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SUBLINEAR HIGSON CORONA OF EUCLIDEAN CONE

By

Tomohiro Fukaya

Abstract. Let X be a proper metric space. The sublinear Higson
compactification sy X is a variant of the Higson compactification.
Its boundary /i  X\X is denoted v X, and is called the sublinear
Higson corona of X. The sublinear Higson corona is a functor from
the category of coarse spaces to that of compact Hausdorff spaces.
Let P be a compact metric space and X be an unbounded proper
metric space. We show that the sublinear Higson corona of a
product space P x X equipped with a cone metric is homeomorphic
to a product P x vy X. Especially, the sublinear Higson corona of
the n-dimensional Euclidean space is homeomorphic to the product
of an (n — 1)-dimensional sphere and the sublinear Higson corona of
natural numbers.

1. Introduction

Compactifications of product spaces have been studied long time. Glicksberg
[4] showed that the Stone-Cech compactification B(X x Y) of a product of two
spaces X and Y (at least one of X and Y is infinite) is homeomorphic to
PX x pY if and only if X x Y is pseudo-compact (see also [11]). Tomoyasu
[10] studied the Higson Compactifications of product spaces. Kawamura and
Tomoyasu [6] studied approximations of Stone-Cech compactifications by Higson
compactifications.

In this paper, we study the sublinear Higson compactification of product
spaces. Let M be a non-compact complete Riemannian manifold. From con-
siderations of index theory, Higson introduced a certain compactification of M
defined as the maximal ideal space of the commutative C*-algebra generated by

2000 Mathematics Subject Classification. Primary 51F99; Secondary 461.45.

Key words and phrases. Coarse geometry, Higson corona, cone, commutative C*-algebra.
Received January 25, 2011.

Revised September 5, 2011.



68 Tomohiro Fukaya

the smooth functions on M whose gradient vanishes at infinity. Let X be a
proper metric space. Roe gave an analogue of Higson’s construction for X to
define the Higson compactification #X. The boundary vX = AX\X is called the
Higson corona of X.

The sublinear Higson corona is a variant of the Higson corona. A relation
between the sublinear Higson corona and the Gromov-Lawson conjecture was
studied in [2, Lemma 3.3]. (In [2] the sublinear Higson corona of an open
manifold M was denoted by v/ (M).)

We introduce the sublinear Higson corona vy X for a proper metric space X
and show that it is a faithful functor from the category of coarse spaces to that
of compact Hausdorff spaces. Let P be a compact metric space and P X¢ope X
is a product space of P and X equipped with a cone metric defined in Section 4.
We show that the sublinear Higson corona vy (P Xcone X) is homeomorphic to
a product P x v X (Theorem 4.5). For example, v,R" is homeomorphic to
S"~1 x y;N. There is an application. Let 7 :R"” — R” be a linear map of a
positive determinant. We show that the induced map v.7T : v R" — v;R" is
homotopic to the identity.

The organization of this paper is as follows: In Section 2, we briefly review
the coarse category. In Section 3, we define the sublinear Higson corona and
study functorial properties. In Section 4, we define the Euclidean cone and study
a decomposition of the sublinear Higson corona of it. In Section 5, we give an
application.
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2. Coarse Category

A metric space X is proper if every closed bounded set in X is compact.
For a positive number C, a proper metric space X is a C-quasi-geodesic space
if for any x,x’ € X, there exists a map f :[0,d(x,x’)] — X such that f(0) = x,
fld(x,x"))=x" and (1/C)la—b|—C <d(f(a),f(b)) <Cla—b|+ C for all
a,be[0,d(x,x")]. We choose a base point ee X and define |x|:=d(e,x) for
x € X. In this paper, we say that a proper metric space X is a coarse space if X is
a Cy-quasi-geodesic space for some constant Cy, and is equipped with the base
point e € X.
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DerFINITION 2.1.  Let X and Y be coarse spaces and let f: X' — Y be a map
(not necessarily continuous). The map f: X — Y is a quasi-isometry if there
exists a constant 4 > 0 such that

%d(x,x') —A<d(f(x),f(x") <Ad(x,x")+ 4

for all points x, x’ in X.

Let f,9: X — Y be maps. Then f is close to g if there exists a constant C
such that d(f(x),g(x)) < C for all x e X. Moreover, f is sublinearly close to g if
for any ¢ > 0, there exists a constant C, such that d(f(x),g(x)) < ¢|x| + C, for all
xeX.

Coarse spaces X and Y are quasi-isometric if there exist quasi-isometries
f:X—Yandg:Y — X such that go f and f o g are close to the identities of
X and Y, respectively.

3. Sublinear Higson Corona

All arguments in this section are based on those in [9, Section 2.3]. Let X be
a coarse space and ¢ : X — C be a bounded continuous function. We say that ¢
is a sublinear Higson function on X if there exists a constant C, such that for all
R >0 and all x,x" € X\B(R) satisfying d(x,x") < R/2, we have

G o) — gl < ALY,

Here B(R) denotes the open ball of radius R centered at the base point e.
Let Cp(X) denotes the C*-algebra of all bounded continuous functions on X.
For ¢ e Cp(X), the norm of ¢ is the supremum, that is, |¢|| = sup,.y|e(x)|.
Let Cp, (X) denote the space of all sublinear Higson functions. Then it is easy
to see that Cp, (X) is closed under multiplications and =-operations, so Cj, (X) is
a sub =-algebra of C,(X) and its closure, denoted by C,, (X), is a unital C*-
algebra. By the Gelfand-Naimark theorem, Cj, (X) is the algebra of continuous
functions on a compactification of X.

DeriNiTION 3.1, The compactification ;X of X characterized by C(h X) =
Cy,, (X) is called the sublinear Higson compactification. The boundary hy X\ X is
denoted by vy X, and is called the sublinear Higson corona of X.



70 Tomohiro Fukaya

Let Cy(X) denote the algebra of continuous functions on X which vanish at
infinity. Then we have C(viX) = C), (X)/Co(X).

PropoSITION 3.2.  The sublinear Higson corona of an unbounded coarse space
. . . . Ry
is never second countable and its cardinal number is greater than or equal to 2>"°.

Proor. For second countability, it is enough to show that C,, (X) is not
separable. We can choose a sequence {x,} such that |x,| > 2|x,_;| for all n > 0.
We define a continuous map ¢, : X — C as follows:

— ) 5l
(on(x) = {1 1 if d(x’ Xp) < 4

0 otherwise.

For a map P: N — {0, 1}, we define a continuous map /p : X — C by yp(x) =
Y nen P(n)@,(x). Thus we obtain a family of uncountably many sublinear Higson
functions such that ||yp —p/| =1 for any pair (Yp,¥p) of distinct P,P’ e
{0,1}N. This shows that Cj, (X) is not separable.

For € Cy({x,}), an extension Y e Cy, (X) of ¥ is given by y(x)=
e ¥ (xn)p,(x). Therefore Gy, (X) — Cp({x,}) is surjective, which means the
inclusion {x,} — X extends to an embedding f{x,} — A X. Here {x,} denotes
the Stone-Cech compactification of {x,}. Since f{x,} is homeomorphic to SN,
the cardinal number of sy X is greater than or equal to that of SN, that is, 22",
Arguments similar to those given here can be seen in the proof of [7, Theorem 3].

O

Let X and Y are coarse spaces and let f: X — Y be a continuous quasi-
isometry. Then it is easy to see that f extends to the continuous map
hpf :hpX — hpY. The restriction /iy f to v X is denoted by v, f. Assuming that
X and Y are of bounded geometry (Definition 3.3), we can construct a con-
tinuous map vy f :vi X — v, Y even if f is not continuous. To see this, we
reformulate the construction of the sublinear Higson corona. Let X be a coarse
space. Let B(X) denote the C*-algebra of all bounded functions on X, and let
By(X) denote the closed ideal of all bounded functions which vanish at infinity.
Now let By, (X) denote the sub x-algebra of all bounded functions ¢ : X — C
which satisfy the following condition: There exists a constant C, such that for all
R >0 and all x,x" € X\B(R) satisfying d(x,x') < R/2, we have

Cpd(x,x") + C,

lp(x) — p(x")] < 2
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Let By, (X) be the closure of By, (X). Assuming the following condition on X,
we can construct the sublinear Higson corona vy X using B,(X) instead of
Ch(X).

DerFINITION 3.3. A coarse space X is of bounded geometry if there exists
a uniformly bounded cover # = {U,} of X with a positive Lebesgue number and
of finite degree. That is, there exist constants L, d and N such that the Lebesgue
number of % is L, the diameter of all U, € % is bounded by d and no more than
N member of % have non-empty intersection.

LEMMA 3.4. Let X be a coarse space of bounded geometry. Then
(a) Co(X)= @X) N By(X).
(b) By, (X) = Ci, (X) + Bo(X).

Proor. The part (a) is obvious. The proof of part (b) is based on the
proof of [9, Lemma 2.40]. Let % = {U,} be a cover of X described in Defini-
tion 3.3 and L, d, N be corresponding constants. Then we can construct a
partition of unity {z,} subordinate to % such that all of whose constituent
functions are D-Lipschitz for a constant D = D(L,d,N). (See the proof of [9,
Theorem 9.9].)

Choose a point x, € U, for each «. Let f € By, (X) and C; be the constant
which appears in the definition of By, (X). Define

g(x) = Z 7 (%) f (X2).-

The function g is continuous and bounded. For all x € X, we have

S0 =9(x) = Dm0 (f (x) = f(x2))

and d(x,x,) <d whenever m,(x)# 0. Thus we have f —ge By(X). Next
we show that g satisfies (3.1). By assumption, X is a Cy-quasi-geodesic for
some Cy >0. Let R>2d and x,x"e X\B(R) such that d(x,x') < Cy. Set
I = {a:7my(x) —m,(x’) >0} and I :={a:7m(x)—7m(x") <0}. Set 1:=
>ver (ma(x) =y (x") = =3, c; (m(x) — 7m,(x")). Since each =, is D-Lipschitz,
we have (<2NDd(x,x'). Set foax:=max{f(x,):ael} and [fuoi,:=
min{ f(x,) :«aeI_}. For any a,0’ € [, UI_, we have x,,x,, € X\B(R—d) and
d(xy,Xy) < Cx +2d. It follows that frax — fmin < Cr(Cx +2d + Cr)/(R—d) <
2C;(Cx +2d+ Cr)/R. Without loss of generality, we can assume that



72 Tomohiro Fukaya

g(x) = g(x"). Then we have
l9(x) = g(x")] = g(x) — g(x)

= Z(”a(x) — 70,(X")) f (%) + Z(na(x) — 7(x")) f (%)

< Z(ny(x) - not(x,))fxlnax + Z (noc(x) - na(x/))fﬁlin

= t(fmax - fmin)

< 4NDC]‘(CX +2d + Cf)

z d(x,x").

This shows that g € Cj, (X) and completes the proof of Lemma 3.4. O

It follows from the second isomorphism theorem that

CuX) _ GuX)  _ Bi(X)+Gu(X) _ By(X)

O =Em) TG mnam . BX) X

ProrosITION 3.5. Let X and Y be coarse spaces of bounded geometry.
Then, a quasi-isometry f:X — Y extends to a continuous map vpf :viX —
vp Y. Moreover, two maps f,g:X — Y are sublinearly close if and only if

vif =vrg.

PROOF. A quasi-isometry f: X — Y induces homomorphisms f* : By, (Y)
— By, (X) and f*: By(Y) — Bo(X). If f is sublinearly close to g then f* —g*
maps By, (Y) to Bo(X). Thus vf = vg.

We suppose that f is not sublinearly close to g. There exist a constant C and
a sequence {x,} such that d(f(x,),g(x,)) = C|x,|. We can construct a sublinear
Higson function ¢ on Y such that ¢(f(x,)) =1 and ¢(g(x,)) =0 for all n >0,
therefore v f # vrg. O

COROLLARY 3.6. Quasi-isometric spaces of bounded geometry have homeo-
morphic sublinear Higson coronae.

Proposition 3.5 says that the sublinear Higson corona is a faithful functor
from the category of coarse spaces of bounded geometry with sublinearly close
classes of quasi-isometries to that of compact Hausdorff spaces.
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REMARK 3.7. Dranishnikov and Smith [3] introduced the sublinear coarse
structure and showed that the sublinear Higson corona of a proper metric space is
homeomorphic to its Higson corona with respect to the sublinear coarse structure
([3, Theorem 2.11]).

4. Euclidean Cone

Let X be a geodesic space with the base point ey and P be a compact length
space with the base point ep. We define a cone metric on P x X as usual (See [8,
Section 3.6.]). A path y is a continuous map from an interval 7 =[0,1] to P x X.
We define the length of y, denoted by /(y), to be

n—1
SUP{Z d(xj, xj11) +max{1, |x;], |xj+1|}d(pj,pj+1)},

J=0

where the supremum is taken over all finite sequences ( pj,xj)_;’zo of points on the
path y with (po,xo) and (py, x,) being the two endpoints. We make P x X into a
length space by defining the distance d.ope Of z,z’ € P x X to be

deone(z,2") = inf I(y)

where the infimum is taken over all path y joining z = (p,x) and z' = (p’, x').
The Euclidean cone of P and X, denoted by P X¢one X, is the metric space P x X
equipped with this metric deone and the base point (ep,ex).

ExaMPLE 4.1. The Euclidean cone S”"~! X one Rsg is quasi-isometric to R”.

Let C(P, Cy, (X)) denotes the C*-algebra of continuous Cj, (X)-valued func-
tions on P. The norm of Fe C(P,C,, (X)) is the supremum, that is,

1]l = sup [ F(p)]| = sup(sup |F<p><x>|).
peP peP \xeX

For ¢ € Cp, (P Xcone X) and p € P, we denotes by ¢, a map x — ¢(p,x).
We define a homomorphism A : C, (P Xcone X) — C(P, Gy, (X)) as follows:

A Ci (P Xeone X) 39— (pr—9,) € C(P,Cy, (X)).
ProposiTiON 4.2. A is well-defined and extends to a monomorphism of

C*-algebras:
A Gy (P Xcone X) — C(P, Gy, (X)).
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Proor. Let ¢ € Cp, (P Xcone X ). Fix a point p € P. For any R > 0 and any
x,x" € X\B(R) with d(x,x") < R/2, we have

0,5) — gy ()] < Cobonel (2.9 () Codl )

Thus ¢, belongs to C,, (X) for all peP. Next we show that the map
A(p) : P — Cp, (X) is continuous. Let p, p’ € P. Since P is a length space, for any
& > 0, there exist points py, ..., p, such that po = p, p, = p’, d(piy1, pi) < 1/2 for
i=0,...,n—1and Zf;ol d(piv1, pi) <d(p,p’) + e Let xe X. Since (p;11,x) and
(p,-,x) belong to (P X cone X)\B(|X|), and dcone((pi+17x)7 (pi>x)) = |x|d(pi+17pi) <
|x|/2, it follows from (3.1) that

S

X (dcone((pi+l;x)a (piax)) < C(pd(pH-lapi)'

lp(piv1,x) — p(pi, x)| <

Thus we have

1A(9)(p)(x) = Al)(P)(x)] = lo(p, x) — (", ¥)|

n—

< |p(pis1,x) — o(pi, x)|

i

i
o

n—1

de(l’m , Di)

IA
(=1

=
< Cy(d(p,p') +e).
We can choose ¢ as an arbitrary small number, so ||A(p)(p) — Ap)(p)|| <

Cyd(p,p’). This shows that A(g) is continuous and therefore A(p) belongs to
C(P,Cy, (X)). By the definition, we have

ol = s Jo(po0] = sup(sup g,(x) ) = |AGo].
([J.,X)EPXCO"SX peP \xeX

This shows that A is an isometry, so A extends to the isometry
A2 G (P Xcone X) — C(P, Gy, (X)). O

PrROPOSITION 4.3. The map Q : C(P) ® Cy, (X) — Cp, (P Xcone X) : 0 @ty —
o -y is well-defined.

ProOF. The map Q: C(P) ® Cj, (X) — Cp(P Xcone X) is well-defined. We
show that the image of Q lies on Cj, (P Xcone X). Let ¢ ® Y € C(P) ® Cp, (X).
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We suppose that ¢ is a Lipschitz map with a Lipschitz constant C,. Let
R>0 and (p,x),(p’,x") € P Xcone X such that |x|,|x'| > R. We assume that
deone ((p, x), (p',x")) < R/2. By the definition of deope, for any 0 < & < R/6, there
exists a sequence {(p;,x;)}i, satisfying (po,x0) = (p,X), (P, Xs) = (p',x") such
that

n—1

Zd(xiaxﬂrl) +max{1, |xi[, [xi11}d(pi, piv1) < deone((p, ), (p', X)) +e.
i=0

Then deone((pi, xi), (ep,ex)) > R/3 for i =0,...,n. It follows that

il > 5
"7 3(1 + diam P)’

Here diam P denotes the diameter of P. Thus we have
lp(Pis )Y (Xit1) — @(pi)p (x:)]

< |p(pis)¥ (xir1) — @(P)Y (xiv)| + lp(p)¥ (Xiv1) — @(pi)P(x:)]

3(1 + diam P)Cy||¢
< G ld(pier, i)+ )Cyllol

d(xi1,x:)

R
3(1 + diam P)(C, + Cy
<3 NI CPD (4.1, )+ max sl e, ).
Then we have
Collyl| +3Cy ol

lo(p )W (x") — p(p)i(x)] < (deone((p", x"), (P, X)) + ).

R

It follows that Q(p ® ) belongs to Cj, (P Xcone X). Since the set of Lipschitz
maps is dense in C(P), we have the desired consequence. Ol

To show that Q is an isomorphism, we need the following well-known fact.

LemmA 4.4. Let P be a compact metric space and A be a commutative
C*-algebra. Then C(P)® A = C(P, A).

ProoF. We can construct a family {#"},_ of finite covers of P such that,
the diameter of each member U/ of %" is less than 1/n. We choose points
pl e Ul for each n e N. Let {h!'}, be a partition of unity subordinate to #". We
define ¥ : C(P)® A — C(P,A4) by ¥Y(p ® a)(p) = ¢(p)a for p € C(P), ae A and
p € P. Clearly W is injective. We show that ¥ is surjective. Let € C(P, A). Set
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v, =>h' ®y(p!') € C(P)® A. Since y is uniformly continuous, ||y —¥(y,)]|
tends to 0 as n goes to infinity. Thus ¥ is surjective. O

THEOREM 4.5. The sublinear Higson compactification of the Euclidean cone
P Xcone X is homeomorphic to the product P x hpX. Especially vi(P Xcone X) =
P x VLX.

ProOF. By Proposition 4.2, 4.3 and Lemma 4.4, Cj, (P Xcone X) = C(P) ®
Cp, (X). O

ExampLE 4.6. v (R") = S"! x y;N.
5. Application

DerFmiTION 5.1, Let f,g9: X — Y be quasi-isometries. [ is cone-homotopic
to g if there exists a quasi-isometry H : [0, 1] X¢one X — Y such that f = Hy and
g = Hy. We call H a cone homotopy between f and g.

THEOREM 5.2. If f is cone-homotopic to g, then the induced map vif is
homotopic to vig.

Proor. Since v ([0,1] Xcone X) =[0,1] x v, X, we have that H induces a
continuous map v H :[0,1] x vpX — v, Y such that v H(0,x) =v.f(x) and
veH(1,x) =vrg(x) for all xe X. ]

ExamMpLE 5.3. Let T be an n by n integer matrix with a positive deter-
minant. Then the linear map 7 : Z" — Z" is a quasi-isometry. Since 7T is not
sublinearly close to the identity 1, the induced map v, T :vpZ" — v Z" is
different from the identity id,,z». However v, T is homotopic to id,, zn.

ProoF. Since vy Z" is homeomorphic to v R”", it is enough to show that
the map T :R" — R" is cone-homotopic to the identity. Since 7 has a posi-
tive determinant, we can choose a continuous path ®:[0,1] — GL,(n,R) =
{4 € GL(n,R) : det A > 0} such that ®(0) =T and O(1) = I,. A map H(x,t) =
O(#)x is a cone homotopy between 7 and the identity I,.

O

REMARK 5.4. Due to the result of Keesling [7, Section 3], the induced map
vT on the Higson corona vZ”" is not homotopic to the identity id,z».
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