N) obtained by emphasizing the se-
lected subset of the original N-gram counts C, as shown in Fig.

2' 5
C"l (w;—n+1 )

PJML )(wilwt,],H) = T
S Ty Ol )

2.3. Back-off smaothing

Back-off smoothing integrates the revised ML probabilities
Py1(ny 0f each length n 1o produce the final adapted language
model. Any back-off smoothing method can be applied, ex-
cep! that the discount coefficient should be calculated using the
a priori knowledge of the adaptation, i.e., the N-gram counts
obtained from the background corpus,

For example, for Witten-Bell smoothing [10], the following
discount coefficient d’w? et should be used for the proposed

method.
’ i1
dr..,:;_nHP s Zng)

Cy (‘wii—n+1) ‘
{Ew, C"(w::—n+1)} + "'('w;:rlx-i-l)

where r is the number of different words appearing after the
word context w}_} 41 in the background corpus.

3. Experimental Results

We extracted N-gram counts of 20,000 words that were ob-
tained from newspaper articles collected over 111 months. As
task-specific training data, we developed a word network for the
Japanese fixed phrases used for question answering. From the
network, we extracted a list of all the 172 fixed phrases that were
acceptable to the network. Then we compared several adapta-
tion methods including that mentioned in this paper, We applied
Witten-Bell discounting[10] for all methods.

We first made the N-gram model from only the newspaper
articles as the baseline (referred to as the BASE model). As
a conventional MAP adaptation method[2], we mixed twao sets
of N-gram counts cbtained from newspaper articles and the list
of fixed phrases (magnified by w), and obtained the adapted
model referred to as MIX, As the method proposed in this paper,
we magnified N-gram counts corresponding to the fixed phrases
in the N-gram of newspaper articles (by <), and obtained the
adapted model referred to as EMP. Finally, using the method
that we had previously proposed [1], we integrated the N-gram

Figure 3: A word network for the Japanese fixed phrases fre-
quently used in queries for QA

of newspaper articles and the word network for fixed phrases
(magnified by =), and obtained the adapted model referred to as
NET.

We prepared 100 sentences from the newspaper articles (re-
ferred to as NP) and 50 query sentences for the QA system (re-
ferred to as QA4), and these were recorded for four speakers (lwo
men and two women), Though the word network was relatively
small and had only 33 nodes (31 words), 36 of the 50 queries
had the fixed phrases characterized in the network.

We used an existing N-gram decoder [7] for the recogni-
tion experiments. The language model weight and the insertion
penalty were set to the best values for the newspaper {BASE)
model. The results are shown in Fig. 4 and Fig, 3.

Figure 4 shows the relations between word error rate (WER)
and the parameter {(w or ) with respect to both the target OA
and NP, The best results with respect to Q4 of BASE, MLX, EMP
and NET are obtained by adjusting the parameter to 16.9, 15.4,
13.8 and 14.7, respectively, The propoesed madel EMP outper-
formed the other models, while it did not worsen the WER for
the sentences that did not have the fixed phrases (VP).

Figure 5 shows the difference between WERs for the first
(referred to as FH) and latter (referred to as LH) haif of the
interrogative sentences {QA4). We divided each sentence of Q4
into first and latter half by using a Japanese WH-word as the
boundary (the lauter half included the WH-word), and investi-
gated the WERs of both halves separaiely. Note that the latter
halves roughly correspond to the fixed phrases. It indicated that
the proposed method (EMP) best reduced the WER correspond-
ing 1o the fixed phrases (LH), while it did not worsen the WER
for the other part of the input sentences (FF).

4. Conclusion

We have proposed methods for language model adaptation that
enable recognition of spoken queries submitted to QA systems
with high accuracy. The methed does not require a task-specific
corpus but, instead, uses a list of fixed phrases enumerated by
hand. Qur experiments showed that the method outperformed
a conventional language model adaptation method in ferms of
the recognition accuracy. The proposed methods can be vsed
for other task-adaptation problems in language modeling where
the variation in expressions 1o be adapted is relatively small al-
lowing for these expressions to be enumerated by hand without
collecting a new text corpus,
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Abstract

We propose a multilingual lecture-on-demand sys-
tem, which searches lecture videos for segments rele-
vant lo user information needs across languages. We
wtilize the benefits of textbooks and audio/video data
corresponding to a single lecture. We extract the audio
track from a target lecture video, generate a transcrip-
tion by large vocabulary continuous speech recognition,
and produce a textual index. Users can view specific
video segments by selecting paragraphs in the texthook
Jor the target lecture, machined translated into the user
language. Experimental results showed that by adapt-
ing speech recognition to the lecture topic, the recogni-
tion accuracy increased and the retrieval accuracy was
comparable with that obfained by human transcriptions.
Our system is implemented as a client-server system
aver the Web to facilitate e-education,

1 Introduction

Reflecting the rapid growth in the utilization of mul-
timedia contents available via the World Wide Web and
CD-ROMs, information technologies across speech, im-
age, and lext processing have of late become crucial.
Ameng various types of contents, lectures (audio/video)
are typical and valuable multimedia contents, in which
oral presentations are usually organized based on tex-
tual materials, such as resumes, slides, and textbooks.
In lecture videos, image information, such as flip charts,
is often additionally used. Thus, a single lecture consists
of different types of compatible multimedia contents,

However, since a single lecture often includes multi-
ple stories and takes long time, it is useful to selectively
obtain specific segments (passages) so that audience can
satisfy their information needs with a minimal cost, In
addition, since cach lecture is usually provided in a sin-
gle language, it is feasible that users are interested in
retrieving and viewing foreign lecture videos by their
native languages,

To resolve this problem, in this paper we propose
a lecture-on-demand system, “LODEM" (Lecture-On-
DEMand), which retrieves relevant video/audio pas-
sages in response to user queries. For this purpose, we
utilize the benefits of different media types to improve
retrieval performance.

On the one hand, textual contents are advantageous
in the sense that users can view/scan the entire contents
quickly and easily identify relevant passages using lay-
out information (e.g., text structures based on sections
and paragraphs). In other words, textual contents can be
used for random-access purposes.

On the other hand, speech contents are primarily vsed
for sequential-access purposes, It is difficult to identify
relevant passages unless target video/audio data include
additional annotations, such as indexes. Even if target
data are indexed, users are not necessarily able 10 come
up with effective queries, To resolve this problem, text-
books are desirable materials, from which users can ex-
tract effective keywords and phrases.

However, while textbooks are usually concise,
speeches are relatively redundant and thus are easy to
understand more than textbooks, specifically in the case
where additional image information is provided.

In view of the above discussion, we model LODEM
system as follows. A user, who browses the textbook
for a target lecture machine translated into the user lan-
guage, selects text passages (i.e., paragraphs) relevant
to their information needs from the translated textbook.
Then, source passages (from which translations of se-
lected passages were generated) are used to formulate a
textual query, In other words, queries can be formulated
even if users cannot come up with effective keywords
and phrases. Users can also submit additional keywords
as queries, if necessary. Video passages relevant to a
given query are retrieved and presented to the user, in
which transcriptions of speech data are machine trans-
lated into the user language.

To retrieve video passages in response to textual
queries, we extract the audio track from a lecture video,
generate a transcription by means of large vocabulary
continuous speech recognition, and produce a textual in-



dex, prior to the syslem usage.

Our on-demand system should not be confused with
video-on-demand (VOD) systems, which search video
archives for specific videos in response to user requests.
While in VOD systems, minimal unit for retrieval is the
entire program, in our system, retrieval unitls are pas-
sages smaller than the entire program,

2 System Description
2.1  Overview

Figure 1 depicts the overall desigh of our lecture-
on-demand system, in which left/right-hand regions
correspond to the on-line and off-line processes, re-
spectively. Although we implemented an English-to-
Japanese system, our methodology is fundamentally
language-independent. For research and development
purposes, we tentatively target lecture programs on TV
for which textbooks are published. We explain the basis
of our system using this figure.

In the off-line process, given the video data of a target
lecture, the audio data are extracted and segmented into
more than one passage. Then, speech recognition tran-
scribes each passage. Finally, the transcribed passages
are indexed as perfortned in conventional text retrieval
systems, so that each passage can be retrieved efficiently
in response to textual queries.

To adapt speech recognition to a specific lecturer, we
perform unsupervised speaker adaptation using an ini-
tial speech recegnition result (i, a transcription}. To
adapt speech recognition to a specific topic, we perform
langnage model adaptation, for which we search a gen-
eral corpus for documents relevant to the textbook re-
lated to the target lecture. Then, the retrieved documents
{i.e., a topic-specific corpus) are used to produce a word-
based N-gram language model. We also perform image
analysis to extract textual contents (e.g., keywords and
phrases) in flip charts, These contents are also used later
to improve our language model,

In the on-line process, a user can view specific video
passages by selecting paragraphs in a translation of the
textbook, In video passages, automatic transcriptions
are machine translated into the user language. For the
purpose of machine translation, we use the PC-transer
MT system!, which uses a Japanese/English bilingual
dictionary consisting of approximately 1M entries for 19
technical fields.

The current implementation is based on a client-
server system over the Web. While both the off-line and
on-line processes are performed on servers, users can
utilize our system by means of Web browsers on their
own PCs. Figure 2 depicts the interface of LODEM,
where a lecture associated with “nonlinear multivariate
analysis” is given. In Figure 2, an electronic version of
a translated textbook is displayed in the lefi-hand side,
and a lecture video is played in the right-hand side.

Thitp:/Awww.nova.co,jp/english/

Users can copy paragraphs in the textbook and pasle
them into the query input box, which are not depicted
in Figure 2. Alternatively, users can submit keywords
to relrieve paragraphs in the lextbook. In the boitom of
Figure 2, top-ranked transcribed Japanese passages and
their English translations are listed according to the de-
gree of relevance. Users can select (click) one of tran-
scriplions to play the corresponding video passage.

Ideally, full translations are more useful to improve
the browsing efficiency. However, since machine trans-
lation for misrecognized transcriptions is problematic
and speech translation still remains a difficult prob-
lem, we perform morphological analysis to extract con-
tent words from transcriptions, and translate only those
words, Thus, our system is practical for users who can
understand Japanese to a certain extent, with translations
of texthooks and partial transcriptions.

2.2 Passage Segmentation

The basis of the passage segmenlation module is to
divide the entire video data for a single lecture into more
than one minimal unit to be retrieved. We shall call those
units passages. For this purpose, both speech and image
data can be promising clues. However, in lecture TV
programs, it is often the case that a lecturer sitting still
is mainly focused and a small number of flip charts are
occasionally used. In such cases, image data is less in-
formative. Thus, we tentatively use only speech data for
the passage segmentation process.

However, unlike the case where a target speech (e.g.,
a news program) consists of multiple different top-
ics [10], topic segmentation for lectures is relatively dif-
ficult, because a single lecture consists of sub-topics
closely related to one another, and thus topic bound-
aries are not necessarily clear. Additionally, for LO-
DEM, segmentation can potentially vary depending on
the user query. Thus, it is difficult to predetermine a de-
sirable segmentation in the off-line process.

In view of the above problems, we first extract the
audio track frem a targel video, and perform a sim-
ple pause-based segmentation method to obtain mini-
mal speech units, such as sentences and fong phrases.
In other words, speech unils are contituous audio seg-
ments that do not include pauses longer than a certain
threshold. Finally, we gencrate variable-length passages
from one or more speech units. To put il more precisely,
we combine IV speech units into a single passage, with
N ranging from 1 to 5 in the current implementation.

Figure 3 shows an example of variable-length pas-
sages, in which any sequences of speech units that are
1-5 in length are identified as passages.

2.3 Speech Recognition

The speech recognition module generates word se-
quence W, given phone sequence X. In a stochastic
speech recognition framework, the task is to select the
W maximizing P(W]|X), which is transformed as in
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Equation (1) through the Bayesian theorem.

arg max P(W|X) = arg max PX|W)Y. - P(W) ()

P(X|W) modeis the probability that word sequence W
is transformed into phone sequence X, and P(W) mod-
els the probability that W is linguistically acceptable,
These are acoustic and language models, respectively.
We use the Japanese dictation toolkit? including the
Julius decoder and acoustic/language models.  Julius
performs a two-pass {forward-backward) search using
word-based forward bigrams and backward trigrams.

2.4 Retrieval

We use an existing probabilistic text retrieval
method [8] to compute the relevance score between the
textual query and each passage in the database. The rel-
evance score for passage p is computed by Equation (2).

Zﬁ (I(+1)'f!.p logN'—ﬂt*l-O.ﬁ

e dl |

t I('{(l"b)+m1ﬁ¢;_d[}+f"p 2 +05 )
(2)

Here, f;,q and f; , denote the frequency that term ¢ ap-
pears in query g and passage p, respectively. N and n,
denote the total number of passages in the database and
the number of passages containing term ¢, respectively.
dl, denotes the length of passage p, and avgd! denotes
the average length of passages in the database. We em-
pirically set K = 2.0 and b = 0.8, respectively.

It should be noted that in Equation (2), the score
is normalized with the length of each passage. Thus,
longer passages, which potentially include more index
terms, are nol necessarily assigned with a higher score.
This property is importanl, because variable-length pas-
sages are considerably different in terms of length.

hep:/winnie kuis.kyoto-u.ac.jp/dictation/



We use content words, such as nouns, extracted from
transcribed passages as index terms, and perform word-
based indexing. We use the ChaSen morphological an-
alyzer® to extract content words. We also cxtract terms
from queries using the same method.

However, retrieved passages are not disjoint, because
top-ranked passages oflen overlap with one another in
terms of the temporal axis, It is redundant to simply list
the lop-ranked reirieved passages as they are. Thus, we
reorganize those overlapped passages into a single pas-
sage. In Figure 4, which uses the same basic notation as
Figure 3, illustrates an example scenario. In this figure,
top-ranked passages are organized into three groups.

The relevance score for a group (a new passage) is
computed by averaging scores for all passages belong-
ing to the group. New passages are sorted according to
the degree of relevance and are presented to users as the
final result.

'I- > ‘.‘1 --------------- ~
H - | DELRARRRRE .o Y
W )N
IR N CE Dol N LY TS W I Lty TEE S
— Tt 1
Time

Figure 4. An example of grouping retrieved
passages.

3 Experimentation
3.1 Methodology

Since LODEM consists of a number of different com-
ponents, it is difficult evaluate its performance on the ba-
sis of a single evaluation method. 1n this paper, we fo-
cus on the performance of LODEM in terms of speech
recognition and passage retrieval. For this, we produced
a test collection and performed experiments partially re-
sembling one performed in the TREC spoken document
retrieval (SDRY) track [2].

Two lecture programs on TV, for which printed text-
books were also published, were videotaped in DV and
were used as target lectures., Both lectures were manu-
ally transcribed and sentence boundaries with temporal
information (i.e., correct speech units) were alse manu-
ally identified. The textbooks for the two target lectures
were read by an OCR software and were manually re-
vised. The accuracy of the OCR software was roughly
97% on a word-by-word basis. For both lectures, each
paragraph in the corresponding texibook was used as a
query independently. For each query, a human asses-
sor (a graduate student other than authors of this paper)
identificd one or more relevant sentences in the human
transcription,

Table 1 shows details of our test collection, in which
lectures #1 and #2 were related to the criminal law and

3hitp:/ichasen, aist-nara.ac.jp/

histories of ancient Greece, respectively. Each lecture
was 45 minotes long. In this table, we shall use the term
“word token” to refer to oceutrences of words, and the
term “word type"” to refer to vocabulary items. The cal-
umn “# of Fillers” denoting the number of interjections
in speech partially shows the fluency of each lecturer,

Table 1. Details of our test collection.

D #l #2

Tapic Law  History
# of Word tokens in lecture 6917 8052
# of Word types in lecture 1029 1219
# of Fillers in lecture 3 953
# of Sentences in lecture 181 191
# of Queries 25 3
Avg. # of relevant sentences per query 7.6 6.8
Avg, length of queries (Avg. # of words} 154 247

By using our test collection, we evaluated the accu-
racy of speech recognition and passage retrieval. It may
be argued that passage segmentation should also be eval-
uated. However, to evaluate the extent to which the ac-
curacy of passage segimentation affects the entire system
performance, relevance assessment for passage retrieval
has to be performed for multiple segmentations.

our system used the sentence boundaries in human
transcriptions to identify speech umits, and performed
speech recognition. We also used human transcriptions
as perfect speech recognition results and investigated the
extent to which speech recognition errors affect the re-
trieval accuracy. Our system retrieved top-ranked pas-
sages in response to each query, It should be noted that
passages here are those grouped based on the temporal
axis, which should not be confused with those obtained
in the passage segmentation method.

For lecture #1, we adapted the acoustic model to the
lecturer by means of the MLLR-based method®. How-
ever, for lecture #2 we did not perform acoustic model
adaptation, because the speech data contained constant
background noise and the sound quality was not good
enough to adapt the acoustic model, For both lectures #1
and #2, we did not use flip chart infermation obtained by
means of image analysis,

3.2 Results

To evaluate the accuracy of speech recognition, we
used word error rate {WER), which is the ratio between
the number of word errors (i.e., deletion, insertion, and
substitution) and the total number of words. We also
used test-set out-of-vocabulary rate (OOV) and trigram
test-set perplexity (PP) to evaluate the extent to which
our language model was adapted to target topics.

We used human transcriptions as lest set data. For
example, OOV is the ratio between the number of word
tokens not contained in the language model for speech
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recognition and the total number of word tokens in the
transcription. It should be noted that smaller values of
OOV, PP, and WER are obtained with better methods.

The final outputs {l.e., retrieved passages) were eval-
vated based on recall and precision, averaged over all
queries. Recall (R) is the ratio between the number of
correct speech units retrieved by our system and the to-
tal number of correct speech units for the query in ques-
tion. Precision (P) is the ratio between the number of
correct speech units retrieved by our system and the to-
tal number of speech units retrieved by our system. To
summarize recall and precision into a single measure,
we used F-measure (F).

Table 2 shows the accuracy of speech recognition
{WERY) and passage retrieval (R, P, and F), for each lec-
ture. In this table, the columns "HUM" and “ASR” cor-
respond to the results obtained with human transcrip-
tions and automatic speech recognition, respectively.
The results for ASR are also divided into those obtained
with/without language model adaptation (LA).

To adapt language medels, we used the textbook cor-
responding to a target lecture and searched the 10M Web
page corpus [1]° for 2,000 relevant pages, which were
used as a source corpus. In the case where the lan-
guage model adaptation was not performed, all 10M
Web pages were used as a source corpus. In either
case, 20,000 high frequency words were selected from a
source corpus to produce word-based trigram language
model. We used the ChaSen morphological analyzer
to extract words (morphemes) from source carpora, be-
cause Japanese sentences lack lexical segmentation.

In passage retrieval, we regarded the top N passages
as the final outputs. In Table 2, the value of N ranges
from 1 to 3. As the value of N increases, the recall
improves, but potentially sacrificing the precision.

3.3 Discussion

By comparing the results of ASR with/without LA
in Table 2, OOV, PP, and WER decreased by adapting
language models to target topics, irrespective of the lec-
ture, Thus, our language mode! adaptation method was
effective to improve the quality of speech recognition.

The values of OOV, PP, WER for lecture #2 were gen-
erally greater than those for lecture #1. One possible ra-
tionale is that the lecturer of #1 spoke more fluently and
the number of erroneous utterances were smaller, when
compared with the lecturer of #2, This tendency was
partially observable in the column “# of Fillers in lec-
ture” of Table 1, Additionally, the acoustic model was
not adapted to the leclurer of #2, because the sound qual-
ity of the speech data for lecture #2 was not good enough
to perform acoustic model adaptation.

By comparing the results of ASR with/without LA
in Table 2, recall, precision, and F-measure increased by
adapting language models to the topic of lecture #2, irre-
spective of the number of passages retrieved, This sug-
gests Lhat our language model adapiation method was
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effective to improve the retrieval accuracy.

For lecture #1, the relrieval accuracy did not differ
whether or not we adapted the language model to the
topic. One possible rationale is that WER of lecture #1
without language model adaptation (20.9%) was small
enough to oblain the retrieval accuracy comparable with
text retrieval [7]. In fact, the difference between HUM
and ASR was marginal in terms of the retrieval accuracy.
The effect of the language model adaptation method was
overshadowed in passage retrieval.

Surprisingly, for lecture #2, recall, precision, and F-
measure of ASR with LA were better than those of HUM
except for the case of N = 3. In other words, the au-
tomatic transcription was more effective than the human
transcription for passage retrieval purposes.

One possible rationale is related to Japanese variants
(i.e., more than one spelling form corresponding to the
same word), such as “girishalgirishia (Greece),” Since
the language model was adapted by means of the text-
book corresponding to a target lecture, the spelling in
automatic transcriptions systematically resembled one
in queries extracted from textbooks. In contrast, it is dif-
ficult to standardize the spelling in human transcriptions.
Thus, relevant passages in automatic transcriptions were
retrieved more likely than those in human transeriptions,

For all cases, recall was better than precision. This
is atiributed to our retrieval method. Since passages
(one or more sentences) obtained by the initial phase
were grouped into a single passage based on the tem-
poral axis, irrelevant sentences were often contained in
the retrieval resulls.

The retrieval accuracy for lecture #1 was generally
higher than those for lecture #2, While the story of lec-
ture #1 was organized based primarily on the textbook,
the story of lecture #2 was relatively independent of the
contents in the textbook. This suggests that the perfor-
mance of LODEM is dependent of the organization of
target lectures.

At the same time, since our test collection includes
only two lectures, experiments using larger test collec-
tions in various topics should be further explored,

Table 2. Experimental results for speech
recognition and passage retrieval,

1D #i #2
ASR ASR
HUM wholA wILA~ HUM whLA w/LA
ooV — 0444 0203 — 0729 0821
PP — 4891 4327 — 1221 96.69
WER — 2088 1335 — S16t 4232

6947 263 7316 4404 2584 5506
5344 5416 5187 3TH4 3194 3858
6041 6244 6070 4103 2857 4537
8474 8579 B3l6  .6629 L3596 6742
4411 4478 A5B0 L3010 2105 3141
3802 JSB84 5007 4140 2656 4286
8789 8084 8737 7640 4382 7079
A103 4054 4010 2688 1625 2520
5593 5528 497 3977 2371 37
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4 Related Work

Spoken document retrieval (SDR), in which textual
queries are used to search speech archives for relevant
information, is primarily related to our research. Ini-
tialed partially by the TREC-6 SDR track [2], various
SDR methods targeting broadcast news have been pro-
posed [5, 6, 9]. State-of-the-art SDR methods, with
WER being approximately 20%, are comparable with
text retrieval methods in performance [7], and thus are
already practical.

However, as shown in Table 2 (lecture #2), the speech
recognition accuracy for lectures was not necessarily
high when compared with broadcast news, While the
TREC conference concluded that SDR in English was a
solved problem, SDR for lectures remains unsclved and
should be further explored, specifically for languages
other than English.

Sheridan et al. {9] evalualed cross-language speech
retrieval, in which French queries (manually produced
based on German newspaper articles) were used to re-
trieve German news speech data. Informedia [3] re-
trieves video passages of TV news programs in response
to textual queries. In the above two cases, users have
to type the entire queries. However, in our case, users
can utilize paragraphs in the textbook associatcd with a
lecture, to formulate queries in foreign lanpuages. We
also use a number of adaptation methods to improve the
guality of speech recognition,

Qur research is also related to speech summariza-
tion [4], because a specific number of passages ex-
tracted from the entire speech data are organized so thal
users can understand important contents with a mini-
mal cost, However, unlike existing methods targeting
generic summaries, our method can be classified as a
query-biased (user-focused) speech swmmarization, in
which different summaries are generated depending on
the user information nced,

Finally, our research is crucial for e-cducation pur-
poses, in which educational contents, such as leclure
video/audio data are provided in real-time over com-
puter networks. For example, in the WIDE Universily,
Schonl of Interneté, lecture video data manually asso-
ciated (synchronized) with presentation slides are avail-
able to the public over the Web, Our method is expected
to reduce a cost required for manual annotation.

5 Coaclusion

We propesed a mullilingual lecture-on-demand sys-
tem, in which users can view foreign video segments
by submitting textual queries in their native language.
To formulate effective foreign queries, users can utilize
the textbook corresponding to a target lecture, machine
translated into the user language. For the purpose of in-
dexing video data, we used speech recognition, which
were adapled Lo a target lecture in terms of acoustic and
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fanguage models, to transeribe lecture speech infonna-
tion and to produce a textual index.

We evaluated the performance of our system by
means of experiments, for which two TV lecture pro-
grams were used. The accuracy of speech recognition
varied depending on the domain and presentation style
of lectures. However, the accuracy of speech recogni-
tion and passage retrieval was improved by adapting lan-
guage models (o the topic of a target lecture. Even if the
word error rate was approximately 40%, the accuracy of
retrieval was comparable with that obtained by human
transcriptions,

Future work will include improvement of each com-
ponent in our system and exlensive experiments using
larger test collections related to various domains.
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Abstract

Speech recognition has of late become a practical technology
for real world applications. For the purpose of rescarch and
development in speech-driven retrieval, which facilitates re-
trieving information with spoken queries, we organized the
speech-driven retrieval subtask in the NTCIR-3 Web retrieval
task. Search topics for the Web retrieval main task were dic-
tated by ten speakers and were recorded as collections of spo-
ken queries. We used those queries to evaluate the perfor-
mance of our speech-driven retrieval system, in which speech
recognition and text retrieval modules were integrated. The
texi retrieval module, which is based on a probabilistic model,
indexed only textuat contents in documnents (Web pages}), but
did not use HTML tags and hyperlink information in docu-
ments, Experimental results showed that a) the use of target
documents for language modeling and b) enhancement of the
vocabulary size in speech recognition were effective to im-
prove the system performance.

Introduction

Automatic speech recognition, which decodes human voice
to generate transceiptions, has of late become a practical
technology. It is feasible that speech recognition is used in
real world computer-based applications, specifically, those
associated with human language. In fact, a number of
speech-based methods have been explored in the informa-
tion retricval (IR) community, which can be classified into
the following two fundamental categories:

o spoken document retrieval, in which written queries
are used to search speech (e.g,, broadcast news audio)
archives for relevant speech information {Johnson et
al.  1999; Jones et al. 1996; Sheridan, Wechsler, &
Schiiuble 1997; Singhal & Pereira 1999; Srinivasan &
Petkovic 2000; Wechsler, Munteanu, & Schiiuble 1998;
Whittaker et al, 1999),

s speech-driven retrieval, in which spoken queries are used
to retrieve relevant textual information (Bamett ef al.
1997, Crestani 2000; Fujii, Itow, & Tshikawa 2002a;
2002b; Itou, Fujii, & Ishikawa 2001; Kupiec, Kimber, &
Balasubramanian 1994).

Copyright @ 2003, American Association for Antificial Intelli-
gence (www.aaai.org). All rights reserved,

Tnitiated partially by the TREC-6 spoken document retrieval
(SDR} track (Garofolo ef al. 1997), various methods have
been proposed for spoken document retrieval, However,
a relatively smali number of methods have been explored
for speech-driven text retrieval, although they are associated
with numerous keyboard-less retrieval applications, such as
telephone-based retrieval, car navigation systems, and user-
friendly interfaces.

Barnett et al. (1997) performed comparative experiments
related to speech-driven retrieval, in which the DRAGON
speech recognition system was used as an input interface
for the INQUERY text retrieval system. They used as test
inputs 35 queries collected from the TREC topics and dic-
tated by a single male speaker. Crestani (2000) also used the
above 35 queries and showed that conventional relevance
feedback techniques marginally improved the accuracy of
speech-driven text retrieval.

These above cases focused solely on improving text re-
trieval methods and did not address problems in improv-
ing speech recognition accuracy. In fact, an existing speech
recognition system was used with no enhancement, In other
words, speech recognition and text retrieval modules were
fundamentally independent and were simply connected by
means of an input/output protocol.

However, since most speech recognition systems are
trained based on specific domains, the accuracy of speech
recognition across domains is not satisfactory. As can
easily be predicted, in cases of Barnett et al. {1997) and
Crestani {2000), the speech recognition error rate was rel-
atively high and decreased the retrieval accuracy. Addition-
ally, speech recoguition with a high accuracy is important
for interactive retrieval, such as dialog-based retrieval.

Kupiec et al. (1994) proposed a method based on word
recognition, which accepts only a stall number of key-
words, derives multiple transcription hypotheses (i.e., possi-
ble word combinations), and uses a target collection to deter-
mine the most plausible word combination. In other words,
word combinations that frequently appear in the target col-
lection can be recognized with a high accuracy, However,
for longer queries, such as phrases and sentences, the num-
ber of hypotheses increases, and thus the searching cost is
prohibitive. Thus, their method cannot easily be used for
confinyous speech recognition methods,



Motivated by these problems, we integrated continu-
ous speech recognition and text retrieval to imnprove both
recognition and retrieval accuracy in speech-driven text re-
trieval (Fujii, Itou, & Ishikawa 2002a; 2002b; Iton, Fujii,
& Ishikawa 2001). In brief, our method used target doc-
uments to adapt language models and to recognize out-of-
vocabulary words for speech recognition. However, a num-
ber of issues still remain open questions before speech-
driven retrieval can be used as a practical (real-world) ap-
plication. For example, extensive experiments using large
test collections have not been performed for speech-driven
retrieval. This stimulated us to further explore this exciting
research area.

In the NTCIR-3 Web retrieval task!, the main task
was organized to promote conventional text-based re-
trieval (Eguchi er ol 2002). Additionally, optional subtasks
were also invited, in which a group of researchers voluntar-
ily organized a subtask to promole their common research
area. To make use of this opportunity, we organized the
“speech-driven retrieval” subtask, and produced a reusable
test collection for experiments of Web retrieval driven by
spoken queries. Since we also participated in the main task,
we performed comparative experiments to evaluate the per-
. formance of text-based and speech-driven retrieval systems,

Test Collection for Speech-Driven Retrieval
Overview

The purpose of the speech-driven retrieval subtask was to
produce reusable test collections and tools availabie to the
public, so that researchers in the information retrieval and
speech processing communities can develop technologies
and share the scientific knowledge inherent in speech-driven
information retrieval.

In principle, as with conventional IR test collections, test
collections for speech-driven retrieval are required to in-
clude test queries, target documents, and relevance assess-
ment for each query. However, unlike conventional text-
based IR, queries are speech data uttered by human speakers.

In practice, since producing the entire collection is pro-
hibitive, we produced speech data related to the Web re-
trieval main task. Therefore, target documents and relevance
asgessment in the main task can be used for the purpose of
speech-driven retrieval, It should be noted that in the main
task, retrieval results driven by spoken queries were not used
for pooling, which is a methed to reduce the number of rel-
evant document candidates by using retrieval results of mul-
tiple IR systems {Voorhees 1998).

However, participants for the NTCIR workshop are
mainly researchers in the infermation retrieval and natural
language processing communities, and are not necessarily
experts in developing and operating speech recognition sys-
tems. Thus, we also produced dictionaries and language
models that can be used with an existing speech recogni-
tion engine (decoder), which helps researchers to perform
similar experiments described in this paper.

All abave data are included in the NTCIR-3 Web retrieval
test collection, which is available to the public.

"htup:/ivesearch.nit.ac.jp/nteir/index-en.himl

Spoken Queries

For the NTCIR-3 Web retrieval main task, 105 search topics
were manuatly produced, for each of which relevance as-
sessment was manually performed with respect to two dif-
ferent document sets, i.e., 10GB and 100GB collections.
The 10GB and {00GB collections transiate approximately
to 1M and 10M documents, respectively.

Each topic is in SGML-style form and consists of the
topic ID (<NUMs>), title of the topic (<TITLE>), descrip-
tion (¢<DESC>), narrative {(<N¥ARR>), list of synonyms re-
lated to the topic (<CONC>), sample of relevant documents
(<RDOC>), and brief profile of the user who produced the
topic («USER ).

Figure 1 depicts a translation of an example topic. Al-
though Japanese topics were used in the main task, English
translations are also included in the Web retrieval collection
mainly for publication purposes,

<TOPIC>

<NUM=0010</NUM=>

<TITLLE CASE="b"=Aurora, conditiona, ob-
gervation</TITLE >

<DESC»>For observation purpeses, I want
to know the conditions that give rise to
an aurora</DESC>

<NARR><BACK>I wankt to observe an aurora
80 I want to know the conditions neces-
sary for its occurrence and the mecha-
nism behind it.</BACKs><RELE>Aurora oh-
servation records, etc. list the place
and time so0 only documents that pro-
vide additional information such as the
weather and temperature at the time of
occurrence are relevant. </RELE></NARR>
<CONCs>hurora, occurrence, conditions,
obgexrvation, mechanism</CONCs
<RDOC>NW003201843, NWO001129327,
NW0O02699585</RDOCS

<USER>18t year Master's student, female,
2.5 years search experience</USER>
</TOPIC>

Figure 1: An example topic in the Web retrieval collection.

Participants for the main task were allowed to submit
more than one retrieval resultusing one or more fields, Hoiv-
ever, participants were required to submit results obtained
with the title and description fields independently, Titles
are a list of keywords, and descriptions are phrases and sen-
tences.

From the viewpeint of speech recognition, titles and de-
scriptions can be used to evaluate word and coutinvous
recognition methods, respectively. Since the state-of-the-
art speech recognition is based on a continuous recogni-
tion framework, we used only the description field. For
the first speech-driven retrieval subtask, we focused on dic-
tated (read) speech, although our ultimate goal is to recog-
nize spanianeous speech, We asked ten speakers (five adult
males/females) to dictate descriptions in the 103 topics.



The ten speakers also dictated 50 sentences in the ATR
phonetic-balanced sentence set as reference data, which can
potentially be used for speaker adaptation (however, we did
not use this additional data for the purpose of experiments
described in this paper).

These above spoken queries and sentences were recorded
with the same close-talk microphone in a noiseless office.
Speech waves were digitized at a |6KHz sampling fre-
quency and were quantized at 16 bits. The resultant data
are in the RIFF format,

Language Models

Unlike generai-purpose speech recognition, in speech-
driven text retrieval, users usually speak contents associated
with a target collection, from which documents relevant to
user needs are retrieved.

In a stochastic speech recognition framework, the ac-
curacy depends primarily on acoustic and language mod-
els (Bahl, Jelinek, & Mercer 1983). While acoustic models
are related to phonetic properties, language models, which
represent linguistic contents to be spoken, are related to tar-
get collections. Thus, it is intuitively feasible that language
models have to be produced based on target collections. To
sum up, our belief is that by adapting a language model to a
target IR collection, we can improve the speech recognition
accuracy and consequently the retrieval accuracy.

Motivated by this background, we used target documents
for the main task to produce language models. For this pur-
pose, we used only the 100GB collection, because the 10GB
collection is a subset of the 100GB collection.

State-of-the-art speech recognition systems still have to
limit the vocabulary size (i.e., the number of words in a dic-
tionary), due to problems in estimating statistical language
models (Young 1996) and constraints associated with hard-
ware, such as memory, In addition, computation time is
crucial for a real-time usage, including speech-driven re-
trieval. Consequently, for many languages the vocabulary
size is limited to a couple of ten thousands (Itou ef al. 1999;
Paul & Baker 1992; Steeneken & van Leeuwen 1995),

We produced two language models of different vocab-
ulary sizes, for which 20,000 and 60,000 high frequency
words were independently used to produce word-based tri-
gram models, so that researchers can investigate the relation
between the vocabulary size and system performance, We
shall call these models “Web20K" and “WebG0K", respec-
tively. We used the ChaSen morphological analyzer? to ex-
tract words from the 100GB collection.

To resolve the data sparseness problem, we used a back-
off smoothing methed, in which the Witten-Bell discounting
methed was used to compute back-off coeflicients. 1n ad-
dition, through preliminary experiments, cut-off thresholds
were empirically set 20 and 10 for the Web20K and Web60K.
models, respectively. Trigrams whose frequency was above
the threshold were used for language modeling. Language
models and dictionaries are in the ARPA and HTK formats,
respectively.

hitp://chasen.aist-nara.ac,jp/

Table 1 shows statistics related to word tokens/types in
the 160GB collection and ten years of “Mainichi Shimbun”
newspaper articles in 1991-2000. We shall use the term
“word token” to refer to occurrences of words, and the term
“word type” to refer to vocabulary items. Roughly, the size
of the 100G collection (*“Web™) is ten times that of ten years
of newspaper articles (“News™), which was one of the largest
Japanese corpora available for the purpose of research and
development in language modeling. In other words, the Web
is a vital, as yet untapped, corpus for language modeling.

Table 1: The number of words in source corpora for lan-
guage modeling.

Web (100GB)  News (10 years)

# of Word types 2.5TM 0,32M
# of Word tokens 2.44G 0.26G
System Description
Overview

Figure 2 depicts the overall design of our speech-driven text
retrieval system, which consists of speech recognition and
text retrieval modules.

In the off-line process, a target IR collection is used to
produce a language model, so that user speech related to the
collection can be recognized with a high accuracy, However,
an acoustic model was produced independent of the target
collection.

In the on-line process, given an information need spoken
by a user (i.e., 2 spoken query), the speech recognition mod-
ule uses acoustic and language models to generate a tran-
scription of the user speech. Then, the text retrieval mod-
ule searches the target IR collection for documents relevant
to the transcription, and outputs a specific number of top-
ranked documents according to the degree of relevance in
descending order. In the following two sections, we explain
speech recognition and fext retrieval modules, respectively.

<
Acoustic
mode!
Speech recognition
Language
! madel

ransc@

[ Text retrieval Targer IR,
collection

CRetrieved ducumenED

Figure 2: The overview of our speech-driven text retrieval
system.



Speech Recognition

The speech recognition module generates word sequence
W, given phone sequence X. In a stochastic speech recog-
nition framework (Bahl, Jelinek, & Mercer 1983), the task is
to select the W maximizing P(W|X), which is transformed
as in Equation (1) through the Bayesian theorem.

arg n{gxP(W|X) = argxquP(XlW) CP(WY (D)

Here, P(X|W) models a probability that word sequence 1/
is transformed into phone sequence X, and P(W) models a
probability that IV is linguistically acceptable. These factors
are called acoustic and language models, respectively,

We used the Japanese dictation toolkit (Kawahara ef

al. 2000%, which includes the Julius decoder and acous--

tic/language models. Julius performs a two-pass {forward-
backward) search using word-based forward bigrams and
backward trigrams.

The acoustic model was produced from the ASJ spesch
database (Itou ef af. 1998), which contains approximately
20,000 sentences uttered by 132 speakers including the both
gender groups. A 16-mixture Gaussian distribution triphone
Hidden Markov Model, in which states are clustered into
2,000 groups by a state-tying method, is used. The lan-
guage model is a word-based trigram model produced from
60,000 high frequency words in ten years of Mainichi Shim-
bun newspaper articles,

This toolkit also includes development softwares so that
acoustic and language models can be produced and replaced
depending on the application. While we used the acoustic
model provided in the toolkit, we used new language models
produced from the 100GB collections, that is, the Web20K
and Web60K models.

Text Retrieval

The retrieval module is based on an existing retrieval
method (Robertson & Walker 1994), which computes the
relevance score between the transcribed query and each doc-
ument in the collection. The relevance score for document ¢
is computed by Equation (2).

Zf; . (-I('l']-)‘ft.d llogN—ni'l'O.El

"

; K- {(1-8)+ .Z”vg }o+ fea ne + 05
2

Here, fi,4 and f; o denote the frequency that term £ appears
in query ¢ and document d, respectively. N and n; denote
the total number of documents in the collection and the num-
ber of documents containing term £, respectively, dly de-
notes the length of decument d, and avgdl denotes the av-
erage length of documents in the collection. We empirically
set I = 2.0 and b = 0.8, respectively.

Given transcriptions {i.e., speech recognition results for
spoken queries), the retrieval module searches a target IR
collection for relevant documents and sorts them according
to the score in descending ordet.

We used content words, such as nouns, extracted from
documents as index terms, and performed word-based in-
dexing. We used the ChaSen morphological analyzer to

*http://winnic.kuis. kyoto-u.ac jp/dictation/

extract content words. We also extracted terms frem tran-
scribed queries using the same method. We used words and
bi-words (i.e., word-based bigrams) as index terms.

We used the same retrieval module to participate in other
text retrieval workshaps, such as NTCIR-2. However, the
10GB/100GB Web collections were different from existing
Japanese test collections in the following two perspectives.

First, the Web collections are much larger than existing
test collections, For example, the file size of the NTCIR-2
Japanese collection including 736,166 technical abstracts is
approximately 900MB (N1 2001). Thus, tricks were needed
to index larger document collections. Specifically, files of
more than 2GB size were problematic for file systems and
tools in existing operating systems.

To resolve this problem, we divided the 100GB collection
into 20 smaller sub-collections so that each file size did nat
exceed 2GB, and indexed the 20 files independently. Given
queries, we retrieved documents using the 20 indexes and
sorted docuinents according to the relevance score, The rel-
evance score of a document was computed with respect to
the sub-collection from which the document was retrieved.

Second, target documents are Web pages, in which
HTML (Hyper Text Markup Language) tags provide the tex-
tual information with a certain structure, However, the use
of HTML tags are usually different depending on the author.
Thus, we discarded HTML tags in documents, and indexed
only textual contents. Additionally, we did not use hyperlink
information among Web pages for retrieval purposes.

Experimentation
Evaluating Text-to-Text Retrieval

In the Web retrieval main task, different types of text re-
trieval were performed. The first type was “Topic Retrieval”
resembling the TREC ad hoc retrieval. The second type
was *Similarity Retrieval,” in which documents were used
as queries instead of keywords and phrases, The third type
was “Target Retrieval,” in which systems with a high pre-
cision were highly valued. This feature provided a salient
contrast to the first two retrieval types, in which both reeali
and precision were equally used as evaluation measures.

Although the produced spoken queries can be used for
the first and third task types, we focused solely on the Topic
Retrieval for the sake of simplicity, In addition, our pre-
vious experiments (Fujii, Iton, & Ishikawa 2002a; 2002b;
Ttou, Fujii, & Ishikawa 2001), in which the IREX® and NT-
CIR’ collections were used, were also a type of Target Re-
trieval. We used the 47 topics for the Topic Retrieval task
to retrieve 1,000 top documents, and used the TREC eval-
uation software lo caleulate mean average precision (MAP)
values (i.e., non-interpofated average precision values, aver-
aged over the 47 topics).

Relevance assessment was performed based on four ranks
of relevance, that is, highly relevant, relevant, pactially rel-
evant and irrelevant. In addition, unlike conventional re-
trieval tasks, documents hyperlinked from retrieved docu-
ments were optionally used for relevance assessment. To

http:/fes.myu.edufes/prajects/proteus/irex/index-e. html
Shtip:/research.nii.ac.jp/mtcir/index-en.html



sum up, the following four assessment types were available
to calculate the MAP values:

» (highly) relevant documents were regarded as correct an-
swers, and hyperlink information was NOT used (RC),

o (highly) relevant documents were regarded as correct an-
swers, and hyperlink information was used (RL),

o partially relevant documents were also regarded as correct
answers, and hyperlink information was NOT used (PC),

o partially relevant documents were also regarded as correct
answers, and hyperlink information was used (PL).

In the formal run for the main task, we submitted results
obtained with different methods for the 10GB and 100GB
collections, respectively. First, we used title (<TITLE>)
and description (<DESC>) fields independently as queries.
Second, we used as index terms either only words or a com-
bination of words and bi-words. As a result, we investigated
the MAP values for 32 cases as shown in Table 2.

By loaking at Tabte 2, there was no significant difference
among the four methods in performance. However, by com-
paring two indexing methods, the use of both words and bi-
words generally improved the MAP values of that obtained
with only words, irrespective of the collection size, topic
field used, and relevance assessment type.

Evaluating Speech-Driveh Retrieval

The purpose of experiments for speech-driven retrieval was
two-fold. First, we investigated the extent to which a lan-
guage model produced based on a target document collec-
tion centributes to improve the performance. Second, we
investigated the impact of the vocabulary size for speech
recognition to speech-driven retrieval. Thus, we compared
the performance of the following four retrieval methods:

e text-to-text retrieval, which used written queries, and
can be seen as the perfect speech-driven text refrieval
("Tex{“),

o speech-driven text retrieval, in which the Web60K model
was used (“Web60K™),

s speech-driven text retrieval, in which a language model
produced from 60,000 high frequency words in ten
years of Mainichi Shimbun newspaper articles was used
("News60K™),

o speech-driven text retrieval, in which the Web20K. model
was used (“Web20K™).

For text-to-text retrieval, we used descriptions (<DESCs) as
queries, because the spoken queries used for speech-driven
retrieval methods were descriptions dictated by speakers, In
addition, we used both bi-words and words for indexing, be-
cause the experimental results in Table 2 showed that the use
of bi-words for indexing improved the performance of that
obtained with only words.

For speech-driven text retrieval methods, queries dictated
by the ten speakers were used independently, and the fi-
nal result was obtained by averaging results for all speak-
ers. Although the Julivs decoder used in the speech recogni-
tion module generated more than one transcription candidate

{hypothesis) for a single speech, we used only the one with
the greatest probability score.

All language models were produced by means of the same
softwares, but were different in terms of the vocabulary size
and source documents.

Table 3 shows the MAP values with respect to the four rel-
evance assessment types and the word error rate in speech
recognition, for different retrieval methods targeting the
10GB and 100GB collections.

As with existing experiments for speech recognition,
word error rate {(WER) is the ratio between the number of
word errors (i.e., deletion, insertion, and substitution) and
the total number of words. In addition, we investigated error
rate with respect to query terms (i.e., keywords used for re-
trieval), which we shall call term error rate (TER). It should
be noted that unlike MAP, smaller values of WER and TER
are obtained with better methods.

Table 3 also shows test-set out-of-vocabulary rate (O0OV),
which is the ratio between the number of words not included
in the speech recognition dictionary and the total number of
words in spoken queries. [n addition, the column of “Time"
denotes CPU time (sec.) required for speech recognition per
query, for which we used a PC with two CPUs (AMD Athlon
MP 1900+) and a memory size of 3GB.

Suggestions which can be derived from the results in Ta-
ble 3 are as follows.

Looking at columns of WER and TER, News60K and
Web20K were comparable in the speech recognition per-
formance, but Web60K outperformed both cases. However,
difference of News60K and Web20K in OOV did not affect
WER and TER. In addition, TER was greater than WER, be-
cause in computing TER, functional words, which are gen-
erally recognized with a high accuracy, were excluded.

While the MAP values of News60K and Web20K were
also comparable, the MAP values of Web60K, which were
roughly 60-70% of those obtained with Text, were greater
than those for News60K and Web20K, irrespective of the
relevance assessment type. These results were observable
for both the 10GB and 100GB collections.

The only difference between News60K and Web60K. was
the source corpus for language modeling in speech recog-
nition, and therefore we can conclude that the use of target
collections to produce a language model was effective for
speech-driven retrieval. In addition, by comparing the MAP
values of Web20K and Web60K, we can conclude that the
vocabulary size for speech recognition was also influential
for the performance of speech-driven retrieval.

CPU time for speech recognition did not significantly dif-
fer depending on the language model, despite the fact that
the number of words and N-gram tuples in Web60K was
larger than those in News60K and Web20K. In other words,
Web60K did not decrease the time efficiency of News60K
and Web20K, which is crucial for read-world usage. At
the same time, response time also depends on various fac-
tors, such as the hardware and decoder program used, we do
not pretend to draw any premature conclusions regarding the
time efficiency.

We analyzed speech recognition errors, focusing mainly
on those attributed to the out-of-vocabulary problem, Ta-



Table 2: MAP values for different texi-to-text retrieval methods targeting the 10GB and 100GB collections.

MAP (10GB) MAP (100GB}

Fietd Index RC HL PC PL. RC RL PC PI.
<DESC> word & bi-word 1470 1286 1612 1476 0855 0982 1257 .1274
<DESC> word 389 1187 1563 1374 0843 0928 1184 1200
<TITLE> word & bi-word 1493 1227 .1523 1407 0815 .0981 .1346 .I1358
<TITLE> word 1402 1150 1437 (1323 0808 0938  .1280 (1299

Table 3: Experimental results for different retrieval methods targeting the 10GB and 100GB collections (QOV: test-set out-of-
vocabulary rate, WER: word error rate, TER: term error rate, MAP: mean average precision).

MAP (10GB) MADP (100GB)
Method OOV WER TER Time(sec) RC RL PC PL _C RL PC PL
“Text — —_— — —_— 1470 1286 1612 1476 0855 0982 1257 1294
Web60K 0073 1311 2162 7.2 0965 0916 0973 1013 0542 0628 0766 0309
News60K. 0157 1806 2991 7.0 070t 0681 0790 0779 .0341 0404 0503 0335
Web20K 0423 1642 2757 6.7 0616 0628 0571 0653 0315 0378 0456 0485

ble 4 shows the ratio of the number of cut-of-vocabulary
words to the total number of misrecognized words {or terms)
in transcriptions. However, it should be noted that the actual
ratio of errors due to the OOV problem can potentially be
higher than those figures, because non-Q0V words collo-
cating with OOV words are often misrecognized, Remain-
ing reasons of speech recognition errors are associated with
insufficient N-gram statistics and the acoustic model.

Table 4: The ratio of the tumber of OOV words/terms to the
total number of misrecognized words/terms,

Word  Term
Web60K 0704 1838
News60K 0966 2143
Web20K 2855 5049

As can be predicted, the ratio of OOV words (terms)
in Web20K. was much higher than those in Web60K and
News60K. However, by comparing News60K and Web20K,
WER and TER of News60K in Table 3 were higher than
those of Web20K, This suggests that insufficient N-gram
statistics were more problematic in News60K, when com-
pared with Web20K,

Although we used only the top-ranked transeription hy-
potheses as queties, certain words can potentially be cor-
rectly transcribed in lower-ranked hypotheses. Thus, to in-
vestigate the effect of multiple hypotheses, we varied the
number of hypotheses used as queries and evalvated its ef-
fect on the MAP value, Table 5 shows the result, in which we
used the WebG60K model for speech recognition and targeted
the 100G collection. In the case of H = 1, the MAP values
are the same as those in Table 3. According to this table, the
MAP values marginally decreased when we increased the
number of hypotheses used as queries, irrespective of the
relgvance assessment type.

Table 5: MAP values of the Web60K speech-driven retrieval
method with different numbers of hypotheses (H), targeting
the 100G collection.

RC RL PrC PL

H=1 .0542 .0628 .0Vee .08%09

H=3 .0527 0608 .0755 .0794

H=5 .0520 0609 .0754 .07%4
Conclusion

In the NTCIR-3 Web retrieval task, we organized the speech-
driven retrieval subtask and produced 105 spoken queries
dictated by ten speakers. We also produced word-based tri-
gram language models using approximately 10M documents
in the 100GE collection used for the main task. We used
those queries and language models to evaluate the perfor-
mance of our speech-driven retrieval system. Experimental
results showed that a) the use of target documents for lan-
guage modeling and b) enhancement of the vocabutary size
in speech recognition were effective to improve the system
performance. As with the collection for the main task, all
speech data and language models produced for this subtask
are available to the public. Future work will include experi-
ments using spontaneous spoken queries.
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Abstract

We propose a lecture-on-demand system, which searches lec-
ture videos for segments relevant to user information needs.
We atilize the bencfits of textbooks and audio/video data cor-
responding to a single lecture. Our systemn extracts the au-
dio track from a target lecture video, generates a transcrip-
tion by large vocabulary continuous speech recognition, and
produces a textual index, Users can selectively view spe-
cific video segments by submitting textual queries associ-
ated with the textbook for the target lecture. Experimental
results showed that by adapting speech recognition to the lec-
ture topic, the recognition accuracy increased and the retrieval
accuracy was comparable with that obtained by human tran-
scriptions. Our system is implemented as & client-server sys-
lem over the Web to facilitate e-education.

Introduction

Given the growing number of multimedia contents available
via the World Wide Web, CD-ROMSs, and DVDs, informa-
tion technologies across speech, image, and text processing
have of late become crucial. Among various types of con-
tents, lectures (audio/video) are very typleal and valuable
multimedia contents, in which speeches (i.e., oral presenta-
tions) are usually organized based on textual materials, such
as resumes, slides, and textbooks. In lecture videos, image
information, such as flip charts, is often additionally used.
In other words, a single lecture consists of different types of
compatible multimedia contents.

However, since a single lecture often includes multiple
stories and takes long time, it is useful to selectively ob-
tain specific segments (passages) so that audience can sat-
isfy their information needs with a minimal cost. To re-
solve this problem, in this paper we propose a lecture-on-
demand system, which retrieves relevant video/audio pas-
sages in response to user queries, For this purpose, we uhi-
fize the benefits of different media types to improve retrieval
performance,

On the one hand, textual contents are advantageous in the
sense that users can view/scan the entire contents quickly
and easily identify relevant passages using layout informa-
tion (e.g., text structures based on sections and paragraphs).

Copyright © 2003, American Association for Antificial Intelli-
gence (www.aaai.org). All rights reserved,

In other words, textual contents can be used for random-
Access purposes,

On the other hand, speech contents are fundamentally
used for sequential-access purposes. Thus, it is difficult to
identify relevant passages unless target video/audio data in-
clude additional annotations, such as indexes. Even if target
data are indexed, users are not necessarily able to come up
with effective queries. To resolve this problem, textbooks
are desirable materials, from which users can extract effec-
tive keywords and phrases.

However, while textbooks are usually concise, speeches
are relatively redundant and thus are easy to understand
more than textbooks, specifically in the case where addi-
tional image information is provided.

In view of the above discussion, we model our lecture-on-
demand (LOD) system as follows. A user selects text seg-
ments (i.e, keywords, phrases, sentences, and paragraphs)
refevant to their information needs, from a texibook for a
target lecture. By using selected segments, a textual query
is automatically generated. In other words, queries can be
formulated even if users cannot come up with effective key-
words and phrases. Users can also submit additional key-
words as queries, if necessary. Video passages relevant to a
given query are retrieved and presented to the user.

To retrieve video passages in response to textual queries,
we extract the audio track from a lecture video, generate
a transcription by means of large vocabulary continuous
speech recognition, and produce a textual index, prior to the
system usage.

Our on-demand systern should not be confused with
video-on-demand (VOD) systems, which search video
archives for specific videos in response lo user requests.
While in VOD systems, minimal unit for retrieval is the
entire program, in our system, retrieval units are passages
smaller than the entire program.

System Description
Overview

Figure | depicts the overall design of our lecture-on-demand
system, in which lefi/right-hand regions correspond to the
on-line and off-line processes, respectively. Although our
system is currently implemented for Japanese, our method-
ology is fundamentally language-independent. For the pur-



pose of research and development, we tentatively target lec-
ture programs on TV for which textbooks are published. We
explain the basis of our system using this figure.

In the off-line process, given the video data of a target lec-
ture, audio data are extracted and segmented into more than
one passage. Then, speech recognition transcribes each pas-
sage. Finally, transcribed passages are indexed as performed
in conventional text retrieval systems, so that each passage
can be retrieved efficiently in response to textual queries.

To adapt speech recognition to a specific lecturer, we per-
form unsupervised speaker adaptation using an initial speech
recognition result (i.e,, a transcription).

To adapt speech recognition to a specific topic, we per-
form language model adaptation, for which we search a gen-
eral corpus for documents relevant to the textbook related to
a target lecture. Then, retrieved documents (i.e., a topic-
specific corpus) are used to produce a word-based N-gram
language model,

We also perform image analysis to extract textual contents
{e.g., keywords and phrases) in flip charts. These contents
are alse used later to improve our language model.

In the on-line process, 2 user can view specific video
passages by submitting any textual queries, i.e., keywords,
phrases, sentences, and paragraphs, extracted from the text-
book. Any queries not in the textbook can also additionally
be used. The current implementation is based on a client-
server system over the Web, While both the off-line and
on-line processes are performed on servers, users can utilize
our system with Web browsers on their own PCs.

Figure 2 depicts a prototype interface of our L.OD system,
in which a lecture associated with “nonlinear multivariate
analysis™ is given. In this interface, an electronic version of
a textbook is displayed in the left-hand side, and a lecture
video is played in the right-hand side. In addition, users can
submit any textual queres to the box in the bottom of the
interface. The operation is similar to that for existing Web
search engines.

In Figure 3, a text paragraph related to “discriminant anal-
ysis" is copied and pasted into the query input box. 1t should
be noted that unlike conventional keyword-based retrieval
systerns, in which users usually submit a small number of
keywords, in our system uvsers can easily submit longer
queries using textbooks. In the case where submitted key-
words are misrecognized in transeriptions, the retrieval ac-
curacy decreases. However, longer queries are relatively ro-
bust for speech recognition ertors, becavse the effect of mis-
recognized words are overshadowed by a large number of
words correctly recognized.

Figure 4 depicts retrieval results, in which top-ranked
transcribed passages for the query in Figure 3 are listed ac-
cording to the degree of relevance, Users can select (click)
transcriptions to play the corresponding video passage. We
explain each module in the following three sections.

Passage Segmentation

The basis of passage segmentation is to divide the entire
video data for a single lecture into more than one minimal
unit to be retrieved. We shali call those units passages.

For this purpose, both speech and image data can be
promising clues. For example, Hamada et al. (2000} per-
formed a structural analysis on cooking TV programs by
means of speech/image/text processing. However, in lecture
TV programs, it is often the case that a lecturer sitting still is
mainly focused and a small number of Rip charts are occa-
sionally used. In such cases, image data is less informative.
Thus, we tentatively use only speech data for the passage
segmentaticn process.

However, unlike the case where a target speech (e.g., 4
news progrant) consists of multiple different topics (Allan
2002; Takao, Ogata, & Atriki 2000), topic segmentation for
lectures is refatively difficult, because a single lecture con-
sists of sub-topics closely related to one another, and thus
topic boundaries are not necessarily clear.

Existing methods to segment written texts (e.g., one pro-
posed by Hearst (1997)) rely only on lexical information in
texts, and thus are not robust against errors in automatic tran-
scriptions. Additionally, in our LOD system, segmentation
can potentially vary depending on the user query. Thus, it
is difficult to predetermine a desirable segmentation in the
off-line process.

In view of the above problems, we first extract the au-
dio track from a target video, and perform a simple pause-
based segmentation method to obtain minimal speech units,
such as sentences and long phrases. In other words, speech
units are continuous audio segments that do not include
pauses longer than a certain threshold. Finally, we gener-
ate variable-length passages from one or more speech units.
To put it more precisely, we combine /¥ speech units into
a single passage, with ¥ ranging from 1 to 5 in the current
implementation.

Figure 5 shows an exaniple of variable-length passages, in
which any sequences of speech units that are 1-5 in length
are identified as passages.

Speech Recognition

The speech recognition module generates word sequence
W, given phone sequence X, In a stochastic speech recog-
nition framework (Bahl, Jelinek, & Mercer 1983), the task is
to select the W maximizing P{W|X ), which is transformed
as in Equation (1) through the Bayesian theorem,

arg m#xP(W|X) = arg max PXIW)-P(W} (D

P{X|W) models a probability that word sequence W is
transformed into phone sequence X, and P({W) models a
probability that W is linguistically acceptable. These fac-
tors are called acoustic and language models, respectively.

We use the Japanese dictation toolkit (Kawabhara er af,
2000)!, which includes the Julius decoder and acous-
tic/language models. Julius performs a two-pass (forward-
backward) search using word-based forward bigrams and
backward trigrams,

The acoustic model was produced from the AST speech
database (Itou ef al. 1998), which contains approximately
20,000 sentences uttered by 132 speakers including the both

'hitp:/fwinnie.kuis.kyoto-u.ac,jp/dictation/
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Figure 1: The overview of our lecture-on-demand system.

gender groups. A 16-mixture Gaussian distribution triphone
Hidden Markov Model, in which states are clustered into
2,000 groups by a state-tying method, is used. We adapt the
provided acoustic model by means of an MLLR-based unsu-
pervised speaker adaptation method (Leggetter & Woodland
1995), for which in practice we use the HTK toolkit2.

Existing methods to adapt language models can be clas-
sified into two fundamental categories. In the first cate-
gory, the integration approach, general and topic-specific
(domain-specific) corpora are integrated to produce a topic-
specific language model (Auzanne e al. 2000; Seymore &
Rosenfeld 1997). Since the sizes of those corpora are differ-
ent, N-gram statistics are calculated by the weighted aver-
age of statistics extracted independently from those corpora.
However, it is difficult to determine the optimal weight de-
pending on the topic.

In the second category, the selection approach, a topic-
specific subset is selected from a general corpus and is used
to produce a language model. This approach is effective
if general corpora contain documents associated with target
topics, but N-gram statistics in those documents are over-
shadowed by other documents in resultant language models.

We followed the selection approach, because the 10M
Web page corpus (Eguchi e o, 2002) containing mainly
Japanese pages associated with various topics was available

2tip://htk.eng.cam ac.uk/
Thttp:/iresearch.nii, ac.jp/mtcir/index-en.him!

to the public. The quality of the selection approach is de-
pendent of the method to select topic-specific subsets. An
existing method (Chen ef al. 2001) uses hypotheses in the
initiak speech recognition phase as gueries to retrieve topic-
specific documents from a general corpus. However, errors
in the initial hypotheses potentially decrease the retrieval ac-
curacy. Instead, we use textbooks related to target lectures as
queries (o improve the retrieval accuracy and consequently
the quality of language model adaptation,

Retrieval

Given transcribed passages and textual queries, the basis
of the retrieval module is the same as conventional text
retrieval. We use an existing probabilistic text retrieval
method (Robertson & Walker 1994) to compute the rel-
evance score between the query and each passage in the
database. The relevance score for passage p is computed
by Equation (2).

(K+1)- fip N—n+05
3 S dl lo 0.5
! K'{(l—b)-i-b———l’—(n_ aug Y+ frp e e U
(2)

Here, fi4 and f; 5 denote the frequency that term £ appears
in query ¢ and passage p, respectively. N and n, denote
the total number of passages in the database and the number
of passages containing term ¢, respectively. dl, denotes the
length of passage p, and avgd! denotes the average length of
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Figure 3: An example scenario, in which a paragraph in the
textbook is copied and pasted into the query input box.
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Figure 4: Example retrieved transcriptions.

passage

apeech unit

Figure 5: An example of the passage segmentation process.

passages in the database, We empirically set X = 2.0 and
b = 0.8, respectively.

It should be noted that in Equation (2), the score is nor-
malized with the length of each passage. Thus, longer pas-
sages, which potentially include more index terms, are not
necessarily assigned with a higher score. This property is
important, because variable-length passages are consider-
ably different in terms of length.

We use content words, such as nouns, extracted from tran-
scribed passages as index terms, and perform word-based
indexing. We use the ChaSen morphological analyzer* to
extract content words. We also extract terms from queries
using the same method.

However, retrieved passages are not disjoint, because top-
ranked passages often overlap with one another in terms of
the temporal axis. [t is redundant to simply list the top-
ranked retrieved passages as they are. Thus, we reorganize
those overlapped passages into a single passage. In Figure 6,
which uses the same basic notation as Figure 5, illustrates an
example scenario. In this figure, top-ranked passages are or-
ganized into three groups,

The relevance score for a group (a new passage) is com-
puted by averaging scores for all passages belonging to the
group. New passages are sorted according to the degree of
relevance and are presented to users as the final result.
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Figure 6: An example of grouping retrieved passages,

Experimentation
Methodology

To evaluate the performance of cur LOD system, we pro-
duced a test collection (a kind of benchmark data set) and
performed experiments partially resembling one petformed

*http://chasen. aist-nara.ac.jp/



in the TREC spoken document retrieval (SDR) track (Garo-
folo et al. 1997).

Two lecture programs on TV, for which printed textbooks
were also published, were videotaped in DV and were used
as target lectures. Both lectures were manually transeribed
and sentence boundaries with temporal information (i.e.,
comect speech units) were also manually identified. The
textbooks for the two target lectures were read by an OCR
software and were manually revised. The accuracy of the
OCR software was roughly 97% on a word-by-word basis.

For both lectures, each paragraph in the corresponding
textbook was used as a query independently. For each query,
a human assessor {a graduate student other than authors of

this paper) identified one or more relevant sentences in the

human transcription,

Table 1 shows details of our test collection, in which
lectures #1 and #2 were associated with the criminal law
and histories of ancient Greece, respectively. Each lecture
was 45 minutes long. In this table, we shall use the term
“word token" to refer to occurrences of words, and the term
“word type” to refer to vocabulary items. The column “# of
Fillers” denoting the number of interjections in speech par-
tially shows the fluency of each lecturer.

Table 1: Details of our test collection used for experiments,

1D #1 #2

Topic Law History
# of Word tokens in lecture 6917 8092
# of Word types in lecture 1029 1219
# of Fillers in lecture 3 953
# of Sentences in lecture 181 191
# of Queries 25 13
Avg. # of relevant sentences per query 7.6 6.8

Avg. length of queries (Avg, # of words) 154 247

By using our test collection, we evaluated the accuracy of
speech recognition and passage retrieval. It may be argued
that passage segmentation should also be evaluated. How-
ever, to evaluate the extent to which the accuracy of passage
segmentation affects the entire system performance, rele-
vance assessment for passage retrieval has to be performed
for multiple segmentations, which is expensive.

For both target lectures, our system used the sentence
boundaries in human transcriptions to identify speech units,
and performed speech recoguition. We also used human
transcriptions as perfect speech recognition results and in-
vestigated the extent to which speech recognition errors af-
fect the retrieval accuracy. Our system retrieved top-ranked
passages in response to each query, It should be noted that
passages here are those grouped based on the temporal axis,
which should not be confused with those obtained in the pas-
sage segmentation method.

For lecture #1, we adapted the acoustic model to the lec-
wurer by means of the MLLR-based method, However, for
lecture #2 we did not perform acoustic mode! adaptation, be-
cause the speech data contained constant background noise
and the sound quality was not good encugh to adapt the

acoustic model. For both lectures #1 and #2, we did not use
flip chart information obtained by means of image analysis.

Results

To evaluate the accuracy of speech recognition, we used
word error rate {WER), which is the ratio between the num-
ber of word errars (i.e., deletion, insertion, and substitu-
tion) and the total number of words. We also used test-set
out-of-vocabulary rate {OOV) and trigram test-set perplex-
ity (PP) to evaluate the extent to which our lanpuage model
was adapted to target topics.

We used humnan transcriptions as test set data. For exam-
ple, OOV is the ratio between the number of word tokens
not contained in the langwage model for speech recognition
and the total number of word tokens in the transcription. It
should be noted that stnaller vaives of GOV, PP, and WER
are obtained with better methods.

The final outputs {i.e., retrieved passages) were evaluated
based on recall and precision, averaged over all queries. Re-
call (R) is the ratio between the number of correct speech
units retrieved by our system and the total number of correct
speech units for the query in question. Precision (P) is the
ratio between the number of correct speech units retrieved
by our system and the total number of speech units retrieved
by our system. To summarize recall and precision into a sin-
gle measure, we used F-measure (F), which is calculated by
Equation (3).

(82 +1).R-P
A*-R+P

Here, A is a parametric constant used to control the prefer-
ence between tecall and precision. In our case, recall and
precision were equally important, and thus we set 4 = 1.

Table 2 shows the accuracy of speech recognition {(WER)
and passage retrieval (R, P, and F), for each lecture. In
this table, the columns “HUM" and “ASR" correspond to
the results obtained with human transcriptions and awto-
matic speech recognition, respectively. The results for ASR
are also divided inte those obtained with/without language
mode! adaptation (LA).

To adapt language models, we used the textbook cor-
responding to a target lecture and searched the 10M Web
page corpus for 2,000 relevant pages, which were used asa
source corpus. In the case where the language model adap-
tation was not performed, all 10M Web pages were used asa
soutrce corpus. In either case, 20,000 high frequency words
were selected from a source corpus to produce word-based
trigram language model. We used the ChaSen morphologi-
cal analyzer to extract words (morphemes) from source cor-
pora, beeause Japanese sentences lack texical segmentation.

In passage retrieval, we regarded the top N passages as
the final outputs. In Table 2, the value of N ranges from 1
to 3, As the value of IV increases, the recall improves, but
potentially sacrificing the precision.

&)

Discussion for Speech Recognition

By comparing the results of ASR with/without LA in Ta-
ble 2, OQV, PP, and WER decreased by adapting language



models to target topics, irrespective of the lecture. This sug-
gests that our language mode! adaptation method was effec-
tive to improve the quality of speech recognition.

The values of OOV, PP, WER for lecture #2 were gener-
ally greater than those for lecture #1. One possible rationale
is that the lecturer of #1 spoke more fluentty and the number
of erroneous utterances were smaller, when compared with
the lecturer of #2, This tendency was partially observable in
the column “# of Fillers in lecture” of Table 1. Additionally,
the acoustic model was not adapted to the lecturer of #2, be-
cause the sound quality of the speech data for lecture #2 was
not good enough to perform acoustic model adaptation,

Discussion for Passage Retrieval

By comparing the results of ASR with/without LA in Ta-
ble 2, recall, precision, and F-measure increased by adapt-
ing language models to the topic of lecture #2, irrespective
of the number of passages retrieved. This suggests that our
language model adaptation method was effective to improve
the retrieval accuracy.

For lecture #1, the retrieval accuracy did not significantly
differ whether or not we adapted the language model to the
tapic. One possible rationale js that WER of lecture #1 with-
out language model adaptation (20.9%) was small enough
to obtain the retrieval accuracy comparable with text re-
trieval (Jourlin ef af. 2000). In fact, the difference between
HUM and ASR was marginal in terms of the retrieval ac-
curacy. Thus, the effect of the language model adaptation
method was overshadowed in passage retrieval.

Surprisingly, for lecture #2, recall, precision, and F-
measure of ASR with LA were better than those of HUM
except for the case of N = 3, In other words, the automatic
transcription was more effective than the human transcrip-
tion for passage retrieval purposes.

One possible rationale is associated with Japanese vari-
ants {i.e., more than one spelling form corresponding to the
same word), such as “girisha/girishia (Greece).” Since the
language model was adapted by means of the textbook cor-
responding to a target lecture, the spelling in automatic tran-
scriptions systematically resembled one in queries extracted
from textbooks. In contrast, it is difficult to standardize the
spelling in human transcriptions, Thus, relevant passages
in automatic transcriptions were retrieved more likely than
passages in human transcriptions.

For all cases, recall was better than precision. This is at-
tributed to cur retrieval method. Since passages (one or more
sentences) obtained by the initial phase were grouped into a
single passage based on the temporal axis, irrelevant sen-
tences were often contained in the retrieval results.

The retrieval accuracy for lecture #1 was generally higher
than those for lecture #2. While the story of lecture #1 was
organized based primarily on the textbook, the story of lec-
ture #2 was relatively independent of the contents in the text-
book, This suggests that the performance of our LOD sys-
tem is dependent of the organization of target lectures.

At the same time, since our test collection includes only
two lectures, experiments using larger test collections asso-
ciated with various topics should be further explored.

Table 2; Experimental results for speech recognition (O0V:
test-set out-of-vocabulary rate, PP: trigram test-set perplex-
ity, WER: word error rate) and passage retrieval (N: # of
passages reteieved, R recall, P: precision, F: F-measure).

1D #| #2
ASR ASR
HUM w/iolLA w/LA HUM whlA w/LA
ooV — D444 0208 — 0729 0821
PP — 4891 4327 — 122.1  96.69
WER — 2088 .1335  — S161 4232

6947 7263 7316 4494 2584 5506
5344 5476 5187 3774 3194 3838
6041 6244 6070 4103 2857 4537
8474 8579 8316 .6629 3596 .6742
A4l 4478 4580 3010 2105 3141
.5802 5884 5907 4140 2656 4286
8789 8684 8737 7640 4382 7079
A103 A054 4010 2688 1625 2520
5595 528 5497 3977 2371 3717
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Related Work

Informedia (Hauptmann & Witbrock 1997) retrieves video
passages from TV news programs in response to textual
queries, for which users have to type the entire queries, This
feature is problematic in the case where users have difficulty
formulating effective queries. However, in our case, users
can utilize segments of the textbook associated with a lec-
ture as queries even if they cannot come up with effective
keywords and phrases.

Hamada et al. (2000) performed structural analysis on
cooking TV programs by means of speech/image/text pro-
cessing, in which the textbook for a program was addition-
ally used. However, while they focused mainly on analyzing
video data, we intended to retrieve video passages.

Unlike our study in this paper, in the above two cases no
quantitative experimental results were shown with respect to
the accuracy of retrieving video data. Thus, it is difficult to
compare the performance of our system with those for those
existing systems.

Spoken document retrieval (SDR), in which textual
queries are used to search speech archives for relevant in-
formation, is primarily related to our research. Initiated par-
tially by the TREC-6 SDR track (Garofolo er al. 1997),
various SDR methods targeting broadcast news have been
proposed (Johnson ef al. 1999; Jones et al. 1996; Sheridan,
Wechsler, & Schéuble 1997). State-of-the-art SDR methods,
with WER being approximately 20%, are comparable with
text retrieval methods in performance (Jourlin et al. 2000),
and thus are already practical.

However, as shown in Table 2 (lecture #2), the speech
recognition accuracy for lectures was not necessarily high
when compared with broadeast news. While the TREC con-
ference concluded that SDR in English was a solved prob-
lem, SDR for lectures remains unsolved and should be fur-
ther explored, specifically for languages other than English.

Segmenting lectures into passages is associated with



the Topic Detection and Tracking (TDT) evaluation work-
shop {Allan 2002), in which one task is to segment a single
broadcast news stream into topically coherent stories, How-
ever, in the case of lectures, stories in a single lecture are
closely related to one another, and therefore topic segmenta-
tion is more difficult than that {or broadcast news programs.

Our research is also associated with speech summariza-
tien (Hori & Furui 2000}, because a specific number of pas-
sages extracted from the entire speech data are organized
so that users can understand important contents with a min-
imal cost. However, unlike existing methods for generic
summaries, our method is classified as a query-biased {user-
focused) summarization (Mani & Bloedorn 1998; Tombros
& Sanderson 1998), in which different summaries are gen-
erated depending on the user information needs,

Finally, our research is crucial for e-education purposes,
in which educational contents, such as lecture video/audio
data are provided in real-time over computer networks. For
example, in the WIDE University, School of Intemet®, lec-
ture video data manually synchronized with presentation
slides are available to the public over the Web,

Jones and Edens (2002) proposed a system to autemat-
ically synchronize an audio track with presentation slides,
which is expected to reduce a cost required for manual in-
dexing. Their system is similar to our system, because tex-
tual materials (slides and textbooks) are used to identify cor-
responding passages in a presentation. However, while their
system was mainly intended to match transcriptions with
slides, we alse addressed problems in adapting language
models for speech recognition, and showed its effectiveness
by means of experiments.

Conclusion

Reflecting the rapid growth in the utilization of multime-
dia contents, information technologies across speech, im-
age, and text processing are crucial. Among various con-
tent types, in this paper we focused video data of lectures
organized based on textbooks, and proposed a system for
on-demand lectures, in which users can formulate textual
queries using the textbook for a target lecture to retrieve spe-
cific video passages.

To retrieve video passages in response to textual queries,
we extract the andio track from a lecture video, generate a
transcription by large vocabulary continuous speech recog-
nition, and produce a textual index, prior to the system us-
age. The current system is implemented as a server-client
system over the Web to facilitate e-education.

We also evaluated the performance of our system by
means of experiments, for which two TV lecture programs
were used. The experimental results showed that the accu-
racy of speech recognition varied depending on the domain
and presentation style of lectures. However, the accuracy of
speech recognition and passage retrieval was improved by
adapting language models to the topic of a target lecture. In
addition, even if the word error rate was approximately 40%,
the accuracy of retrieval was comparable with that obtained
by human transcriptions,

*https/www.soi, wide.ad_jp/

Future work will include improvement of each component
in our system and extensive experiments using larger test
collections related to various domains.
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ABSTRACT

Spoken queries submitted to question answering systems
usualiy consist of query contents (e.g. about newspaper ar-
ticles) and frozen patterns {e.g. WH-words), which can be
modeled with N-gram models and grammar-based models,
respectively. We propose a method to integrate those differ-
ent types of models into a single N-gram model. We rep-
resent the two types of language models in a single word
network. However, common smoothing methods, which
are effective for N-gram models, decrease grammatical con-
straints for frozen pattemns. For this problem, we propose
a selective back-off smoothing method, which controls a
degree to which smoothing is applied depending the net-
work fragment, Additionally, rcsuﬁing models are cormpati-
ble with the conventional back-ofl N-gram models, and thus
existing N-gram decoders can easily be used. We show the
effectiveness of our method by way of experiments.

1. INTRODUCTION

The N-gram model has been used successfully as a langvage
model for large vocabulary continuous speech recognition
(LVCSR) systems. The N-gram model is simple but ro-
bust enough to model all word sequences in the vocabulary.
However, it needs a large training corpus and such a corpus
cannol be easily constructed unless there already exists a
large text corpus based on, for example, newspaper articles,

On the other hand, the grammar-based model is used as a
language model for tasks involving a relatively small vocab-
ulary, This model does not need a training corpus because it
takes advantage of linguistic knowledge. It cant model corre-
lations more distant than is possible with the N-gram model,
which can model only Ioca{)relations between words.

Thus, some spoken senfences can be modeled more suit-
ably by the N-gram models and some more suitably by
the grammar-based model. This is also true from an intra-
sentence perspective — some parts of sentence are best mod-
eled by N-gram model and some parts are best modeled by
a grammar-based model.

For example, question answering systems receive queries
that ofien consist of a part that conveys various query con-
tents about, for example, newspaper articles, and a part that
represents a frozen pattern for query sentences, The first
part seems (o be best dealt with by using an N-gram model
wrained with a corpus of newspaper articles, and the second
part is best dealt with by using the grammar-based model.

The sccond and third authors are atso members of CREST, Japan Sci-
ence and Technology Corporation.
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Fig. 1. Integrated Word Network

Another example is phrases that cannot be predicted from
East training clata, such as those concerning telephone num-
ers, ID numbers, a date, a time for a reservation, etc, Rec-
ognizing such a phrase is often necessary to achieve the
given task. Those phrases seems to be best dealt with by
using the grammar—gased model while the other parts of the
sentence is dealt with by using an N-gram model.
In this paper, we will explain how these two types of
madels can be integrated into a single N-gram model. The
key idea is that we assume the grammar is described in reg-

ular language 1, so we should be able o represent it in an
N-gram which is also equal to regular language. The prob-
lem is that the grammatical constraint is incompatible with
smoothing, because the grammar tries to assign a zero prob-
ability to non-grammatical connections of the words while
smoaothing irics to assign a non-zero probability to avoid
the zero frequency problem. To solve this inconsistency, we
have developed a selective back-off smoothing method.

2, INTEGRATION OF THE CONVENTIONAL
N-GRAM AND GRAMMAR-BASED MODELS

The sentences modeled by a conventional N-gram model
can be expressed as a fully connected word network, in
which a word can be followed by any word in the vocabu-
lary of the model. On the other hand, the sentences modeled
by a grammar-based model can be expressed as a partially
connected word netwerk, in which a word can be followed
by only specific words according to the grammar. Integra-

This is a reasonable assumptian because any language of finite length
is known to be included in regular language. Morcover, an algorithm exists
1o approximate CFGs into finite state automata [1].
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lion of the conventional N-gram model (we wil] refer to it
as “base N-gram™) and the grammar-based model can be
achieved by joining the two diflerent types of word net-
works so that any word in the base N-gram might be fol-
lowed by (he beginning words of the grammar and the end-
ing words of the grammar might be followed by any word
of the base N-gram (Fig. 1).

In the integrated word network, the N-gram probabili-
ties are assigned so that the N-gram probability that runs
along the directed arcs of the network might have a positive
value and the other probabilities might be zero, With such a
probability distribution, the inlcgrated model is able to con-
vey the two different characters of the conventional N-gram
maodel and the grammar-based model at the same time,

To oblain such a distribution, we must give the N-gram
counts along the arcs of the network, then calculate the
probabilities. The next section of this paper will show how
to construct the word network for the grammar and how to
obtain the N-gram counts on the network. [n section 4, we
will introduce the selective back-off smoothing method that
is used calculate the probabilities while preserving the char-
acteristics of both the N-gram and the grammar.

3. GRAMMAR-BASED LANGUAGE MODELING

3.1, Word Network

Though there are many way to describe regular language,
we will use a word network that consists of nodes corre-
sponding to words and directed arcs corresponding to word-
to-word trangitions,

Such a network can be easily obtained for given example
sentences. For example, we can obtain the network at the
left of Fig.2 from the following three Japanese sentences
that denote questions about the date,

naN/neN/desu/ka

nalN /neN / naN / gatsu / desu/ ka

naN / gatsu / naN / nichi / desu / ka
using the words “naN” (what), “neN” (year), “gatsu”
(month), “nichi” (day), "desu” (is) and “ka” (inferrogative),

From the three sentences, we can get neighboring word
pairs as follows.

A= {{naN,neN}{naN, gatsu)(naN, nichi)
(neN, naN){ gatsu, naN} (nelN, desu)
(gatsu, desu)(nichi, desu)(desu, ka)}

If we assume word-io-word transition is possible if the
word pair appear in 4, the word network G| is defined by
4-tuples (Wa, Wp, Wg, A) where W, W), and W, are, re-
spectively, the set of all words, the set of beginning words,
the set of ending words of the network. In this case,

W = {naN neN gatsu nichi desu ka}
Wp = {naN}
Wg = {ka}
Unfortunalely, the simple network G fails to model the
Japanese query sentences about the date correctly, because

the sentences below that can be modeled by G are never
used in practice,

* naN/neN /naN /neN / desu/ka
(the word “neN (year)” is repeated)
* naN / gatsu / naN / neN / desu / ka

(a more specific word “gatsu (month)” comes be-
fore a less specific word “neN (year)”)

To exclude such ill-formed sentences, the word network
should be improved by separating the word nodes according
to their context (as shown at the right of Fig. 2). With the
new symbol assigned to the separated nodes, the improved
word network G is describe by (W5, Wa, Wg, A") where:

Wi = Wall {naN-I naiN-2}
A" = [(naN, neN)(naN, gatsu)(naN, nichi}{neN, naN-1)
{nalN-1, gaisu){gatsn, naN-2)(naN-2, nich)
(neN, desu)(gatsu, desu)(nichi, desu){desu, ka)}

In this way, introducing the new nodes allow word net-
worlcvis to express any long distance dependence between
words.

To integrate the word network with the base N-gram, two
requirements must be met when constructing the word net-
work. First, the vocabulary for the network must be distin-
guished from that for the base N-gram. This can be easily
achieved by applying different word symbols to the same
words in the network and the base N-gram. Namely, we
gave “@" as the prefix for word symbols in the network.
Formally, the vocabulary of the integrated model consists
of the exclusive word sets Wy for the base N-gram and Wy
for the word network, i.e. Wy N, = ¢.

Second, the beginning words must not arrive other than
al the beginning of the network and the ending words must
not arrive other than at the ending of the network. In other
words, the word set W4 consists of exclusive word sets Wi,
Wi and Wg (ie. Wy = Wp U WU Wg), that respec-
tively correspond to beginning words, intermediate words,
and ending words, ie. WgnNW; = ¢ A W, NnWg =
¢ A WpNWg=¢

3.2, Calculating Probability with Extra N-gram Counts

To give the N-gram probabilities of the words in the word
network, we need the N-gram counts both on the word net-
work and on the bridge connecting the network with the
base N-gram.,

The conventional N-gram counts are consistent and com-
plete. To calculate the N-gram probability, only the longest
N-gram counts C'(w;_y,,) (where w}_y,, denotes the
word sequence w;. 4+ w;_1w;) are needed because
the shorter N-gram counts are obtained from them by re-
cursively summing them up giving all the last (or first)
words. Consequently, an N-gram count Cw}_py.,.,} is
used to calculate all the probabilities that predict the words



uy—N+41 - wi. In other words, raising an N-gram count
C{w}_n,,) results in raising all the probabilities used to
predict the words wy_ a4y - - w;.

If we provide an arbitrary number of extra N-gram counts
of an arbitrary length, the consistency and the completeness
of the conventional N-gram counts are broken. Further-
more, we want to give the extra N-gram counts C'(w]_y )
only to raisc the probability of the last word w;. Thus, we
need to redefine tﬁe usage of the N-gram counts as follows.

o The N-gram counts Ci{w;), Ca(wi_,), ---

Cn(wi_yy,) are given separately according to
their length 1. .- N,

e Each N-gram count Cy(w}_,,, ) is vsed only to cal-
cutate the probability used to predict the last word w;.

For example, the probability estimated through the
maximum likelihood method can be caleulated from
the conventional N-gram counts as Purp(w)_,,,) =

Cr(Wi_ 1)/ Croy (Wil 1) which relies on consistency
among the counts. On the other hand, with the ex-
tra N-gram counts, the probability must be calculated as

PNIL(w::...n+1) - Gﬂ(wg—rwl)/zwi Gﬂ(w::mn+1)

3.3. Providing N-gram Counts onto the Word Network

To provide N-gram counts to the constructed word network,
we used the existing counts on the base N-gram, though
several approaches are applicable that include giving equal
counls at each branch of the network. To do so, the words in
the network must be of the same unit with the base N-gram?,
The N-gram counts related to the network can then be
obtained from the corresponding counfs in the base N-
gram.  We obtain the N-gram count C,{@w}_,,,) in
the network by copying the count Cp(w}_, ;) found in
the base N-gram. We also need the counts correspond-
ing o the bridge between the network and the base N-
gram. Such counts can also be obtained by copying the
corresponding counts in the base N-gram. Namely, both
Cn(wi=k, Qui_, ) and C, (@uizh, jwi_,.,) are ob-
tained from Cp(wi=f, wi ., |). Among these, we ob-
tain Cp(wiZ}h, Qu;) by multiplying Cn(awiZl, w;) by
the weight -y, 7y is introduced so that we can assign a higher
probability to a sentence that traces the network and - is
assumed to be given a value not less than 1 (Fig, 3).

4. SELECTIVE BACK-OFF SMOOTHING

The basic formula for back-off smoothing is

i—1

dus_, o PML(wilwi 5 00)

. "Cn(wi-lnu) >0
Otn 1 (W 2 gy P (w0} )

 Ca(iy) =0

P(‘”i|w:::111+1) =

*The definition of the word unit is important and shoutd be done be-
forchand to model Japanese because words arc not explicitly scparated by
spaces in Japancse sentences.
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Fig. 3. Copying the N-gram counts (in case of bi-gram)

where d is the discount coefficient, Py, is the probability
obtained by maximum likelihood estimation, and o is the
normalized function chosen to equalize the total probabili-
ties to one.

If we apply the smoothing equally to all of the words in
the N-gram mode, the resulting model allows any word-to-
word fransition and loses the grammatical constraint. On
the other hand, if we do not apply the smoothing, the gram-
matical constraint is preserved, but the model suffers from
the data sparseness problem,

QOur solution is to apply the two smoothing methods se-
lectively according to the words of the N-gram model (Fig.
4), The probabilities used to predict the words that belong
to the base N-gram and the beginning of the word network
{uy € WyrUWp) are calculated using the ordinary back-off
smoothing method (Equation 1) 3. The probabilities used to
predict the other words that belong to the word network, ex-
cluding the beginnings (w; € W; U Wg), are calculated so
as not to “back-off” {0 the uni-gram probabilities. In other
words, the probabilities are calculated by the ordinary back-
off smoething for the length n > 2 but using the following
formula for the length n = 2.

d iwIPML(wilwi—-l) Calwi_,) >0

Pluwilwi) = { Ow‘

Calwi_} =0
(2)
As a result, we get
Plw) =0 if ws e WruWg 3
C!]_('w,-_.l) =0 if wg.n e WpUW; (4)

The model to which the selective back-off smoothing is
applied has two significant features.

o The probability P(w;jwiZ} ), where w; € WyUWp

and the word sequence w}_p  ; is not allowed by the
grammar, becomes zero,

In this case, the N-gram counts C,,(w}_,, ) forn > 1
are zero. Thus the probability is “back-offed to the
uni-gram;

P(w,-|w:f:}\‘,+1) =y o (Wi ) P(w) =0

3More precisely, the uni-gram discounting must be applicd to only the
word set Wiy U W because the uni-gram probabilities on Wy U Wg are
set to O by Equation 2.
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Fig. 5. Word network used for the experiment

because P(w;) = 0 from Equation 3,

Especially, the probabilities used to Eredim the word
w € Wi U Wg from the words (in the base N-gram)
w € Wi are always zero.

o The probabilities used to predict the word (in the base
N-gram) w € Wy from the words (in the network
grammar, but excepting the endings) w € Wg U Wy
are always zero.

Also in this case, the N-gram counts Cy{w}_ ;) for
7 > 1 are zero. Thus, the probability is “back-off"ed
to the uni-gram: :

Pluwy|wiZhy) = an—1--ag - o (w1 ) Pluy) =0
hecause the context word w;—; is in Wg U Wy and we
get a(w;—y ) = 0 from Equation 4,

The resulting integrated model is compatible with con-
ventional back-off N-gram models so that it can work as the
language model for existing LVCSR systems.

5. EXPERIMENTAL RESULTS

We developed a word network for the Japanese frozen pat-
terns used for Question Answering {3] (Fig.5). We also pre-

Table 1. Results (v = 2)

target _language WER WER
(# of sent.) | model {2-gram) | (3-gram)
NP(100) | Base 706 2.3
base+net 21.6 12.3
04 (50) base 30.6 20.9
base+ne! 26.6 18.4
oA (36) | base 323 214
base+net 25.5 16.7

pared a base N-gram of 20,000 words that were obtained
from newspaper articles collected over 111 months, We
then integrated these two models according to our methed
explained above (referred to as the base+nef model). To en-
ﬂbfc comparison, we made the N-gram model from only the
newspaper articles by using the conventional methad (re-
ferred to as the base model). We used the Witten-Bell dis-
counting method [2] for smoothing in both models.

We prepared 100 sentences from the newspaper articles
(referred to as NP) and 50 query sentences for the QA sys-
tem (referred to as Qd), and these were recorded for four
speakers (two men and two women). Though the word net-
work was relatively small and had only 33 nodes (31 words)
in the network, the 36 of 50 query has the frozen patlems
wrilten by the network (referred as 047).

The existing N-gram decoder [4] was used for the recog-
nition experiments, The language model weight and the in-
sertion penalty were set to the best values for the newspaper
(base) model. The results are shown in Table 1.

We found that the integrated model significantly reduced
the word error rate (WER) for the QA queries {(0A) while
scarcely increased the WER for the newspaper arlicles (VP).
Moreover, when the word network covered the frozen pat-
terns of the gueries (04 ), it reduced the WER further.

6. CONCLUSION

Our selective back-off smoothing method was developed
to enable the incorporation of grammatical constraints into
the conventional N-gram model. The resulting integrated
model is compatible with the conventional back-off N-gram
model so that it can work as the language model for an ex-
isting N-gram decoder. We applied our model to model
the [rozen patterns used in queries for question answering
systems. Results showed that our mode] significantly re-
duced the WER for queries for QA systems while scarcely
increased the WER for the newspaper arficles that had been
modeled by the base N-gram before integration.
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Abstract

‘While recent retrieval techniques do not
limit the number of index terms, out-of-
vocabulary (0OOV) words are crucial in
speech recognition. Aiming at retrieving
information with spoken queries, we fill
the gap between speech recognition and
text retrieval in terms of the vocabulary
size. Given a spoken query, we gener-
ate a transcription and detect OOV words
through speech recognition. We then cor-
respond detected OOV words to terms in-
dexed in a target collection to complete the
transcription, and search the collection for
documents relevant to the completed tran-
scription. We show the effectiveness of
our method by way of experiments.

1 Introduction

Automatic speech recognition, which decodes hm-
man voice to generate transcriptions, has of late
become a practical technology. 1t is feasible that
speech recognition is used in real-world human lan-
guage applications, such as information retrieval.
Initiated partially by TREC-6, various methods
have been proposed for “spoken document retrieval
{SDR),” in which written queries are used to search
speech archives for relevant information (Garo-
folo et al,, 1997). State-of-the-art SDR methods,
where speech recognition error rate is 20-30%, are

* The first and second authors are also members of CREST,
Japan Science and Technology Corporation.

comparable with text retrieval methods in perfor-
mance (Jourlin et al,, 2000}, and thus are already
practical. Possible rationales include that recogni-
tion errors are overshadowed by a large number of
words correctly transcribed in target documents.

However, “speech-driven retrieval,” where spo-
ken queries are used to retrieve (textual) informa-
tion, has not fully been explored, although it is re-
lated to numerous keyboard-less applications, such
as telephone-based retrieval, car navigation systems,
and user-friendly interfaces.

Unlike spoken document retrieval, speech-driven
refrieval is still a challenging task, because recogui-
tion errors in short queries considerably decrease re-
trieval accuracy. A number of references addressing
this issue can be found in past research literature.

Bamett et al. (1997} and Crestani (2000) indepen-
dently performed comparative experiments related
to speech-driven retrieval, where the DRAGON
speech recognition system was used as an input in-
terface for the INQUERY text retrieval system. They
used as test queries 35 topics in the TREC col-
lection, dictated by a single male speaker. How-
gver, these cases focused on improving text retrieval
methods and did not address problems in improv-
ing speech recognition. As a result, errors in recog-
nizing spoken queries (error rate was approximately
30%) considerably decreased the retrieval accuracy.

Although we showed that the use of target docu-
ment collections in producing language models for
speech recognition significantly improved the per-
formance of speech-driven retrieval (Fujii et al,
2002; Itou et al., 2001), a number of issues still re-
main open questions.



Section 2 clarifies problems addressed in this pa-
per. Section 3 overviews our speech-driven text
retrieval system. Sections 4-6 elaborate on our
methodology. Section 7 describes comparative ex-
periments, in which an existing IR test collection
was used to evaluate the effectiveness of our method.
Section B discusses related research literature,

2 Problem Statement

One major problem in speech-driven retrieval is re-
lated to out-of-vocabulary (OOV) words.

On the one hand, recent IR systems do not limit
the vocabulary size (i.e., the number of index terms),
and can be seen as open-vocabulary systems, which
allow users to input any keywords contained in a tar-
get collection. It is often the case that a couple of
millicn terms are indexed for a single IR system.,

On the other hand, state-of-the-art speech recog-
nition systems still need to limit the vocabulary size
(i.e., the number of words in a dictionary), due
to problems in estimating statistical language mod-
els (Young, 1996) and constraints associated with
hardware, such as memeories. In addition, compu-
tation time is crucial for a real-time usage, including
speech-driven retrieval. In view of these problems,
for many languages the vocabulary size is limited to
a couple of ten thousands {Itou et al., 1999; Paul and
Baker, 1992; Steeneken and van Leeuwen, 1995),
which is incomparably smaller than the size of in-
dexes for practical IR systems.

In addition, high-frequency words, such as fune-
tional words and common nouns, are usually in-
cluded in dictionaries and recognized with a high
accuracy, However, those words are not necessarily
useful for retrigval. On the contrary, low-frequency
words appearing in specific documents are often ef-
fective query terms.

To sum wup, the OOV problem is inherent in
speech-driven retrieval, and we need to fil! the gap
between speech recognition and text retrieval in
terms of the vocabulary size. In this paper, we pro-
pose a method to resolve this problem aiming at
open-vocabulary speech-driven retrieval.

3 System Overview

Figure 1 depicts the overall design of our speech-
driven text retrieval system, which consists of

speech recognition, text retrieval and query com-
pletion modules.  Although our system is cur-
rently implemented for Japanese, our methodology
is language-independent. We explain the retrieval
process based on this figure.

Given a query spoken by a user, the speech
recognition module uses a dictionary and acous-
tic/language models to generate a transcription of
the user speech. During this process, GOV words,
which are not listed in the dictionary, are also de-
tected. For this purpose, our language model in-
cludes both words and syllables so that OOV words
are franscribed as sequences of syllables.

For example, in the case where “kankitsu (cit-
rus)” is not listed in the dictionary, this word
should be transcribed as /ka N ki tsu/. How-
ever, it is possible that this word is mistak-
enly tramscribed, such as /ka N ke tsu/ and
/ka N ke tsu ke kol

To improve the quality of our system, these sylla-
ble sequences have to be transcribed as words, which
is one of the central issues in this paper. In the case
of speech-driven retrieval, where users usually have
specific information needs, if is feasible that users
utter contents related to a target collection, In other
words, there is a great possibility that detected OOV
words can be identified as index terms that are pho-
netically identical or similar.

However, since a) a single sound can potentially
correspond to more than one word (i.e., homonyms)
and b) searching the entire collection for phoneti-
cally identical/similar terms is prohibitive, we need
an efficient disambiguation method. Specifically, in
the case of Japanese, the homonym problem is mul-
tiply crucial because words consist of different char-
acter types, i.e., “kanji,’ “katakana,” “hiragana,” al-
phabets and other characters like numerals'.

To resolve this problem, we use a two-stage re-
trieval method, In the first stage, we delete OOV
words from the transcription, and perform text re-
trieval using remaining words, to obfain a specific
number of top-ranked documents according to the
degree of relevance. Even if speech recognition is
not perfect, these documents are potentially associ-
ated with the user speech more than the entire col-

'tn Japanese, kanji (or Chinese character) is the idiogram,
and katakana and hiragana are phonograins.



lection. Thus, we search only these documents for
index terms corresponding to detected OOV words.

Then, in the second stage, we replace datected
OOV words with identified index terms so as to
complete the transcription, and re-perform text re-
trieval to obtain final outputs. However, we do not
re-perform speech recognition in the second stage.

In the above example, let us assume that the user
also utters words related to “kankitsu (citrus),” such
as “orenfi (orange)” and “remon (lemon),” and that
these words are correctly recognized as words. In
this case, it is possible that retrieved documents
contain the word “kankifsu {citrus).” Thus, we re-
place the syllable sequence /ka N ke tsw/in the
query with “kankitsu,” which is additionally used as
a query term in the second stage.

It may be argued that our method resembles the
notion of pseudo-relevance feedback (or local feed-
back) for IR, where documents obtained in the first
stage are used to expand query terms, and final out-
puts are refined in the second stage (Kwok and Chan,
1998), However, while relevance feedback is used to
improve only the retrieval accuracy, our method im-
proves the speech recagnition and retrieval accuracy.

Acaustic
model

=

S
Language
model

Speech recegrition

Query completion

completed
anscriplio

gp-ranked document

tiption>>

Text retricval

Figure 1: The overall design of our speech-driven
text retrieval system.

4 Speech Recognition

The speech recognition module generates word se-
quence W, given phone sequence X . In a stochastic
speech recognition framework (Bahl et al,, 1983),
the task is to select the W maximizing P(W|X),

which is transformed as in Equation (1) through the
Bayesian theorem.

argmax P(W]X) = arg max PX|WY. P(W)
(H
Here, P(X|W) models a probability that word se-
quence W is transformed into phone sequence X
and P(W) models a probability that W is linguis-
tically acceptable, These factors are usually called
acoustic and language models, respectively.

For the speech recognition module, we use the
Japanese dictation toolkit (Kawahara et al., 2000)?,
which includes the “Julius” recognition engine and
acoustic/language models. The acoustic model was
produced by way of the ASJ speech database (ASJ-
INAS) (Itou et al.,, 1998; Itou et al., 1999), which
contains approximately 20,000 sentences uttered by
132 speakers including the both gender groups,

This toolkit also includes development softwares
so that acoustic and language models can be pro-
duced and replaced depending on the application.
While we use the acoustic model provided in the
toolkit, we use a new language model including both
words and syllables. For this purpose, we used the
“ChaSen™ morphological analyzer® to extract words
from ten years worth of *“Mainichi Shimbun™ news-
paper articles {1991-2000),

Then, we selected 20,000 high-frequency words
to produce a dictionary. At the same time, we seg-
mented remaining lower-frequency words into syl-
lables based on the Japanese phonogram system.
The resultant number of syllable types was approxi-
mately 700. Finally, we produced a word/syllable-
based trigram language model. In other words,
OO0V words were modeled as sequences of syllables.
Thus, by using our language model, OOV words can
easily be detected,

In spoken document retrieval, an open-vocabulary
method, which combines recognition methods for
words and syllables in target speech documents, was
also proposed (Wechsler et al., 1998). However, this
method requires an additional computation for rec-
ognizing syllables, and thus is expensive. In con-
trast, since our language model is a regular statistical
N-gram model, we can use the same speech recog-
nition framework as in Equation (1).

Zhttp:/winnie kuis.kyoto-u.ac jp/dictation
*http:/ichasen.aist-nara.ac.jp



3 Text Retrieval

The text retrieval module is based on the
“Okapi” probabilistic retrieval method (Robertson
and Walker, 1994), which is used to compute the rel-
evance score between the transcribed query and each
document in a target collection. To produce an in-
verted file (i.e., an index), we use ChaSen to extract
content words from documents as terms, and per-
form a word-based indexing. We also extract terms
from transcribed queries using the same method,

6 Query Completion

6.1 Overview

As explained in Section 3, the basis of the query
completion module is to correspond OOV words de-
tected by speech recognition {Section 4) to index
terms used for text retrieval (Section 5). However,
to identify corresponding index terms efficiently, we
limit the number of documents in the first stage re-
trieval, In principle, terms that are indexed in top-
ranked documents (those retrieved in the first stage)
and have the same sound with detected OOV words
can be corresponding terms,

However, a single sound often corresponds to
multiple words. In addition, since speech recog-
nition on a syllable-by-syllable basis is not per-
fect, it is possible that OOV words are incor-
rectly transcribed, For example, in some cases
the Japanese word “kankitsu (citrus)” is transcribed
as /ka N ke tsu/. Thus, we also need to con-
sider index terms that are phonetically similar to
OO0V words. To sum up, we need a disambiguation
method to select appropriate corresponding terms,
out of a number of candidates.

6.2 Formalization
Intuitively, it is feasible that appropriate terms:

¢ have identical/similar sound with OOV words
detected in spoken queries,

o frequently appear in a top-ranked document set,

+ and appear in higher-ranked documents.

From the viewpoint of probability theory, possi-
ble representations for the above three properties
include Equation (2}, where each property corre-
sponds to different parameters, Qur task is to select

the ¢ maximizing the value computed by this equa-
tion as the corresponding term for OOV word w.

S P(ult)-P(ld)-Plde) @

deD,

Here, Dy is the top-ranked document set retrieved in
the first stage, given query g. P(w|t) is a probabil-
ity that index term t can be replaced with detected
00V word w, in terms of phonetics. P(t|d) is the
relative frequency of term ¢ in document d. P(d|q)
is a probability that document d is relevant to query
g, which is associated with the score formalized in
the Okapi method.

However, from the viewpoint of empiricism,
Equation (2} is not necessarily effective. First, it is
not easy to estimate P(w|t) based on the probabil-
ity theory. Second, the probability score computed
by the Okapi method is an approximation focused
mainly on relative superiority among retrieved doc-
uments, and thus it is difficult to estimate P(d|q) ina
rigorous manner, Finally, it is also difficult to deter-
mine the degree to which each parameter influences
in the final probability score.

In view of these problems, through preliminary
experiments we approximated Equation (2) and for-
malized a method to compute the degree (not the
probability} to which given index term ¢ corresponds
to OOV word w.

First, we estimate P(w]|t) by the ratio between the
number of syllables commonly included in both w
and ¢ and the total number of syllables in w. We
use a DP matching method to identify the number of
cases related to deletion, insertion, and substitution
in w, on a syllable-by-syllable basis,

Second, P(w|t) should be more influential than
P(t|d) and P{d|q) in Equation (2), although the
last two parameters are effective in the case where
a large number of candidates phonetically similar to
w are obtained. To decrease the effect of P(¢|d) and
P(d|q), we tentatively use logarithms of these pa-
rameters. In addition, we use the score computed by
the Okapi method as P(d|q).

According to the above approximation, we com-
pute the score of ¢ as in Equation (3).

3" P(wlt) -log(P(lld) - P(dlg)) (3

deD,



It should be noted that Equation (3) is indepen-
dent of the indexing method used, and therefore
¢ can be any sequences of characters contained in
Dy In other words, any types of indexing methods
(e.g., word-based and phrase-based indexing meth-
ods) can be used in our framework.

6.3 Implementation

Since computation time is crucial for a reat-time us-
age, we preprocess documents in a target collection
so as to identify candidate terms efficiently, This
process is similar to the indexing process performed
in the text retrieval module.

In the case of text retrieval, index terms are orga-
nized in an inverted file so that documents including
terms that exacrly match with query keywords can
be retrieved efficiently.

However, in the case of query completion, terms
that are included in top-ranked documents need to be
retrieved. In addition, to minimize a score computa-
tion (for example, DP matching is time-consuming),
it is desirable fo delete terms that are associated
with a diminished phonetic similarity value, P{w]t},
prior to the computation of Equation {3). In other
words, an index file for query completion has to be
organized so that a parria/ matching method can be
used. For example, /ka N ki tesw/ has to be re-
trieved efficiently in response to /ka N ke tau/

Thus, we implemented a forward/backward
partial-matching method, in which entries can be re-
trieved by any substrings from the first/last charac-
ters. In addition, we index words and word-based
bigrams, because preliminary experiments showed
that OOV words detected by our speech recognition
module are usvally single words or short phrases,
such as “ozon-hourtt {(ozone hole).”

7 Experimentation

7.1  Methodology

To evaluate the performance of our speech-driven re-
trieval system, we used the IREX collection?. This
test collection, which resembles one used in the
TREC ad hoc retrieval track, includes 30 Japanese
topics (information need) and relevance assessment
(correct judgement) for each topic, along with target

*htip://es.nyu.edw/es/proj ectsiproteusdirexsindes-e html

documents, The target documents are 211,853 ar-
ticles collected from two years waorth of “Mainichi
Shimbun” newspaper (1994-1993),

Each topic consists of the 1D, description and nar-
rative. While descriptions are short phrases related
to the topic, narratives consist of one or more sen-
tences describing the topic. Figure 2 shows an exam-
ple topic in the SGML form (translated into English
by one of the organizers of the IREX workshop).

However, since the IREX collection does not con-
tain spoken queries, we asked four speakers (two
males/females) to dictate the narrative field, Thus,
we produced four different sets of 30 spoken queries.
By using those queries, we compared the following
different methods:

1. text-to-text retrieval, which used written narra-
tives as queries, and can be seen as a perfect
speech-driven text retrieval,

2. speech-driven text retrieval, in which only
words listed in the dictionary were modeled in
the language model (in other words, the OOV
word detection and query completion modules
were not used),

3. speech-driven text retrieval, in which OOV
words detected in spoken gueries were simply
deleted (in other words, the query completion
module was not used),

4. speech-driven text retrieval, in which our
method proposed in Section 3 was used.

In cases of methods 2-4, queries dictated by four
speakers were used independently. Thus, in practice
we compared 13 different retrieval results. In addi-
tion, for methods 2-4, ten years worth of Mainichi
Shimbun Japanese newspaper articles (1991-2000)
were used to produce language models, However,
while method 2 wused only 20,000 high-frequency
words for language modeling, methods 3 and 4
also used syllables extracted from lower-frequency
words (see Section 4).

Following the IREX workshop, each methed re-
trieved 300 top documents in response to each query,
and non-interpolated average precision values were
used to evaluate each method.



<TOPIC><TOPIC-ID>100)</TOPIC-1ID>

<DESCRIPTION=>Corporate merging</DESCRIPTION:
<NARRATIVE>The article describes a corporate merging and in the article, the

name of companies have to be identifiable,
and the purpase of the wmerging have to be identifiable.

Information including the field
Corporate merging

includes corperate acquisition, corporate unifications and corporate buy-

ing. </NARRATIVE></TOPIC>

Figure 2: An English translation for an example topic in the IREX collection.

7.2 Results

First, we evaluated the performance of detecting
QOV words. In the 30 queries used for our eval-
uation, 14 word fokens (13 word fypes) were OOV
words unlisted in the dictionary for speech recog-
nition, Table 1 shows the results on a speaker-by-
speaker basis, where “#Detected” and “#Correct”
denote the total number of OOV words detected by
our method and the number of OOV words correctly
detected, respectively. In addition, “#Completed”
denotes the number of detected OOV words that
were corresponded to carrect index terms in 300 top
documents,

It should be noted that *#Completed” was greater
than “#Correct” because our method often mistak-
enly detected words in the dictionary ags QOV words,
but completed them with index terms correctly. We
estimated recall and precision for detecting OOV
words, and accuracy for query completion, as in
Equation (4).

recall = _#QC[’ET_SCE
precision = C Ogtv‘ee;ctt @
aceuracy = Con;tiiied

Looking at Table 1, one can see that recall was gen-~
erally greater than precision. In other words, our
method tended to detect as many OOV words as pos-
sible. In addition, accuracy of query completion was
relatively low.

Figure 3 shows example words in spoken queries,
detected as OOV words and correctly completed
with index terms. In this figure, OOV words are
transcribed with syllables, where ;" denotes a long
vowel. Hyphens are inserted between Japanese
words, which inherently lack lexical segmentation,

Second, to evaluate the effectiveness of our query
completion method more carefully, we compared re-
trieval accuracy for methods 1-4 (see Section 7.1).
Table 2 shows average precision values, averaped
over the 30 queries, for each method’, The average
precision values of our method (i.e., method 4) was
approximately 87% of that for text-to-text retrieval,

By comparing methods 2-4, one can see that our
method improved average precision values of the
other methods irrespective of the speaker. To put
it more precisely, by comparing methods 3 and 4,
one can see the effectiveness of the query comple-
tion method. In addition, by comparing methods 2
and 4, one can see that a combination of the QOV
word detection and query completion methods was
effective.

It may be argued that the improvement was rel-
atively small. However, since the number of OOV
words inherent in 30 queries was only 14, the effect
of our method was overshadowed by a large number
of other words. In fact, the number of words used
as query terms for our method, averaged over the
four speakers, wag 421, Since existing test collec-
tions for IR research were not produced to explore
the OOV problem, it is difficult to derive conclu-
sions that are statistically valid. Experiments using
larger-scale test collections where the OOV problem
is more crucial need to be further explored,

Finally, we investigated the time efficiency of our
method, and found that CPU time required for the
query completion process per detected OOV word
was 3.5 seconds (AMD Athlon MP 1900+). How-
ever, an additional CPU time for detecting OOV
words, which can be performed in a conventional
speech recognition process, was not crucial,

S Average precision is often used to evaluate TR systems,

which should not be confused with evaluation measures in
Equation (4).



Table 1: Results for detecting and completing OOV words.

Speaker #Detected  #Correct  #Completed  Recall  Precision  Accuracy

Female #1 51 9 18 0.643 0.176 0353

Female #2 56 10 18 0.714 0.179 0321

Male #1 33 9 12 0.643 0.273 0.364

Male #2 37 12 16 0.857 0.324 0.432

Totat 176 40 64 0,714 0.226 0.362

OO0V words Index terms (syllables) English gloss
/gu re : pu ra chi na ga no/ guweep-firnutsn/gu re : pu fu ru : tsuw/  grapefmit
/ya yo i chi taf Yayol-fidai fya yo i ji da i/ the Yayoi period
/mi ku ku ra i suf nikku-puraisn/ini g ku pu ra i sw/ Nick Price
/he N pif benpifbe N pif constipation

Figure 3: Example words detected as OOV words and completed correctly by our method.

7.3  Analyzing Errors

We manually analyzed seven cases where the av-
erage precision value of our method was signifi-
cantly lower than that obtained with method 2 (the
total number of cases was the product of numbers of
queries and speakers).

Among these seven cases, in five cases our query
completion method selected incorrect index terms,
although correct index terms were included in top-
ranked documents obtained with the first stage. For
example, in the case of the query 102! dictated by
a female speaker, the word “seide (institution)” was
mistakenly transcribed as /se N do/. As a result,
the word “sendo (freshness),” which is associated
with the same syllable sequences, was selected as
the index term. The word “seido (institution)” was
the third candidate based on the score computed by
Equation (3). To reduce these errors, we need to en-
hance the score computation.

In another case, our speech recognition module
did not correctly recognize words in the dictionary,
and decreased the retrieval accuracy.

In the final cage, a fragment of a narrative sen-
tence consisting of ten words was detected as a sin-
gle OOV word. As a result, our method, which
can complete up to two word sequences, mistak-
enly processed that word, and decreased the retrieval
accuracy, However, this case was exceptional, In
most cases, functional words, which were recog-
nized with a high accuracy, segmented OOV words
into shorter fragments.

Table 2: Non-interpolated average precision values,
averaged over 30 queries, for different methods.

Speaker\Method i 2 3 4

Female #1 - 0.2831 0.2834 0.3195
Female #2 - 0.2745 0.2443 0,2846
Male #1 - 0.3005 0.2987 0.3179
Male #2 - 0.2787 0.2675 0.2957
Total 03486 0.2842 02734 0.3044

8 Related Work

The method proposed by Kupiec et al. {1994)
and our method are similar in the sense that both
methods use target collections as language medels
for speech recognition to realize open-vocabulary
speech-driven retrieval.

Kupiec et al's method, which is based on word
recognition and accepts only short queries, derives
multiple transcription candidates (i.e., possible word
combinations), and searches a target collection for
the most plausible word combination. However, in
the case of longer queries, the number of candidates
increases, and thus the searching cost is prohibitive.
This is a reason why operational speech recognition
systems have to limit the vocabulary size.

In contrast, our method, which is based on a re-
cent confinnous speech recognition framework, can
accept longer sentences. Additionally, our method
uses a two-stage retrieval principle to limit a search
space in a farget collection, and disambiguates only
detected OOV words. Thus, the computation cost
can be minimized.



9 Conclusion

To facilitate retrieving information by spoken
queries, the out-of-vocabulary problem in speech
recognition needs to be resolved. In our proposed
method, out-of-vocabulary words in a query are de-
tected by speech recognition, and completed with
terms indexed for text retrieval, so as to improve
the recognition accuracy. In addition, the completed
query is used to improve the retrieval accuracy. We
showed the effectiveness of our method by using
dictated queries in the IREX collection, Future work
would include experiments using larger-scale test
collections in various domains.
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ABSTRACT

We report experimental results associated with speech-driven text
retrieval, which facilitates retrieving information in multiple do-
mains with spoken queries. Since users speak contents related to
a target collection, we produce language models used for speech
recognition based on the target collection, so as to improve hoth
the recognition and retrieval accuracy. Experiments using existing
test collections combined with dictated queries showed the effec-
tiveness of our method.

1. INTRODUCTION

Automatic speech recognition, which decedes human voice to gen-
erate transcriptions, has of late become a practical technology. It
is feasible that speech recogaition is used in real world computer-
based applications, specifically, those associated with human lan-
guage. In fact, a number of speech-based methods have been ex-
plored in the information retrieval (IR) community, which can be
classified into the following two fundamental categories:

¢ spoken document retrieval, in which written queries are used
to search speech (e.g., broadcast news audio) archives for
relevant speech information [1].

e speech-driven retrieval, in which spoken queries are used to
retrieve relevant textual information [2, 31.

Initiated partially by the TREC-6 spoken document retrieval
{SDR) track [1], various methods have been proposed for spoken
document retrieval. However, a relatively small number of meth-
eds have been explored for speech-driven text retrieval, although
they are associated with numerous keyboard-less retrieval appli-
cations, such as telephone-based retrieval, car navigation systems,
and ugser-friendly interfaces,

Barnett et al, [2] performed comparative experiments related
10 speech-driven retrieval, where the DRAGON speech recogni-
tion system was used as an input interface for the INQUERY text
retrieval system. They used as lest inputs 35 queries collected from
the TREC topics ang dictated by a single male speaker. Crestani [3)
also used the above 35 queries and showed that conventional rel-
evance feedback technigues marginally improved the accuracy for
speech-driven text retrieval,

These above cases focused solely on improving text retrieval
methods and did not address problems of improving speech recog-
nitien accuracy. In fact, an existing specch recognition system was

The first and second authors are also members of CREST, Japan Sci-
ence and Technology Corparation.

used with no enhancement. In other words, speech recognition and
text retrieval modules were fundamentally independent and were
simply connected by way of an input/output protecol.

However, since most speech recognition systems are trained
based on specific domains, the accuracy of speech recognilion
across domains is nol satisfactory. Thus, as can easily be predicted,
in cases of Bamett et al. [2] and Crestani [3], a speech recogni-
tion error rate was relatively high and considerably decreased the
retrieval accuracy. Additionally, speech recognition with a high
accuracy is ctucial for interactive retrieval, such ag dialog-based
retrieval.

Motivated by these problems, in this paper we inlegrate (not
simply connect) speech recognition and text retrieval to improve
both recognition and retrieval accuracy in the context of speech-
driven fext retrieval,

Unlike general-purpase speech recognition aimed to decode
any sponlancous speech, in the case of speech-driven text retrieval,
users usually speak contents associated with a target collection,
from which documents relevant to their information need are re-
trieved. In a stochastic speech recognition framework, the ac-
curacy depends primarily on acoustic and language models [4].
While acoustic models are related 1o phonetic properties, language
nodels, which represent linguistic contents to be gpoken, are re-
lated 1o target collections. Thus, it is intuitively feasible that lan-
guage models have to be produced based on target collections,

To sum up, our belief is that by adapting a language model
based on a target [R collection, we can improve the speech recog-
nition and text retrieval accuracy, simultaneously.

Seetion 2 describes our speech-driven text retrieval system,
which is currently implemented for Japancse. Section 3 elaborates
on comparalive experiments, in which [R test collections in differ-
ent domains are used to evaluate the effectiveness of aur sysiem.

2, SYSTEM DESCRIPTION

2.1, Overview

Figure | depicts the overall design of our specch-driven text re-
trieval system, which consists of speech recognition and text re-
tricval modules. Tn the following sections, we explain two modules
in Figure I, respectively,
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Flg. 1. The design of our speech-driven text retrieval system.

1.2, Speech Recognition

For the speech recognition module, we use the Japanese dictation
toolkit [5]', which includes the “Julius™ recognition engine and
acoustic/language models. Julius performs a two-pass (forward-
backward) search using word-based forward bigrams and back-
ward trigrams on the respective passes.

The acoustic medel was produced by way of the ASJ speech
databases of phonetically balanced sentences (ASJ-PB) and news-
paper articles texts (ASJ-JNAS) {6], which contain approximately
20,000 sentences uttered by 132 speakers including the both gen-
der groups, We used a 16-mixture Gaussian distribution triphone
Hidden Markov Model, where states were clustered into 2,000
groups by a state-tying method.

This toolkit also includes development softwares, so that acous-
tic and language models can be produced and replaced depending
on the application, While we use the acoustic mode! provided
in the toolkit, we use new language models produced by way of
source documents (i.e., target IR cotlections).

2.3, Text Retrieval

The text retrieval module is based on the “Okapi” method [7],
which computes the relevance score between the transcribed query
and each document in the collection, based on the distribution of
index terms, and sorts retrieved documents according to the score
in descending order,

‘We use content words extracted from documents as index terms,
and perform a word-based indexing. For this purpose, we use the
ChaSen morphological analyzer [B] to exiract content words, We
extract terms from transcribed queries using the same method.

3, EXPERIMENTATION

3.1, Test Collections

To investigate the performance of our multi-domain speech-driven
relrieval system, we used two different types of Japanese IR test
{benchmark) collections: the NTCIR and IREX collections. Both
collections, which resemble one used in the TREC ad hoc retrieval
track, include topics (information need) and relevance assessment

Vhitp:/winnie kuis.kyolo-u.ae.jp/dictation/

(correct judgement) for each topic, along with target documents,
However, these collections are associated with different domain,
respectively,

The NTCIR collection [9]* includes 736,166 abstracts col-
lected from technical papers published by 65 Inpanese associations
for various fields. On the other hand, the IREX collection {10]* in-
cludes 211,853 articles collected from two years worth of “Mainichi
Shimbun” newspaper arlicles”.

The NTCIR and IREX collections include 132 and 30 Japanese
topics, respectively, for a sample of which English translations are
also provided. Figures 2 and 3 show example topics in each col-
lection, which consist of different fields (for example, descriptions
and narratives) tagged in an SGML form.

Since both collections do not contain spoken queries, we asked
four speakers (two males/females) to dictate topics. For this pur-
pose, we selectively used a specific field, 5o as to simulate a real-
istic speech-driven retrieval.

In the case of the NTCIR topics, tittes are not informative for
the retrieval. On the other hand, narratives, which usually consist
of several sentences, are too long to speak. Thus, only descrip-
tions, which consist of a single phrase and sentence, were dictated
by each speaker, so as to produce four different sets of 132 spoken
queries. However, in the case of the IREX topics, since deserip-
tions are not informative for the retrieval, only narratives were dic-
tated by each speaker, to produce four different sets of 30 spoken
queries.

3.2, Comparative Evaluation

We compared the performance of the following retrieval methods;

o fext-to-lext retrieval, which used wrilten queries, and can
be seen as the perfect speech-driven text retrieval,

e speech-driven text retrieval, in which a language model pro-
duced based on the NTCIR collection was used,

s speech-driven text retrieval, in which a language model pro-
duced based on the IREX collection was used,

In cases of speech-driven text retrieval methods, queries dictated
by four speakers were used independently, and the final result was
obtained by averaging results for different speakers.

Although the Julius decoder outputs more than one transcrip-
tion candidates for a single speech, we used only the one with the
greatest probability score. The results did not significantly change
depending on whether or not we used lower-ranked transeriptions
as queries,

The only difference in producing two different language mod-
els (i.e,, those based on the NTCIR and IREX collections) is the
source documents. In other words, both language models were of
the same vocabulary size (20,000), and were produced by way of
the same softwares.

Table | shows statistics related to word tokens/types in two
different collections for language modeling, where the line “Cov-
erage” denotes the ratio of word tokens contained in the resultant
language model. Most of word tokens were covered irrespective
of the collection.

Ihitp:/fresearch.nii.ac,jp/ntcadm/index-cn. html

Ihtp:#es nyu.edu/es/projects/proteus/firex/index-e, himl

In practice, the [REX collection provides only anticle 1Is, which cor-
responds to articles in Mainichi Shimbun newspaper CD-ROM’94-'95,
Participants must get & copy of the CD-ROMs themselves.



<TOPIC q=0123»>

<TITLE>Biofilms</TITLE>

<DESCRIPTION>Are there any documents about the biofilms produced by some microcorganisms in
which chronic diseases are mentioned?</DESCRIPTION>

<NARRATIVE>Biofilms are thought to occur when microorganisms grow in microcolonies embeddad
in the adherent gel surface on tunica mucosa, and teeth, or on catheters, prosthetic valves,
and other artifacts. A relevant document will report on any studies into the relationship
between biofilms produced by some microorganisms and chronic diseases. Documents that in-
clude reports on biofilms produced by non-medical microorganisms that do not cause infectious

diseases are not relevant.</NARRATIVE=x
</TORIC>

Fig. 2. An English translation for an example topic in the NTCIR collection.

<TOPIC>
<TOPIC-ID>1001</TOPIC-ID>
<DESCRIPTION>Corporate merging</DESCRIPTION>

<NARRATIVE>The article describes a corporate merging and in the article, the name of compa-

nies have to be identifiable.
have to be identifiable,
cations and corporate buying.</NARRATIVE:»
</TOPIC>

Information including the field and the purpose of the merging
Coxporate merging includes corporate acquisition, corporate unifi-

Fig. 3, An English translation for an example topic in the IREX collection.

Table 1. Statistics related to source words for language modeling.

NTCIR TREX
#of Types 454K 179K
# of Tokens 175M  53M
Coverage  97.9% 96.5%

Each method retrieved 1,000 top documents, and the TREC
evaluation soflware was used to calculale non-interpolated average
precision values and plot recall-precision curves.

Table 2 shows the non-interpolated average precisien values
(AP) and word error rate in speech recognition, for different re-
trieval methods. As with existing experiments for speech recog-
nition, word error rate (WER) is the ratio between the number of
word errors (i.e., deletion, insertion, and substitution) and the to-
tal number of words. In addition, we investigated error rate with
respect to query terms (i.e., keywords used for retrieval), which
we shall call “term error rate (TER)”. Table 2 also shows trigram
test-set perplexity (PP) and test-set out-of-vocabulaty rate {OOV).

1t should noted that for all the evaluation measures in Table 2
excepting average precision, smaller values are generally obtained
with better methods. Suggestions which can be derived from these
results are as follows.

Firsl, by comparing results of different language models, one
can see that the performance was significantly improved with a
language model produced from the target collection, which was
observable irrespective of the domain, Thus, producing language
models based on target collections was quile effective for speech-
driven text retrieval,

Second, while in the case of the NTCIR collection, the average
precision for speech-driven retrieval was approximately 77% of

that obtained with texi-to-text retrieval, in the case of the IREX
collection, the average precision for speech-driven retrieval was
quite comparable that obtained with text-to-text retrieval.

Third, TER was generally higher than WER irrespective of the
speaker. In other words, speech recognition for content words was
more difficult than functional words, which were not conlained in
query terms,

Finally, we investigated the trade-off between recall and pre-
cision, Figures 4 and 5 show recali-precision curves of different
retrieval methods, for the NTCIR. and IREX collections, respec-
tively, In these figures, the relative superiority for precision values
due to different language models in Table 2 was also observable,
regardless of the recail.

4. CONCLUSION

Alming at speech-driven text retrieval with a high accuracy, we
proposed a methoed to integrate speech recognition and text re-
trieval methods, in which targetl text collections are used fo pi'o-
duce statistical language models for specch recognition. We also
showed the effectiveness of our method by way of experiments,
where dictated information needs in the NTCIR/IREX collections
were used as queries lo retrieve documents in different domains.
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Table 2. Results for different retricval methods targeting the NTCIR/IREX collections (AP: average precision, WER: word error rate, TER:
lerm error tate, PP: trigram test-set perplexity, OOV test-set Out-of-Vocabulary rate),
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<TOPIC><NUM>000B</NUM>

<TITLE CASE="b">¥)L¥, 22K, JS7Hi</TITLE>
<DESC> T A3l B & 9107 5 HHEAA D L < /DESC>
<NARR><BACK> WIEE® o T B Y L SAID & ARTIC Y 3¢
HUE e B AER RIS Fbs IR BEIGE S W S EAIH,
ZORTPRERERLY | BANSNREBEE T 5, </BACK><RELE>
B FEORNOEV, KITTH DL oak ol FiF
AL T H. </RELE></NARR>

<coyc>thibtr, B3, ik, B, AUFa T bescone
<RDOC>NWO11992774, NWOL1392731, NWG11992734</RDOC>
<USER>AERISL: 1 4F, 1ufk, MRFEME 2.8 {E</USER></TOPIC>

Bl 2 Web HFRENDMF
Fig.2 A fragment of the Web IR collection topic.
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T, BEMEHEOtESRLEL, EBROISRE CRBICAN LS EHET 2 X8 M.ELTVS,
fERRRIRBERLREL. TREBHRAET7 SV r—v 3 v0—2THa 1, ERERONEOE LB
FLTHFThS. 20T B4k, NTCIR-3 7—23av T Web BEXAVILEWTEBEAILY D
RAVERR LT, FRAITHWETZAPILIY a3 E LT, Web BRAMVEATOBRFTER®: 10
LOFEHICIYRB LT —2%BHE L, TOALIYavESEERYATLALBIERE AT L
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Speech-Driven Web Retrieval Task
in the NTCIR-3 Workshop

ITOU Katunobu}, FUJII Atsushi}}

National Institute of Advanced Industrial Science and Technology,
tInstitute of Library and Infromation Science, University of Tsukuba,
FCREST, Japan Science and Technology Corporation
E-mail: itou@ni.aist.go.jp, fujii@slis.tsukuba.ac.jp

Speech recognition has of late become a practical technology for real world applications.
For the purpose of research and development in speech-driven retrieval, which facilitates
retrieving information with spoken queries, we organized the speech-driven retrieval subtask
in the NTCIR-3 Web retrieval task. Search topics for the Web retrieval main task were
dictated by ten speakers and recorded as collections of spoken queries. We used those
queries to evaluate the performance of our speech-driven retrieval system, where speech
recognition and text retrieval modules were integrated. In the text retrieval module, which
is based on a probabilistic model, indexed only textual contents in documents (Web pages),
but did not use HTML tags and hyperlink information in documents. Experimental results
showed that a) the use of target documents for language modeling and b) enhancement of

the vocabulary size in speech recognition were effective to improve the system performance.
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NTCIR-3 Web #RFEX A2 ICHENT, AL VER
STRFAEERTHEFF A ML 2 RETRER
WICRBOFMANRTH 2, UL, ALV EZR
DZIMA, SNRA—HF A I & B BTSSR



RERTAEHOBHZAZDRESHHLNTH
B, £ T, MR, EEANLUEHRRI A 722
KU, BEANHY s TRERAODTA VS va
YEREELE,

2ETW, NTCIR V—7 ¥ 3y 7ORECDONT
FHAL, 3BT, HANEML BFEANTRE
AT DB DOWTHIAL, 4 BT, 2hsH
WEEF ANY o THREOFIERIC DV THi B,
FETI, FRUILERREIBOSHBOT A
AL T g ORI DOWTERT 5,

2 NTCIR7—%9v3gv”
2.1 R

NTCIR 7—7 ¥ ay7id, HRkzEL 7+ A LS
- A Y o7 A MR oM LY
RETELCLEENE UTESHATH S, 1998
FELDREEEh, LTo 3 SEEMELTWS,

1. BB UFIRTE 2 KREhERET— 2y
k&, AT LMEOREE AR 3 2 HE O
R RRIT B C Lle ko T, THHRE®
FF A R & Bl E A O MR O —BOR
BEE3,

2. VAT LEOEE, MRLDT A7 1 7 DI
BERTOIMEE 74— LE8F3,

3. (EEHIRERS 7 A R ABRIFOMMFEE B LT
#0R UERICHATRE AR — 22y b
BEEICOWTTRET S,

FREfeiss &, B, EREOoT—2kv b
EEFEREIHET 5 - b OH—E M- FIESHEE
N%. FMEHRcBNT 2 50—Tk, £hEh,
NTCIR Rl 7NV —7THHELET—2EHW, &
FXERT Su—F CHALERETS,

CHET, BFEDTFA MK BEMPELL
U HOERRRE DL, SENRE (PR
), TFEANERNCHET 25T R b RITE-TE
TED, ThETyrENG 40 EHAZWEIN—
THBMLTETNS,

Fiz, NTCIR Cid, [FALaLZia] LW
ENAERMAFT— Xy P ERBH - KL TV3,
FARILZYavEiE, BFRRESE T, HER
H AT ORI AN 57— 2 TLUFD
EEILS,

1. iRFEN ROCH
2. FIREORERERZINE L [HERENE]
3. WERIRE R TERSCEORRENZ ) R b

FARILZaviE, EIRREY AT LAOME
BHE, MV ERTRTHELENTNBLODT
H5,

2001 £ 8 AH 6 2002 £ 10 HEfTHbhk
NTCIR-3 Tid. ¥R L Web iR, HNES
TR R A 08clgh Ahbhi.

2.2 NTCIR-3 7—%Y3v 7 Web 8
REAAY

NTCIR-3 7—o ¥ av 7 Web RES A7 DEM
W, 2580 IR - Web STBOMEICHE
TRIWMETHD, XBESOREL, SFHHEL
PRI (10GB 128) L. HAEEREIOLIVHEH
1R (100GB 12[) MRET N T3,

HAZ G, MBS, BERE. 57
FREN DB, HRFEHYIMRFEE. TREC D Ad Hoe
BIRBICHY T 5, SHERMEC L ICBAHIFROR
TR O AT 1000 N— U RIER T E TIRHT 5. &
BInF— Lic & DR E N LACCE R R TIERR
fRifb L, ABOfEEN, 4 BRSESEYE (BE
EE, EE. HoNESe, FES) 2iTES. M
BREIL, F—U— FOXER X HARBEROED
DIZ, CHERFERELTRAVWS, 2—%v b
Rid. HEEROZZAITHS,

FREFNOMBKEIREL, SCML BRIt ->TH
b, ZRRE ID (<NUM>), b0 L &L EEEERD
1~ 3EMOED <TITLES, & ¥ LEEARTR
FEROFSRTH S DESCRIPTION (<DESC>).
B, MEEWN, YEEE, MEOEFLEOFLL
#EAT % B NARRATIVE (<NARR>), TRFEREER
FHie & o TEB T NAEIE. BEE, LHER
3 CONCEPTS (<CONC>), 3 DOBEENHOM (X
# ID) &RY <RD0C>, MREFFIFKBORIEER
9" USER ATTRIBUTES (<USER>) M5k %, ffi%
B 1iERT,

Lz &3 e —LOMH s & i ERE R Fiks
T-UYITERE,



<TOPIC>
<NUM>0043</NUM>

<TITLE CASE="c" RELAT="1-3">¥ 7 # /7 —F,
0K, EF</TITLE>

ESC> (VT3 wir—F) OEDHFHEINTND
XEEEL Iz </DESC>

<NARR><RELE>HEEXEIX (¥ 74 r—F) OfFD
B B ED MY THD, Lk &7 4
Vir—F| O I—¥a VBTN T0»AE80,
</RELE></NARR>

<CONC>V 7 4 =%, BF, fFbr, WE, A
Yr—3isg /¢ /CONC>

<RDOC>NWO13569365, NWO11761975,
NWO009137107</RDOC>

CUSER> RS+ 24, Zofh, MFUR 4 fF</USER>
</TOPIC>

K 1. NTCIR a7 ¥ g BB iEO M GRERE
£ 0043)

3 NTCIR-3 BEEAD Web EEA
RAY

3.1 HEREEH

i ASEEOVRT LOFMEABIC 2V THZ
THb, VAT LORMICIEAE T TEER
BT A5EER) & TMEBICBY3ER) HdH
%o BIE, AHAA Y 2T o — AOREHPIE B
s ¥ O A L oM E TER L TEIMET S o E
NHd, FHUCH LT, HEEEREE R
EOLLTHTIEMTH S, Thbb, HEM LS
ARE NSRRI LT VAT LA Lo
REREMSDDREIC & > T %,

NTCIR 7— 7 ¥ g S E O & {TR> 7 —
GiayThh, FARILYVaEREL, &
By Fe—2 L UTHIAT A FE RT3,
KT R ralbyyva YOERICBEREa R
FEETALDO, —BfEoTLEXEYRT LD
{ERERR MR DB C LB BIcix 3, 220, 21—
PLinAWHMENNEL T, BTk LEET
MLENS AT LEUETES,

Barnett & [5) ld. TREC ORB3RIRE 35 {2 35E
IKHRALTTES L, BERICLBMBERT— 2k
R Lo ZCC, BT 2% TRECOTF A |
Al svarslUCHEMENEEHRATAC LT,

BEFANC K ST F A P RROBEE E BT
TAHZENTRETH B,

TREC D& Sic—lEnhTwa7AraLy
YavERiETIE, IEERTT—2%8HH3 5
TENRBICAY, MEITOREBICRRTE%. L
AL, Barnett & [5) AMER L7z T —RICBL T,

—EEHIC L BHAHLFTH B T LN ORM (R
FMERO POEHE EOL S LTIRTINE L0
M E) BTHTH 3,

ZFhicL T, AT T A raLsya kL
TEE L —FREGEOREICOWT 3.2 B ¢lEd
L., BHRORBEERICTER RIS AT LH
Y.

3.2 I—YREICET AT
3.2.1 HEORT

SRR LRI NE, a—vhEz Ty
LA AR CE A EEERDUINT T & THB, T
hb, FEEENTOEWERNREEER (vis-
ceral need {12]) ZREEM (query) KKERELLT
BRBEETV, RESNHELHEY 35— @O
TH5,

L L, %< O TRz s ic iR
N, BT mzmEmE A7 LicHd sk
OIRELUTHES, WA, F—7— Pl B
KL TN REEMOTETH 5,

EFANHEY AT LOEEE, F-R-FALT
R 255 REMELIITREAERERIET S
CLRIMNASTHB, FTT, F—7—FDk
3 R RE D & B E T RIS T E B
PHEFH B,

A BT, T—h gl el < BRI RS
TEBEE (HIEBCCIEED ICEERND 5185, i
B BV VREEECR BRI 5 & LB TIR V.

3.22 RAE (B OBRE

FTHF A FANOBRBIBNTIE, BREEROAR

T 5P OERIC RS T EDEw,
LirL, BFANHEOBRRICHBOTI, BHEEWMT
= ZNBPERO SN L AT LoD R I 1
{EHbH 3B,



3.2.3 BEIAXAI

EHRGEROFMC BV T, BB EFEH (ead
speech), EIFE#A (spontaneous speech), &Ri§H
B (conversational speech) HOFREZL R LN 2K
MEac LHERTHZ,

RBVATFLOANE LT, B LT /BHEY
BERENT 58N H S, Barnett 5 [5] MFofek
ST, BHEORFENEL F 0F R/ T hiZFH» L
HEBETHS, ARBWT, EEENRERIREE M
gL, FREENRICABRMBEREESTEATR
eyl aRBEFIGE RS,

3.2.4 FEBOMHE

HEERHERERICRET 200, FRESR 2
ETHOMEERLT, FBRCECRRICR 2 (R
9 208055, o, FHEOMENPCHREE EI
DWTHRAET 5 BENH B,

T, LE4IEEOS B, BHIO3ERIZEHEE
HETFAMRRLBOBETHY, BD11g
Hid SFaRicBEOBETH B,

3.3 T74—VEUFARARAT 4

LEowmIcEDE, HEEFFA MERTA
FaL 2y g ricEBIREAREBERENZ 5T
BEEATRBEOFAFIL Iy a 2Rl {E L, T
FE—MRICAFARERHAB T+ A MRER 7T A+
LZ¥avD3t, NTCIR [13)? & IREX [14)* ©
AAREERFEIAL 2 a BRI LE, ¥BbDa
LIiaViREO TRECHERU X 3V AT L
BINMEOY—2 v ay FPRELTREZ N,

NTCIR MM GRorieR, RIS
) TR EATWADIHNLT, IREX ¥
MECEF (15 B #TI) 1094-1995 EMR) TR E TV
3%,

BREIKAPRBERE LTI, XBNOBRERER
A U, BHMIZIZ, NTCIR T3 DESCRIP-
TION @&, IREX Tid NARRATIVE DA% Mk
ERELUTHMALRE, $5bb, YAFLOANE
LTk, BMHERE L —MEEEET 3 M DFE

2http:/ /research.nii,ac.jp/nteir/index-ja.htmi

3http://es.nyu.edu/cs/projects/proteus/irex/

4htep: / ftrec.nist.gov/

SIREX 2 L% &3 Y2 iR HIUOLFID OHANTENT
Bh, BT —F20L0EEERTVEN,

i

#HEETL

TFA RE

H® 2. EFANETFEAMRRY AT LOBK

BRET R, COXEUORBRERFELTIEN
2EEIAEHFR LT AR TRERNE U,
#EIFOBE, HFEOBKRERZVA, KE F—
Gl TR OFEE DHIE T T & AR RHBH D,

COFALILYya vy TEELEEFADICK
HHEHRFE AT LAOWBER 2 loRY, T, &
754 R (WIRRAN IC &> T, REN&RE LS
FEXALLY g vh b EEEBAOEHEET IV
RERT 2, 454 TR, 2—YHRRE
RkERFETDE, SREFNEERETIVERNT
EEEMNMTDOh, BEEC UBEREhS, K,
FHER T TNERBEREHTTF A MERER
TL. BEREERE2HITS,

ZDYRAT LT, FF A REUAOIRMIHET
HILTHCH HTE Y —EN TG 21T 7
LT A, UTomRMEE R,

o FHESROTI, FEANOBIRTFAL
ANOEEED 430U 6 81 MNEEET
T 5,

o BHEBREEROFIRICOWTREEDEEMD
L OREF—T— FOFM D RN,

COHMRENS, BANERETZEEANEFT A0
Loy g ORI T EOFENTRERT &,
EE AN ORI R EHENMFET BT LA
BbMMCi o T,

KLE, COMRICHETE, NTCIR-3 Web BE
BEANZAZHAOTA L2V a B ER LI
UTFFAbIL Y a vOFMEBRNS,

53 61 LWL BRO M DL THAPE T 3. &

2T, IFBIERA (0.0,01,...,1.0) D 11 FRHES THIL T
B,




34 BEREANEIITIBRRARY

BERANRY 2 TRREZ A7, BERETREL T
ARy a bigEY -V, EHEREDEO
FIREIC L SENEITFOMREIC LA FIHTE
BEOBWTHHETACLEENE L,

JYBOTA—VEUTF L ART L DIFERM B,
Web BED R A V2R Y DRBRERZHA LT
LOEBEICLIMKERE LTEMI AT &L
fro LIS T, EARMIEIR. XAV EAIOTF
AL ANOYEFENEOEERBTES, L.
AA VAT OEED T FIITEF AN
Moy 27 ARBMLTVRWED, EEXBOH
BERDT 3 ARREEPET 3,

¥, NTCIR V—2 ¥ a3y TBINEOE LA LR
HHMRRSY, LS RERUBLTOMITET
Hh, BHEEMY A7 LOBFESRVZRTENAT
HBETEEEBLT, 7U—-DOFED#HY—ILFy
b [15) TRIATE A BEERAOERc IV EHE
% Web RBEORNRXEN SR L, SREF L E
LTFAMaLZ Vg viciniiz,

BEREBERE LTI, HitnFhs RO
12 105 MAERE A HhviA 7 « AR THA LS
B, #EHvA ZRNWTIRERL, ¥6ic, ATR B
BRI ATEy R A By MNEBHEMIINEL
fete

EBETFVR T4 -V VT4 ARF 1 DIER%E
R, NEE LG HOER LR, 10GB 2Ly v
Vi, 100GB 2V Iy 3 O—EEOT, SEOT
AraLZ v ayTid, 100GB XE RN EE
EFIEERL, 10GB Jb-¥ ¥ g »Oflc L
Wiz,

FREFNELTIE, CCHEBRELOELTH
MEERBICHIBLIEE R SA TS LBXURA5S
LR U feo BREY A 4. 2 7 (Web20K) & 6
73 (WebS0K) & Uiz, BFETTFNVOMEEAEZE, H
BRI Y — ey b TOMRNIE [16] KB UT
VAN, Web XEDRES, EHEONBLILES -
TWADT, EHEN ASCII XEFFHEE IS
I ERRT SRR BN L,

PR, ST 2 L—U w5 (Witten-Bell
FARANT )RR, Ay M4 Tk, Web20K
DL EIT 20, Web60K D& & 10 & Ul, 155
LEAHEDLED, NS4 TS LIEMAEOEOL
MFEDE QD% ARPA BX TR Lz, ¥
fo, FRABH OB, WS SR AT TR

TGRS SR B T L RER LT

Lo TRANMI S o EERERVT HTK
BRTER L.

B 1IcgBer L oEY7— 2 T 285 5 R
T, B oizHEEHM 10 £454 (1991 £ 5 2000
) OMEtLRT. TARILZ Y a v EdhbiER
L& »oTh, Fll 10 FESOR 10 SO0 D
B, BHRHEFTNVOEBCE TS THE LNV B,

# 1. SRETTNVEET—Z OHE!

Web (100GB)  News (10 years)

# of Word types 2.57TM 0.32M
# of Word tokens 2.44G 0.26G
4 FFE
41 BIE

BEBEAFA LIy a Yy THELTWAEE
ANEEHREC AT L (K 2) i, BRERBY AT
LEWMRBREY AT L BB,

FETI, FURCENEVAFLICELT, 428
TEBRBY AT LCOWTIRA, 4.3 ECEHHER
RUAFLCDOWTIRE, ¥5IC 44 8T, ER
BRIZDOWTENB,

42 BEEBVATL

EEEMY AT L LT, BAEF 2 77—
Wby b (15] BV VE. 2000 SERRICIRER S O
72— A L EEET N (16 BEDH 2000 KEED
L0) EETDEEHAV,

ERETFIVIL. BENROIL 73 VI BER
Lie s 0 (Web20K, Web60K) LISk it o bz,
Wby b 2000 ERRICIBE hT WA SRR
1991 £ B 2000 £0 10 £ CHER & Wi RY
AZXN6 ABOETFVERWE, WFZOEFVE
NewsS0K & L&,

4.3 fERRRIATL

7 A P RRICIMETE (17) 2RV, &F
BIEEDOW S DO DI RERIC & - THEgRE
REWERERTECLPTRENT VS,

REGRPEZ oNB L, FBOHEIICE
DTV Iy a3 YRADEFFAMIHT BEEH



# 2, 100GB a7 ¥ Y ORFREROLUE (O0V: RHMFER, WER: HiE#M DR, TER: +—7— Fiin &)

FEE SR (100GB)
Method OOV WER TER Time (sec.;j RC RL PG PL
Text — — —_— — 0855 0082 .1257 .1274
Web60K 0192 .1764 .3452 7.2 0474 0852 .0676 .0717
News80K 0260 .2260 4527 7.0 0309 0369 0450 .0484
Web20K 0856 2208 .4335 6.7 0281 .0339 .0410 .0438

EEHEL, HEEIEWTFFA S ERIC Y
T3, THFAL I OBEEER (1) Kk TEHEX
1%

Z<@§&L—hq%) M)
t w—éﬁ + TF t
CTT HEIREEER (R A7 LT, 1—5EE
DHEFEHT LICHETE) KEENIHEFIFETH S,
TF; ETFA B ICBW 255158 oOMBRETH
Bo DR, EADHRIL I a Vit WTHEIIGE L 2E
DFFARDRTHED, NRal s gvhnrd
AMERTHE, DL RTFFAM i OXBE (51
D THD, avgleniZIVL 7 g sHDOETEA
MM A RERTH S,
WEEEBEYICEHAET DI, + 731407
DT [FEMH GEHN) DEETHB, TTTME
) ZHVWTHESE, SFE521T5. ¥5k, &
FHERRICE DWTHERE (L EH) Rl L, 85
BRI RIT o TIEE T 7 4 W RIER T B,
V5 VTR, BERC IhEREERICHL
THAHROMBITHRS (MR L. BFRICRBET 3,

4.4 REB

Web TR A A 2 2 2 7 ORFEEREORER
WS B 74— S TEMBGERRANEE L
fo 47 MEANEIC L TR T o fo, $53EEH
2ACRT . RFEVENEIL THE &R CAMN Uiz #4574
ARAMCIAL Tk, BEEM b BEM, REICfibh
BNEIEG TR L fok—7 — FED R T LI
Ufce RT-RFEODR 0% OPBL LT, FFAL
ANOHE OFFMERZ LU,

EAHETE, RXCPFMREOTF A MREL
Wi T, NA78=FF AL THIEMEEN LI
FAMAELTD AN TWT A 18— 7§
DOFEEERUEMNTIS, 2 TRUTO4
DOBEENHNEN T B,

RC (#) &, NA13—U v 7 1ERERWEY,

RL (%) #&. NA15—) v IEREEAWS,
PC BR5EE. NAS3— U 2ERE RO,
PL 8088, NAR-V U 2ERERVWE,

BaOFMTIE, 23— v o EROEBTHE
BRERShEN o1,

HHEEME TEDIEEER L LTI, News60K
& Web60K DO AREMIMEAEL K. MEBET
BOHOLEFMER LW M, HEXEMNSEHE
EFNEERT BT LOFEMEMNTREN.

Ez. Web20K & hE Web60K DA EEEM X
WE G, RV A ABERECTATENGET
HBT LEbhB,

EF—HZOPETIE, BFREOB A 20% §itkT
HADIHLT, F—7—FEHLBIL 40% AET
Hb, MERAE—I—R, ThbbaiikioR:
BOFMEREOR LOSRBENTRENT VS,

SiRlE, F—7— RED BPYUER D L PENH
BHROMIRT Y EBRERO X DMV ETED
FETH B,

5 NTCIR 7—2% 3y ikt
BEEENDSE%

Baihs, SEOEFAIMEAIESH DR
mEEBHBICIES DT, FORHEAIE
LTHF PR HBEA9 L, FANAL Y gy
KBLTEARTOREhhairss, galhis
AT DRI OVTIE L W BN E DT dicd,
BMTEBIFBRERFLTVEEVEEILTNS,

o <TITLEICHIS G 2 BAARAEERBERE LT
BINY %,

o« EEBRERERELDEH/ERNZLDKT S,

o NTCIR it Web BER & A7 OMUICEEIGE
AALBITOATND, BEANMEAZ S D
ATTHEE R BRETY B,

o BHREV AT L, BERBVAT L, TOTE
NHMOMFRRTE > TWANE I



L3 <A a &SIy — D,

E 52, NTCIR 7—2 ¥ ay AcHwT, Sl
BT & RN OMA R L A5 b3, B
KOWAEE &EMT S &, LUTFORERN T 20
WV IEAS

o TFAVBROAAYE, EEYBENIAY
IEHEEE S,

o BETI, FHENBMREOIL 20 O
BeRE, UTAEBREOAL I V3D
WP BT LT\, TO/FEBEL, ¥
FAYLBICET S, L DEERE XA Y ORE,

6 F&H

NTCIR-3 7—% ¥ awv 70O Web HEH A7 d
W, BAMPRMLEBREAAZAZILDNTED
B b AR R R, BENROFAME VS B
HhroR3 k., BHREREVWSISHOFNE T—H
UTITAB T LT, REFHOBE, TR DORE,
L DOWT & hIREVZFMNRIEEIC AR T &N
bl

HIHR S BREED 2N 2 NhNEH TR
VAFLTCRHBZN, NTCIR V—2 ¥ av TD&D
KEFRM oLy g 2% H L, 2hboDa
Lo varyREUT. FRESHOMRENRZRY
BT LT KDEEEIIRASAREIC RS T &R
T B
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1 RESIC

HERR WA 242 Nogram TFME, EFNVOH
MEH oGRS FR LA IV ERTY
%, UL, BIETLEAEOREO NS /5 0%
BMELEIETHE, ThkboliERRT b
B, BEAPSHTHOMBEI b RAETFIN:
a— AWK TH- Tz,

AAGEICE LTI, REREREFERSOMESE
ik Uiz 1090 fE{CIRAEK, 2R OEBRRED,
MEHEVBBICATTELIBTFLTFFAPa—132
i, BT -2 B Lk, SRS EEeT
NE LT I—ARZERB LV T B
WA EBMUNIRIEETH - 12,

L L, TTHED WWW ORET. 279, A%
OO TF VIR TH, 6000 A—IE L I
TRLLWDbATED, FRREEDLLWZSET
{EFFRAMBFELANGhARELE->TNELE
b T4,

Ei, WWW id, B¥Y A FRRAY A b, ¥R
B4 b BiBEY A EREREDSHRTHD, AE
& TEAFITIERICENED. ThED M6, B
BICE2TRASVRO—NSALABICELS LN
IWMELH S (1), Fh, HBETLEOMEL. Bk
ORE—OHEPHAORM UERHA 2 RAHZ LR
BTV [2),

TTC, AWMETIR, WWW 2 BARFEORERE
HEFRRAONAESRETVOZYH a—1 L
LTHIFTE2ME 5 hEEBRICKRD Web -3
e I LNETFILEREL TRITT 2,

2 AHERESEEREOLOOEEETIVEER
LAV 8
NROKREREGEERROIHDEFETFINE
BHI—RAE LT WWW LOEREDX 54
BEMED BB, CCTERTHD,
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Using Extra N-gram Counts for Statistical Language Model Adaptation in

Speech-Driven Question Answering

Tomoyosi AKIBA! Katunobu ITOUY™  Atsushi FUJIIY*  Tetsuya ISHIKAWA?
t National Institute of Advanced Industrial Science and Technology (AIST)
¥ University of Library and Information Science
*CREST, Japan Science and Technology Corporation

Abstract Aiming at speech-driven question answering, we propose two methods to produce statistical language
models for recognizing spoken questions with a high accuracy. Both methods use a target collection (i.e., n document
set from which answers are derived) to extract N-grams, and adapt them to the question answering task by way of
frozen patterns typically used in interrogative questions. The first method magnifies N-gram counts corresponding
to the frozen patterns in the original N-gram. The second method combines N-grams extracted from the collection
and grammars associated with frozen patterns, to produce a single N-gram model. Our experiments showed that the
two proposed methods outperformed a conventional language model adaptation method in terms of the recognition

accuracy, and that the first method was more accurate and robust than the second method.
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HTRIENE LAY 5, filShOMFIRICK ST,
LD N-gram JHEREHES X 3, ZOFERE, N-gram
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FEAF || Negram$il N-gram model
—

SRR

B 2 4 N-gram SEERBW-2 27850

S, 28T TESICET 288 A0
:\flﬂ:tﬁ'{\o

3.1 #8493 N-gram SAEHER%E AU cRERE
L]

BEMOEV Nogram SHEE S BE, RIS
LS REENNEEES, £F. K DEV Nogram §
ik, KBV N-gram BENSHE TR LATE
b, L7edbo T, N-gram SEEHIE. BX nii
REFT22ENH 5, LUTTR, BE n @ N-gram
WRE C, LET,

AL—=V T e F VORI LERNSIETH
Bo N IRAT  AL—TIUTO—BRIRDE SIS
#Ehd,

dw{_“HPML(wI' |"”:::::+1)
v Ol ) >0
(w1-—-n+1)P(w1|w1-—ﬂ+‘Z)
o Clwi_ ) =0
(1
TTTd, Pyr, ald, Th¥n, Fo AoV ME
. BAHEIC X B Nogram Wi, MROBERE1L
T2EBOERFHEETH R, TODIB, o ldMOME
DOEBNCRESZ DT, d & Py DOWTEER
ZERET B,
BAHEEIC L % N-gram TR, @EHNONXTRD
AT LNTES,

P(w,-|w:::i+1) =

C(wl n+1)
Cwip)
L L, 8987% N-gram BEEZFWBEE, C, &

Chy DTEEIE, HEEFFHCAVACEIRTE
-f\ Cn Tibj-)b‘g:ka)t; 5 “Cﬁfj‘%%‘gtﬁ% 61:

Prr{wi_py1) =

i Cr(wf_ns1)
Prrp(Wipy1) = m
Wy i-n

FRRIC, 70 Ah T MEE D DRIFIC B EED
ETH 5. PIAIE, Witten-Bell i [7] Tk, ROH%E

} +——— frozen paltern ——s E

= X
Wp3 [Wp.z Ep-J IW] Wi prz ---- Wj Wl
e i
i

r C(Wp2 Wpa \;?Vp) ¥ C(Wp-1 \’W‘)\p \ypn) 7 C(Wiz Wi WI)
S oWl oy COpWp) (Wit Wi
& Y C(Wp) < C(Wp-+1) C(Wi)

e

% 3: #% N-gram I & 2 EHRE DM

A3,

C(w:::51+1
C(w1 ap1) + ’"(w:'l::w»l)
TTTr{with ) i SR wiTh . DRICHET 28R

O BENTH D, TR Nogram HE RV 515
Fid, BEXHICr OWBELERNET 20EDNSS,

o Cﬂ(w:l-n-l»-l)
{Zw‘ Gﬂ( :,—-n+1 }-i—rn('w, n-l-l)

T T T rp(wispy) W N-gram BUEEHEE CL(wi_, 1)
ERIe, ik wilh,, ORICHRT B R0 BER
BTH5B,

D&, BE n OFRMER, C, fEdE#H-
THET B & ICHRT 5.

OWB

f=n-41

dWB,w}

—n

3.2 ER% N-gram SEEIFIRIC & D ERFR
DI

niEH R R A R R T, TR O
B3 N-gram HUSZ WA TE 5, ¥, HUEHHIIE
STHCHABC LW TED, COTLRAALT, &
BIRBIAE ST D INC RSN < AD & D
2, #9A N-gram HUER 5.2 3,

ERRE 2 RT MR 0f = wptbpﬂ gyl &y
%@Ej{”ﬁt &%I}innﬂ ’LUp N+1 =Wp—N4) " Up—1
#EZX D, TORREY 91 BETHRENHEL TH
D, T N-gram ﬁlﬁ’i‘ v &L CHRAT 5 (B 3).

1. FRIFRHNEOBFAF I L T, BHEV N-gram
AR ISV kiR T %,

= Y0(_N41) (2)

ﬁ']?t li tri-gram EFNEMET DG, tri-gram

Cn (@i-nt1)

Ca(thy-aty_110;) = YO (i —gabi—12D;)
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ERIRTEOIET M LT, BB ELL
J:@EE’:’@ N-gram BB %IHHT 5, %ﬁﬁi B
ErkETHE, TTONIRIETES wp“nﬂ icD
"ANAN

kwp+k 1)

(3)
trigram EF VOB E, TARTO ARSI
Wy gy IDNT, RDKSKBEEOFEE
WY %,

Cn(wh @) = 4Cluy

pn+

Ca(wp—1Bpilps1)} = YC(Wp—11BpWp+1)

Cotptips1) = YC(iptpsr)
Ca(wp—2wp1p) = YC(wp—2twp_11y)
Colwp_yip) = C{wp—11p)
Ci{ipy = ~C{iby)

3. FLELO Nogram SIEERIE, 700 Nogram $§
Et@ut‘a_éu 'n=1*--NiC'DU‘_C\

Cﬁ(w::—n+1) = C(w::mn+1) (4)

4 N-gram TTIVN\OIGERIFID
EA

QA BRIXANDEHETNVIHIED S H—DOF %R
Y, BRERAIRGETERL, FEERELENG
S84 Ul Negram E79L (BIEE, ~—2Z N-gram &I

&) LRETAFETHS (2, 100

N-gram TETFIMLENS MERE, £TOMHEN
BANCEBAIRE R R Y h U — 2 L LTHERTAC
ENTEB, —77, RORNH: (EHER) T&INS
BRI, SOBIC Ko TR BRIV 2B L
TeMERy P — o TEEINS, A—2Z N-gram O
ER O 5RO BB, FoulisiEoFk
MM B A—2A N-gram DILEOMBEN, @iy b
T—0RERTHTLIRES>T, AEFARHEEL,
—DOBFERY T—ITRTTLHTES (H4)

HELUEMARR Y b o—Zic g, Wi L (am
OFE Lfg\b\) BRI UTEREN 0 2 ixn k3 AL,

LRRHe A B Bk, (N-gram ©RE )JM«I%J@*&:L)
EMENETTHA. HBSHONEL LTIES VBTV Y
REMEHI, FOEFHDANC LETESEY, LOL, fARE
OXFATTHENTHETEA T L, REbsgEE R R
BRI 27TV LARENT VS j6] TE. L EMSHALLIE
EAEREI Y,

Base N-gram

Wi Wi Wi Wi Wi Wi
%Wz Wz%\yz%“ﬁ%\ﬁ Wz%
Wl W 23 Wi £33 Wa 235 Wi ES\Wa

@Wsl @W'3 _’gwm —‘§W|@Wem

@Wna ~
@Ws2 @Weu
\@WM . @Wi @Wi
Grammar-based Word Network

4 BEExw b U= DRE

(@
RN N\
ﬂkﬂﬂ;ﬁﬂ“[)tw*ﬁl I!;EB“CJ
G1 @_- G2

5 BigEARw bU—¥

N-gram M2 b YT, A N-gram & iz
BEOWAOEEERCERTAEFNVEMETE %,

4.1 HERYII—

IEME%, MARRTEMA L LRIk i %
ﬁﬂfibtﬂ,ﬁ Exw b7~ U TRRATHLEERS,
TOLHBHERY FY— 73, FXOHEESHOEH
CERTNETH S Pl ERRERRDREER
L TORIA» X5 MBT I 28R b,

GG W N Y o P)= O
f/E /B /T3 [

T 3 XS T & 2 AR HARI LT O
WY THB,

A= {(F,48) (1, H) (f1, B) (%, fl) (A, ) (4,
TT) (A, TF) (B, TE) (T, ») }

T OHEENZ N HSATRETH B L ER B L, X
(Gr) i& 4 D (W,, W, Wy, A) THRIETES, T T
T Wo, W, Wy i, ZhEh, SYERE, SHME

&, RERMIBRETHY,

We={fl & R TY »},

Wy={f}, Wy={%}

Lk, G, DT 7XRRAER b EITET,

NGy W TREREE T M fAET ) (M

FHETIMN OL5 %, BRENEWERERET

— 102 —



BIBLTLES 9. FLT. ﬁ&f’ﬁﬁk%@%ﬁpnnm“ﬁk
ZRIALT, HELUIRWEHERGRL, ™50k
BB CHITBET B LEEX D, HlicEAL
fo/—F OUR) @ic, $lcaBELSSPEALT, X
D& I (W We, Wy, A1) & LTRET 5,

W, =W, u {fil 172}

A= {(f, &) ([T, H) (fa, @) (%, 1) (1, B)
(A, f12) (fT2, B) (&, ©F) (H, T (B, TH) (T
7,4 )

ik Go i MAERATeh) TRARE T
DESZ, FREDCER T BREEF2FHEL, Fh
DStz diRT B, cOXS T, Miiry hI—2 (F

HER) Tk, AOROEENAEZFIFAL T, N-gram
TRIHATAER, BRI O MO SR FIIGR L RE
THZENARETDH B,

Z TT, N—2A N-gram LB T Blcshic, BBy
b= TEREINECERLTD 2 DO&MERELT
WENH D, B 1IE, —2X N-gram ¥ 3iEDIER
BRAENTOWABRENSH S, Chid, XEoOERI
R RBERRIE 2A b ¥ THIE RV, KT, BiEE
B ORFIC @ BOBTRITCLRT B, R—2
N-gram OFERE Wy, WHEOERE W, 2430,
WynWa =¢ TH2, H 200, SGEOEHEL, &
FLAA OB TV Wy, FlRIC, SCH0ER
RBHEFRE. REMWMCEN TR N, Thbb, X
HEORER Wa i3, EWCHERS O, TR
B Wp. PRIBEEERS W, REBERS Wy ho M
WENB LT 5 (Wy = WgUWrUWg A WnNW; =
oA WinWeg=¢ A WpnNWg =),

4.2 SCESRAD N-gram SEEEIY YT

NESRORFERy PV ZIC LB EREID N TS
feic, HEWEREESA5, CTTHAZBRES MW
DR THoics, 3MTHRLFHRABICHESI L
CHET %, BEOS A FIIRLTAEDNEZ N3,
flAE, BLMiMEAEBEE LT, TOSFETHELY
HERE5A2HENEZOND, CCTR. #AID
K (2) 5. N~ N-gram OEEBREFFT S
FHERRH LIz, XHEOFEREN—A N-gram &AL
P T, XERSOBERN @uw]_, ., i3t
LT, MIEY 5—A N-gram OREFEP| wi.., ., A%
THET A LZ2HHT 27AETHS,

XHEEAER O MRS @ui_, ., KT 35 N-gram 5§
B C,(Qui_ ) &, ~\—2Z N-gram TOHRFEHE
Cn(wi_, ) ZFAL, 2OEFEEEZIY-LTEZ

Base N-gram

----------

Ci{W..,Wh) ," CiWi, Wi)
Wap--» W]‘D Wiwr W]

*, ClWe,Wn)
Wen - = n Wa
*

----------

¥ C{W-1, Wb} C{We,Wa)

@b Wi ——w W
C{Wi,Wj)

Word Network

B 6: HEEHMO T E— (bi-gram DB H)

Bage N-gram

backoff model

no uni-gram
blck off mudel

Word Nefwork

aWb

X 7: Selective Back-off Smocthing

Do £z, N— A N-gram i 6 XENER T 55450 0O
K Cn (’“—’,_n+1@w —k+1) &, XiEDBA— X N-gram
BT B RO O C, (@wl_nﬂw e By XS
4% —2A N-gram TORE Cu (wiZk, jwi_,,,) Z2F
¥ 3, TO3BRTHICDVTI, BIEE 4 {SL T
WEs, chid, XETETIET 2ENETEEE
Bk 5 edTH 2 (M6).

4.3 BIRNGNvIAT « AL=-T0E

WG U B ARy FT— 7 LHHEEED D, N-gram
MEREHET 5, CORMBLLEZOR, AL—TY
TFk LSRRG, MUTERVENS 2L TH
Bo N IA T« ALV T TR, BRD N-gram H
FIELIEWEE. (RO N-gram THIT 2, 2wk
U= 2FEHEU ALV ITaE, XEicE-

TR & /e ZErVR BB EER OIS uni-gram T
tiMEh, HRLETOHENOEREFTETIVE
BoTLEI —H 2LAL—VVTRITORVE
FVRERT BT & LHRB M, FOFEEI D
TR IR E N B HY, N-gram BRIC¥ OB RERGRE
MEC, BEMELTLES,
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FTC, 2RI OERRE>TALN—V VT
FiEEYIDBR ZRINNE I 72T « ALV VY
RV (H 7o A N-gram ORFE L SGEOELH
ik (w; € Wy U Wg) &ZFT HHEREL, —t( )
TRENZFEEDNRY L7« ALV VI THET
%o 1272 0L, uni-gram FESREIK Wy U W &2 BIER
BELBLLUTHETS (Thid, RiER3 XK,
WiUWg i 2T uni-gram FERZ 0 L T30 56 TH
3o BHOWMIE b BIGEOHRIEA L R
(w; € W;uWg) 2P 2F#BEE, uni-gram ~/ 3w
X7 UEWESICHET 3, T4b5, EX n>2
KW, () RTOEFHATEN n=2kK

DOTRADHERZA S,
P(wilwi—l) - { d" P.M'L(wll'wI 1) CQ( 1__1) >0
0 1-—1) =10
(5)

CORTEI K T ROBBRSBICHKILT 5.

Pluy) =0 if e W;uWg (6)

051(’10.,'_1) =0 if w., €WpUW; (7)

MR Sy 2 & T ALV T L7 N-gram
BTN PlwwiZy ) & BTFO& S LiEHERT.

o XHEFBOMMNETE L UREIMAS (WIUWE) ¥
W BRERME Pluilw}=h,,) & BB wi_yy,
DI E DTN TOWEVRE, 570 275,

ﬁ(ﬁ‘("ﬁ‘““h?‘&b\ﬁ RPN EERIENE R Ghik
o &2T, n>10N-gram 88 Cp,(wi_, ) 120
&3’1'9 PlwilwiZ},,) ¥\ uni-gram XT3 747
Eha, . vy e WuUuWg 5O T, & {6) &b
Plw) =0 &o°T,

Plwlwl"y, ) = ay—1- o2 an{wi_y)Pw)

=0

¥pic, _—2X Negram OBEw e Wy S u; €
Wy UWg BFRIlT 2EREHT0 LD, "—2AN-
gram 76 XiEDRANDHENOERHILE Ui
Lt s,

o NHEEIOBMIARIER X CHUMMEER (WeuWr) 6
~—A N-gram OREE (Wy) 2FHlY 25HRE,
WHTokixs,

SHEOBPN 5N~ Z N-gram DEFEAD N-gram
HEEZEAONTVEN, Ko7, COFAEa>1

O N-gram 38 Ca(wi_,,,) & 0 &0, TRHEER
Bk uni-gram ET8v 74795, O wig €
W UW; EDT. ft(?)cl:b a(w,-_l)=00 &2 T,

PlwlwiZh) = an-1-az-cr(wio}P(wi)

= 0

Lkic & b, Y8 UREF W st O A8
¥ N-gram QA2 QM2 TWET LT B, &
Fo. MECIOHRUFiEERICO L. uni-gram ™Sy
2 F T LIEWT (discount 2L T) #HT B2, v T
BHHIT B L, A OIEMNICEVEREESA S,
Thick b, XETRBELURFEERFALTRS 2R
SCBESLEERT TV ERH LN TES, &,
RNy I A TEBETVEEREND D, EFBT

FVEBBE B CHEOEFERT 1~ XTE0
FEFAAEL WS, BFEOY AT L OHREOHE
ThERREERD,

5 SRER

SR 111 A ASH D 2 FHEEO N-gram SRR
EHH LTz, chER—ZIC, RFEClm~T 4 0O
ALFHEOLEET o, ALYV TFER, $X
T Witten-Bell 1 (7] Wz, ERE AT ORE7—
2L LT, QA HMXOEMERF 224 530 (#
Baw b7—2) (B 8) ZFM LT, £/, TOHZE
oy I D EERETV, BERIO/IZ—
v OBRER{FR LT, RIDEVWOREREEDHS L, 172
RE=VMEEhz,

%9, HAIOEIS DS bi-gram ¥ K U tri-gram %
{ER LTz (BASE L829), TEREEL LT, N-gram#
BORSIC & 5FE (2 i) CRIGETIVEER LT,
FHRREONRI—HBEEBINMETF A T2 L H
LT Nogram iEE M L. B w B THHEE
¥ N-gram BE £ RE. bi-gram 8L T tri-gram %2{E
U (MIX 2EET). BEED 1 L LT, Wt~
FeFETEFNVRER L. ERRRONZ—V#E
RV, FHIBIEEF IO N-gram FEHOENEE
% (HH 4y T) ML, bi-gram BET tri-gram Z1F
B Ul (BMP EET), BRED2L LT, ERLE
Xk, 4 ORI FEE A THMAIH N-gram
& (EdH v T) HE. bigram B XU tri-gram & {ERK
Liz (NET 2809

AT — R i<l HRIACHE 100 3 (NP) £ QA X A
7 BRI 50 X [13)(QA) 2. B2 Akt 2 Al
Ko THA L ERF— 2B W, fER L=y
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\

\. 5 fr—

\ NN E. ©
& 2

@@
off

B 8: QA X AZEMEBEOE

bU—o3riaid, 20 BER L R NABO L OTH
ZBH, BRXOSH 19%0D 36 3L (QA) M, TOXE
DEFUCT BEEEFA TV,

7 - S KRR R E RS 2 — & julius(1d] D
PR—=Va 3.2 BERLE, BHEEFIVICE 2000 RHE
16 B S FEMRTE triphone 2, EEEFIVEMLE
[fiFCHt N-gram( BASE) TORE#EZR 2, bi-gram
OHHTIE B — S AOFERE, tri-gram O LI
—IRALE T IRADRER N,

HEEREE 1, K9, K10 IKRT,

£1, BFETEINGA-ZERILTCRLR
VEERERLZLDTH S, EOBGEFHEEN—R
G4 Y OFHECEE TV (BASE) ICHAT, BEEED
B (WER) BB LTS, o, Rk (MIX) LI
~, RBEE (EMP,NETY I3, Btk b BUWERE
TLTWAZ EBbh3,

B9, B0, BFEICBTAEMSA—RLH
HEDRLOMFEERT. NETEF I, XETHR
R BHEBIDVOREE (QANVIER LT, By O
< WER ZB{ETFW3M0, XEmrb LT hizs
FEEUES (QA), B2 LB LT WERNE
{65, LEOBRRL I3 kE L BRBHE (NP) OIF
it COMEmREED SRV, T, BlLR
AR IR TINA ARETERBLE > C ki
LB LEDONAIEFHEEAVDES, Rholk

REE T WM N-gram BE SAFE L1 N-gram
Feiglt, LR €508 RL 7L OFESANE LS (—HIidE
TEF A I ITEE L&Yy Negram T M UBELS), FOK
8. W EM-—-OT— G TELT S julivs TRZOFERD
TENTERY, TOREMEEL, LR EF/L RL EFL2MND
F— g T 2 & S BELRT 1.

I, WU L7 o— 4 (julius) TR H— AR R

& 1: RHRBHER

target language WER WER
{# of sent.) | model (2-gram) | (3-gram)
NP (100) | BASE 18.0 10.7
MIX 18.0 10.6
EMP 18.0 10.3
NET 18.8 104
QA (50) | BASE 26.3 16.9
MIX 21.2 164
EMp 19.6 13.8
NET 234 14.7
QA’(36) BASE 28.1 17.2
MIX 21.8 15.2
EMP 204 13.3
NET 20.8 13.6

W RTINS SHBE P i A T R BT L TWA, —7,
EMPETNTRCOL S RIS ENT, &b
HEFEEREEEZ NS, ELRMBEONTE, NET
F L BWERER L

6 Lo

BREANICHIG U ERIGE Y AT LAOEEET IV
T B12sd, BN L2 S HRRCEA SR L
7o N-gram 2A_—RUT, ANETER I BMERRR
BEVTHERMET 5 2 DOFERRR Uiz, BER
OFER. N-gram FEEEHTE TRET 1R L
BN, EBoDFELURRVBERDEEE L
WRE NIz, FHT, AIEOFEN B LRt
TEOBWHRERLUE, REEE. PO N-gram
BERET VR, HEHERENNEN (ANFTIRET
FLREOSREELED) BRICHINT 5 LHOHEE
{EFii e LT, s bBHAETHS 5,

BEITH
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BEH: B hHH
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T AR RA
i SRR TSR
M BHERAHRAIRE CREST
fujii@ulis.ac. jp

1 XC®HIC

SEEE, wNVF AT 4 FHREROY RS EIEE0 T n—
RAY R -T, 2HSBLBRyELBESICE
YA TCRELHIETCEL LIRS, T LI
IRRT, KERIEHRO P & LHERERE TRV
L I CYTFRITERTE 2 MV EECh 5.

BHEBRELTWERLF AF s 7HREL T, 7%
b, EE, HEMHL, ThOHUEEITCEEL, L
LHEMELRBHL =< eb a5y we LT Tekim M
Feha, B, FELASARRYoREEIREL
ahs, WHHMEHTOR—RHTHDB,. £, Hish
EHECE SV EBBEHMT AT LRV DS,

AL, BROCFAF - F2RRICL T, BRI
U=HEL RT3 v v R a7 hOWsERE:
T-TWB A, 8. APAFLBHVLE, HEEXTF
By O T S A M EEBEL 205, Bokb b
A RS R LB BRI 5 2 2 B89
B s,

2 RHLBROEES

—ODHBELEET LD, B (BEEH) 23
S LA GELSE) 2WH 22 0RA SFENE
ET5L. bL Y, YE5h—20FRTHEN TSI
AT BB, AMRTRRT 2 A7 LOBERIIHW
THhE, LrL, 'R HBEL, —HNEETHIME
BBERRVE 0D KD 2HHE R BE TRy, 22
T, HEOHREIC 2V TERT LI L, APBo®
BRI T A0 ESCH L.

YeEHE, MRS ETFIRZY oMk S ¥, 2T
DL O TERHEP XL Y oBBEREFERI I
LT Igdlcide) eMTES, £, MELHRYE
LBEWET I TtEL, 127, 2E0FEZMNEL
=8, HbobbEt SR ERT I NESTH
A5, Thbb, SyFAT7rEAHEL TV,

ZhizHL T, RLERT 2 e 28R ehy, 5
VLTI A S e, EEOHE T, PiEss
REOAR—-UR 5 4K 0Bl shTnwty,
BRIDLIKRE-ROTREL VLTS T e RTER

VW, SRS AR I 0ES, ERAECHE S
THIMNT 24THRWERY, HEL2 TP YIcEEY P
BRUIK K-> THERERASET S 2 L AT H 5,
EEBM (FAa75—Yay) KE-TRFABE 7%
AMCEBRL T, E3RIL ShAgL S h s
it BREEGRGBAICHERTARNAEN,

A BT, BROBIIHROFVERNMISY,
BEHISEABICHL TR VMR Eh 2 - 2
B, ZTRIRFEIZAR= AN EORAR L2 DROTE
FRECHEHL 2, LA, BRCRIBTH4E BFR
DUENSMAETHEET L Z M2 0T, SRMIC
FEFIRY FROFEL 25, FhicthiRs e, BEX
REMNFIGHL ZBITHIZLHNBN,

£, RERFHLLDUVREER RSP ORT
ZeNH B HENENEECURTH LY, £EHH
RERLEHSNDL, BEL RS20, BROK
RBIEE THABSRHOI 2B aETaZ e b
HDH, HEEFHOL RWRLHEL ARLY VL {0
IR Sha o bbb B,

BEoEEN 6, YT 47— & 2 EER R
THEHOBE—oOEFAMNRITE, 7, WHE
RATHACEEYINEL, BRoD2EFL2ER K
ETL, FLT, $EL RERTC BT SRS SR
Ve & RIS HIEL , BRRED S, TOHE,
BT A 2L TRRCTY, BNRBO o 2 Mo pER
L BT 5 2 L TR B,

3 VATFLER
3.1 ##|E

AWfseeiRBRT A4 T Ry 27 2 (Lecture-
On-DEMand system: LODEM) O %EE 112R7T,
YAFLCHRT A2y F v, A—oREcET 5
WRF R AN LEFAF -~ CHD, 2—FHBELE
BRI I SO TRENT & A S SR A R
L, FhikEpdTavsdhsy 20fHL 2170, B
15, ki, a—¥REVvOnERE-T7—K, 71—
X, IR REHTF 2P REPATWRVYMERDT 3 A
MERLAKNT AN TEE, Thbb, YAF LD
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A5 A A, REFEANPOHIBL 2—EO
FEe 2 — BB DS — 7 — K 2 BHRER (query)
PLTHEWT, BReFAT - SMET A F AN
BERBT LMY TS.

ML, RBUEHTEH—TT, 75470
PC tow =775 7 tREOMHE, BREHEBOAN,
R OBRBEE{TI LN TES,

T ok, BEoFRREL B, WHvTA
F—2WHTLRBHIALETH S, BEMICE, #
HYF AP SEET — ¥ kBl , HFHRCETNT
EHEF A2 BHROBHE—FOEL EIIHETS, &
S EFIR L-TEFRT - OFERIL 2AERL
THEF s R—AB{EETE. Z2CE, a¥shi
FRFPROEGGE (Neyk—U] PEEZ LTS,

UEF - _R— A, FEAMBRER LT, B
WY AEFANR -V RBT LM TEL LI
B|ELEhTna, B/, #TReTaltiThh s,

K AT LOWFEL, B HHR%R (Spoken Doc-
ument Retrieval: SDR) [1] O—F¢H 5. FFEE MRS
L 7= SDR OWFEECH, FRRMOBEENRY R 30%E
Eh-TYH, THFANRER: ASORBHELERTE
BIEBHENTWS 2, BFEROREINRL TS
FEF — ¥ OMERREAFI L ->TELT 2 00,
MEOGFRENTAY 257 Lk ZRLT & SR
B+ dh s,

o, FPRIIHORRMICERL , AR ORBES A
F LT EEREE HIRL =, SRR EcEM N
Bizgh, P TI—oll kL T ARSH, EB
ORFCEMIL TRl ths e Mh s, 22
T, H—oRBREMICHL T, BT 532 RENE
WEIC BT B AN RO ST EL v,

LAL, AL X 3ARBRWETELHATLZLAR
Thh, ERATHES, 20, DRTHAL ERER
OEMEBI RN ST F Ry -V BT LR
L = AHBR) . o k- T, BNED
HHRC2—VOBBERELBRT 5 2 2 PN elEic i 5,

TEAMF—4

BOXKE -
HiFEE

i}
a—y

ﬁ\

B 1: A F < Ry A5 5 LODEM 0

3.2 HEETATF—2420HE5{1T

HECFAF — Y ORIATRUTORE» LR SD,
P FNBTEET5Y — VB Lo, ©C o0k
HEMLEh TS,

1 BFAF -y BFF -2 T 5,
2, BTNy E—VICHET S,

3. EEAM LoTENv -V ToHERIL
BERT S,

4, BERILIIHL T, AT X2 RARL FikD
BT 24T,

FIETIL, MR THEFAF —~ SO (TH—<w
k) Aah o T R B R v,

FIE2 T, BESEOBRBIHEYT A& D REHRH -
REAY E ¥ & VICHHET — ¥ 2 58T 5 2 & HBEHIY
5, Lvl, L ERECHL T, XFIWETL
ETHHL L, ERAMMNEERILEFRL T, &
WO 3 5B HET 5 2 L L VORI TH 5.

AT WCRBFRMY A7 L% BT HibMcE
ERILZEHRL TV 540, FHoERcAVeh S
BEEINEL < EREhniieMERH 5. %k, F
L OB EEEF VL BEEEOEYT S
LML ThaRd, HL SRNE ORI 578
HEHREL,

AL OS2 HEL €, B0 Lk opmm
RRETHEFRP ML, BXEMEEYY & L CIHRER
PR S, 51, HHoRELELrHT—o0Ny
- EHKT D,

FIE 3 T, ERFERR Y-V T 0T 4
F=YarV I hU=T 7] CRESh TS EHERE
LYV (Fa-F) LEFERETFNVERRT S, 5,
FIRASCERRDEF R Y 2 S FFL R EEEF AL MA
WAERL T {5), HRICIEL CHEEVWMITWS,

ENF 4 TRMBEERRITY A7 b THRE] 12 BvTE
SRR L R BERHEIL, RFEMRCESWTATR R
BIELL THIRT 2, £k, h&hFEPHERE
LEEENLZI LB OT, REZELHIZTLL T
W5, L =REFEEZACCERY 7 A V2 EBRL .,
FEAMLI2BREMEROLRBELARICT S,

3.3 MBEERAAOME

3.2 M THARL RAIER ko T, BMEFAT ¥ (8
FHEIL) 2 PHOAy -V HHTE I LM TE B,
2T, BNvE—VRRRLNEL BT, W
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ROFHCRBINLEZEOFREHWT, BB
BT B8y - U BRI ET ¥ 5,

BB BHENC VIR D RIR [3) R v vk, ZHL,
EEOTEWRBEEROHT b LIS RS RE L 2
THILTMENTND, BEMITIE, W58 J OBEE
AAFERK (1)Ko CEHEL, Aa7REWERICK
FEWAT A,

> (L .logm&) "
DL DF,
t Navglen +TFa t

ST, TFa BRI AGE ICHRT 25 TH
5. DF, Rt 2 80CHPTCHY, N IBGENTD
%, DLy WXEdORE (RNAH¥D) ¢H Y, avglen
BRRHERTH L.

MBEED &I, BERILAvE—VOESEEL
Figk (3.2 HiOFN 4) THRIELHMT 5,

3.4 BPREBALICES ERNRR

BRR I —o B3R L TE & £ TWARED,
FROHMCIIHMOBATHRL TRAEN L2 2
o, T20, B—oERI2HATLs0TRR L,
33HOR (1) THESh A 7HEVER By
—-VEMNTELEND S,

LaL, a—3--5BRL bbb s 7, BU &
ST AHBRELET S 2 LRI, —BF
W% (BAE) LAASIROEAER 5 RFL vk
ST, Sy k- THEEBRALT AT
Wi ceE s, Zhii, 2—-¥ibheNELEEL -
EIZ, a-PRRLAHERERD S B, EEBEL T
ROBSREEL, T oML TR oE
RPIRETALMMEIER BN TED,

WHS (6], 22—V XE 42 HBL THERHRLL
T S VEIRERE, RREME XHd 0=y
R I N LTHREL, RKELBRORBFET 2Tk
BHRELL, 227, RREERE EXEBNHEPCHR
BEEORZ MV ELTERAINTWB I L ARHETH S,

H4id, ZoFELRIGAL, RREEAY MV —F
REENL Ay -V T 22 ML 2 DZGEIR
DR SHRMICRBEREYET 2 LT, AREAED
BAELEETS, $k, BELEVETATIR, RER
BRs b ABHPET 20C, R (1) THEShLRT7
BREIET T4, Shila—PoERMREI L S
hon#BRyEFMEL Tw5E, 26, An7loH
THRIMEEREL, A THREHEL FE- Bl Ca—
PoERD T shiz L L TREE2KRT TS,

IRTENY, Ao 7 ORMENC R L THEA R E - MR
SR s Todry, FANF — &% AT SR id
DEL M e, BEMCRETZHENDS,

4 FETHLER

SETBIAL 1o A7 LR EHEL, BTFIGRTEHO
2y 7Y ERNRICRBRER LT,

o HPBATHR SN, TORBICES BHM LS
NTWEFLEEM (45 50H)

s FLTOFo— b VFPNEER (FHHD) 2H/IRL
s (30 5D

HIFTCHE, CATV »oF{FL LEFHF—-F2 DVIC
SEEL , BFCI, DVCAM % HOTiEsEt v val ik
TAYUATIRREL =,

B 22 A7 LY, =77 509 CtHhEBLUE
B 5 L OIHEL & BRI Y - N TR{TE
ha, UL, iR F4AF -2 09 £ AhAE
N LEENTY Y - R T2 I NEHTH D,
F2T, EFAF -HIITAT7 b0 PC LEIREL
T, ZOFRSERETLZLEND S,

VAT WAV I T == AOMNERE 2 IR
T, ¥&Fo— b UTAHRBEEREL T 5,

a—YPREHLEOEH 2 HAREMNS, WHTFDAH
Ky 2 ARBEREP S 2V —LEASP RO —
TR AATEZEMNTCEDE, BRELEFTLE, B
TaNe Ry~ VOB L IEMIRRSH, 2—
PHRRL ARV EmELFE &R S,

Z D

HRBOSERRIT 3

1 ([dUEWIC

ﬁﬁﬂ’a&&lr—ﬁﬂﬁ?fﬂbsm &
AL .

FikE RS
TSy S B irs e o E R ARHR 1
ASHTHHIND, a

ARCHTINROE-0-FEAT) o« BREHE - JARE anjas
I 4

. )
T S e e Tt e, S

B2 dvF Iy Ry AF A A ¥ T =—2

LAF, SEFRICHIRL a7y ERIcn L oh
DEEEIT- 12,

9, BLEBELBITEORWI WAL LD
I, BERET %A L EIREE O MR L .
> 20, WEEOXEYHE, ERICREERMcL - TE
Bahl-BsiEiLitdth 2 XFKehs, EHEEN
KREBERVDPH LIV, ML TRIEME £
DIFY OBV ERETEET S, BRLETIERT.
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_ WIALR] memol

FUE Al 3,480 11,038
FEEW 3,342 6,017

I OFERP S0 A L OIS, FL ML, BXEFHC
HRBe 2~3 EEHICARTH - L. FHL IR ES
BEEDFEVL, BHOASF ALRYVRETL2O—/
LT rii@EfTchHs b0, SEMRL VT
PVER, BEFERFOERE L UTOL 0L
ok eI (A '

o SHOHTICHRER AFRR (BHTURY)

o Bk (BRI, BEEC TABI)) 2Rl
NTWBEAICHL T TR ofIiEHT shT
n3)

e MIEFREYMIIAL IRBH (FIATEND
3 wmy)

o THRER (METETH) 2Y)

HL EE» B EREEVICEL T, FLrEdflofd
Fot., KENSEL S0 EbNERBTH S,

FiErit, WEACEHFROL S 0k dhiThd
HWIEL Y, FofTARY 0L 5hHRMEISh S
PEREDLEEROZ L RIEL Y. FREMLY
O MkE AloouL iR, ThbbRk
oD ThET,

DV T&BEEh 77— 0580, N7 —k#HInT
400ms BEOBERMERIML L ZATERF —~ 4%
EWY, #hi—o0HFL L, 61, HFioT
—oDNw—-UEHRL . TORER, 45 50HE
Mg oRe—-JRHHENL, 22T, NtV
B VIRRT 582 07, BET 96 3UF, WY 312 XF
BEEh Tk,

THI, FUEBMOBRE 10 HRICHL THFETN
B P L 7. SH3UPERCHIRDEIED & {ERL L BFET
F NPT AR, MY S (Word Error Rate:
WER) i 20~30%2 WHKEAELh, FTEXERE
(Ao a7 b i Pl LT R

SEHREL =7 U B, SREtRicEt o5
#]E ok, HEEN S T Ao {H5AFILIEONT
WKETAHERE)] 2V —EkE L TREBEREL
BEHORERRE (BEEIL) 2LUTFRT.

¥, 1060 UK, MAROREHESGE, BL
DT, ABERENSHL ELE, SOREET
Moo, AEEE0, REEHNCHT 28T T
=@k R oSRLME LT, 19704F
AERY 5, bk o@ENT 28R EIHL
T, b PR, SRl SIBRE R T AT A T
L. A RICHD B ITARTR AR BEY Bikik
THROTEATHET,

YRR B [ ADERERIC RS SHILIRO LI
BT Bk REROKFHSTH L, TOWHIE
L eEFEdmahtwhinbon, FoxiRcing
e ko TEL CRBANTWS, 2oL, BEE
B RER A -V B IBEEORSICTAILT,
LEHBMOICHL T UIERRRENTR L R ok,

5 HbhbUIS

B—oH&cET TS AMERE v FA (FF- I
) BB HBL, FE¥AP AL TEFHHEE
SRR A4 F v RV RAF LR ERL . W
EEORFLVEORERE, F2F2-NIT7NRER
IR ERE Tk, TOM, FHiblE ==—AFM, v
VDY RV YRR O L I RINT AT 4T
a3y FrYyoHiNERL D, BREERIL -
REHARLART AR 2 b oo, AEOFFER
Wik Ty, A48, BHERRNTR IGBL ey
Ny -V HEREICOWTIHREZ{TITFETHS,
fe, BRI FHERZ I 20T b5 EBRETT 2 0EN S B,

BEER
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BEADICKZBRLE Y AT LOROHOEERRASEET VOB

MEXRT @FERE™ BEHE" Bt
'ERETRAMAN T RIMERAR C HPRNRESEERE CREST
e-mail: t-akiba@aist.go.jp
1 iELslc
 FPIICE (QA) 3. 1000 ) TREC Sk 2 2.7 //\ w@\
e: TLUR, RSO HIRAERTT z et
UL A7 L AR R OB %i_“@
HREAR P L EE AP RNST 3L s n N /
TELW ], HUSE TR AIDERIE NS & b G1 —(8) G2

FLEWRIGIVWRENMIBE NS MG, kbFH
FAMCGE LA THRLEIEND, KAl
ZO& 2%, BEANRIMRE ULBEMSE VAT
LEMRFTH S,

BRIISE S AT LD NS & 75 B TS DREE,
BRI LW ERINERRE R 57, QA DKRR
MR T B ERAREMER I NS, TOLDE
AR T, ThoMHOMRS 2 MORIRE(F
MRS BRRET VSR E L3, MHORLNL
FRICIE, RO EHVCAF CRES 7 DR
EFVEERTECENEL LGNS (1], T2~ —
RipBhntdl Lz Z A7 OREE NI MEEy 27
LI ETIEEDEAEGETHED., QA XAV TIRHE
RN SRDIEMBIC b BT ATEAFCHIR
T ADIETERN TId A,

—77., HEORIENSICET ARRICE, QA D
AR L i 2R SR Y EfIRAL T, 2L
W5 EH Lz Nogram SI5E 7 V%2 S QAR
ThHd. LHL, ThEEEYFT—HLLTHEIKE
VTl ERINEEMERRER S IR+ 2TH %,
Bl OfhORE 72 e SRR T 5 8D
Lh, INBEORBOIA +OEmEEZ L E, Thik
BETI TV, TORER, N-gram TFLOHA
JEISOMBL LTRADNTETHD, i)
B2 2 7HHOBEYT—22E-T, ROTTN
f:?z ZRAWKHEIBT 2FEMMEREN TV ([6]
2 ),

Thi 2007 Fu—FORRERIcEN T Ak
& LT, N-gram &EHRGERA S OAETHE
TRHERELLND, BED [5] X, XA7DEE
FREEF L RSAEOR Y, BlLlaA 75
5P LIz bi-gram THMT 2 FEEREL TV,

£T AT, Negram T/ (R & D) FREK
A — b b EEMTHD, ERBEORRNE
o, Liho T, N-gram BEFNL-ORGHOHP T, IE
MG (R b7— T30k REBT ST & T
BT TH B, T CHRTE, AAD N-gram &
FIVORIC, oy b 77 3TREORD A
AL FHEERRT 5, AFEICED, N-gram
I K BIRATAER L . FoubaEIC KB AT & B
HERBC —DDETVCRT T LAEREL D,
LR O & 38R EA N-gram TH/S—L DD, £5
REO R VW B RBR 0B THE RN R
SEEETNEWBTZC LAIRIC S, T,
BREDEFE T IINERD N-gram ZIRPER T

URFEETIRA B, (N-gram OREF OHRINHK
) ERWHEETTHS, BEEHROIGEL LTECAVENT
VARG Ik, FoE St s LIk TELL, Lt
L. AREOTRATERERTRRTEAC L, RAHNGE
EERTHIORET 27 A TY XL hTha (2 T, &
Ep bR LEEEA EHE RN,

B 1: 3w bU— o3k

BARETHD, BRTTVEBRZ 2123 CHIED
BT a— 4 TEDEEFHTREE WS, BHFE
DY AT LEDEREOI T L ENBEERED,

2 R hI—U3%ED bi-gram E7IVEIR

7 bi-gram i&, HEEHEML L, £TOHERMN
OFMRICHERSS Thiz, BRftE L—70
HB)REEMNT I T ERBCENTED, TOM,
B D bi-gram FER 0 THHIFE, T OHIGEH
GNH DBV T L ARSI, WAMEEL BT
EEHMTHD, Lichi-T, HEBEEERELTR
RLUEERDRy b — o Xk G, HIRIATFE
T AEEE 0 CThVIEREE, HEiMEELEY
BEGIERR2Y D YT, ME bigram TRET 2
CENATREL LB, L LAY PT—UNEFRT, &
BHEEN S AN T MmN, XIRICGETER
e Thhid, XIROMZETE CBEEERITHR
PEHHUTEETIhE LY,

TS, BB bi-gram THEREE iRy h7—
T, WXOEEND MBI MERRETH D,
Hlz, EABE&SRDHAEERLLUT ORI,
EXERMBTACLEERS, :

[/ TT/D M R/CT B

/B /R

03B TE 2 MEA R MEEE U T
OEY THB,

A= { (f, %) (4, A) (W, B) (%, {) (A, )
(%, T7) (A, TE) (A, TT) (TT, M) }

C OHGERISI BT RETHE L EXD L, Ay
b — S0 (Gh) W 4 DL (W, Wa, Wy, A) TH
HT&5. CCT. Wo, W, Wy i, FheEh, 28
PBIA, DHIEHENIRE, BT HREETED,

W.={fiE HHTT »}

Wy = { ]}, Wy ={A}

Elrde G DTZ7REERIECRT,

CORE, 2w bT—SER DT ORARE
T bi-gram & LTHRETE 3,

oy [ p(>0) if (wy,w) €A
Plwsluwi) = { 0( ) otherwise

where 3, ey, Pluslwg) =1

X Gy & TAERET Y] TAAMETTAN
fERMETTR) D&%, BESNEWEHER
RETETIALLTLE S, 2T T, MEFERED
ROERBBMERIR LT, I L{EVRIEER IR
L. B1AD&5 &Ry R — 73X Gy ITIEET
BT LEEZD, PiRCEBALE,—F (XR)

¥

#
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2, Ml BEREBRYA LT, KDL DI
(We, a,Wf,A’)thﬁiﬁ'.‘d‘%

Wi =W, U { i 1{i2}

AI = {(@) ﬂ':’) ({ﬁ]’ E) (fﬁ], El) (ﬂ:‘.’ Al 1) ({ﬁj 1,
Fi) (A, f2) (12, H) (%, TF) (H,T9) (B, T

) (TE, A }

S{ﬂ% G i, TAEMATIH) TRARMB TN
DX 3. ERGOKET SRR EIML, 2
NLAEBRT B, cOX3Ic, 2w FT— ik
T, A@ﬁjé’ﬁ%ﬁ]’ﬁ%‘ﬂfﬁb'c N- fgram Tk
HEA AL, MR OBIRROKREFERFELERYT
AL L‘?‘J‘ﬁ]'ﬁﬁ?%%u

3 v b —3XE L AR N-gram Oft&

e AEC Lo TR Licky b T—2
NHER, GiRICEL LMW LEHFEO N- ram
EFILEHET 50 N-gram HDEF LT 2 BGEY]
OHIE, v B TI— ‘7&15&11_41*3?&34‘1%3%;3’“
PERTRMLINS (v U~ 2 ENIRN R,
BWT@EHSETUJJ SANFIET A LD fétlﬁﬁﬁﬁhb‘iﬁ

) Beicid, FOE ?‘J%’:fiﬁﬂ‘%’ol 3,
WEERT B, COLITMEILL T, N- ran
i & DIRFHDUGERPEE h A O L REIMIC, 5’ A
ﬁ 'f: ﬁﬁ@ﬁfﬁ& @% Lr ‘(nung‘(‘ﬁ.% o K ﬁTjﬁEI"L 7:;:
B, LT, QARAZONNICIE, BA%EBS
ehDRO LD BN HPEETI NS,

1976 ST K BICHERE L o R BBt &

WO ERIT Uik
TOARM, RO LS BAT LI O
frﬂiﬁf’:ﬂﬁkﬂ&“"ﬂ’mfﬁm% RE=2THD, 2w

D= ETETIALT B, —H, ﬁmﬁﬁkk
Eh- SRR L o BEME ) OFSHIAA O N-gram
%’:TJVC‘{‘& Do

CTHE B0, HHONLE 2 HDET

VEEDE A LT 1 DDES L CERT 2
LN EETHE, dv NI —oikid, Begs:
B {E0C. Rl iE L BamfEb it ars o,
357"1_\ P pT— 0@ﬁd?ﬂﬁ‘BfﬁTi‘C@Ii"mWﬁ
BARRLIRNTWALENSHSD, —H, N-gram
EFNTIE, fTOH nr?i"J‘rl"FL.]ngjﬁE & La i
%C’T)’fﬁ_ﬁ'ﬁ RIERETRET 5 & 5 I {FRT 2 OhVE

BEFD N-gram &2 M I — 430k ERE
BIHIC N-gram B 7/VE{ERT B &, %’C@I}iﬁﬁ
duEaib e 5, THUE, N-gram EFN0
BT, R LDV T MTON BT TH B, I\
DFT AK—VVET, WROD N-gram DEE
LIRS, R0 N-gram T E M3, bi-gram
T_ENEFERRL T uni-gram THiMX h%
i, SRTNCOERRL Y FD— 7 REEEL D
il CllATaE L o T Li 3, —H. 24 XJ.\-“/
YTRTBEVEFEERT B C L b MBD N,
ZDFEFy 1T — b ED NI A E 13
b‘LN-gram U IERERIREAVE U, BED R B

REEORANT A 771, i‘}ﬁ‘“‘-‘&v‘)l}@ﬁﬂﬁh
MLTZ&*)/?’?’J‘&%@JUE'AT%’Q%’
W EDTH D, —fﬁ%ﬁ@fﬁﬁi‘fﬂﬁ‘z\gﬁnﬁﬁﬂ
Ry GX TR L= TREDTIERETN, £
DIMDERIIE T OMPOHFRREIEI BTy 7
FTALN=S VY RT3, LLF T, BHEO bi-gram
Exy VI XENS, HiA bi-gram 21ERT 3

BEWDOVWTHET 3, tri-gram OFEE, [HRO
HEDNHEMTRETH S,

3.1 Ry b T—IXEDEH,

%9, BITF N-gram OFERERVNTR Y FT—2
MiERERT B2, 2Tk SiL, Fy b T—
IERBIHOM®/THZT L TELD, KDR
WETWVEERT S IDICBARLLEZF o -2y
FRITIOMTE LV,

BAGABIZE ¥ KT BRI, Ry h7—Z B
EREPIL T, FhENHIEE, ﬁ*TvaOJJif'Iﬂ'E_T‘iE
bl - o Rl N }"7 77‘1"*5”&3'%3 Fihbb
Foy b7 — I &, BB 0
oo RIS Wor. MR 1o D
ICIRN S HEERE Won, fa‘bﬁfﬁi*i’l% LT B, E
foo Sy RU— GDEiiE—’f‘H 7CO N-gram CD[—.I
Llﬁ EEREAT B, F'J@Hi MARREER D YT

?Fﬁﬁ'ﬂi N-agram FHOBER witH LT, &
Ry — 7&?’:&@5&5&' s “@" B Taw L&
T kicT B,

fER L jz 3k w b 7— 2 RO Nogram &2 —
L., RBEFNVET B, ﬁA%Tww%ﬁwqu
O N-gram o OMEBwe Wy &, 2y b T—¥
D DREE Wo(= We,UWg,, U Weay) pARCY
REND, (WynWg = o)

3.2 HEFREOMNE

HEAEF AT, bi-gram FERE 5T B 70ic,
SHIBN (wi, wy) i Clwi, wy) & BBLEETRE
Clw;) 85 A 34, HE C i}, 7LD bi-gram ©F
VD HGEFIRILE Co(wi, wy), Colwy) 2RI L CHE
T3 (B 2).

N-gram AIHEEFDIEE

TEOBGESD, bi-gram 35 & U uni-gram $HE%
FOEEM.
Céw“w__,) = C‘g(w,,wj) Wi, Wy & Wi
Clwy) = Colwy) w; € Wy

Ry =7 3ERDERTIEE

Ry b7 — 5 OB M OTET 5 Mast
(Qu;, @Qw;) € AL, WET A Negram 7
FOBERNY (w;, w;) ORIER G .

C’(@w,, @’w_,') = Co(w,r,wj) (@w,‘, @w_.,-) €A
7"&7‘5 L. Go(w,-.wj-) =0 £Esk '5 tﬁ—qiﬁ'g
(Qu;, Quy) BFEHET ZRHEENH B 728D, F4 R
N VT A YRS BERG BT , P (AN
i Qu, IRV THMBN R 0 & T 5,

ClQui) =0 Qu; € Waru Way,

2 A, BREF ¢ 75—y aliky 2 bz [S] o,
eFME, 2 HHEL e RHEOLONDS b, BIaEE A%
bf;b‘mb o b 7= XhEIRYT Bl FOEEER 6N

&L, N-gram J98IC 75 b ILRA I B 0iA R
nlll'l-)ﬂlr' ﬁlj’akt%jﬁﬁ?&&a 557:-\ N-grnm ﬂ)ﬁnm’&ﬂfﬂ
15O, R0 HIC BEOIE &h

3 f'ﬂﬂﬂllﬁ’ LT DR DIZ, fumlli?!itlé!?llﬂ'%-'fx’rii'lfxl}i
it La USEINIT R LY,

TV, N-gram WEEITR, SO ULIEIIE & IERD I
éﬁ’iﬂﬁﬁb‘fﬂkflﬁf:@? FRDMIAFHT ST £ FR B, —
iy REHETO Nogram ERPHTIE. & B GFICHEEPE
T%L LREZERREN,

5HET BT 4 ANV P HBEREEALNDN, FHTR
Bl 577 A6 (R TOMK 1 2R B) ZHVEz.
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M-gram

Wap--+Wa Wi--aeWj
.

WE-~-n Wa
»

VCo(W-:,WB} ¥ Col(WE,Wa)

@HS  GHiwmme W]

QHE
N ColWi W)

Netwark Grammar

2: IS ETNVAOHEEIEEOHS

N-gram &3 77 35% G S HEEPISAE
% v b U — 23R OBMRBMEE Qu, € Wg, i3t
MESY B BEE w, OBEEZEAVWT, XDK %
%ﬁ%%xéo
C'Ewi.@wa) == 4 Cp(w;, ws)
C @ws) = ‘Ycﬂ('ws)
yid, Ay P I—INEORTHEN D, NLT
% N-gram &7 )V COMEANC$ 2 NI
BERY, 1 EDOHESR, RELEEEXDIE
. 2y b= sGEORBAMBERMICERE NS,
BTBRDESKE, y=1LLTE, Zy PTI—F
ORI BEMICHbND & 5Tk B,
oy b= SO T HEE Quwy € Wgy 1D
N-gram ~OBEFBAE L, RBlcE2 5, L.
Quy DHUHFEHIBIL 0 £F 5,
ClQuwswy) = yColwswy)
wys) =0

3.3 EFILOFY

5z TeRED L EF N A8 | 208,
il SHMEEIC ko TRL*//ﬁﬁﬁ%ﬂJ h&EA
ET S (I 3o —MBIT, N IFT ALV
Mrhhic bi-gram . RO TEEINS,

Plusho) = { G G2

i
T
7

CTT dogu s alm)s Pus(uglw) 8, THE
NF 1 Ah7 2 FEE, uni-gram ’\mﬁaﬁ'}&ﬂi?ﬁft
TR0, BAHEE K & Bk

£, MECTFIOER WA fD'D '5 FURHEEE
PR 2w b O— o phrh OB s @w, € Wom UWay
Z2FHT BiER P{@uw;|@u;) BAHT S, C @E—ff
DVFFA L EMLT HHFRE Qu; € W, UWam
TH B, COTEFIVI, 1Ry I A TRIFEDENT
RH%B. T B, bigram HE C(Qu;, Qu;) HfEF
T3 EOKH L TOM bi-gram FEREH D YT,

a(@uw;) = 0 9B, Wen U Way [ S i
uni-gram TEEIT 0 L x5,

R, N-gram POBIER Y 2w b0 — 7 BHESHEE
w; € Wy UWg, AT BHH Plw;|uy) ZRET
Bo AVTFA MEMERT 2RI, w € WyUWe;
THd, TOEFIE, BEICRAYIFTAL—Y

& BFILTUE, bi-gram F Y uni-gram FEEE @RI 5 X
T, TORICBESEAENOT, HRIBIBWT unl
gram HHE Clw;) & bi-gram N3 734 MR Co(w;) =
ij Clw,w;) ZEP LTV 2. MAWE, Py . bi
gram HIEE L TNV FH A FFIME VT, Payr(wilw) =
C(whwj)/c"c(wa') &Efﬁ"f%n

hackell model

- ne-backofT
-ws -backoll g

Nebwo ramma

X 3: HETTNOEE

VI ETRoTRDZ, FOB., Wen U Wey i i
T T uni-gram R O AF D YUTENTWET L
ICHER Lum B OUEHERES Wy UWg, Kl &fi-T
BEOETES,
3.4 EFILOMEA

DLEDAECEE LIREFIEET IV, flR
ARPA B ¥, fEHO N-gram EFNERL
72}‘—7 v FTRETES, %@f-.?i) N-gram *
EREFINE LT*UFH’;%EET—UDEF“ nt\ﬁ'fj =
TEOEXRATES, FLTLUTIRT LS IC,
N-gram & 3w hJ— YD O o
?"-..'E‘Tl[/}_‘. LI—C:F[”EHT%%U
*N-gram HB*5 3w b —23EREIOHEER FRIT
ZRBEILHNT 0 L055. MG 42 < Network P9
HEE Qu; € Wom UWgy ﬂ)ﬁ"lﬁﬂ%v‘)b&i bi-gram
DOBHBAVERN, uni-gram ¥ 0 2753, Network A
BFET. MO bi-gram FEROFFET B (FAlOTFF
£9°%) BEEN DA FHRIRE L 4%, N-gram B
##w; € Wy 5O N-gram TESBLE,

P(@Quw;|w;) = alu) P(@w;) = ofw) - 0=0
Eib, w B @w_.; ~OERBITE LR,
* 3y b= S 3CEREMANS Negram BER% TR T
HREIIHT 0 & d, BTHEER Ay F7—
JNHEE Quy € Wo, UWgn lEH L, af@uy) =0
ElB, v b 7— 7B Qu; i"D N-gram T3
B Wy O C{@uy, w;) 3T 0D,
P(w;|@u;} = a{@Qu)P(w;) =0 Plw;) =0

Liciio T, Qu; A5 w; ~NOBBIRE U,

Ry U OSGEORMMBEE/MRT BETH N-
gram & OFEENTTAE, N-gram REEN G v b
T—oBEHEE, BLURy P78 THRENS
N-gram HBEFEE, BEHO N-gram €7V L RO
XD PSRN D ST 5NBe L
Mo, ﬁf@NgmmW¥%b5#;bv 30
RRUABLRE DB, SUER T HARN 52T D N-gram
Fk]ﬁiinn’\@&@ﬁ‘—l’iﬁféééo

ram OSBRI SRR UT S

EEOIEFRRIZFRET NS, N-gram HH
nn?”h.%-/’(. AR, O N-gram EFVEYHO
HELRILTES,

- [E] LU BAE Wfli 5?~‘J - 75{?}‘3155% 25 H
BETh 73(12%?9%-5‘9‘]&@@&#;
i, %hl&-ﬁlﬂf\'ﬁ‘% (ﬂ U 55 RFD) N-gram A
BERF T S M IS BIET %, BEEORE
ﬁ%:~ﬁm\xmw$%ﬂx@%km$?ﬁw¢
BHE(EEE - TAIV ALY MERETHLODT,
TR AT ORERMEE R L, BOANERE
NBZ EiCkd, TEO bi-gram ERARE CEED
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@@

@ (2 (<)
B 4: QA ¥ A7 BIERONHE

LEBINTVEN, 2w b 7T GEMHENI,
i LR B (RS oy b U — 2 WO BIEE) 2Tl
TBEOOMBEIMENT L, Ry VA T7%1TD
ROTREBLULEEFVTHBT L, W HEMICH
VIESREDNHI D MTHNB T Licind, Ehe, Ry
b 7 — & R M AR A D HAR SRR A 4 THRETY
LT, N-gramicif§28%lE s Fo—b
THCENTES,

4 RE&

QA # A& DERRARE U fe R AT R 2 30]
By b — o5 (K 4) ZER L., BiRCEE 111
MHAMLEE L2 HEE bi—iram B & tri-gram
EHRE, Ry FI— IR ST T (net) BAENR
Lz S, BHFEO N-gram € 7)LERY — b (3]
ZRWT, EUCER LR . yld 28 L7
Fbtigoizn, FHEHOLNEEY LI N-gram
TFI (base) BIEH LT, AL—TY U JFkiE, #
IZ Witten-Bell IE& Wz,

T — &Ik, FMEEHE 1003 (NP) L QA &
AVHEM 50 X (7)(QA) 2. Bit2 A&l 2 A
KXo THRABLWIER T — 2 ERWV . fER LR
Ay b dEiid, 20 BEE L LRERVMRIRO & 0O
THLHN, HEXDSE 72%0 36 3 (QA) B, T
DXFEDTFILET HRIEFA TV,

7 A KRRE TN T 2 — 4 julius[8] O
N—=Ua 3.2 BEML, BEEF LI 2000 K
1E 16 IREVEMIERTF triphone %, BRETT/LEHR
W HTRIRCH N-gram TORMEEF V. BER7IL
DV ALOBETRT2 THENS

T LY OFMITAR Lz ()palmkit(3] @ idngram2im %
151E, WEMAABAEEE L T, N-gram % E¥ N HC
A piaihih s L 5 L ET, [k, SO YF4+ X b
BE R eh, AN MMT 3 & 3 0 EHL, (2) BARMRE
Wy uWe,UWgy ¥ WasUWan, UWgy AL T, sy
GAL—Y Y TETND ARPA E1E, Hlthb R L—wy
LAWEFILD ARPA BEVENR, (3) RESTIORMR i i
LEMBIFEF NET—, (4) BRETAIHEY — (evalim)
BIWT, ELVDEFLEE > TWAL LERR,

8 30w b2 ENIONIR E Nogram € FLROQHED
WTD N-gram BERIXHAT 0 2D, TONOUAMBBIE
Chiggy, CONBEIEBOREENHT &L S Fo—X%
BIET3C LT, KDHENERERTSC EATEE LKA
BrEALLND,

% 1. KGR
FHIiF—% | BEET/V || COR | ACC

n-gram
27T NP {100) hase 81.0 [ 79.4
net 81.9 79.4
QA (BD) base 7201 69.4
net 74.2 70.4
QA(36)  basc 7.3 67.2
net 73.8 | 69.6
3 | NP {100} base 90.4 | B7.8
net 90.0 87.8
QA (50) base 85.0 | 803
net 85.1 80.5
QAT(36) hase ad.d [ 799
net Il 882 | 8lo
COR=HFEIERR (%), ACC=BIRERHY (%)

SRR | LT, ORI T
3o L, HNXORIEDNM T 5 C k2R
Ufzo bi-gram &< 5%, grigram OBFHFICIHE
DHEARN Lo T, BHEOREGHL DL
BB E CTWBATRENE S B X SN, SIEINEN
SECH B, i, SEOBRED tri-gram & OFF
HEFNVTE, 2y bT— 73R bi-gram D F
ETHoD, trigram ZHVD T & LER ERTHE
ThHYH, SHBEEHLTVwERY,

5 e

BEEANC L SHBRE Y AT LD, B
MR B & SRR RICIN T 5 FillREl
2, RAFCETIMELIEERET VEREL,
Tk, N-gram €7 NEREZFHLDD, #
DPIFRIC RO TEIR LI AR 2SS
BFETH D, N-gram THEFARETH - - BLEH
DEIRBORTFRGA S, ik THRIRATHE
T#Hdo WRETIFRL BBET W, HERD N-
gram E7) & BRGNS D, BHFORFEREF RN
TA—HTEDEEARTES LV I REERD,
EEECL Y, FHEEI SR LIERETIVE,
BlprERBIL ey b — 23RS LIt
TTNRERL, BEOBERNT 21— X CihE
BT ol TCOINH N-gram SHRTTZILAHSRL
T B HMRCEOR A LTI T 2 BRI R 2 T 5
TR TR TR > 5 4 5 M BRI B
LB m T s T LR L.

BE
{1] T. Akiba and K. Itou. Semi-Automatic Language Model

Acquisition without Large Corpora, In Proc. of ICSLP-
2000, vol.4, pp.49-52, 2000,

{2] F.C.N.Pereira and R.R.Wright. Finite-state approxima-
tion of phrase-structure grammars, In Proc, of ACL
1991, pp.246-255, 1991,

13] FPRERR, MPEIER. AR LU Y 5 R negram FERO
o Oyl b (EHE, SP2000-106, pp.67-72, 2000.
(4] FiEwE, BIELE, MR, HIL SHAANR T3 b
HisE L R LT h OB RN, B e SaERsos,

pp.103-194, Oct. 2001,

(5] MURLIRGR, FIILE . HANEECE I F—T7L—X
ARy F o ¥l & BPhIEMIE 1P, SP2000-106,
pp.115-120, 2000,

{6] BAAVRE, WAL, FEEE), BRIk, Pascale Fung. #
BaFHEFN e F U YERVESHILEB LAY
R#EY AT b AHEW, SP2001-113, pp.67-72, 2001

[7] ek 1, MRS R, TERBNT, BEEE B, SRTA, TS,
FENRE 2, NIEAESA, MAIRSE S A7 LOLLEE & AT, (F4H
#l, NLC2000-24, pp.17-24, 2000,

(8] BEEFA, (NERE, FIFDR, IO, LR (). B
PEERY 27 L. A— L, 2001,
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I—YRERORNEY BT 2 2B ANEREY 25 I

M g it

(B vy 1, Thitt

ANt

t R A
" R A ISR
R R EIS 4 CREST

fujii@ulis.ac. jp

1 IR

IREOSHAMEME, HAREARNBEEIATY
DEFECHL T EANREIREERERTE R X5
ToTHD, RARBIENEZ NS, HEREOLIFT
BEFEFERY ANEMELBE ThbhTwa. ¢
n B OUIZEE B ISL T THRT —XORE] & M
BICEBME] O 2D KREN S, §i#E, TRECD
Spoken Document Retrieval (SDR) k5w & (4] THGE
EEF—2ENRICLEETF AL Yy s vnsiisn
TWaLZ LR HRIC L TRATIZEN TR, BHcEH
LUV ERL T3 (7).

ZhiclL T, BECEARHBERX H—F LY ~vayv
VAT W=t A—D L S F—FE— R ASIRA]
HELEWT T Ur—2 g X2 AR ERENTT
HBILEME T, BETF— XREI AATHEEIE
v, i, SEOMBATREEOSHERETF A
W AT LB EREZNTWBEETHD, B
MBI Ko THREERBERCERTTA 1,2, C
UKL T, EFOERABERROIL I 3 EFGT
HERMAOEHET NV EERL, SERMERERE
DREFEMEEEDFEERREL (3, 5.

UL, BEANMOREY AT LT, ®KiE (&
AT LEFEREIRRE) OMENSS. TEOHEHRREY
AT L&, P HEERE Y AT LD, B
BURTFALHOABOBC L 2RFLAELT 5.
ROV A D100 F DA —& 0BT BT LIZBL
IR, HWRERBRE WAEHEL L THEEIM BN
LO0, ChEMREF—Y—RELTHHEINBZE
WHTHS I, BRE, BRI EVEEZ TN,

A BT, EEOFFHERS AT LTI A
A (FFEEREEE) PHEENhS, chidn—Foe7
T B EF L OZEENEN IR FETH S
7edh (18], BEREEREIDT LD Ml AE TR
WHREETH 2. BLOBRCHNT, BRY AR BL
BOTRRCHIfR XN THD (6, 9, 11), EAMITHREY AF
LDFEF |V A i KRB &R /N &,

Fic, HRRORSEIETE, BEEREL Y ORMAMEE
EE BT TRMINIOICHL T, HRRETIIR
FEOBI U HBL SR ESRERRE ¥ 2R 525 |38
Wby, Thbb, a-—-PREhoi I RE

F—T—FEREEERINDTNEWSFERED 3,
LEEL®HBL, HEFANMNORES AF LCBOT
TRHFERRE BAEWMICTRIOETSH D, {5 ORIEN
RN RETH D, TR, EEERTHN—
TELVHELRERORT BB X - T HEWC Hied
DFELERRT S, £z, IMERIC K-> TRELRY
AT LOBFHERRT.

2 VAFLEE
FRRCRETIERANET AL REV AT LD
BRER LIRRT. RVAF LI, SHEEH, 72X
R, REEHEO 3 20TV a—LTHRBREA TV S,
B AR NRICEE TN TWA L DD, KIHFET
RETH2FRBESHEOBEELEADEV. LT, M1ick
FTEHEY AT LD DWTHFT 3.

e 3
HEREFN
#
-

B 1 BEANDEREY 27 LOMER

FT, I-UHRBUESRERIET 5 &, SRR
BE, SREFIN, EEEFNEROTL—FRED
EXERCUERERT S, FATLTE, BFREF 42
F—avy—Fy b (15 TRIETN TV SEHEER
IV (Fa—&) LEEETVERRLE L,
2—YRFP EENARAEERET 2 ebic,
EREFIVG MBI ERL THIAL 7= [14).

Bkamici, fEEERH CD-ROM 104E4 (1991-2000)
OFHxE [RE] CCHEARNL, HEER 20,000 3

Yhttp://chasen.nist-nara.ac.jp/
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AL TEEPMEL . W, SERobEE
5 LIt TEBEFNVEERTS, LL, T
NTRBEREFBEENTER,. Z0T, §ELE
BEhirh-7M30 A8 (B30 2BERANCS
2L, MEBLEHizHALTNSA7 5 L8ERLE.
HENIRZ VT 00 B o).

Tihbh, AV AFLAOSETTMCEWT, B#Ek
UHALENOLEE L LTEFIUEENTVS, 20
R HEAERENINMALL TR N Wi 0o,
BEEuTAZAFFIL L THEECLENS, £k,
U EBRTT VL EROMHN N 79 LE0T, BIF
OF AR TICRATES. FOC, ERRY
OB URLEE THFE (12) LI RZ 3.

FF Ly Pd L—77)— ikl OGHRRMO®
ANCBTAEH LWIRERHICLEL,

FLYIR [T =T 5 FFH L) BED
[hY %V A ] BB BT B3

O &3 THL—T 70— | % THIHER] DSREEE S
Tmlﬂé’h% ( Tlﬂ:ﬂi%ﬂnnnﬂﬁ&Z'? )/:L'G"}%'D
TW3). &b (R 0L S ICRNEETFORE L
RO BT BRAaR /L= 70—V ] ©
&S IC BN OB ER TReT b FHEEERT ORI i’
DT AEENES. WTNOEEL, ROFCHTAIE
LNERHEET 2 C ba NS, SHEMEE R L
L, iR L THRENELRLETS,

Y AT LDI—HE, REWKROTF AL s
vavhbfishOBHESIEHLZVEW I BEE
o TRERTY. BvEihd, 1—YoRFEEaL
#3a RORc MEL 7= 6 0T H ZAREMEA V.
LT, LRIFV—=TSFFH /IR THY VI A]
EHIET 2ELWENAL 7Y a R EER TV E
EXBLUHERERATHS.

=1 (10 2 mﬁﬁﬁabb/azoﬁm G,
HEh RIS & S Sl %L<MEM¢%
%%%LTJ~W%%¢®$mﬁ%WE¢ﬂw;m
bb.%ﬁmmfﬁwTéJ%mﬁ%(?&bB,%ﬁ
SRS —BUC & BERER) B IGRERRT I HL TIFS
CEIRZhBAEL, MR IET X A,

FOC, £F, a—URERTHEE L Tl hE
a1 DT IIREE RITL, 2—YORBEER
i RS A A IRIIC IS 95, T A MRRICE
HEERIO T Okapi H ) 10| BV, MBFHE, 5X
SNI-RBERICNT 3 A7 2 & BICHL TEHEL,
A7 BEWEBICXEEBNT S, AV AFLTH,
WRTF R P& TRE] TREHERIFL TL2RERSIE
EULTHIHL, HEE ﬁ&?ﬁﬁﬁw%ﬁofﬁ§7?4
R BRI ERT B,

X, yIRETHLhEXHEN G, ﬁﬁéhtxm

B HGT 2B HERL, RAELEEBRAAT L TR
ﬁﬁﬁ%mﬁ?%.ﬂﬁ%&ﬁ%wowraaﬁv%m

Té.ﬁ&w,mﬁénkmﬁ%m&mmfﬁmﬁ%ﬁ
BRI REHENEONSD.
tﬁ@i&@.%%&ﬁ@%ﬁ&ﬁw?%ﬁ%&mﬁ
BEXHELEEEALVIRCBVT, BERETHY
b ARMBEEROTE (query expansion) *w—7Hib
74—y ZIZELULTWVA 8. UL, Chbid
hEEErmEXEa T LicERAEMN, 1—TNE
FL W3R RES BT 2HENN B 5. FhichL T
ﬁ%&m.n—woﬁﬁ&mb<mm¢%ha&ama
LTWAEN RS, il TESSREE (BRED Lk
BOICREMITONTND ] £V S BLBE L—FC &
25 FTEETHS (BRENS, TOLI3RBALNE
MRBOMETRHE DHRBEINTEW) .

3 REIFEDBENET

3.1 HER

Ay AT LORER, EFIEMTRINENIZRERE
EiRRIE, m%mﬁfmﬁéhtiMﬁﬁmmﬁJm
T BT IR &> THEBL LU TEL {3BiMT 24
WHD. COMIE TRNFBOFTE LMERT PICT 5.
FISEBBOLBIL, —DDFE ﬂ?ﬂﬁ@ﬁ@ﬁm
WET BT LB (FAE TR & TERED.
t,%M?oﬂ%$Wu$arﬁm3h6ctﬁ%%t
b, MENROBHEAT—2ICTIL T, SHRICELY
HHHRORT ERERT ALEN DS, ThabE, EN
BOEHBRTE TR, EEROREN & BT FRY [FER R
T 5 I HOBREMESLETH S,

T, BIREN SN EH BV TREICDONT
BEfL, MTFCRT 3 D0REEREL -

o HHFENIRORAAG L OFRNHLEYIF (B
—By RS RAL T S) .

o BRIENC d5b) B HIREREEAVE .
o &b LMONECHIRT 5.

ChbRERBNTETERLT 5L, KRB,
N (1) THATNZ A7 ZREALT S L 2BRT ST
EICHHY T B,

X:Pwu

deDy,

CTT, D REER gic k- THRE E NI LA
YEORETH S, Pluw|t) i t WEIEINC w LEET
BHIER, P(t|d) & LASCEO—D dh b FRE 1752 IR
BITRARERE, TNt THBHER, Pdg) 3R
BRI KT IDRFEINDHERTHS. Thb
DT AR, Eig3 oo EhTFhisL Tns.

P(i|d) - P(dlq) (1)
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UL, EBUCIE P(w|t) % P(d|q) OREE{E EH
HETAHT MUY, Ei, HHRVTELE (BT
1 0OEE) SMloB8EL D DEHRIERCR ST
LGRS o TWA, BT, FIERORRIC
HOWT, ®(1) 2R (2) D& SITEMT B,

>~ P(w|t) - log(P(tfd) - P(dlq))

deD,

TTT, Pyt wPHETIHARE wicFE
NAHERBEROIERIC L THET 5, B&MICE, DP
CwFrFLEkoTt b whBRENTHEL, mHiC
HBLTEENIBEIERETS. P(d) i dicisiy
5 L OXRECAET B, Pdg) £ LT Okapi 7T
HESNAXEJOAITTRATS. £, Pid) &
P(djq) D log ZRAWVAT &T, Thb 20080
PN DE B X STl Tv3.

MDA, FSHTFOFRCREL O EIcRE
BWHETHD, FOEXIL, RGO LT,
NF, HiE, HeRsY EPCENBEROXENE
WHRETZEMNTE S,

(2)

3.2 ik

TR X > T BERTRL T, %5 (EHRi
Kb D BENH B, K, DPRvyFrYIc &k
AERBMO B SIS S 2B T EE 3 ERL 15,
Eie, FASCHROREDFEOS L, MFEngaRyE

FHEAIC 2 {HLL RV, Thben /4RI
LR TEnE, FHEDEOMENRFTES.

HAHOFFANRBICANNEEF] (B AFAT
BIE@EYrAN) &, AhdhicF—7—F Loge—
Blic ko7, BYTAHEAMBRIRETCES, L
L, REEMHORS T3, ADIhESEMCHL
T, BB AL RS, HARUHLL EERE
IEYRREETEATAS L.

R AT LTHOAREEEREO R REL SR,
BT hRMEEL, FRHET BELWESFER
HIALL SRBEAT-BLTWAT ENEL, Fbih—
BRI iBhoaN—RT 5 iEbhy, FCT, K
HIRBFHEA O | 2 L T OFIRTHANfERL /2.
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bhd,
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(1

e T A b | HEEIL
7 L E R 3489 11038
HEIR 3342 6017
#1 NEBROHIKE
Table 1 A Comparison of The Number of
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% DV ICHRIE L, 2) Tik, DVCAM %R T il
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Fig.2 LODEM: the Web Lecture-On-
demand System
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LWT, 400ms BEORERMAERL LA TH
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T, TOLIRFEHRBHOSHETME LT, 1970
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1 REsIC

BN, CCBERCHAEINALOK
HoT &R, ROBEEL T, SFEEEMUADT S
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vavkRBHLTW D, £, ThEEEDL S
LCEMfiL TOWSIHEETH S,

EFEIONZOE, BEO7 TV r—vavic
SHIEMRSATAC LTSS, & Db, §BRE
AT LA, BEAE L, ERANRT S0 r—
vavsTHD, AVE—2 Y OBETE SO
WEENEN - T30, BFEEEAL ZIRb
EEHE BThbATWVWA, Thbld, BRTIEL
T, (1) BEF— 2 OB (BRERO AR, F—
R—EARRDLTHB) (2) BHEIC L M (MFETER

BEANCX2THECR S, BFTHRETFALH
ML THB) IKKATE B,

EEF— 20T . TREC @ Spoken Document,
Retrieval (SDR) b 5w 7 CRIREFRT — &2 MR
LieFZbaL sy avyhsfidhTtna )T
PRERIC. BAKBIRNMIRDRTVWS,

EHEIC L DRFBCPEL T, EERENTH LI
b o, ity P OB BNTHED,
EREREMBSBAL LIIWE IR,

Barnett 51X, W8I OF 2 A EREL /& 20K
BRONAT S LERBWEF 4 77— a Vv AT I
., FEAMREYAT L INQUERY OASELT
FIRL RBE TR > TV (2, #Eflty hELT
¥, TREC DRFEHE 35 tHo s 3 M55 0giHm
HFEEEAHELTHAL, TREC 2L S ¥a Y
DORFREEEITE >T V5B, Crestani LECHA L
iRRER MW ERETR->TWVWA 8. LML, &
LOOEBRICINTE, THELEFEEH AT L
OMHEN HFRAR Y B (Word Error Rate: WER) 30%
REE, TR nIMEND S,

RIFOETHEERY A7 LT, BEEFIVLER
EFNVLBEF VD EDn 2T L2, B
BTN r—varOSHEROEAICE, BET
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LEEGMETSH D, MEORE, Thoo/RicD
NWTHREENBERETHD,

BHBRETR. RENROTEAIPREV AT
Lt oT, BHIehac S, LT, 2
OREMNSKOTF AL EAVT, SECTIVEEY

* A Speech Recognition System for a Speech-

Driven Text Retrieval System by ITOU, K. (AIST,
JST CREST) et. al,

THILIRHRTHBEELONS, ThEDEH
EFNERANAC LT, YOFE, SRR AT A
DEREA LT AR IGL 2,

2 R
2.1 §¥E7 — &

R, ~RICAFAERAEETF AP RERT
Ababyvavicik. NTCIR|, 5)(fRX D)
IREX[6], BMIR-J2 (##FCH) 2 MH 3, chbd
QAL SV a v, RESROKXARLETF AT —
FrEh ol T 2RERENr A2, flEE1IKE
Py I

<TOPIC g=0101> <TITLE> BBYF#</TITLE>
<DESCRIPTION: B P THMAIFHEIC L2 BRIFRT 25+
DS DWTIHLE T3 Xk </DESCRIPTION>
<NARRATIVESIF#37n E O A )L AR BT T 2 REmD
i TREOMIIE 2 1 A TOBRFTOHE
ERFHUTHB. FOkH, () LHL, BIEFIHEN
FEICHMN TWERWESESIE TR, £, BREFALAOYD
2F 2 EFA]. </NARRATIVE>

CCONCEPT>a. BIIH, v. BETITHENEE, <. V7
F 3, FRiHEH</CONCEPT>

<FIELD>7. BE% « % </FIELD> </TOPIC>

1 BREEOHM (NTCIR)
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i ERERI~ A % VT DAT IKINERL .
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KL, BTSNV, BHEE 1001 £45 2000 &
D 10 M EEYL e MNP £F)N &, NTCIR-2
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Abstract To facilitate retrieving information with spoken queries, we propose a speech-
driven text retrieval system. In past research, no attempt has been made to improve speech
recognition in the context of speech-driven retrieval. In our system, a language model used for
gpeech recognition is produced based on a target text collection, so that user queries associated
. with the collection can be recognized with a high accuracy. We also produced a test collection

to evaluate our system, for which we recorded dictated queries in an existing collection for text
retrieval. We show the effectiveness of our system by way of experiments using this collection.
Keywords text retrieval, speech recognition, language models, the NTCIR collection, read
speech
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FCT, AMREEFFEANCEZ7FAMRREIC
ERENYT, YATLOMEMELAITo 2 (28) .
X5, FTAMIL Y g BiHL (38D,
Ky A7 LOFMHALE 48) .

2 FHRTRET IRFVATL
2.1 EREBR

HEIC & 2NARICWT 20ROV AT LTI, M
IR L 7 A S P e I L e
Ya—k LTHEEL, Bt \HhAVv 272X
THRINTWARETTH S, £, REREOR

Flot s YT o, SERMREE O BT
HloTWVENT BB,

Barnett & [2] 13, BIHFEOBHEMY AT L (FR
H A Z 20,0000 &7 FAMREY AT L INQUERY
DANELTRALT, BRI & 2HBROFTINRRE
{Torz, BikANCIE, TREC ORRFERRE 35 {1 (101-
135) I BU—FEHOFIH LT EFEET A AN
ELTHIAL, TREC L7 3y OWMBEREET-
fz. Crestani [3] & LA 35 fFOFAH biF RERFRE %
M HEEITY GEEOTFFAMRETH AN
3) EEMT ¢+ — R 3w 22 & o THREEREEL L
THCERERLTWS, Ll, YBoDHERCE
WTHLEEOSEENY AT LARRRETIICHAL
TWB T, HEREO R gy (30%L0E) .

FRICHL T, W TR EEEROMER Lic
LEARYT, BEREMETF AN REOGRNG
HRE2BELTY AT LAOMAMERIT . BH
ik AT hoE 1y, HET—# (BEERERY)
RUBXAC LT, MU BV AT
HB. FOT, RENFTFA MBI THHT—
ZRERL, FIHT ST LI ERTRRIEA S,

RS E RIS AT L[] EcEEgeTIIL L
BEETIVTHR I, W& SFERMEEICHS
BT 3. FERTEFIVEEENSTCETEET
WTHY, RENRTFEAb LEMRERTHS.

BEREFIIVEEHEIMMGE (B OEmNEY
xR ERETBLDODEFNVTHSB. LL, H5
WEEBRAKLTEETNLT BT LEIFTRETH
Blsh, —RecE, SXAohi®YHEa—/LRK
HRT 3 EEBHKKHLL TF L2 ERT 3.

EPETRRT VAT ACBNTR], 2—Y0
NS REN ST T A NS ANETH BA0HE
A . 20T, BRNSETFAMNCEINTE
HETIEERT L, EEEEOHE R LD S
TE53. ZTORE I—VORFEHIEL CEMEHh
BOT, TFAPATTGACRENEREFT TS C
EAVETHENC 7 B,

BEEROBERBVACLE, 125554
7T ERE S e 0, FEET D O BRI EETDW
THRENThN TV ARLEEI—FICEABLET
HEETHD.

2.2 YATLIEAR

KRR TIRET HMEY AT LOMBEAE 112K
T, KV 27 LOBER, METF A CESWTE
FAEHE A BDEC LT, BRABETFEAIR
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BOBWNTHERERT Ak ES, FLT, &
TH 7T A R (EREH) KXo T, HENSR
LIATF ALY a v b ERRRBOEE
EFIEERT S,

A5 AR, A—NRRERE RS
Bk, BRBETINEZHEETIVEROTEBEERD
Fhh, BEIUNMERESN S, 2B, S
OBXRIUBHSAERSO, LEEBRLT LR
WAGRIRENB. TCT, BREETIVTFAL
L& g e B SoTERINTWB0OT, al¥
LaryhDTFFEAMCERCELTZEERECL
AHEEMIORIREN 2 AICERLET 3.

i, HERC ENEBBEREMNTTFAR
REXETL, BEERELL-VPICRRTS. BE
FERNERYIET 3 DICRHBNTZRETREN S
ErHhHs, L, HAC/VE 7 2 —Ak20WTR
SEOTIRTIRINRAL L, SEBRITETD.

ks, AV AT LRBEEE QAREERICERET
NTW2L00, FHMCIERREERBDEWV,

TF, 2.3, 24 CEFERMETEANRELD
WTENETNIRET 3.

bt

iEF

JpEET L —
EFULY I
<.
THR M RR w

B 1: FEANTF A MRFEY AT LOWR

2.3 BFR0M

AR LSRR O Y — T LOBARER
FaoF—avBEY Ty T ERGVE6, 19 L
FVT UL TR 2 TRERROBMEREERWT, &
I ERNS AV TIET 00% DI 2 25T 2 3.

FWEFNERFB LYY (Fa—K—) i, &
Y—AFw rRHBOLOREESTIMMATS

{5 BT, FRHSETTIV (MENT I L)
HRBEHHROTFERA OV Z v g VITESWTIFR
TB, KY T2 TIREREN TV A EEY Vi

Thttp:/ /www.lang.astem.or.jp/CSRC/

R FURTTHE S AERARG S A5 b THR5 ) (20]
RUETBC LT, BALMSICHL T HEMWAS
CEBEFVEERTE S, Thbb, HRFFEA
N B REES R HIBR T B 75 8 ONFLIR I T2
) RRCTHERCONIL, BHEERL IR
FERRHIREE 7)) % (ERLY B (18],

24 TFALEE

T F A DRI EBNFEE (0) Z BV, AFH
W, SEEON DM ORISR & o T Lbigrs L
REBERERT I EHREATINS.
BREERNEIOND L, BIFEOHEEDHICE
SHTAL Yy a yROEFFAMIT BEEE
REEL, @EENEWTFARDBBENICHA
T5 FEA i OBSERR () K X->TRHETS.

TFg‘i

(g et) 0
v \avglen +Th,

CTT, tRHREER (A AF LTI, L—YHE
OHBERCLICHYT ) KFENIHEFETHD.
TR A7 F A IC B BRANE ¢t DM TS
. DRRBNSIL Y aAcBnTHBt RS
BTFFAROETHh, NE2L IV aryRAnTE
AMBETHE, DLFTT AN 1 OXRE (34
FEO THD, avglen B3IV IV g ROEFF A
MY RTHETH .

BWEEPEMCHET IR, 77427
ODFES ZEMHY (FEBIHT) BRETCH S, FTTIH
£ RHOTHESY, &FS5ETI. 6k, @
PR B OWTNEEE (RICAM) ZHL, BiEE
BUTHEII 2T THEEB? 7 AVERRT S, &
VIA VTR, BEECIhREERICNL
TEEBONHTHES FEEMmEL, REFFHT S,

3 FAFILYZY a3 OEE

3.1 BREEE

MRS L FoREE Y AT LOtkERE E R AN Tl
TAHT L, FEAOHCRERTI LHICEHE
THD, VAT LAOFETIIAE ST MR
B4 BEEGHA) & THRBICBITAER] 5 5.

BRI, AMANAY BT 2 ADT YA I
7 & MU - D ATE & TH R L TRHMEETT 5 £
EiH 5.

FRICHLT, BB ERGEEINLEEDND
LTTOEMTHS. Thbh, HEHUHHEE
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NEBREERICHL T AT LB AL iR R
ZAGIOREIC & >TIET 5. 0D, T
ALV S avREEL, EMERYFe—S L
UTRIIT 2R ENRNTH 5.

KRBT A ab v a v Oz
AL EETELO0, —EffoTLEAR Y AT A
DUEEHIE R0 ETC ENERICk S, 20T, M
BRERTOMERDETEH, RAhFikk higy
BLEMNE Y AT LRRBTES,

FTT, AW TISBETORR] ICESEY
T, BEANETFF AL RERT LORHOT R
POl a RS ERNE LT

Barnett & [2] 4k, TREC OMRFEINE 35 {2 ah#&
KB LFTE 6V, FEIKKAREERT~42k
LT, 207, 85— 4% TRECOFF A
L ZyayBIUESHEHNELRTSC LT, &
FARI & B 7+ A M RBEOHIE 2 & BN TS
L bhmerh .

Fhe, —RAMINTWATFFAMREIL Z¥1
YEHAThE, BEF—2eaEfckEad 5
CEBERCED, YHUIFORBICEMTE S,

L, MABCEHI 2RBOBEETH-TH, T
A AN UTHAT 2 REE R 2R oMER
RIETEAFTEST 2 LAMFELW. FDkH
i3, I—UREOBMIIOWT (Db E) X
R 5 DOERD R T 20ENH B,

3.2 A—HREBICET SRt

NAORIE WHRRELRICERIE, o1—
PR T WS REEMRRT E 2B RO MY
TETHB. Thbb, ERLIhTWIWEERN
IR (visceral need [15]) #HFEHER (query)
ERILL THORERIT, MELETFALH
BeHRT 3 —B0ONNTH 5.

LAL, £LOMBETIHERRBE LRI IR
N, ERLENREEREZY AFLCHT 2HEE
DAL TIRS. AIAE, F—7U—FiEicE
ke h - RREMOTETH 3.

LHL, EFEANEY A7 LOBER, F—FR—
RADTIIEMET A L 5 ARG ERTY, REFET
ArriRAEBMELALY, FOT, BEOFEZR
F AFTRIRIC AT, I BT O R
RETERTA5ENH S, ThHbb, SEEHOD
Bl s RN, BUBE»S BN ET—HICE
RTEHNTENES.

REORSY oA —EiC iR BRICHEET
ELRE (HEH-ORM) ICIXREND A D, I
b BWIRRERA RT3 L IFHENTIR IR,

TR FF A ANHEORBR S AT LIEDVWTH
WTWRES. LHL, FFALAHOBREE, Bl
BREOL HI{DBFRMFA v ya—F (a¥—)
LEBWTFHFARLANTES D, REERDE
ST AN LEIARE O TH B,

AZE (5@ ot #RWEOENY AT Lk
AL 588, SHARFREREFMCAVST
EHUFEL Y, [EIRRBEOMRS T, BRI
AL EOREERAEFIMAT A LBSHEEENTY
%, SHEMOESENGI, HEERICEENSE
ROSHPEICET ML R B LD TES.

HEAXCI SERBROFN TR, #HHLTEHE
(read speech), BHFHEA (spontaneous speech)}, £
FEER (conversational speech) HOFIEA X A%
RU$2C LHEHETHS.
BRYATLOAALLUTHRTZESE, BA
LT /BEREEERMT 208N S %, Barnett 5 [2]
PTofed i, BEDRERBEELZOX EFET
WEFH LTFEETH S, AIKBWT, B
FRAFRE R TRARL , AR BB RFEERE B
TELTHRETNE, BREBIGE K3,
BEORE NREREHFECRET S0, Tk
EHEEERETI00%EEBL T, BRUCIEL R
REREERT 208055, %z, MIPcHERST
EDOEBREICOVT LRI THHENDH B,
MESTEED S B, RO IHBEEHER ML 7
FAMRRIIHIOBRTH D, Ao 2B H
FRERICER OBMTH B RUCHERNNETH S,

3.3 WRIcLEF*A+aL s3>
HE—R AR BREFF A M REHAF A
bavryiyarynst, {RENELOZEMTICSET
B, KL, BaL v avOBEMERIET S,
¢ NTCIR [7, 8]
+ IREX [11]
+ BMIR-J2 [10])*
IREX & BMIR-J2 AM5 B S E M &HTF+ 2
FELTWBDIEHL T, NTCIRIGEHIE (Y
PR, MTRAREESIE) ENRICLTWE A
2hitp://research.nii.ac.ip/ntcir/index-ja.html

3http://csnyu.edu/cs/projects/proteus/irex/
http:/ /www.ulis.ac.jp/ “ishikawa/bmir-j2/
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BELL, WThOOb 2y VEERFROBENK
WL TWAEDO, SEIE NTCIR RS Lk,
LEick, NTCIR 3L 7Y 3 it BB ERRED
BEEMHOIL 2 avaEENS. LD, 4E
BHABREIL 27 ayOiERRICLTE, 2O
T, UFTIE, NTCIR 2L 4 ¥ a vk AARERED
Loya s LRBTRD. 6, HAGEMREIL Y
T avicid, NTCIR-1 (FikR, 2ilii), NTCIR-2
(nER) O 3EEO B S aL Vv 3 HEET S,

FNFNORBRFERBLCEFFAMER LIS
7Y, TTT, NTCIR-1 OFE - AR dEN 5
FEAREFA—TH Y, NTCIR-2 ARRTFFA I
NTCIR-1 2RI BELTWS, LKL, H#ono
L 7vavic BEL TEEh2RERERT RV,

Thbb, &t 182 FORFEREEHCTERR
R & 2 RBELRT — X R {FRLL 1.

# 1: NTCIR BAFERRIL 73 YO
T HYa V% BN (Es) 7FAFK

NTCIR-1 ik 30 (0D00T-0030) 332,918
NTCIR-1 2248 53 (0031-0083) 332,918
NTCIR-2 28 49 (0101-0149) 736,166

3.4 BERRERT— 2 OIEN

B 2ic NTCIR L 273 a /e BN 5 RFERED
Flemd. SRFEHEAL SGML FRA TR Ehg
BOBEHTHEINS. CTheD5 B, BFEXAT L
OB ERT AT RN THBEBR, £
IC<TITLE>, <DESCRIPTION>, <NARRATIVE>®D 3 D
THs. Thbid, WTFhERBRERERFTSE
DD, BEFEFMTHYEL.

BLi3 32 HioEMCETWT, BEICLZHRE
EREERL .

£9, ABEORHIBLREBEORTOBANS,
<DESCRIPTION>DHEFIFHL Tz, ¥hbb, ¥A7F
LOAhEUTIE, HMHEL —REMBEET B3
HAORIEEEETS.

WA (3ER) OSHIECOVWTIE, NTCIR RER
JEOMC WE BRSNS, LHL, R, &
BREDOBHFICE > TVBRICEREETS.

REER X ANICEAL TIX, <DESCRIPTION>DFHHA
HF Rl SEDOF AL IV a BN
A0y kRIS B B feth, HERRRE R IEE 1T
WRTNIREBIRL 12, SERIINROER R
BEfOlc P T v E, BN IREREIE DV
BREERINGRTEC LERFLTWS.

FEOREHCOVWTIE, B2 o8 (»
Fhd RBRE, FBIE 2018 OFECEL TR
fRIRL . BRI, &8t 10 A2 BEIINEET
FFETHB.

INBRBIIRE AR VLT, BRI Y~
ZBAWT DATICHRSRL 1. 132 {40 <DESCRIPTION>
ETHL TIRERL 72 GRPT—EEE Ani) .
fef2l, 1324% 5 4 LANERF Tt f R E g
L= $ixb b, hetlnid oSk - LHEl
BN ko T, 2Ly varTEoERENMNT D
RN E S LT, RAEEL RERIE, ELL
FHAHY CR—MESEERI THEL TR o0k,

235, Barnett 6 [2] AMEREL 7z TREC IR5FRE
DEFFHFHFCOVTI, B35 K38 B LS T
BHHTLLAORM (MEREFOLEDFEEEL D
ESRFIFETEBL -0 E) BTETHS.

4 EER
4.1 B

AWMRORKS AT L (28) #FAbaL Y3
v (38 RAVTHENL . FHliAEL, A7 5
DANE UTEEHET — 2 2R AT 2 22RHE,
NTCIR V—# & ayFic it M ERL TS 5.

Thbh, SREERCESTETHAL LA
1,000 &AL, BB HEBHMRE el F
EEARICEINT, BMTRRTRESBY AT L (F
) OLEBEME% T - 7.

1. 732 AoV AT L
EEIERE 100%EL CIT3 VAT L, Thbb
HENR Y AT LERETCENTES,

2. FEANEY AT A
APRTRETHVATLTHD, NTCIR-24
HEaL Y v BRSO TERE SN ST
FIV (NTCIR EF V) 2 BWTEHEENETS.
NTCIR-2 TR 7F A b Ik NTCIR-1 Pl « 2
RIEEAEL TWEOT, REHRIC 5T
T MBESFVRERLE,

3. BEANBY AT L
FIRMERIC BT BR— A5 AL LTHRIAY
%, AFBEF 4 vF—vavEEY T T
KBENT WA EEREFVERWTERTR
P75, YREFAME, EEFER S HANCE
SOTHERENE (FREFV).,

FEVAFLOSL, 22 3B AENE, B

EFNVHBETAF—4 (2—1R) EciEEd
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<TOPIC q=0101>
<TITLE> B BIFfF#:</TITLE>

<DESCRIPTION>BEF TEMTHER L 5 BRIFR T & F OB DV TERL TV A k< /DESCRIPTION>
CHARRATIVESHF 875 X vy o b APERHNC 349" 2 E 2O H ¥ FRAROMIIE 2 1 I |l T OB IF O R
EIETHZ, 0K, MCFIENFEC X3 BEIFRD 27 OB OV TIRE T BEERE BT,
UHFEE M7 BIYIFSE 7 & F o O LA R L T3 & O F OME BN #3728 FiionT
WL TVALOLREERZNT, UL, BEFTENFRCHNTOEWR TN, £, BIFRLINOY
LSFH A, </NARRATIVE>

<CONCEPT>a. BEIFF#S, b. MEFIEMNFER, . TIF, FLAEHT</CONCEPT>

<FIELD>7. [E# - i§%%</FIELD>

</TOPIC>

B 2: NTCIR 2 7 & = HEEREEON (NTCIR-2 A=K, HEHES 0101)
3, BEBETFICHHL 2HF—2OMNRER

2T, WTROBEEER—OY—IVFENT, 1 : — O
SRR A X 20,000 OB S A5 5 LEERLTE. 0.9 |- %F} Eﬁ;g:‘;g e
& 20 ZARET MERIC I L e 7 — 2 D LR 0.8 [ g%aggg o
NTCIR2 _ BHal 0.7 [ JE7 G o
TEEEFR 178M T17M sl T
R0 e 459K 953K a
40 @5

YAFLD L STHES A 2ORFEeEICHE R
L7=0C, $RE, OEEO R 5 RAERE LhEgT e

L. .

NTCIR L ¥ o v OBEHECIE, HE (S,A), 02 r

HAVEE (B), THA (C) OLALNED. K 01 Sy, ]

Bl MHE] OHREME B, 6 - - . a s
0 0.2 0.4 0.6 0.8 1

4.2 BRLER 1B

7, FVAT LOWBEHEEZERT30C, B ® 3: HHB-FEESFEMHB (NTCIR-1 FHK)
BB HEHE (recall-precision) fhifal 7 gy
T EICE3~5WRY, S 7RG RICHET 213
BREE .

ChoMELD, BB 6T, AV AFLD
RAEMERFHETIVE AWz A7 LOREHE
ERBCHBLTWAT 29D 5, EVEAhE,
ARG T b ERENRTFAMNCEDILE
BETNONANEYTH R LG

Ay A7 LOBREEE T+ A ANEY A5 L4
ORI RS h DD, NTCIR-1 FHiKC B9
Tid, MrbEELTWAT ENah3

e, ﬁﬁmﬁtmﬁhmmﬁmww%ﬁMT&n

Wi, Hif L PEEa R e FEo REE I
AT BOEELTIRBERDE (word error rate:
WER) H—ycH3, chud, (2 2H0T,
ERRFEERIC 0T A HIRR » FBA - ERoE(S % BEEH
i CAHETARETHS,

HIRR + A + R

Ba®

X 4: HEL HSRIMmR (NTCIR-1 230F)
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0.9 | Bkt (NTCIR) =
) BiE2 (NTCIRY -~
kT (Nrcmg e
0.8 - I{f2 (NTGIR) --=-
] E
07N LGOET OO e
e
0.6
du 0.5 X
i
0.4
0.3 F
0.2 _
0.1 |
0
0

TR
B 5: B EERME (NTCIR-2 253tiR)

UL, B ESRERP OB TIRA
KRAShBRTREY. 200, RBICHEEN
TR — T — K DB THID H (keyword error
rate: KER) 25THEL -,

LT, NTCIR EF VI HHEF L OBEE -+ —
T— RO REKIRICHEL, SHEEMN REEE
CREEE) OMm» SR THZZ LRG3,
C ORI RRINECSMIREE S AUIRAKR, &
HhEHETH T,

PIxIE, RERE027 vV —S AERVEFF
A b OEIRERIC DUV T | OFEARRS IR & AR

BHEETFNC LICHBLUERER 4ICRT. ©
ik Ty —5 2] % NERRIE] 2P OEMED
B AR FEAA O DS P A SR T < T A L
MR FITH 3. :

UL, WEEINE 0119 T B AD 4G HEROZE
] D& 3 —MRELITRESNAREL, b
BOEFIVTEERI IOTIEL {FEMiE k.

{5l 8T, NTCIR-1 F{hRINE, BiERERD
BLDEF~T—FEVBOANHENZ LE I
7z. NTCIR EF NV ERVS E, BRENHRTT AL
(bbb, HilE) KEEhhnERcHdT 52
PR IMEN,

iz, NTCIR BRBEEICI: [~ L
W EWASRENMEMT S, LA TBRLWv]
HEEH NTCIR £FNV Tl kmzEL k3 s (~0
XEDNE] OX M, TOHETE] H
HFMOF—T—-F e LT EhTLE o,

e, bSATSLETFINCREORENZERY
NBs, RENO—EHNEEREN 2 L REES

HEHPIC R E N D WHEMAY B B, F T, 9%
BRENRT A EREERE OFEOFE I
DNTHT ZHTENH B,

5 BbWlc

BEEGRE TV AN RERHEL, THEREEIC k-
TEHMEDTF AN RBELERT LY AT LEHRE
Lle. BYAFLOREE, MEMSTFZ Mokt
DS TEFRBENOEBEFVRERTBCLTSE
FrimtEEREh A AILH 3.

LI, YAFLFERON Y Fv— 75t
Bledic, BEOTFAMVRERTANaLZv g
YERAVWTRRERICHT 2 BFERET — 225K
Lk.

MET AT T3 a vk - SHEERRDE R,
FY AT LOREEEE 7+ A ANHY AF LD
HERCHEATETS2L00, HFEOBHEIM A
T LERREETICARAL ST S
W EARE A, S, EEREF - 205
WREZ TGRS, VAT LOMREER X 6icH L
THAITFETH S,

NTCIR 2L 7 5 Vi B EHETE RO
BTHAIETHEESELR. BER, PUEBEK
(R EMTEIRACE) I HBRAT — 2 D% BT L
THEFLE., AMRO—EE AR2iHRELSR 2
WIRBMmEE (FREEES 12680406) OBIRIC & 5.

BER

[1] Lalit. R. Bahl, Trederick Jelinek, and Robert L. Mercer.
A maximum linklihood approach to continuous speech
recognition. fEEE Transaciions on Pattern Analysis
and Mechine Intelligence, Vol. 5, No. 2, pp. 179-190,
1983.

J. Barnett, 8. Anderson, J. Broglio, M. Singh, R, Hud- -
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1323-1326, 1997.
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Fabio Crestani. Word recognition errors and relevance
feeclback in spoken query processing. In Proceedings of
the Fourth International Conference on Flexible Query
Answering Systems, pp. 267-281, 2000,
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ford, and Karen Sparck Jones. TREC-6 1997 spoken
document retrieval track overview and results. In Pro-
ceedings of the Gth Text RBirieval Conference, pp. 83—
01, 1997,
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and P.C. Woodland. The Cambridge University spo-
ken document retrieval system. In Proceedings of
ICASSP'39, pp. 45-52, 1999.

— 135 —



£ 3: MEERER (AP: THHER,

WER: £MZE#H DR, KER: F—7—FHn$E)

NTCIR-1 T iR NTCIR-1 23Tk NTCIR-2 N2l

Pyt AP WER KER AP WER  KLR AP WER ~ KEBER
F¥FZ 0.3877 —— 0.3320 — — 0.3118 = =
Eft1 (NTCIR) 0.3301 0.2123 0.2041 (.260¢ 0.1598 0.2120 0.2320 0.1605 0.2482
gitt2 (NTCIR) 03145 0.2045 0.2780 0.2379 0.2228 0.2753 0.2119  0.2297  0.2956
1 (NTCIR)  0.3388  0.2055 02245 0.2116 0.1719 (.2600 0.,1853 0.1841 0.2847
72 (NTCIR) 0.3507 0.1678 0.1420 0.2617 0.1380 0.2089 0.2213 0.1635 0.2555
B 1 () 0.1504 0.4658 D0.5510 01030 D.3668 0.5759 0.0847 0.3918  (.5876
Btk 2 (HB) 0.1536 0.6986 0.7278 0.1219 0.4529 0.6456 0.0512 0.5110 0.6606
i1 G 0.1820 0.5514 0.6190 01213 0.3850 0.5854 0.0727 0.4021 0.5620
2 (HRD 0.1803 0.4760 0.5374 0.1138 0.3341 0.5348 0.0941 0.3697 0.5803

4 HEHE 0027 (VY —FABAWETF 2 AN DBBREICONT) OESFRHER L PR

1 V=T AN EFF A T ORI D t,

KA NTCIRL 7/

(0.6872)

Wit2 LV —FAEMeTER FOMERERRICINT, (0.2335)
k1 =S AERMNNE, T EAOMERRIE DT, (0.6844)

% 2

V=3 A%MAGE, TR FOMERRIE VT, (0.6872)

eI
filE T MR D0, (0.0108)
BHESL 2857+ R Ol REIC 0T, (0.0073)

NFEFHE SN, > TV T G HIAREIE 2T, (0.2491)

RO BE M, FFAbOIEHARIEOWT,  (0.0119)

(6] T. Kawahara, A. Lee, T. Kobayashi, K. Takeda,

M

(8

8]

[10]

{1}

(12)

(13]

N. Minematsu, 5. Sagayama, K. Itou, A. Tto, M, Ya-
mamoto, A. Yamada, T. Utsuro, and K. Shikano. Free
software toolkit for Japanese large vocabulary continu-
ous speech recognition. In Proceedings of the 6th Inter-
nationnl Conference on Spoken Langunge Processing,
pp. 476-479, 2000.

National Center for Science Information Systems. Pro-
ceedings of the Ist NTCIR Workshop on Research in
Japanese Tezt Retrieval and Term Recognition, 1999,

National Institute of Informatics. Proceedings of the 2nd
NTCIR Workshop Meeting on Bualuation of Chinese &
Japanese Tezt Retrieval and Text Summarization, 2001,

5. L., Robertson and 8. Walker. Some simple effec-
tive approximations to the 2-poisson madel for prob-
abilistic weighted retrieval. In Proceedings of the 17th
Annual Inlernational ACM SIGIR Cenference on Re-
search and Development in Information Retrieval, pp.
232-241, 1994

Teisuya Sakai, Tauyoshi Kitani, Yasushi Ogawa, Tet-
suya Ishikawa, Haruo Kimoto, Tkuo Keshi, Jun Toy-
oura, Toshikazn Fukushima, Kunio Matsui, Yoshihiro
Ueda, Takenobu Tokunaga, Hiroahi Tauruoka, Hidekazu
Nakawatase, Teru Agata, and Noriko Kando. BMIR-J2:
A test collection for evaluation of japanese information
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Abstract This paper proposes a model and system for speech summarization, aimed at
selectively listening to specific contents in the entire lecture spesch data. Our system uses both
s target speech and its corresponding paper. Papers arc used to identify contents where users
are interested, based on structure/surface information. On the other hand, speech is effective to
deeply understand specific contents. Thus, given a specific region in papers, such as a chapter and
section, identified by the user, our system searches the lecture data for correspanding contents,
and presents them based on & utility maximization method. To evaluate our system, we used
a speech corpus produced by the spontaneous speech engineering project. Our preliminary
experiments showed that our syétem was practical.

Keywords speech summarization, sligning text and speech, spontaneous speech engineering
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