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In this work, three-dimensional, time-dependent magnetohydrodynamic (MHD) simulations of a direct-current
(dc) plasma spray with an externally applied magnetic field are performed, and also the trajectories and heating
histories of in-flight particles in a plasma spray jet are analyzed by Lagrangian method with one-way coupling
between particle and plasma jet. The working gas is pure argon (Ar) and the material of in-flight particles is
zirconium dioxide (ZrO2). The representative values of operating current and magnetic flux density of externally
applied magnetic field in this work are 350 A and 0.8 T, respectively. Numerical results obtained in the MHD
simulation demonstrate that the use of externally applied magnetic field yields the rotation of the arc root on
the anode. This rotation generates a plasma jet with a swirling component. Furthermore, it is shown from the
numerical results that applying the magnetic field increases the operating voltage and thus boosts an amount of
input power compared to the one without applying it. The analytical results of in-flight particles suggest that the
impact positions of in-flight particles on the substrate in the case with the externally applied magnetic field change
temporally due to the swirling component of the plasma jet, even when the injected position of particles is fixed.
However, the utilization of externally applied magnetic field enhances heat transfer to particles, which leads to
impacting of particles on substrate with well-molten state because of higher enthalpy plasma jet.
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1. Introduction

Plasma spray is one of the well-established coating technologies which have been widely used to give materials spe-
cial properties resistant to wear, corrosion, and high-temperature, etc. An injected working gas is heated and accelerated
by an arc between anode and cathode in a plasma torch, coming out as plasma jet from the torch nozzle. Microsized
powder particles injected into the plasma jet get momentum with molten state, impacting on a substrate and generating
coatings.

It is well known that coating quality is strongly influenced by arc fluctuation inside the plasma torch (Pfender, 1999),
which is attributed to periodic or chaotic movement of anode arc root (Wutzkeet al., 1967; Wutzkeet al., 1968). The
arc fluctuation changes temperature and velocity distributions of plasma jet at the torch outlet with time; in some cases,
this fluctuation would lead to unmelted particles, and thus low spraying efficiency and poor coating quality. However,
a stationary arc is undesirable because a heat transferred from arc to anode is too high, resulting in decreasing anode
lifetime. Therefore, for realizing high coating quality at low cost, it is desirable to improve the controllability of anode
arc root movement.

One of several methods suggested for improving is to utilize externally applied magnetic field both numerically and
experimentally (Satoet al., 2001; Huet al., 2013; Mostaghimi and Boulos, 2015). Figure 1 shows the schematic diagram
of the plasma torch developed by Pershinet al (2013). A solenoid coil for producing externally applied magnetic field is
placed around the anode. The Lorentz force induced by the interaction between the arc and the magnetic field rotates the
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Fig. 1 Schematic diagram of plasma torch with externally applied magnetic field.

anode arc root. This rotational movement would be expected to help mitigate the heat load to the anode wall and improve
the controllability of anode arc root movement.

A lot of three-dimensional simulations have been reported to study the complex arc movement and the in-flight
particle trajectories (for example, Li and Pfender, 2007; Trelles, 2013; Shanget al., 2014; Alayaet al., 2015). However,
only a few studies have been conducted focusing on in-flight particles in a plasma jet with externally applied magnetic
field considering interaction between plasma structure and in-flight particles (Nishiyamaet al., 1999; Satoet al., 2003).
These simulations have been conducted under axisymmetric two-dimensional approximation. In this work, therefore, we
examine the effect of externally applied magnetic field on the fluid and electro dynamic characteristics of a plasma jet
by means of three-dimensional, time-dependent magnetohydrodynamic simulation, and also we analyze the trajectories
and heating histories of in-flight particles in the plasma jet using the Lagrangian method with one-way coupling between
in-flight particles and plasma jet.

2. Mathematical model
2.1. Governing equations for plasma flow

The mathematical plasma flow model is based on a fully coupled treatment of flowfield together with electromagnetic
field. The model is based on the following assumptions:
• Working gas is pure argon (Ar).
• Ar plasma flow is considered as compressible because its Mach number is about 0.7 in maximum.
• Ar plasma flow is laminar under local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE)

states.
• Thermodynamic and transport properties of Ar plasma depend on gas temperature and pressure.
• The quasi-neutrality condition holds.
• Ar plasma is optically thin. The absorption of radiation is assumed to be negligible.
• The gravitational effect and the Hall effect can be neglected.

The Reynolds number estimated in the calculation domain is over 2000 in maximum. Therefore, a turbulent model
will be implemented in our future study. The governing equations for flowfield, which are composed of mass, momentum,
and total energy conservation equations, are written as follows:
Mass conservation equation

∂

∂t

∫
V
ρdV +

∮
S
ρu · ndS = 0 (1)

Momentum conservation equations

∂

∂t

∫
V
ρudV +

∮
S
ρuu · ndS =

∫
V
(J × B)dV−

∮
S

pndS +
∮

S
(τ · n)dS (2)

Total energy conservation equation

∂

∂t

∫
V
ρE f ludV+

∮
S
ρH f luu · ndS =

∮
S
κ(∇T · n)dS +

∫
V
(J · E − q̇rad)dV+

∮
S
(τ · u) · ndS (3)

where the specific total energyE f lu and the specific total enthalpyH f lu are defined, respectively, as

E f lu = ef lu +
|u|2
2

(4)
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H f lu = E f lu +
p
ρ

(5)

Theseconservation equations are discretized using the upwind finite volume method, in which the advection upstream
splitting method (AUSM)-DV scheme (Wada and Liou, 1994) and the second-order central differential scheme are utilized
for evaluating the numerical flux of convective and diffusion terms, respectively. The time integration is performed by the
lower-upper symmetric Gauss-Seidel scheme (Yoon and Jameson, 1988).

For electromagnetic modeling, MHD approximation is adopted in this study. Under the approximation, the governing
equations for electromagnetic field can be written as follows:
Generalized Ohm’s law

J = σ(E + u × B) (6)

Maxwell’s equations

E = −∇ϕ (7)

∇ · {σ(−∇ϕ + u × B)} = 0 (8)

B = ∇ × A + B0 (9)

∆A = −µ0J (10)

Each of Eqs. (8) and (10) is discretized with the Galerkin finite element method, and then the derived linear equations
on the potentialϕ and the vector potentialA are solved with Bi-CGSTAB2 method (Gutknecht, 1993).

The computational program for plasma flow used in the present work showed its validity in the simulation for voltage
variations of a rotary arc in a gas circuit breaker with externally applied magnetic field (Hirayamaet al., 2016).

2.2. Particle governing equations for in-flight particle’s trajectory and heating history
For modeling the behavior of in-flight particles, the following assumptions are adopted:
• The shape of in-flight particles is spherical.
• The pertinent Biot number is at most 0.25, less than unity, and consequently the temperature gradient within the

particles is negligible.
• The effect of particle behavior on plasma jet characteristics and the particle-particle interaction are negligible.

In-flight particles are driven by the drag, the pressure gradient, the added mass, the Basset history, the thermophoretic,
the gravitational, the Saffman lift, and the Magnus lift forces. Most of these forces have little effect on particle motion
because the mass density of plasma jet is much smaller than that of injected particles and the particle radius is very small.
According to Pfender and Lee (1985), the drag force and the thermophoretic force are the main driving forces for particle
motion. Thermophoretic force becomes important in regions with high temperature gradient, such as in the vicinity of
substrate which will be included in our future simulation. The particle trajectory and heating history are obtained by
solving the following equations (Li and Chen, 2002):
Equations of particle motion

dxp

dt
= up (11)

dup

dt
=

(
3ρCD

8rpρp

)
· |u − up|(u − up) − 9

 µ2

ρρpr2
p

 · Kth ·
(

1
T∞
∇T∞

)
(12)

Thefirst and the second terms on the right-hand side of Eq. (12) represent the drag force and the thermophoretic force
acting on particles, respectively. The drag coefficientCD and the coefficientKth used in the thermophoretic force term are
calculated according to Li and Chen (2002).
Particle energy equations
When in-flight particles are in solid-phase, particle temperature is calculated by

dT
dt
=

3(q− qr )
ρpCp,srp

(13)
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When in-flight particles are in melting phase, the temperature of the particles would keep the melting point. Liquid-phase
fraction increment within theith time step is calculated by

∆ fl =
3(q− qr )
Lmρprp

∆ti (14)

Whenin-flight particles are in liquid-phase, particle temperature is calculated by

dT
dt
=

3(q− qr )
ρpCp,lrp

(15)

After particle temperature reaches its evaporation point, particle radius reduces with the time as

drp

dt
= −q− qr

ρpLv
(16)

wherethe specific heat fluxq from plasma to the in-flight particles is calculated by

q = β1β2qc (17)

The factorβ1 andβ2 in Eq. (17) are introduced to correct the Knudsen effect (Chen and Pfender, 1983) and particle
evaporation effect (Chen and Pfender, 1982).qc is the heat flux when no Knudsen effect and evaporation exist, and it is
calculated from the following equations for the Nusselt number defined as (Li and Chen, 2002)

Nu=
2qcrp

Sh∞ − Shw
(18)

Nu = 2

[
1+ 0.63Re∞Pr0.8

∞

(
Prw
Pr∞

)0.42

·
(
ρ∞µ∞
ρwµw

)0.52

C2

]0.5

(19)

whereSh is called heat conduction potential and calculated by

Sh =
∫ T

T0
κdT (20)

whereT0 is an arbitrary reference temperature. The factorC in Eq. (19) is calculated by

C =

[
1−

(
hw
h∞

)1.14
]

[
1−

(
hw
h∞

)2
] (21)

Thesubscriptsw and∞ stand for the particle surface and the gas, respectively.qr in Eqs. (13)-(16) is the radiative heat
loss from the particle surface, which is calculated by

qr = ϵσstT
4
w (22)

The differential equations from Eqs. (11)-(16) are solved by fourth-order Runge-Kutta method.

2.3. LTE thermodynamic and transport properties
Chemical composition in plasma under the LTE state is determined by minimizing the Gibbs free energy with RAND

method (Whiteet al., 1958). Thermodynamic properties are directly calculated from the particle number density and the
partition functions. The transport properties are calculated on the basis of Chapman-Enskog approximation (Yos, 1963).

2.4. Computational domain and boundary conditions
Computational domain is composed of plasma torch region and plasma jet region, as shown in Fig. 2. The substrate

is not considered in this simulation. The geometry of the plasma torch is decided by reference to the one used by Pershin
et al (2013). In this study, a structured computational grid is adopted for each of the two regions. The total number
of grids is about 600,000 for the plasma torch region and about 200,000 for the plasma jet region. The authors assume
that the electromagnetic effects in the plasma jet region can be neglected, and therefore, the governing equations for the
electromagnetic field are not solved in the plasma jet region. The boundary condition for each region is defined as follows:
Boundary condition for the plasma torch region shown in Fig. 2(a)
• Cathode surface
∂p
∂n
= 0,T = Tcathode,u = 0, ϕ = ϕcathode (23)
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Fig. 2 Computational domain of (a) plasma torch region and (b) plasma jet region.

whereTcathodeis approximated by a Gaussian profile (Trelleset al., 2006),

Tcathode= Tcathside + (Tcathtip − Tcathside)e
−
(

r
Rc

)2

(24)
wherethe cathode radiusRc is set to 6 mm, and also the parameters ofTcathside andTcathtip , which are used to specify the
temperature profiles, are set to 500 and 3653 K, respectively. The value ofTcathtip corresponds to the melting point of
tungsten.
The electric potential on the cathodeϕcathode is determined so as to satisfy an assigned total current between anode and
cathode electrodes.
• Anode surface

The black area shown in Fig. 2(a) corresponds to a ring-shaped anode electrode with the width of 4 mm; it should be
noted that the anode shape supposed here is the same as the one used by Pershinet al (2013). As the boundary condition
on the anode,

∂p
∂n
= 0,T = Tanode,u = 0, ϕ = 0 (25)

whereTanodeis obtained by

haw(Tanode− Twater) = κ
T − Tanode

∆n
(26)

wherehaw is the convective heat-transfer coefficient at the water-cooled anode surface equal to 105 W m−2 K−1 ,which is
taken from the previous research (Trelleset al., 2006).Twater is set to 500 K.
• Insulating wall
∂p
∂n
= 0,T = Tins,u = 0,

∂ϕ

∂n
= 0 (27)

whereTins is obtained by

haw(Tins − Twater) = κ
T − Tins

∆n
(28)

• CenterAxis
∂p
∂r
= 0,
∂T
∂r
= 0,
∂u
∂r
= 0,
∂ϕ

∂r
= 0 (29)

• Inlet
∂p
∂n
= 0,T = Tin,

∂ϕ

∂n
= 0 (30)

whereTin is inlet gas temperature equal to 300 K. Inlet gas velocity is given by Trelleset al. (2006),

u =


2Uin

(
1−

(
r

Ra

)2
+ (1− k2) ln(r/Ra)

ln(1/k)

)
/
(
1+ k2 − 1−k2

ln(1/k)

)
0
0

 (31)

whereUin is the parameter to set the volume flow rate to 115 slm andk is defined as the ratio of cathode radiusRc to
anode radiusRa as follows:

k =
Rc

Ra
(32)

• Sprayoutlet

p = P0,
∂T
∂n
= 0,
∂u
∂n
= 0,
∂ϕ

∂n
= 0 (33)

whereP0 is the reference pressure equal to 101,325 kPa.
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• Periodicboundary
∂p
∂θ
= 0,
∂T
∂θ
= 0,
∂u
∂θ
= 0,
∂ϕ

∂θ
= 0 (34)

Onall of the boundaries, the vector potentialA is given by

A =
µ0

4π

∫
V

J
|r′|dV (35)

Boundary condition for the plasma jet region shown in Fig. 2(b)
• Spray outlet (corresponding to the inlet of the plasma jet region)

The fluid properties obtained from the computation of the plasma torch region are fixed on this boundary surface.
• Wall
∂p
∂n
= 0,T = Tw,u = 0 (36)

Tw is the wall temperature equal to 300 K.
• Center Axis
∂p
∂r
= 0,
∂T
∂r
= 0,
∂u
∂r
= 0 (37)

• Side1

p = P0,
∂T
∂n
= 0,T = T0,

∂u
∂n
= 0 (38)

whereT0 is the reference temperature equal to 300 K.
• Side2
∂p
∂n
= 0,
∂T
∂n
= 0,
∂u
∂n
= 0 (39)

• Periodicboundary
∂p
∂θ
= 0,
∂T
∂θ
= 0,
∂u
∂θ
= 0 (40)

2.5. Distribution of externally applied magnetic field
Figure 3 depicts the distribution of externally applied magnetic field around the anode with the maximum external

magnetic flux densityB0 of 0.8 T. The effects of the electromagnetic shield and magnetization are negligible as the
material of the anode is assumed to be copper which has low magnetic permeability.B0 is parametrically changed in this
simulation with the range of 0 to 0.8 T by adjusting a current density in the coil.

x [mm]
50

0

60 70 80 90

20

10

-10

-20

z
[m
m
]

Coil |B
0
| [T]0 0.8

Anode

Fig. 3 Distribution of externally applied magnetic field withB0 = 0.8 T.

2.6. Particle injection condition
Powder material is ZrO2 and physical properties of ZrO2 is shown in Table 1. Initial particle radius is 10µm and

initial injection velocity (upx0,upy0,upz0) is (0 m/s, 0 m/s, -20 m/s). Injection point (xp0, yp0, zp0) is (143.2 mm, 0.0 mm,
7.0 mm) shown in Fig. 2(a).

3. Results and discussion

Table 2 presents the operating conditions. Figure 4 shows iso-surfaces of gas temperature (a) with and (b) without
externally applied magnetic field (B0 = 0.8 T）at I = 350 A. When applying externally applied magnetic field of 0.4 T
and 0.8 T, the anode arc root continues to rotate and swirl flow is induced in plasma torch. The rotation velocity of 0.8 T
is the largest because Lorentz force strongly acts on the arc root in proportion toB0 with the same current condition. In
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Table 1 Physical properties of injected particles.

ZrO2

Density, ρp [kg/m3] 5890
Thermal conductivity of solid,kp,s [W/(m·K)] 2.0
Thermal conductivity of liquid,kp,l [W/(m·K)] 3.0
Emissivity,ϵ [−] 0.3
Specific heat of solid,Cp,s [J/(kg·K)] 580.0
Specific heat of liquid,Cp,l [J/(kg·K)] 713.0
Melting point,Tm [K] 2950.0
Boiling point,Tb [K] 5050.0
Melting latent heat,Lm [kJ/kg] 810
Evaporation latent heat,Lv [kJ/kg] 6000

Table 2 Operating conditions.

Gas Current [A] Flow rate [slm] Externally applied magnetic field [T]
Ar 350 115 0.2
Ar 350 115 0.4
Ar 350 115 0.8

x
y

z 8500 K

Anode

12000 K

x
y

z

5000 K5000 K

8500 K

12000 K

Cathode

Anode

Cathode

(a) (b) 

Fig. 4 Iso-surfaces of gas temperature (a) with and (b) without externally applied magnetic field (B0 = 0.8 T）at
I = 350 A.

the case of 0.2 T at 350 A, although the arc rotation movement is observed, the movement is suppressed gradually before
the anode arc root revolves one turn. Finally, anode arc root stays on almost the same spot and the rotation movement
seems to stop.

Figure 5 shows time evolution of voltage drop with different magnetic field strength atI = 350 A from 0 to 2.5
ms. Larger average voltage drop is obtained after applying external magnetic field for each case. It is expected to
generate higher enthalpy plasma jet. This larger voltage drop comes from arc expansion with anode arc root sliding in
circumferential direction. For the case of 0.2 T, voltage seems to be saturated after 2 ms. This is because the anode
arc rotation movement almost stops, changing the arc radius and arc length little. Voltage fluctuations are observed for
applying magnetic field of 0.4 T and 0.8 T. These fluctuations depend on the rotating arc expansion and attachment area
where the anode arc root slides. The voltage with 0.4 T tends to be higher than that of 0.8 T in this simulation. This is
because the increase in rotating velocity with strengthening magnetic field enhances a heat transfer from the arc to the
surrounding gas, so that the region with high electrical conductivities more expands around the arc forB0 = 0.8 T than for
B0 = 0.4 T. This expansion practically increases the thickness of anode arc root which connects the cathode arc column
and the anode arc root, reducing voltage drop. Voltage fluctuations have strong effect on gas velocity at the torch outlet as
shown later.

Figure 6 shows the temperature distributions ony-z plane at the outlet with (a)B0 = 0.8 T and (b)B0 = 0.2 T of
externally applied magnetic field atI = 350 A. For the case of 0.8 T, the rotation of outlet temperature distributions is
observed 0.3 ms after applying external magnetic field. Temperature distributions rotate counter-clockwise here. After the
arc rotation begins, the gas temperature and the electrical conductivity near anode surface become higher by joule heating
and arc rotation velocity gradually increases. The first rotation of temperature distributions at outlet requires about 1.0 ms
and the required time for the second to fifth rotation are about from 0.4 ms to 0.5 ms. For the case of 0.2 T, the rotation of
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Fig. 6 Temperature distributions with (a)B0 = 0.8 T and (b)B0 = 0.2 T.

outlet temperature is hardly observed because the arc rotation movement in plasma torch almost stops after 1 ms.
Figure 7 shows thex-component of gas velocity distributions ony-zplane at the outlet with (a)B0 = 0.8 T and (b)B0

= 0.2 T of externally applied magnetic field atI = 350 A. After the application of external magnetic field, the gas velocity
at the outlet becomes higher than that without external magnetic field. This increasing of velocity comes from the higher
power input by applying the external magnetic field. For the case of 0.8 T, the magnitude of velocity at outlet fluctuates
according to the voltage fluctuation in plasma torch. This fluctuation amplitude is over 50 m/s and it is expected to change
sprayed particle trajectories and impacting velocities greatly. For the case of 0.2 T, voltage fluctuation is small and the
maximum velocity at outlet is almost the same after 0.3 ms.

Figure 8 shows particle trajectories and heating histories withoutB0 and withB0 = 0.8 T atI = 350 A when particle
injected time is different. Particle injection condition is all the same for each case. Without externally applied magnetic
field B0, the injected particle goes in the direction parallel tox-axis. After it is heated over melting point, particle is again
cooled in front of the plane atx = 195 mm. With externally applied magnetic fieldB0, particle trajectories are different
according to different injection timing. They andzcomponent of velocity of swirling flow distorts the particle trajectories.
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Fig. 7 x-component of gas velocity distributions with (a)B0 = 0.8 T and (b)B0 = 0.2 T.
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Fig. 8 Particle trajectories and heating histories withoutB0 and withB0 = 0.8 T.

Particle temperature when it goes through the plane atx= 195 mm becomes higher at any injection time compared to that
without external magnetic field because higher enthalpy plasma jet is generated by applying magnetic field.

Figure 9 shows particle position and temperature distributions with (a)B0 = 0.0 T and (b)B0 = 0.8 T atI = 350 A on
y-zplane atx= 195 mm. The total number of 3000 particles are injected into plasma jet within about 2 ms after applying
external magnetic field at even time intervals. Particle injection condition is the same except using the standard Gaussian
distribution for the initial injection velocity. It is clear that while the particle positions without external magnetic field
spread like a circle, those with external magnetic field of 0.8 T spread diagonally. Particles are radially injected into plasma
jet around the top edge of spray outlet and this region has the flow velocity of swirling counter-clockwise. This flow mainly
carries particles to the substrate, producing diagonal distributions with rotating counter-clockwise. The particles injected
just after applying external magnetic field are little affected by the swirling flow, reaching the less deflected positions.

There is also a marked difference in temperature distributions. Particle temperatures in the case without external
magnetic field are under melting point and it means that the particles in solid-phase go through the plane ofx = 195 mm.
With external magnetic field, more than half of particles are heated enough to be over melting point. Applying magnetic
field is effective method to produce higher enthalpy plasma jet with reduced operation current.
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Fig. 9 Particle position and temperature distributions with (a)B0 = 0.0 T and (b)B0 = 0.8 T at 350 A ony-zplane
(x = 195 mm).

4. Conclusions

Time-dependent MHD simulations of a dc plasma spray with externally applied magnetic field and in-flight particle
trajectory analysis are performed in this work. Numerical results show arc rotation induced by the application of external
magnetic field generates a swirling plasma jet and also increases the operating voltage and the input power for the spraying
process compared to the ones without it. The trajectories of the particles radially injected into the swirling plasma jet are
distorted and particle impact positions on the substrate depend on the injection timing of particles. However, the plasma
jet with externally applied magnetic field has a higher enthalpy than the one without it under the same current between
the electrodes, and therefore the utilization of externally applied magnetic field is useful for impacting the particles with
well-molten state on the substrate.

A coil magnet system including a power source was not specified in this work. In our future study, total energy in-
cluding arc power and power required for the magnet should be considered to clarify the effectiveness of applied magnetic
field in the plasma spray process from the view point of energy efficiency.

Nomenclature

A : magnetic vector potential [T·m]
B : vector of magnetic flux density [T]
B0 : vector of external magnetic flux density [T]
CD : drag coefficient [-]
Cp,s : solid-phase specific heat of particle material [J/(kg·K)]
Cp,l : liquid-phase specific heat of particle material [J/(kg·K)]
E f lu : specific total energy [J/kg]
ef lu : specific internal energy [J/kg]
E : electric field vector [V/m]
fl : liquid-phase fraction [-]
h : gas specific enthalpy [J/kg]
H f lu : specific total enthalpy [J/kg]
J : electric current density vector [A/m2]
kp,l : thermal conductivity of particle material in liquid phase [W/(m·K)]
kp,s : thermal conductivity of particle material in solid phase [W/(m·K)]
Lm : melting latent heat [kJ/kg]
Lv : evaporation latent heat [kJ/kg]
Nu : Nusselt number [-]
n : unit vector of normal direction [-]
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p : gas pressure [Pa]
Pr : Prandtl number [-]
q : specific heat flux [W/m2]
qr : radiative heat loss from particle surface [W/m2]
q̇rad : radiative heat loss [W/m3]
Re : Reynolds number [-]
Ra : anode radius [m]
Rc : cathode radius [m]
r : coordinate inr-direction
rp : particle radius [m]
r′ : displacement vector [m]
S : area of cell interface [m2]
Sh : heat conduction potential [W/m]
T : temperature [K]
Tw : surface or wall temperature [K]
T∞ : gas temperature [K]
t : time [s]
∆ti : the ith time step [s]
u : gas velocity vector [m/s]
up : particle velocity vector [m/s]
V : cell volume [m3]
xp : position vector of particle [m]
z : coordinate inz-direction

Greek letters

β1, β2 : heat flux correction factors due to Knudsen effect and evaporation [-]
ϵ : particle surface emissivity [-]
θ : coordinate inθ-direction
ϕ : electric potential [V]
κ : gas thermal conductivity [W/(m·K)]
µ : gas dynamic viscosity [Pa·s]
µ0 : permeability of free space [Wb/(A·m)]
π : circular constant [-]
ρ : mass density [kg/m3]
ρp : density of particle material [kg/m3]
σ : electrical conductivity [S/m]
σst : Stefan-Boltzmann constant [W/(m2·K4)]
¯̄τ : tensor of viscous shear stress [N/m2]
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