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Transgene-free induced pluripotent stem cells (iPSCs) are valuable for both basic research and potential clinical
applications.We previously reported that a replication-defective and persistent Sendai virus (SeVdp) vector har-
boring four reprogramming factors (SeVdp-iPS) can efficiently induce generation of transgene-free iPSCs. This
vector can express all four factors stably and simultaneously without chromosomal integration and can be elim-
inated completely from reprogrammed cells by suppressing vector-derived RNA-dependent RNA polymerase.
Here, we describe an improved SeVdp-iPS vector (SeVdp(KOSM)302L) that is automatically erased in response
to microRNA-302 (miR-302), uniquely expressed in pluripotent stem cells (PSCs). Gene expression and genome
replication of the SeVdp-302L vector, which containsmiRNA-302a target sequences at the 3′ untranslated region
of L mRNA, are strongly suppressed in PSCs. Consequently, SeVdp(KOSM)302L induces expression of
reprogramming factors in somatic cells, while it is automatically erased from cells successfully reprogrammed
to express miR-302. As this vector can reprogram somatic cells into transgene-free iPSCs without the aid of ex-
ogenous short interfering RNA (siRNA), the results we present here demonstrate that this vector may become
an invaluable tool for the generation of human iPSCs for future clinical applications.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Induced pluripotent stem cells (iPSCs) are stem cells generated by
artificial reprogramming of somatic cells with defined factors, such as
Oct4, Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006), which
are supplied to target cells by exogenous gene expression. iPSC genera-
tion comprises simultaneous and continuous expression of multiple ex-
ogenous reprogramming factors until the establishment of endogenous
pluripotency circuitry, followed by suppression of exogenous factor ex-
pression to negligible levels. Cell reprogramming is a relatively slow
process and the first step usually takes 10 to 30 days. Most of the gene
delivery vectors capable of stable gene expression can induce the
defective and persistent Sendai
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generation of iPSCs to some extent, while transient gene delivery sys-
tems (e.g., transfection of cells with synthetic mRNA) require repetitive
delivery.

Compared with the first step in this process, the significance of the
latter is often undervalued, although it is essential for the generation
of high-quality iPSCs. Continuous expression of exogenous factors af-
fects pluripotency and causes undesired side effects, such as tumorigen-
esis. Nevertheless, few of the vectors that are capable of stable gene
expression have mechanisms for its active and irreversible suppression.
The expression of genes carried by the integrative vectors (retroviral
and lentiviral vectors) is often suppressed by epigenetic modifications,
but this is a reversible process: the complete suppression involves the
excision of vector DNA from the host genome, which requires special
conditions. Non-integrative vectors, including episomal plasmids and
Sendai virus vectors, are used for iPSC generation, but their removal
from iPSCs relies on passive and inefficient omission, and sometimes
several months are needed until transgene-free iPSCs are obtained
(Fusaki et al., 2009; Yu et al., 2009).

Previously, we developed a replication-defective and persistent Sen-
dai virus (SeVdp) vector for highly efficient transgene delivery into
mammalian cells (Nishimura et al., 2011). SeVdp vector lacks all
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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structural genes necessary for viral particle production (viral replica-
tion-deficient). However, it encodes a viral RNA-dependent RNA poly-
merase (RdRp) responsible for the replication of SeVdp RNA genome,
allowing persistent transgene expression. We reported that the SeVdp
vector carrying OCT4, SOX2, KLF4, and c-MYC genes (SeVdp-iPS) effi-
ciently reprogrammed mouse embryonic fibroblasts (MEFs), human
dermal fibroblasts, and human hepatocytes into transgene-free iPSCs
(Kawagoe et al., 2013; Nishimura et al., 2011,2014; Takayama et al.,
2014). SeVdp-iPS can express reprogramming factors stably in various
somatic cells. Moreover, this vector can be removed from the iPSCs by
targeting viral RdRp with short interfering RNA (siRNA) (Nishimura et
al., 2011), which makes this vector a unique tool among other
reprogramming strategies.

Although removal of the SeVdp vector with siRNA is very efficient,
siRNA transduction to iPSCs is less efficient than to standard cell cul-
tures. Furthermore, transfection of synthetic siRNA is a relatively time-
and cost-consuming process, and additional factors should be validated
during iPSC production under Good Manufacturing Practice guidelines
(Barry et al., 2015). To overcome this, we developed an SeVdp-iPS vec-
tor, which can be auto-erased in response to microRNA-302 (miR-302).

MicroRNAs (miRNAs) represent a class of non-coding RNAs that can
regulate gene expression primary throughmRNA interactions. Brown et
al. (2007) reported that the expression of genes inserted in lentiviral
vectors can be downregulated by specific miRNAs when miRNA target
sequences are incorporated into the 3′ untranslated region (UTR) of
these genes. ThemiR-302 family members are conserved in vertebrates
and highly enriched in pluripotent stem cells (PSCs), such as embryonic
stem cells (ESCs) and iPSCs, but not in the differentiated cells (Gao et al.,
2015; Landgraf et al., 2007). Previously, miR-302 was shown to specifi-
cally inhibit lentiviral vector-mediated transgene expression in PSCs
(Brown et al., 2007; Kamata et al., 2010). Therefore, we investigated
whether miR-302 may replace the siRNAs, inhibiting RdRp encoded by
vector-derived L gene.

Here, we describe the characteristics of a novel SeVdp-iPS vector
(SeVdp(KOSM)302L) containing miR-302a target sequences at the 3′-
UTR of the L gene. This vector can be used for the efficient
reprogramming of MEFs into transgene-free iPSCs without the aid of
siRNAs, observed using human embryonic fibroblasts as well.

2. Materials and methods

2.1. Production of SeVdp vectors

The SeVdp genomic cDNA was constructed as described previously
(Nishimura et al., 2011). For the construction of the SeVdp(BG302C)
cDNA, four copies of miR-302a target sequence (5′-TCACCAAA
ATATGGAAGCACTTACGATTCACCAAAACATGGAAGCACTTAGGTACCTC-
ACCAAAACATGGAAGCACTTACGATTCACCAAAACATGGAAGCACTTA-3′)
were inserted into the 3′-UTR of Cypridina noctiluca luciferase (Cluc)
gene of the SeVdp(BGC). For the construction of the SeVdp(BO)302L
and SeVdp(KOSM)302L, the miR-302a target sequences were inserted
into the 3′-UTR of L gene of SeVdp(BO) (Nishimura et al., 2011) and
SeVdp(KOSM) (Nishimura et al., 2014), respectively. Preparation of vec-
tor-packaging cells and the production of SeVdp vectors were previous-
ly described elsewhere (Nishimura et al., 2011).

2.2. Cell culture and transfection

MEFs and human embryonic fibroblasts (TIG-3) (Matsuo et al.,
1982) were cultured in Dulbecco's modified Eagle's medium (DMEM;
Sigma-Aldrich, St. Louis, MO, USA) and Minimum Essential Medium
Eagle (MEM; Sigma-Aldrich), respectively, supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin-streptomycin (Pen-Strep;
Wako, Osaka, Japan). Nanog-green fluorescent protein (GFP) MEFs
were isolated from transgenic mice, carrying the Nanog-GFP-IRES-
Puror reporter construct (Okita et al., 2007), and they were obtained
from the RIKEN BioResource Center (Tsukuba, Japan). Mouse (m)ESCs
(EB5; RIKEN BioResource Center) and miPSCs (Nishimura et al., 2011)
were cultured in mESC medium [DMEM (Nacalai Tesque, Kyoto,
Japan) supplemented with 15% FBS (Hyclone, Logan, UT, USA),
0.1 mM non-essential amino acids (NEAA; Thermo Fisher Scientific,
Waltham, MA, USA), 55 μM 2-mercaptoethanol (2-ME; Thermo Fisher
Scientific), 1% Pen-Strep, and 1000 U/mL leukemia inhibitory factor
(LIF; Wako)]. Human (h)iPSCs (454E2; RIKEN BioResource Center)
were cultured in the Primate ES cell culture medium (ReproCell, Yoko-
hama, Japan).

To block the activity of miR-302, cells were transfected with 50 nM
of themiR-302 seed-targeting 8-mer locked nucleic acid (LNA) oligonu-
cleotide (antimiR-302) or the LNA scramble (Obad et al., 2011) using Li-
pofectamineRNAiMAX reagent (ThermoFisher Scientific) a day prior to
the infection. The LNA oligonucleotides were synthesized by
GeneDesign (Osaka, Japan).

2.3. Luciferase assay

MEFs, mESCs, and miPSCs were infected with the SeVdp(BGC) or
SeVdp(BG302C), and treated with blasticidin S (Bs) for 5 days (days
2–6). At day 6, 5 × 105 cells were passaged, and the supernatants
were collected 1 day after passage. Cluc activity was determined using
Cluc Reporter Assay Kit (ATTO, Tokyo, Japan), according to the
manufacturer's instructions.

2.4. Characterization of iPSCs

Detailed methods for iPSC generation, quantitative reverse tran-
scription (RT)-PCR, immunofluorescence staining, and teratoma forma-
tion are described in Supplementary Materials and Methods. Animal
experiments were carried out in accordance with the protocols ap-
proved by University of Tsukuba Ethics Committee for Animal
Experiments.

2.5. Statistical analysis

All statistic data presented are representative of at least three inde-
pendent experiments. Statistical analyses were performed using the
Student's t-test.

3. Results and discussion

3.1. miR-302 can regulate SeVdp-mediated gene expression in PSCs

To examinewhethermiR-302 specifically inhibits SeVdp vector-me-
diated transgene expression in PSCs, we constructed the
SeVdp(BG302C) vector containing Cluc and four copies ofmiR-302a tar-
get sequences at its 3′-UTR (Fig. 1). This vector also contains blasticidin-
resistance gene (Bsr), and a gene for enhanced greenfluorescent protein
(EGFP).We prepared SeVdp(BGC) vector, with the same genomic struc-
ture as the SeVdp(BG302C) butwithoutmiR-302a target sequences, as a
control. MEFs, mESCs, and miPSCs were infected with each of the vec-
tors, and Cluc activities were determined after Bs selection. As shown
in Fig. 2A, Cluc activity in mESCs and miPSCs infected with the
SeVdp(BG302C) was significantly decreased compared with that in
the cells infected with SeVdp(BGC). In contrast to this, both vectors in-
duced comparable Cluc activity in MEFs. EGFP expression was shown to
be similar when SeVdp(BG302C) was used to that of SeVdp(BGC) in
MEFs and mPSCs (Fig. 2B), indicating that the incorporation of miR-
302a target sequences into the SeVdpvector leads to a significant reduc-
tion in the expression of desired transgenes in mPSCs but not in MEFs.

We previously demonstrated that the transfection of cells with
siRNA targeting the L gene inhibits the replication of SeVdp RNA ge-
nome in HeLa cells (Nishimura et al., 2011). To examine whether miR-
302 blocks the replication of SeVdp genome by suppressing RdRp



Fig. 1. SeVdp vector structure. TheNP, P, and L genes are necessary for the replication of SeVdp RNA genome and transcription. The P gene containsmultiple open reading frames encoding
the P, C, and V proteins. Other genes were inserted into the SeVdp backbone as transgenes.
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activity, we prepared SeVdp(BO) and SeVdp(BO)302L, which contained
Bsr and a Kusabira-Orange (KO) sequence. The SeVdp(BO)302L
contained miR-302a target sequences at the 3′-UTR of L gene as well
Fig. 2. Regulation of the expression of SeVdp vectors containingmiR-302a target sequences. (A)
the indicated cultures was determined. (B) EGFP expression in SeVdp(BGC)- and SeVdp(BG302
100 μm. (C)miR-302-induced inhibition of the replication of SeVdp genome. The cellswere infec
observed at day 2 and 5. Scale bars, 100 μm. (D) Recovery of the replication of SeVdp genome by
scr prior to the infection with the vectors, and KO expression was observed at day 2 and 5.
(Fig. 1). MEFs, mESCs, and miPSCs were infected with each of the vec-
tors, and KO expression was examined by fluorescence microscopy.
Two days after the infection, KO expression was shown to be induced
miR-302-mediated inhibition of transgene expression. Cluc activity in the supernatants of
C)-infected MEFs, mESCs, and miPSCs was observed 6 days after the infection. Scale bars,
tedwith SeVdp(BO) or SeVdp(BO)302L, and treatedwith Bs at day 2–5. KOexpressionwas
miR-302 inhibition. mESCs or miPSCs were transfected with the antimiR-302 or antimiR-
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in all cells infected with SeVdp(BO) (Fig. 2C). In contrast,
SeVdp(BO)302L-mediated KO expression was strongly inhibited in
mESCs and miPSCs, but not in MEFs. Additionally, mPSCs infected with
the SeVdp(BO)302L were shown to be sensitive to Bs whereas the
cells infectedwith the SeVdp(BO)were resistant to it (Fig. 2C). To exam-
ine the specificity of miR-302-mediated suppression of the
SeVdp(BO)302L, we transfected mPSCs with a miR-302 inhibitor,
antimiR-302, prior to the infection. This significantly restored KO ex-
pression and Bs resistance (Fig. 2D), suggesting that miR-302 activity
can prevent the replication of SeVdp genome through a specific knock-
down of L gene in mPSCs.

3.2. An auto-erasable SeVdp vector facilitates the generation of transgene-
free miPSCs

We investigated whether miR-302-mediated L suppression may fa-
cilitate the removal of SeVdp-iPS vector from miPSCs. First, we exam-
ined the time course of miR-302a expression after the infection of
MEFs with the SeVdp(KOSM), and showed that it can be detected at
day 6 after the infection,while its level at day 16was significantly differ-
ent from the level determined at day 0 (Supplementary Fig. 1A). Expres-
sion analysis of the early-phase reprogramming markers (Cdh1 and
Fbxo15) and late-phase markers (Oct4, Esrrb, and Nanog) indicated
Fig. 3. Generation of vector-free miPSCs using SeVdp(KOSM)302L. (A) Percentage of colonie
NP(+)SSEA1(+), and NP(−)SSEA1(+) colonies were counted at day 15, and the percentage
experiments. (B) Percentage of colonies expressing SeV NP and/or Nanog. The numbers of NP
counted at day 25, and the results obtained in three independent experiments are prese
Nanog(+) colonies at day 25 was calculated. Data are represented as mean ± standard erro
pluripotency markers in miPSC clones generated with the SeVdp(KOSM)302L. miPSC clones
50. Data are represented as mean ± SEM of three independent experiments. (E) Histological e
bars, 100 μm.
that miR-302a expression was induced at an early phase of
reprogramming and gradually increased with iPSCmaturation (Supple-
mentary Fig. 1B).

Afterwards, we prepared SeVdp(KOSM)302L vector containingmiR-
302a target sequences at the 3′-UTR of L gene of the SeVdp(KOSM) (Fig.
1), and examined its characteristics. Nanog-GFP MEFs were infected
with the SeVdp(KOSM) or SeVdp(KOSM)302L, and SSEA1-positive
(SSEA1(+)) colonies were examined by immunofluorescence staining
at day 15 after the infection. In accordance with our previous observa-
tions (Nishimura et al., 2014), SeVdp(KOSM) was shown to induce the
formation of many SSEA1(+) colonies, however, all colonies expressed
SeVNP antigen aswell (Fig. 3A). In contrast to this,most colonies infect-
ed with SeVdp(KOSM)302L expressed SSEA1, but not NP antigen, indi-
cating that SeVdp(KOSM)302L was efficiently erased from the
reprogrammed colonies. Notably, we detected no NP-negative (NP(−
)) colonies at day 8 after the infection with SeVdp(KOSM)302L, al-
though the number of the NP(−) colonies considerably increased at
day 15 (Supplementary Fig. 2A), suggesting that vector removal de-
pends on miR-302 expression levels (Supplementary Fig. 1A).

We next examined the expression of Nanog, a more reliable marker
of fully reprogrammedmiPSCs, by determiningNanog promoter-driven
GFP expression levels (Okita et al., 2007). Twenty-five days after the in-
fection with SeVdp(KOSM)302L, a large population of Nanog-positive
s expressing SeV NP and/or SSEA1. The numbers of NP(−)SSEA1(−), NP(+)SSEA1(−),
of each type of colony in the total number of colonies was obtained in three independent
(−)Nanog(−), NP(+)Nanog(−), NP(+)Nanog(+), and NP(−)Nanog(+) colonies were
nted. (C) Vector-removal efficiency following the reprogramming. Ratio of NP(−) to
r of the mean (SEM) of three independent experiments. ***P b 0.005. (D) Expression of
(#1 and #2) were isolated, and pluripotency marker expression was determined at day
xamination of teratomas derived from miPSCs generated using SeVdp(KOSM)302L. Scale
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(Nanog(+)) colonies was shown to be generated, unlike in the samples
infected with SeVdp(KOSM) (Fig. 3B). Approximately 87% of Nanog(+)
colonies were negative for NP antigen when SeVdp(KOSM)302L vector
was used (Fig. 3C). However, most cells infected with SeVdp(KOSM)
expressed NP antigen and failed to express Nanog (Fig. 3B). Interesting-
ly, the number of NP(+)Nanog(+) colonies was considerably lower
than that of the NP(+)SSEA1(+) colonies when SeVdp(KOSM) vector
was used (Fig. 3A and B), suggesting that the suppression of trans-sup-
plying factor expression may be required for the progression to the late
phase of reprogramming.

To investigate the characteristics of miPSCs generated using
SeVdp(KOSM)302L, Nanog(+) colonies were isolated and cultivated
for the additional 20 days. The miPSC clones expressed ESC marker
genes at the levels comparable to those determined in the mESCs (Fig.
3D and Supplementary Fig. 2B). Additionally, the clones were shown
to differentiate into the derivatives of three germ layers in teratomas
(Fig. 3E), indicating that the SeVdp(KOSM)302L-induced miPSCs are
as pluripotent as mESCs. We confirmed that the NP-antigen expression
was not detected in isolated clones (Supplementary Fig. 2B). Moreover,
NP proteins and NP and L mRNAs were not detected even when the
clone was cultured under conditions inducing fibroblast differentiation
Fig. 4. Generation of vector-free hiPSCs using the SeVdp(KOSM)302L. (A) miR-302a expressio
relative to that in the established hiPSCs. Data are presented as mean ± SEM of three inde
reprogramming. SeV NP and TRA-1-60 expression in cells infected with SeVdp(KOSM) or Se
Efficiency of vector removal during hiPSC generation. Ratio of NP(−) to TRA-1-60(+) coloni
experiments. ***P b 0.005. (D) Expression of pluripotency markers in hiPSCs generated with th
(clone #1) or 16 passages (clone #3). Data are represented as mean ± SEM of three indepen
the auto-erasable SeVdp-iPS vector. Introduction of four reprogramming factors induces th
suppressing the replication of SeVdp genome, which further leads to the removal of vector fro
(Supplementary Fig. 3A, C, andD). DifferentiatedmiPSCswere shown to
have a significant reduction in the level of miR-302a (Supplementary
Fig. 3B), in comparison with that in the undifferentiated cells, suggest-
ing that elimination of SeV-gene expression was not due to miR-302-
mediated suppression of SeV RdRp activity in those cells. These data in-
dicated that SeVdp(KOSM)302L was completely removed from the
established miPSCs.

3.3. Generation of transgene-free hiPSCs using the auto-erasable SeVdp
vector

We next examined the capacity of the SeVdp(KOSM)302L to repro-
gram human embryonic fibroblasts (TIG-3 cells) into hiPSCs. The infec-
tion of TIG-3 cells with the SeVdp(KOSM) led to the induction of miR-
302a expression and the upregulation of ESC marker genes (Fig. 4A
and Supplementary Fig. 4A). We infected TIG-3 cells with the
SeVdp(KOSM) or SeVdp(KOSM)302L, and the expression of TRA-1-60
and NP antigen was examined by immunofluorescence staining
30 days after the infection. SeVdp(KOSM)302L was shown to induce
the formation of NP(−)TRA-1-60(+) colonies, suggesting that this vec-
tor can be efficiently removed from hiPSCs after the reprogramming
n in SeVdp(KOSM)-infected TIG-3 cells, at day 0, 6, and 12 after the infection, presented
pendent experiments. *P b 0.05, ***P b 0.005, versus day 0. (B) Efficiency of TIG-3 cell
Vdp(KOSM)302L was determined at day 30 after the infection. Scale bars, 900 μm. (C)
es was calculated at day 30. Data are represented as mean ± SEM of three independent
e SeVdp(KOSM)302L. Gene expression in hiPSC clones was determined after 19 passages
dent experiments. (E) Schematic representation of transgene-free iPSC generation using
e expression of miR-302, which binds to the target sequences in the 3′-UTR of L gene,
m the reprogrammed cells.
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(Fig. 4B). In contrast, SeVdp(KOSM) infection significantly induced the
formation of TRA-1-60(+) colonies, but most of them remained NP-
positive (Fig. 4B). We observed that NP(+) colonies exhibited dome-
like shapes (Supplementary Fig. 4B), different from the hESC-like mor-
phology, suggesting that the extended expression of trans-supplying
reprogramming factors may interfere with hiPSC maturation. Previous
reports suggested that transgene silencing is required for the establish-
ment of fully reprogrammed iPSCs in integrative reprogramming sys-
tems (Chan et al., 2009). Upon the completion of reprogramming, the
expression of transgenes should be replaced with the expression of en-
dogenous counterparts, to acquire pluripotency (Jeanisch and Young,
2008). Therefore, the complete removal of the SeVdp-iPS vector may
represent a prerequisite for the generation of fully reprogrammed
hiPSCs.

To estimate the efficiency of vector removal, we counted the number
of NP(−)TRA-1-60(+) colonies. SeVdp(KOSM)302L led to the genera-
tion of more NP(−)TRA-1-60(+) colonies than the SeVdp(KOSM) vec-
tor (Fig. 4C). Approximately 28% of SeVdp(KOSM)302L-induced TRA-1-
60(+) colonies were shown to be NP(−). Although many
SeVdp(KOSM)302L-induced colonies remained NP(+) at day 30, they
showed faint and partial staining patterns, and the subsequent passag-
ing and colony selection significantly accelerated the removal of vector.
We confirmed that hiPSC clones generated using SeVdp(KOSM)302L
expressed hESC marker genes (Fig. 4D and Supplementary Fig. 4C),
whereas NP expression was not detected (Supplementary Fig. 4C and
D), suggesting that the SeVdp(KOSM)302L vector facilitates the genera-
tion of vector-free hiPSCs. Recent reports demonstrated that the
SeVdp(KOSM)302L is particularly useful for the generation of trans-
gene-free iPSCs from human peripheral blood cells, including CD8+ T-
cells (Nishimura et al., 2013), mucosal-associated invariant T-cells
(Wakao et al., 2013), and peripheral blood mononuclear cells
(Trokovic et al., 2014).

In this study, we demonstrated that themiR-302-induced inhibition
of the replication of SeVdp genome is useful approach for facilitating
iPSC generation. Human and mouse iPSCs express a set of unique
miRNAs, including miR-290 family (mouse), miR-371-373 (human),
and miR-17-92 (mouse and human) (Houbaviy et al., 2003; Suh et al.,
2004). These miRNAs are likely to exhibit distinct spatiotemporal ex-
pression patterns, indicating a need for the investigation of other ESC-
specific miRNAs that may show better efficiency than miR-302 for the
rapid removal of the SeVdp-iPS vector during iPSC generation. Further
refinement of our strategy should make the SeVdp-iPS vector an easier
and more potent tool for the generation of transgene-free iPSCs.

4. Conclusion

Here,we developed a novel SeVdp-iPS vector that can be targeted by
miR-302. This vector can efficiently reprogram somatic cells and is auto-
matically removed from the reprogrammed cells when miR-302 ex-
pression reaches a level sufficient to block the replication of SeVdp
genome (Fig. 4E). Complete inhibition of the SeVdp-iPS vector repre-
sents a prerequisite for the promotion of the maturation and prolifera-
tion of iPSC colonies. Overall, the auto-erasable SeVdp-iPS vector was
shown to allow the effective and easy generation of transgene-free
iPSCs, using mouse and human somatic cells. We expect that this ap-
proach is applicable in a variety of other cell reprogramming proce-
dures, including direct reprogramming without the initialization to
iPSCs, using different sets of reprogramming factors and miRNA target
sequences.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2017.06.011.
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