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Abstract. A family of S'-equivariant hypersurfaces of constant
mean curvature can be obtained by using the Lagrangians with
suitable potentials in the unit 3-sphere equipped with a certain
parameterized metric. The conservation law is effectively applied to
the construction of S'-equivariant hypersurfaces of constant mean
curvature.

1. Introduction

W.-Y. Hsiang [6] investigated the rotation hypersurfaces of constant mean
curvature in the hyperbolic or spherical n-space. In [2], Eells and Ratto have
constructed the rotation (S'-equivariant) minimal hypersurfaces in the unit
3-sphere with standard metric by using a certain first integral, which is invariant
with respect to the rotation angle of generating curves on the orbit space. It is
cleared that the first integral (conserved quantity) can be obtained by using the
Lagrangian of the corresponding dynamical system with respect to the Hsiang-
Lawson metric [6] [7] on the orbit space via the Hamilton’s equation when we
consider the rotation angle of generating curves as “time”. We should remark
that the corresponding Lagrangian has the vanishing potential when we construct
the rotation minimal hypersurfaces. However, in case that we construct the
rotation non-minimal CMC-hypersurface in the unit 3-sphere, the potential of
the Lagrangian is a nonvanishing function. In the section 4, we determine the
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potential function of the Lagrangian which corresponds to the rotation CMC-
surfaces immersed in the unit 3-sphere. As a result we can see that the cor-
responding potential depends on the constant mean curvature itself (Theorem
4.3). In Appendix, we find the Lagrangians which correspond to the rotation
CMC-surfaces of variable curvature such as the unduloid and nodoid immersed
in the 3-dimensional Euclidean space.

2. Preliminaries

Let g, be a generalized inner product on the unit 3-sphere SPcCxC
defined by

(g, p), (0, w) = alv, w) + fv,iz){w, iz),

where v = (v1,07), w = (w1, w;) € T.S* and (v, w) = R(v;W; + v2i,). We assume
that o and S denote positive and nonnegative parameters, respectively. The
Cartan hypersurface SO(3)/Z, x Z; in the unit 4-sphere is covered by S* (via an
8-fold covering), whose metric is rescaled along the Hopf fibres and its metric on
S3 coincides with g4 12 (¢ =4, f=12) [5] [9]. The family of metrics g, s defined
on S? contains this one as a special case.

Here we summarize the notations which are used in the paper.

X denotes the orbit space by g, s-isometric S'-action r, : S* — S3 as follows.

r(2) = (z1,€"z2), z=(z1,2).

As the parametrization of X we use the following map:

(0,4) — (e cos 0,sin0), 0<¢p<2m,0<0<

NS

hyp = (hyp), d0* + (hyp), dp* stands for the orbital metric on X* =
X\ (60X U{pole}) and

(o + f) cos® 0
hop)y=0ao, (hyp)r,=—"7"———.
(g = gy = 2D

V =2z sin O\/a +  sin® 0 is the volume function of orbits and /, s = V?h, g

is the Hsiang-Lawson metric on X*.

y:J <R — (X* hyp) denotes a curve parametrized by arclength s. And also
t(y) := V;j and %(y) := V;j stand for the tension fields of y with respect to the
metrics /1, 3 and hy, s, respectively. The geodesic curvature x(y) at p(s) is defined
by x(y) := hyp(t(y),n) where # denotes the unit normal vector field to y.
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3. S!-Equivariant CMC-Immersion

For a curve y:J — X*, we consider an S'-equivariant map u: M =
7 ((S3,9up)) — (S3,955) such that yom=gou, where n: M —J and
o:(S3 gsp) — X* are Riemannian submersions. Throughout the paper, we
assume that x is an S'-equivariant constant mean curvature H immersion. Then
we have

x(y) —n(log V) = 2H, ()

since
ha,ﬂ(r(y)v 77) - ’7(10g V) = hat/i(f(y)v 77)

On the orbit space (X*, h,p), the velocity vector field of a curve y(s) =
(6(s), #(s)) is given by the following component functions.

o+ f8 sin® O(s) sin A(s)

V(o + f) cos O(s)

Lemma 3.1.  The following formulas hold on (X*,h, p).

0'(s) = % cos A(s), ¢'(s) =

I DY o+ fsin® 0(s) cos A(s) ¢
n(s) = —% sin A(S)% + o ) cos 0s) é_qﬁ o
) = <) 35+ 3. o)
where
R PPN (o + f) tan 0(s) sin® A(s)
w(y), = \/&(s A(s))A'(s) + et fsnt00)
and

cos A(s) (o + ) sin O(s) sin A(s) Vot p sin 0(s) 2’ (s)

w(7)y =~ NZICE)) \/a((x + B sin® 0(s)) cos? O(s) a cos 0(s)

Then using the formula (1) we have the following differential equation (4)
of generating curves which corresponds to the CMC-rotation hypersurfaces
immersed in (S?, g, 4), since using Lemma 3.1 the geodesic curvature x(y) is given
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by
_ (e — (o + B) tan 6(s) sin A(s)
) =) =t psin 0s)
A (s) + \/L& (cot O(s) — tan O(s)) sin A(s) — 2H = 0. (4)

4. Conservation Laws

We consider a generating curve y(s) = (6(s), #(s)) on X* such that 8 = 6(¢)
and ¢'(s) >0. Then we can consider the space Z(0,0%) of motion with
0% =4 and time ¢. Let ¥ = £(0,0%) be a Lagrangian on E(0,0%). Via the
Legendre transformation we have the Hamiltonian »# on the phase space
E*(0, p):

&

H=0"p—%L, p=—.
p P=75

The conservation laws of our system imply the following.

PROPOSITION 4.1. Let the Lagrangian & on Z(0,0%) be the following
form:

L = \J ), (07) + (o), + GLO),

where flm p is the Hsiang-Lawson metric on X* and G(0) is a potential function on
the configuration space.
Then we have

d (hap)s
DN\ ) (0 + ()

+G(0) § =0, (5)

where the conserved quantity in the formula represents the Hamiltonian of our
system.

By means of the Hamilton’s equation (5), we shall determine the poten-
tial G(0) which corresponds to the CMC-rotation hypersurfaces immersed in
(S3,g,p5) via the differential equation (4) of generating curves on the orbit
space X*.

The direct computation yields the following.
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LEMMA 4.2. Assume that 0 and A are functions of ¢ and % = ;:8 Then we
have
di;ﬁ (ep)s =Y <)J(s) + % cot 26(s) sin i(s)), (6)
; 2, o
Vs (09) + (),
where

_ 20+ B)m sin 6(s) cos? 0(s) cot A(s)
o+ 8 sin® 0(s)

b4

As a consequence, we have the following.

THEOREM 4.3. On our system, the Lagrangian & and the Hamiltonian #
which correspond to the S'-equivariant CMC-H hypersurface immersed in
(S3,9u.p) can be determined as follows:

L = \/(ila,ﬁ)1(9#)2 + (/Ah.,ﬁ)z + av/o+ frH cos 20,

H o= — - () - + o/ + prH cos 20
Vo), (0% + (),

Proor. Using Lemma 4.2 and the differential equation of generating curves
(4) we have

d
7560 = ~211¥,
from which we obtain
d 4Hno(o + f) sin 0(s) cos? O(s) cot A(s)¢’(s)

\/ o+ f sin? 0(s)0' (s)

Since H is a constant mean curvature and

Fs) 2t psin® 00s) tan ()

0'(s) Vo + f cos 0(s) ’

we can choose such as G(6) = a\/o + frH cos 26. O
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5. Generating Curves for CMC-H Rotation Hypersurfaces

Let y(s) = (6(s),¢(s)) be a generating curve on X* such that 8 = 6(¢) and
#'(s) > 0 with the arc length s. Then we set the following initial conditions:

0o := 0(0), $0)=0, 0(0)=0, Ai0) :g.
The Hamilton’s equation 4% =0 (Theorem 4.3) implies that

C%(\/oc(oc + f)7 sin 20(s) sin A(s) + or/o + frH cos 260(s)) = 0,

from which we have

Voo + B)r sin 26(s) sin A(s) + av/o + frH cos 26(s) = K,

where
K = +/a(o+ )7 sin 20y + ar/o + prH cos 20.

On the other hand, using the formulas
(ﬁ)z — { (}}“3/)’)2 . 1} (;:lom,/)’)z
d¢ (K - G(H))z (hou,/)’)]
d*0 1/d do\? .
(@)&‘_0 N 5 (@)sO (d_¢) ’ (K B G(eo))z = (h%/})Z(eO)v
we have

(ﬂ) _1! (i) (1,)3(0) | (), (60)
dp*)_y  2\d0) o\ (K — G(0))*[ (hsp), (60)

= i )., 0= 60 45 (75) dupntoen

Consequently we have the following

and

LemMmA 5.1.  Under the initial conditions for generating curves which corre-
spond to the CMC-H rotation hypersurfaces, we have

(@) (a4 p) sin® 20(cot 200 — \/aH)
d¢*)._, 2 sin? O(o + f sin* 6p)

)
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and
0o > 0,1 (resp., <0, y) if and only if,

2
<d§> <0 (resp., =0),
d¢ 5s=0

where

0y, 1 = arctan(—v/oH + VaH? + 1).

Assume that H is positive and sufficiently small. Then we have 0 < 0, g <7,
since 0 < —/aH ++voH?+1 < 1. In Lemma 5.1 we may choose 0p such that
0., = arccot(v/aH + VoH? + 1) < 0y < arccot(y/aH) <%. From Lemma 5.1,
(6%2)?:0 < 0 and there exists the value ¢; of ¢ such that 0(¢) = 0(¢(s)) decreases
strictly until ¢, = ¢(s;), where the value of j—z equals to zero at ¢ = ¢, and
0(p) = 0(4(s)) takes a local minimum at ¢ = ¢,. In fact, if 0(¢) does not take a
local minimum, then we may assume that there exists a such that 0 <a < 0y <3
and Sllgiw 0(s) = a, Emgo 0'(s) =0, SEm A(s) =%. Then from the differential
equation (4) of generating curves it follows that ¢ = 8, 5. On the other hand we
obtain the following formula:

(d0>2 ~ (A(0) — 1)(a+ f) cos® 0

d¢) o+ fsin’ 0 ’ @)

where
0) = sin” 20
{sin 26 + \/aH (cos 20 — cos 26)}*

The formula (7) implies ligrn A(6(s)) = 1. Since H is sufficiently small, this

yields
. . 1 . VoH
sin(2a + B) =sin(26y + B), cos B=———-, sinB=———.
( ) (200 + B) T T

Moreover, we see that 20, y + B=7%. Since 0, y = a, by using the formula
above, we have a = ), which is a contradiction.

Thus we can continue 6 = 6(¢(s)) as the curve satisfying the differential
equation (4) by the reflection. Let F, s z be the right hand side of (7). We can
define Q, gy by F,pn as follows:

O(s1) 1

Qypn= —J
“h 0o \/ Fx.ﬂ,H

do.
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Consequently we have the following.

THEOREM 5.2. Let H > 0 be sufficiently small and choose 0y such that 0, g <
Oy < arccot(y/aH). If n/Qy p 1 is a rational number, then the corresponding ro-
tation hypersurface is an immersed CMC-H torus in (S°,g, ). In particular, if
n/Qy p p is an integer, then this CMC-H torus is embedded.

THEOREM 5.3. In the case Oy =0, p, let 00:% arccot(v/aH). Then the
corresponding rotation hypersurface with CMC-H is an extended Clifford
torus

S'(r(60)) x S'(R(00))

in (S°,9,p), where

r(0p) = cos Og\/a + B cos? Oy, R(6y) = sin Op\/ o + 8 sin? 6.

COROLLARY 5.4. There exists an embedded minimal torus in (S3, g, )

()4 (57)

2 2

Appendix

We consider the rotation surfaces in R®. Let ¥ be a rotation surface and
y(s) = (4(5),0(s)) be its generating curve on (¢, 0)-plane, where s stands for the
arc length and 0(s) is positive. Let H = H(s) be the mean curvature of X. Then
we have the following fundamental formula [8]:

§'0" — "0 — % +2H =0. (8)

Let 07 denote d0/d¢$. Then we have

8//¢/ _ 0/¢//
CON

We consider the space A(0, 0%) of motion with time ¢ and give a Lagrangian

L = 2(0,0%) = 01/1 + (0%)* + G(0), where G(0) is a potential function. Then
the corresponding Hamiltonian is # = — L+ G(@)) and the Euler-

V14+(0%)?

0% = (0%)* ©)
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Lagrange equation is
dG 007* 3 1
W1 091+ 0% J1+0%?

Using (9) and (10), we have

d_G B 0(9//¢/ _ 9/¢//) ¢/

_ :00///76/ //7 /' 11
a0 gy e

The formulas (8) and (11) yield the following.

THEOREM. The following Lagrangian £y is corresponding to some CMC-H
rotation surfaces immersed in R>:

Ly =0\/1+ (0%)* — HO*.

Ly=0+/1+ ((9#)2 is a Lagrangian corresponding to the catenoid and ¥y =

0+/1+ (0%)* — HO> (H # 0) corresponds to the unduloid and nodoid. Thus %
is a Lagrangian which corresponds to the Delaunay surfaces of variable curvature

(1], [8].
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