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SUBLINEAR HIGSON CORONA OF EUCLIDEAN CONE

By

Tomohiro Fukaya

Abstract. Let X be a proper metric space. The sublinear Higson

compactification hLX is a variant of the Higson compactification.

Its boundary hLXnX is denoted nLX , and is called the sublinear

Higson corona of X . The sublinear Higson corona is a functor from

the category of coarse spaces to that of compact Hausdor¤ spaces.

Let P be a compact metric space and X be an unbounded proper

metric space. We show that the sublinear Higson corona of a

product space P� X equipped with a cone metric is homeomorphic

to a product P� nLX . Especially, the sublinear Higson corona of

the n-dimensional Euclidean space is homeomorphic to the product

of an ðn� 1Þ-dimensional sphere and the sublinear Higson corona of

natural numbers.

1. Introduction

Compactifications of product spaces have been studied long time. Glicksberg

[4] showed that the Stone-Čech compactification bðX � YÞ of a product of two

spaces X and Y (at least one of X and Y is infinite) is homeomorphic to

bX � bY if and only if X � Y is pseudo-compact (see also [11]). Tomoyasu

[10] studied the Higson Compactifications of product spaces. Kawamura and

Tomoyasu [6] studied approximations of Stone-Čech compactifications by Higson

compactifications.

In this paper, we study the sublinear Higson compactification of product

spaces. Let M be a non-compact complete Riemannian manifold. From con-

siderations of index theory, Higson introduced a certain compactification of M

defined as the maximal ideal space of the commutative C �-algebra generated by
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the smooth functions on M whose gradient vanishes at infinity. Let X be a

proper metric space. Roe gave an analogue of Higson’s construction for X to

define the Higson compactification hX . The boundary nX ¼ hXnX is called the

Higson corona of X .

The sublinear Higson corona is a variant of the Higson corona. A relation

between the sublinear Higson corona and the Gromov-Lawson conjecture was

studied in [2, Lemma 3.3]. (In [2] the sublinear Higson corona of an open

manifold M was denoted by n1=xðMÞ.)
We introduce the sublinear Higson corona nLX for a proper metric space X

and show that it is a faithful functor from the category of coarse spaces to that

of compact Hausdor¤ spaces. Let P be a compact metric space and P�cone X

is a product space of P and X equipped with a cone metric defined in Section 4.

We show that the sublinear Higson corona nLðP�cone XÞ is homeomorphic to

a product P� nLX (Theorem 4.5). For example, nLR
n is homeomorphic to

Sn�1 � nLN. There is an application. Let T : Rn ! Rn be a linear map of a

positive determinant. We show that the induced map nLT : nLR
n ! nLR

n is

homotopic to the identity.

The organization of this paper is as follows: In Section 2, we briefly review

the coarse category. In Section 3, we define the sublinear Higson corona and

study functorial properties. In Section 4, we define the Euclidean cone and study

a decomposition of the sublinear Higson corona of it. In Section 5, we give an

application.
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2. Coarse Category

A metric space X is proper if every closed bounded set in X is compact.

For a positive number C, a proper metric space X is a C-quasi-geodesic space

if for any x; x 0 A X , there exists a map f : ½0; dðx; x 0Þ� ! X such that f ð0Þ ¼ x,

f ðdðx; x 0ÞÞ ¼ x 0 and ð1=CÞja� bj � Ca dð f ðaÞ; f ðbÞÞaCja� bj þ C for all

a; b A ½0; dðx; x 0Þ�. We choose a base point e A X and define jxj :¼ dðe; xÞ for

x A X . In this paper, we say that a proper metric space X is a coarse space if X is

a CX -quasi-geodesic space for some constant CX , and is equipped with the base

point e A X .
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Definition 2.1. Let X and Y be coarse spaces and let f : X ! Y be a map

(not necessarily continuous). The map f : X ! Y is a quasi-isometry if there

exists a constant A > 0 such that

1

A
dðx; x 0Þ � Aa dð f ðxÞ; f ðx 0ÞÞaAdðx; x 0Þ þ A

for all points x, x 0 in X .

Let f ; g : X ! Y be maps. Then f is close to g if there exists a constant C

such that dð f ðxÞ; gðxÞÞaC for all x A X . Moreover, f is sublinearly close to g if

for any e > 0, there exists a constant Ce such that dð f ðxÞ; gðxÞÞa ejxj þ Ce for all

x A X .

Coarse spaces X and Y are quasi-isometric if there exist quasi-isometries

f : X ! Y and g : Y ! X such that g � f and f � g are close to the identities of

X and Y , respectively.

3. Sublinear Higson Corona

All arguments in this section are based on those in [9, Section 2.3]. Let X be

a coarse space and j : X ! C be a bounded continuous function. We say that j

is a sublinear Higson function on X if there exists a constant Cj such that for all

R > 0 and all x; x 0 A XnBðRÞ satisfying dðx; x 0Þ < R=2, we have

jjðxÞ � jðx 0Þj < Cjdðx; x 0Þ
R

:ð3:1Þ

Here BðRÞ denotes the open ball of radius R centered at the base point e.

Let CbðXÞ denotes the C �-algebra of all bounded continuous functions on X .

For j A CbðXÞ, the norm of j is the supremum, that is, kjk ¼ supx AX jjðxÞj.
Let ChLðXÞ denote the space of all sublinear Higson functions. Then it is easy

to see that ChLðX Þ is closed under multiplications and *-operations, so ChLðXÞ is

a sub *-algebra of CbðXÞ and its closure, denoted by ChLðX Þ, is a unital C �-

algebra. By the Gelfand-Naimark theorem, ChLðXÞ is the algebra of continuous

functions on a compactification of X .

Definition 3.1. The compactification hLX of X characterized by CðhLXÞ ¼
ChLðX Þ is called the sublinear Higson compactification. The boundary hLXnX is

denoted by nLX , and is called the sublinear Higson corona of X .
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Let C0ðX Þ denote the algebra of continuous functions on X which vanish at

infinity. Then we have CðnLX ÞGChLðX Þ=C0ðX Þ.

Proposition 3.2. The sublinear Higson corona of an unbounded coarse space

is never second countable and its cardinal number is greater than or equal to 22
@0 .

Proof. For second countability, it is enough to show that ChLðX Þ is not

separable. We can choose a sequence fxng such that jxnj > 2jxn�1j for all nb 0.

We define a continuous map jn : X ! C as follows:

jnðxÞ ¼
1� 4dðx;xnÞ

jxnj if dðx; xnÞa jxnj
4 ;

0 otherwise.

(

For a map P : N ! f0; 1g, we define a continuous map cP : X ! C by cPðxÞ ¼P
n AN PðnÞjnðxÞ. Thus we obtain a family of uncountably many sublinear Higson

functions such that kcP � cP 0 k ¼ 1 for any pair ðcP;cP 0 Þ of distinct P;P 0 A

f0; 1gN. This shows that ChLðX Þ is not separable.

For c A CbðfxngÞ, an extension ĉc A ChLðX Þ of c is given by ĉcðxÞ ¼P
n AN cðxnÞjnðxÞ. Therefore ChLðXÞ ! CbðfxngÞ is surjective, which means the

inclusion fxng ,! X extends to an embedding bfxng ! hLX . Here bfxng denotes

the Stone-Čech compactification of fxng. Since bfxng is homeomorphic to bN,

the cardinal number of hLX is greater than or equal to that of bN, that is, 22
@0 .

Arguments similar to those given here can be seen in the proof of [7, Theorem 3].

r

Let X and Y are coarse spaces and let f : X ! Y be a continuous quasi-

isometry. Then it is easy to see that f extends to the continuous map

hL f : hLX ! hLY . The restriction hL f to nLX is denoted by nL f . Assuming that

X and Y are of bounded geometry (Definition 3.3), we can construct a con-

tinuous map nL f : nLX ! nLY even if f is not continuous. To see this, we

reformulate the construction of the sublinear Higson corona. Let X be a coarse

space. Let BðX Þ denote the C �-algebra of all bounded functions on X , and let

B0ðXÞ denote the closed ideal of all bounded functions which vanish at infinity.

Now let BhLðX Þ denote the sub *-algebra of all bounded functions j : X ! C

which satisfy the following condition: There exists a constant Cj such that for all

R > 0 and all x; x 0 A XnBðRÞ satisfying dðx; x 0Þ < R=2, we have

jjðxÞ � jðx 0Þj < Cjdðx; x 0Þ þ Cj

R
:
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Let BhLðX Þ be the closure of BhLðXÞ. Assuming the following condition on X ,

we can construct the sublinear Higson corona nLX using BhðX Þ instead of

ChðXÞ.

Definition 3.3. A coarse space X is of bounded geometry if there exists

a uniformly bounded cover U ¼ fUag of X with a positive Lebesgue number and

of finite degree. That is, there exist constants L, d and N such that the Lebesgue

number of U is L, the diameter of all Ua A U is bounded by d and no more than

N member of U have non-empty intersection.

Lemma 3.4. Let X be a coarse space of bounded geometry. Then

(a) C0ðX Þ ¼ ChLðX ÞVB0ðXÞ.
(b) BhLðXÞ ¼ ChLðX Þ þ B0ðX Þ.

Proof. The part (a) is obvious. The proof of part (b) is based on the

proof of [9, Lemma 2.40]. Let U ¼ fUag be a cover of X described in Defini-

tion 3.3 and L, d, N be corresponding constants. Then we can construct a

partition of unity fpag subordinate to U such that all of whose constituent

functions are D-Lipschitz for a constant D ¼ DðL; d;NÞ. (See the proof of [9,

Theorem 9.9].)

Choose a point xa A Ua for each a. Let f A BhLðX Þ and Cf be the constant

which appears in the definition of BhLðXÞ. Define

gðxÞ :¼
X
a

paðxÞ f ðxaÞ:

The function g is continuous and bounded. For all x A X , we have

f ðxÞ � gðxÞ ¼
X
a

paðxÞð f ðxÞ � f ðxaÞÞ

and dðx; xaÞ < d whenever paðxÞ0 0. Thus we have f � g A B0ðX Þ. Next

we show that g satisfies (3.1). By assumption, X is a CX -quasi-geodesic for

some CX > 0. Let R > 2d and x; x 0 A XnBðRÞ such that dðx; x 0ÞaCX . Set

Iþ :¼ fa : paðxÞ � paðx 0Þ > 0g and I� :¼ fa : paðxÞ � paðx 0Þ < 0g. Set t :¼P
a A Iþ

ðpaðxÞ � paðx 0ÞÞ ¼ �
P

a A I�
ðpaðxÞ � paðx 0ÞÞ. Since each pa is D-Lipschitz,

we have ta 2NDdðx; x 0Þ. Set fmax :¼ maxf f ðxaÞ : a A Iþg and fmin :¼
minf f ðxaÞ : a A I�g. For any a; a 0 A Iþ U I�, we have xa; xa 0 A XnBðR� dÞ and

dðxa; xa 0 Þ < CX þ 2d. It follows that fmax � fmin aCf ðCX þ 2d þ Cf Þ=ðR� dÞ <
2Cf ðCX þ 2d þ Cf Þ=R. Without loss of generality, we can assume that
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gðxÞb gðx 0Þ. Then we have

jgðxÞ � gðx 0Þj ¼ gðxÞ � gðx 0Þ

¼
X
a A Iþ

ðpaðxÞ � paðx 0ÞÞ f ðxaÞ þ
X
a A I�

ðpaðxÞ � paðx 0ÞÞ f ðxaÞ

a
X
a A Iþ

ðpaðxÞ � paðx 0ÞÞ fmax þ
X
a A I�

ðpaðxÞ � paðx 0ÞÞ fmin

¼ tð fmax � fminÞ

a
4NDCf ðCX þ 2d þ Cf Þ

R
dðx; x 0Þ:

This shows that g A ChLðXÞ and completes the proof of Lemma 3.4. r

It follows from the second isomorphism theorem that

CðnLXÞ ¼ ChLðXÞ
C0ðXÞ ¼ ChLðX Þ

ChLðX ÞVB0ðX Þ
¼ B0ðX Þ þ ChLðXÞ

B0ðXÞ ¼ BhLðXÞ
B0ðXÞ :

Proposition 3.5. Let X and Y be coarse spaces of bounded geometry.

Then, a quasi-isometry f : X ! Y extends to a continuous map nL f : nLX !
nLY. Moreover, two maps f ; g : X ! Y are sublinearly close if and only if

nL f ¼ nLg.

Proof. A quasi-isometry f : X ! Y induces homomorphisms f � : BhLðYÞ
! BhLðX Þ and f � : B0ðY Þ ! B0ðXÞ. If f is sublinearly close to g then f � � g�

maps BhLðY Þ to B0ðX Þ. Thus nf ¼ ng.

We suppose that f is not sublinearly close to g. There exist a constant C and

a sequence fxng such that dð f ðxnÞ; gðxnÞÞbCjxnj. We can construct a sublinear

Higson function j on Y such that jð f ðxnÞÞ ¼ 1 and jðgðxnÞÞ ¼ 0 for all nb 0,

therefore nL f 0 nLg. r

Corollary 3.6. Quasi-isometric spaces of bounded geometry have homeo-

morphic sublinear Higson coronae.

Proposition 3.5 says that the sublinear Higson corona is a faithful functor

from the category of coarse spaces of bounded geometry with sublinearly close

classes of quasi-isometries to that of compact Hausdor¤ spaces.
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Remark 3.7. Dranishnikov and Smith [3] introduced the sublinear coarse

structure and showed that the sublinear Higson corona of a proper metric space is

homeomorphic to its Higson corona with respect to the sublinear coarse structure

([3, Theorem 2.11]).

4. Euclidean Cone

Let X be a geodesic space with the base point eX and P be a compact length

space with the base point eP. We define a cone metric on P� X as usual (See [8,

Section 3.6.]). A path g is a continuous map from an interval I ¼ ½0; 1� to P� X .

We define the length of g, denoted by lðgÞ, to be

sup
Xn�1

j¼0

dðxj; xjþ1Þ þmaxf1; jxjj; jxjþ1jgdðpj ; pjþ1Þ
( )

;

where the supremum is taken over all finite sequences ðpj; xjÞnj¼0 of points on the

path g with ðp0; x0Þ and ðpn; xnÞ being the two endpoints. We make P� X into a

length space by defining the distance dcone of z; z 0 A P� X to be

dconeðz; z 0Þ ¼ inf lðgÞ

where the infimum is taken over all path g joining z ¼ ðp; xÞ and z 0 ¼ ðp 0; x 0Þ.
The Euclidean cone of P and X , denoted by P�cone X , is the metric space P� X

equipped with this metric dcone and the base point ðeP; eX Þ.

Example 4.1. The Euclidean cone Sn�1 �cone Rb0 is quasi-isometric to Rn.

Let CðP;ChLðX ÞÞ denotes the C �-algebra of continuous ChLðXÞ-valued func-

tions on P. The norm of F A CðP;ChLðXÞÞ is the supremum, that is,

kFk ¼ sup
p AP

kFðpÞk ¼ sup
p AP

sup
x AX

jFðpÞðxÞj
� �

:

For j A ChLðP�cone XÞ and p A P, we denotes by jp a map x 7! jðp; xÞ.
We define a homomorphism L : ChLðP�cone XÞ ! CðP;ChLðX ÞÞ as follows:

L : ChLðP�cone XÞ C j 7! ðp 7! jpÞ A CðP;ChLðX ÞÞ:

Proposition 4.2. L is well-defined and extends to a monomorphism of

C �-algebras:

L : ChLðP�cone XÞ ! CðP;ChLðX ÞÞ:
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Proof. Let j A ChLðP�cone X Þ. Fix a point p A P. For any R > 0 and any

x; x 0 A XnBðRÞ with dðx; x 0Þ < R=2, we have

jjpðxÞ � jpðx 0Þj < Cjdconeððp; xÞ; ðp; x 0ÞÞ
R

a
Cjdðx; x 0Þ

R
:

Thus jp belongs to ChLðX Þ for all p A P. Next we show that the map

LðjÞ : P ! ChLðXÞ is continuous. Let p; p 0 A P. Since P is a length space, for any

e > 0, there exist points p0; . . . ; pn such that p0 ¼ p, pn ¼ p 0, dðpiþ1; piÞ < 1=2 for

i ¼ 0; . . . ; n� 1 and
Pn�1

i¼0 dðpiþ1; piÞ < dðp; p 0Þ þ e. Let x A X . Since ðpiþ1; xÞ and
ðpi; xÞ belong to ðP�cone XÞnBðjxjÞ, and dconeððpiþ1; xÞ; ðpi; xÞÞa jxjdðpiþ1; piÞ <
jxj=2, it follows from (3.1) that

jjðpiþ1; xÞ � jðpi; xÞja
Cj

jxj ðdconeððpiþ1; xÞ; ðpi; xÞÞaCjdðpiþ1; piÞ:

Thus we have

jLðjÞðpÞðxÞ �LðjÞðp 0ÞðxÞj ¼ jjðp; xÞ � jðp 0; xÞj

a
Xn�1

i¼0

jjðpiþ1; xÞ � jðpi; xÞj

a
Xn�1

i¼0

Cjdðpiþ1; piÞ

aCjðdðp; p 0Þ þ eÞ:

We can choose e as an arbitrary small number, so kLðjÞðpÞ �LðjÞðp 0Þka
Cjdðp; p 0Þ. This shows that LðjÞ is continuous and therefore LðjÞ belongs to

CðP;ChLðXÞÞ. By the definition, we have

kjk ¼ sup
ðp;xÞ AP�coneX

jjðp; xÞj ¼ sup
p AP

sup
x AX

jpðxÞ
� �

¼ kLðjÞk:

This shows that L is an isometry, so L extends to the isometry

L : ChLðP�cone X Þ ! CðP;ChLðXÞÞ. r

Proposition 4.3. The map W : CðPÞnChLðXÞ ! ChLðP�cone X Þ : jnc 7!
j � c is well-defined.

Proof. The map W : CðPÞnChLðX Þ ! CbðP�cone XÞ is well-defined. We

show that the image of W lies on ChLðP�cone XÞ. Let jnc A CðPÞnChLðX Þ.
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We suppose that j is a Lipschitz map with a Lipschitz constant Cj. Let

R > 0 and ðp; xÞ; ðp 0; x 0Þ A P�cone X such that jxj; jx 0j > R. We assume that

dconeððp; xÞ; ðp 0; x 0ÞÞ < R=2. By the definition of dcone, for any 0 < e < R=6, there

exists a sequence fðpi; xiÞgn
i¼0 satisfying ðp0; x0Þ ¼ ðp; xÞ, ðpn; xnÞ ¼ ðp 0; x 0Þ such

that

Xn�1

i¼0

dðxi; xiþ1Þ þmaxf1; jxij; jxiþ1jgdðpi; piþ1Þa dconeððp; xÞ; ðp 0; x 0ÞÞ þ e:

Then dconeððpi; xiÞ; ðeP; eX ÞÞ > R=3 for i ¼ 0; . . . ; n. It follows that

jxij >
R

3ð1þ diam PÞ :

Here diam P denotes the diameter of P. Thus we have

jjðpiþ1Þcðxiþ1Þ � jðpiÞcðxiÞj

a jjðpiþ1Þcðxiþ1Þ � jðpiÞcðxiþ1Þj þ jjðpiÞcðxiþ1Þ � jðpiÞcðxiÞj

aCjkckdðpiþ1; piÞ þ
3ð1þ diam PÞCckjk

R
dðxiþ1; xiÞ

a
3ð1þ diam PÞðCjkck þ CckjkÞ

R
ðdðxiþ1; xiÞ þmaxfjxiþ1j; jxijgdðpiþ1; piÞÞ:

Then we have

jjðp 0Þcðx 0Þ � jðpÞcðxÞja Cjkck þ 3Cckjk
R

ðdconeððp 0; x 0Þ; ðp; xÞÞ þ eÞ:

It follows that WðjncÞ belongs to ChLðP�cone XÞ. Since the set of Lipschitz

maps is dense in CðPÞ, we have the desired consequence. r

To show that W is an isomorphism, we need the following well-known fact.

Lemma 4.4. Let P be a compact metric space and A be a commutative

C �-algebra. Then CðPÞnAGCðP;AÞ.

Proof. We can construct a family fUngn AN of finite covers of P such that,

the diameter of each member U n
i of Un is less than 1=n. We choose points

pn
i A U n

i for each n A N. Let fhn
i gi be a partition of unity subordinate to Un. We

define C : CðPÞnA ! CðP;AÞ by Cðjn aÞðpÞ ¼ jðpÞa for j A CðPÞ, a A A and

p A P. Clearly C is injective. We show that C is surjective. Let c A CðP;AÞ. Set
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cn ¼
P

i h
n
i ncðpn

i Þ A CðPÞnA. Since c is uniformly continuous, kc�CðcnÞk
tends to 0 as n goes to infinity. Thus C is surjective. r

Theorem 4.5. The sublinear Higson compactification of the Euclidean cone

P�cone X is homeomorphic to the product P� hLX. Especially nLðP�cone X Þ ¼
P� nLX.

Proof. By Proposition 4.2, 4.3 and Lemma 4.4, ChLðP�cone XÞGCðPÞn
ChLðX Þ. r

Example 4.6. nLðRnÞ ¼ Sn�1 � nLN.

5. Application

Definition 5.1. Let f ; g : X ! Y be quasi-isometries. f is cone-homotopic

to g if there exists a quasi-isometry H : ½0; 1� �cone X ! Y such that f ¼ H0 and

g ¼ H1. We call H a cone homotopy between f and g.

Theorem 5.2. If f is cone-homotopic to g, then the induced map nL f is

homotopic to nLg.

Proof. Since nLð½0; 1� �cone XÞ ¼ ½0; 1� � nLX , we have that H induces a

continuous map nLH : ½0; 1� � nLX ! nLY such that nLHð0; xÞ ¼ nL f ðxÞ and

nLHð1; xÞ ¼ nLgðxÞ for all x A X . r

Example 5.3. Let T be an n by n integer matrix with a positive deter-

minant. Then the linear map T : Zn ! Zn is a quasi-isometry. Since T is not

sublinearly close to the identity In, the induced map nLT : nLZ
n ! nLZ

n is

di¤erent from the identity idnLZ n . However nLT is homotopic to idnLZn .

Proof. Since nLZ
n is homeomorphic to nLR

n, it is enough to show that

the map T : Rn ! Rn is cone-homotopic to the identity. Since T has a posi-

tive determinant, we can choose a continuous path Y : ½0; 1� ! GLþðn;RÞ ¼
fA A GLðn;RÞ : det A > 0g such that Yð0Þ ¼ T and Yð1Þ ¼ In. A map Hðx; tÞ ¼
YðtÞx is a cone homotopy between T and the identity In. r

Remark 5.4. Due to the result of Keesling [7, Section 3], the induced map

nT on the Higson corona nZn is not homotopic to the identity idnZ n .
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