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1 Introduction

String theories on the non-geometric backgrounds may induce interesting features which

are not realized in the standard geometric compactifications. One of the salient aspects

of such non-geometric vacua would be the vanishing cosmological constant without unbro-

ken SUSY. This is in contrast to our experiences in ordinary geometric string vacua that

the SUSY-violation generically gives rise to cosmological constant at the breaking mass

scale (string scale, typically). The attempts of the construction of non-SUSY vacua with

vanishing cosmological constant have been initiated by [1–3] based on some non-abelian

orbifolds, followed by closely related studies e.g. in [4–9]. More recently, several non-SUSY

vacua with this property have been constructed as asymmetric orbifolds [10] by simpler

cyclic groups in [11, 12]. Studies of non-SUSY vacua in heterotic string theory have also

been presented e.g. in [13–20].

In this paper, we would like to focus on similar interesting aspects of non-BPS D-

branes in simple models of non-geometric type II string vacua. Let us first recall that the

BPS D-branes are described by the boundary states satisfying the BPS-equation,

[
Qα +Mα

βQ̃
β
]
|B〉〉 = 0, (1.1)

where Qα (Q̃β) denotes the left(right)-moving space-time supercharges and Mα
β are some

c-number coefficients. Through this paper, we express boundary states by |· · · 〉〉, 〈〈· · · | .
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We then anticipate that the cylinder amplitude of which both ends are attached to the

common BPS D-brane, which we call the ‘self-overlap’ in this paper, should vanish,

Zcyl(s) ≡ 〈〈B|e−πsH(c) |B〉〉 = 0. (1.2)

Here we identify s ∈ R>0 as the closed string modulus and t ≡ 1/s as the open string

one. Needless to say, this means that we have a precise bose-fermi cancellation at each

mass level in the open string spectrum, naturally expected from the BPS property of the

D-brane. However, the bose-fermi cancellation (1.2) does not necessarily imply that the

boundary state |B〉〉 satisfies the BPS equation (1.1). Indeed, it has been known that,

in some superstring vacua, there exist non-BPS configurations of D-branes that however

realize the bose-fermi cancellation of open strings [6, 21]. The main purpose of this paper

is to demonstrate that non-geometric backgrounds of superstring theory rather generally

accommodate such non-BPS D-branes with vanishing cylinder amplitudes.

Although we concentrate in this paper mainly on the theoretical aspects from the view

points of world-sheet conformal field theory, we would also like to mention a ‘physical’

motivation of this work: since the closed string sector in the bulk is supersymmetric in our

setting, the supersymmetry would be broken solely by the effect of the non-BPS D-branes.

More concretely, if we have sufficiently generic configurations of the non-BPS D-branes as

above, the SUSY-breaking would be brought about by the condensation of the non-BPS ‘D-

brane instantons’ (Euclidean D-branes wrapping around internal cycles). In such a case,

because the O(g0s)-contributions to the cosmological constant, as well as the bulk ones,

still vanish due to (1.2), we would be left with a non-perturbatively small cosmological

constant induced by the instanton effect, which is exponentially suppressed as long as the

string coupling gs is sufficiently small. Such a possibility in a type II theory has indeed

been mentioned in [4] based on the analysis of its heterotic dual. The present work may

be a step toward realizing such string vacua with small cosmological constant.

Now, let us make a brief sketch of our basic idea:

• We start with the type II superstring vacua preserving only the chiral SUSY, which

are straightforwardly constructed by the asymmetric orbifolding by the twist σ that

eliminates, say, all the left-moving supercharges Qα.

• In these vacua, while the cosmological constant in the bulk should vanish due to

the existence of unbroken SUSY, any D-branes cannot be BPS. In other words, any

boundary states cannot satisfy the BPS equation (1.1) due to the lack of Qα.

• We search for the boundary states realizing nevertheless the vanishing self-

overlap (1.2), which are obtained from the BPS D-branes |B〉〉0 in the untwisted

theory by the orbifold projection, |B〉〉 ∝ P |B〉〉0. The conformal invariance is main-

tained, since P commutes with the Virasoro operators.

Of course, in generic chiral SUSY vacua, there are no solutions of the boundary states

with the vanishing self-overlaps. However, once the asymmetric twist to preserve the chiral

SUSY is given, the self-overlap of the projected D-brane |B〉〉 is likely to be vanishing as
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long as it inherits the structure of the bose-fermi cancellation in the bulk torus amplitude.

As shown in the following sections, it is indeed possible to find simple models of such

asymmetric orbifolds, and thus plenty of boundary states with the vanishing self-overlap. In

section 2, we study toroidal models and consider several asymmetric orbifoldings preserving

8 supercharges coming only from the right-mover.

In section 3, which is the main part of this paper, we shall discuss less supersymmetric

models constructed as the asymmetric orbifolds of the backgrounds,

R3,1 × T 2 ×M, (1.3)

where M is described by a general N = 4 superconformal field theory (SCFT) with ĉ(≡
c
3) = 2, which geometrically describes compactifications on K3 with particular moduli.

The relevant asymmetric orbifolds are defined by the twisting,

σ = (−1R)
⊗2 ⊗ σM, (1.4)

where (−1R)
⊗2 is the chiral reflection on the T 2-sector (X4,5-directions),

(−1R)
⊗2 : (Xi

L, X
i
R) 7−→ (Xi

L,−Xi
R), (ψi

L, ψ
i
R) 7−→ (ψi

L,−ψi
R), (i = 4, 5), (1.5)

and σM denotes an involution on the M-sector, which is allowed to act asymmetrically

on the N = 4 superconformal algebra (SCA). As we will clarify later, one obtains in this

way the chiral SUSY vacua with the 4-dim. N = 1 SUSY (4 supercharges). We then

classify the possible gluing conditions for the boundary states, which are decomposed into

the Ishibashi states [40] for each N = 4 unitary irreducible representations (irrep.’s), and

examine whether or not their self-overlaps vanish. The spectra of the non-BPS boundary

states with this property non-trivially depend on the choice of the twist operator σM, even

in the cases when the modular invariant partition functions remain unchanged; different

σM’s may lead to the same partition functions in the bulk.

2 Toroidal asymmetric orbifolds

In this section we shall focus on the simpler cases, namely, the asymmetric orbifolds of

tori realizing the chiral SUSY vacua of type II string, in order to show how the strategy

outlined above is implemented. The discussion is straightforwardly extended to the case

of K3 in the next section, though it is technically a little more involved.

2.1 Asymmetric orbifold T 4[D4]/
[
(−1)FL ⊗ ( − 1R)⊗4

]

Let us first consider the asymmetric orbifold of the 4-dim. tours T 4, which would be the

simplest model that has the desired properties. We assume the torus is along the X6,...,9-

directions and at the symmetry enhancement point with ŜO(8)1. We thus denote it as

T 4[D4], the corresponding partition function of which reads

ZT 4[D4](τ, τ̄) =
1

2

{∣∣∣∣
θ3
η

∣∣∣∣
8

+

∣∣∣∣
θ4
η

∣∣∣∣
8

+

∣∣∣∣
θ2
η

∣∣∣∣
8
}
. (2.1)
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The orbifold group is generated by a single element

σ ≡ (−1)FL ⊗ (−1R)
⊗4, (2.2)

which acts as the chiral reflection on the right-mover, Xi
R → −Xi

R, ψ
i
R → −ψi

R (i =

6, . . . , 9), accompanied by the twisting of the space-time fermion number (−1)FL on the

left-moving fermions, that is, the sign-flip of arbitrary states in the left-moving R(amond)-

sector. Closely related asymmetric orbifolds adopting slightly different setting have been

analyzed in the bulk [11, 12] for non-supersymmetric string vacua with vanishing cosmo-

logical constant. The analysis below follows these references.

We simply assume that σ2 acts on the untwisted Hilbert space as an involution for

the free bosons Xi
R, whereas we naturally have two possibilities on the fermionic sector;

(i) σ2 = 1, (ii) σ2 = (−1)FR , depending on the definition of the Ramond vacua or the

way of bosonization to introduce the spin fields (see also section 3.1). Here, the operator

(−1)FR just acts as the sign flip on any states in the right-moving R-sector. We separately

examine theses two cases:

(i) σ2 = 1 (on the untwisted Hilbert space). In this case, the modular invariant is

written as

Z(τ, τ̄) = Z6d
bosonic(τ, τ̄)

1

4

∑

a,b∈Z4

Z
T 4[D4]
(a,b) (τ, τ̄)h(a,b)(τ)f(a,b)(τ),

Z
T 4[D4]
(a,b) (τ, τ̄) :=





ZT 4[D4](τ, τ̄) (a, b ∈ 2Z),

ǫ
[4]
(a,b)χ

D4

(a,b)(τ)
(
χ̃A1

(a,b)(τ)
)4

(a ∈ 2Z+ 1, or b ∈ 2Z+ 1).
(2.3)

where Z6d
bosonic(τ, τ̄) denotes the partition function of the bosonic sector of uncompactified

space-time R5,1. The building blocks χD4

(a,b),
(
χ̃A1

(a,b)(τ)
)4

, h(a,b) and f(a,b) are evaluated

for the sectors of X6,...,9
L , X6,...,9

R , the left-moving fermions, and the right-moving fermions,

respectively, where the subscript (a, b) labels the sectors with the spatial and temporal

twists by σ given in (2.2). They are obtained first for the (0,1) sector with one temporal

twist, and then for other sectors by the modular transformation. Their explicit forms are

summarized in appendix A. (See (A.7), (A.12), (A.14), (A.17).) The phase factor ǫ
[r]
(a,b) is

defined in [22], and explicitly written as

ǫ
[r]
(a,b) := e

iπ
8
r(−1)aab

(
κ(a,b)

)r
, (a ∈ 2Z+ 1 or b ∈ 2Z+ 1), (2.4)

with

κ(a,b) :=

{
−1 a ≡ 3, 5 (mod 8), b ∈ 2Z+ 1,

1 otherwise.
(2.5)

It is quite useful to note that the combination ǫ
[r]
(a,b)χ

Xr

(a,b)(τ)
(
χ̃A1

(a,b)(τ)
)r

(or

ǫ
[−r]
(a,b)

(
χ̃A1

(a,b)(τ)
)r

χXr

(a,b)(τ)) is organized so as to be modular covariant with respect to (a, b),

where Xr denotes the suitable Lie algebra lattice of rank r presented in [22]. Namely, any

modular transformation defined by A ∈ SL(2;Z) acts simply on the subscript (a, b) as

– 4 –
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(a, b) 7−→ (a, b)A. We note that this is an order 4 orbifold due to the existence of the

phase factor (2.4) despite σ2 = 1|untwisted, which would be a typical feature in asymmetric

orbifolds.

The right-mover preserves 1/2 space-time SUSY, whereas the left-moving space-time

SUSY is completely broken. In fact, it is obvious that σ ≡ (−1)FL ⊗ (−1R)
⊗4 cannot

preserve any left-moving supercharges in the even a sector, which are essentially those in

the unorbifolded theory. Furthermore, if we had a left-moving supercharges belonging to

the sector a = 1, we should obtain the equality of the partition functions

Z
(NS,NS)
a=0 (τ, τ̄) = −Z

(R,NS)
a=1 (τ, τ̄). (2.6)

However, it is easy to see that this is not the case, when observing the explicit forms of

relevant partition functions. We can similarly show the absence of supercharges in the

a = −1 sector. On the other hand, half of untwisted supercharges in the right-mover are

σ-invariant, as in the familiar supersymmetric orbifold T 4/
[
(−1L)

⊗4 ⊗ (−1R)
⊗4

]
.

Now, let us move on to the discussion on the non-BPS D-branes. As already pointed

out, no D-brane can preserve space-time SUSY. Nevertheless, rather general ‘bulk-type

branes’ lead to the vanishing self-overlap.1 In fact, consider the bulk-type brane written

as an orbifold projection,

|B〉〉 =
√
2P |B〉〉0, (2.7)

where |B〉〉0 stands for the GSO-projected boundary state describing any BPS D-brane in

the unorbifolded theory on R5,1 × T 4[D4], and P = 1
2(1 + σ) is the projection operator

onto the invariant sector under the twist. As described in the introduction, P commutes

with the Virasoro operators and maintains the conformal invariance. The overall normal-

ization factor
√
2 has been determined by the Cardy condition. By definition, we have

0〈〈B|e−πsH(c) |B〉〉0 = 0, since |B〉〉0 is BPS. Moreover, explicit computation gives

0〈〈B|σ e−πsH(c) |B〉〉0 ≡ 0〈〈B|
[
(−1)FL ⊗ (−1R)

⊗4
]
e−πsH(c) |B〉〉0 ∝ f(0,1)(is) ≡ 0. (2.8)

Again f(0,1)(is) is defined in (A.14). We thus obtain

〈〈B|e−πsH(c) |B〉〉 = 0〈〈B| e−πsH(c) |B〉〉0 + 0〈〈B| σe−πsH(c) |B〉〉0 = 0. (2.9)

Although the left- and right-movers are correlated in the boundary states due to the con-

formal invariance, the twist thereon still leads to the same function f(0,1) as in the bulk,

which is regarded as a remnant of the bulk computation. In this way, we have successfully

shown that the present string vacuum possesses the desired property to have the non-BPS

D-branes with vanishing self-overlaps.

Because of the overall factor in |B〉〉, its coupling to the gravitons (tension) is
√
2 times

that in the unorbifolded theory. The coupling to the RR-particles (RR charge) is also

multiplied by
√
2. By the modular transformation, the standard open string excitations in

the original theory are found to remain in the self-overlap of the unorbifolded part |B〉〉0.
These are common features for all the non-BPS branes with the vanishing self-overlaps

treated in this paper.

1We shall call the boundary states made up only by the untwisted sector as the ‘bulk-type’ to distinguish

them from the ‘fractional branes’ that include the contributions from the twisted sectors.
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Absence of tachyonic instability. Let us briefly check that no open string tachyons

emerge in the cylinder amplitude,

Zcylinder(it) = 〈〈B|e−πsH(c) |B〉〉, (t ≡ 1/s) .

In fact, the piece 0〈〈B|e−πsH(c) |B〉〉0 is just the same as the familiar cylinder amplitude

associated to the BPS brane, whereas

0〈〈B|σ e−πsH(c) |B〉〉0 ∝
(√

2η(is)

θ2(is)

)4

· f(0,1)(is) ≡
θ3(is)

2θ4(is)
2

η(is)4
· f(0,1)(is) (2.10)

=
θ3(it)

2θ2(it)
2

η(it)4
· f(1,0)(it) ≡

θ3(it)
4θ2(it)

4

2η(it)8
− θ2(it)

4θ3(it)
4

2η(it)8
.

In the last line, the first and second terms are identified as the NS and R-sector amplitudes

in the open string channel, of which leading terms are obviously massless. We then obtain

16 pairs of massless bosonic and fermionic states from the orbifolded part, even though no

supercharges in the closed string sector preserve the boundary state |B〉〉. We can similarly

show the absence of open string tachyons in the cylinder amplitudes with the bose-fermi

cancellation also for other models discussed below.

(ii) σ2 = (−1)FR (on the untwisted Hilbert space). In this case, σ acts as a Z4-

action already on the untwisted sector, and the modular invariant is slightly modified as

Z(τ, τ̄) = Z6d
bosonic(τ, τ̄)

1

4

∑

a,b∈Z4

Z
T 4[D4]
(a,b) (τ, τ̄)h(a,b)(τ)f(a,b)(τ). (2.11)

The fermionic chiral block h(a,b) is again given in (A.17), while f(a,b), given in (A.18),

is slightly modified from f(a,b) due to the relation σ2 = (−1)FR . The left-mover has no

space-time SUSY as in the first model. At first glance, it seems that the right-moving

SUSY is also broken, because all of the supercharges in the untwisted sector are projected

out by (−1)FR . However, it is found that (NS,R)-massless states appear in the a = 2

twisted sector, suggesting the existence of new 8 supercharges. These states possess the

opposite chirality to the case (i), because the orbifolding by (−1)FR acts like the T-duality

transformation (see e.g. [21, 23]). In the end, we indeed obtain a chiral SUSY vacuum.

One can check that the partition function vanishes after summing up a, b ∈ 2Z, although

each f(a,b)(τ) is not necessarily vanishing.

The non-BPS D-branes with vanishing self-overlaps are given by the formula similar

to (2.7), but including the contribution from the a = 2 twisted sector ;

|B〉〉 =
√
2P4

[
|B〉〉(a=0)

0 + |B〉〉(a=2)
0

]

=
√
2P2

[
|B〉〉(NS, a=0)

0 + |B〉〉(R, a=2)
0

]
≡

√
2P2 |B〉〉(opp. BPS)

0 , (2.12)

where

P4 ≡
1

4

∑

n∈Z4

σn, P2 ≡
1

2
(1 + σ) , (2.13)

– 6 –
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and |B〉〉(a=0)
0 is a BPS boundary state in the unorbifolded theory as before. On the other

hand, |B〉〉(a=2)
0 is a suitably defined boundary state lying in the a = 2 sector, which

contains the right-moving Ramond ground states with the opposite chirality as addressed

above. (Obviously, we have no solutions of the boundary states in the a = ±1 sectors.) We

return to this point shortly, but here just note σ2 acts as (−1)FR−1 on the a = 2 sector,

rather than (−1)FR , which is read off from the expression of f(a,b)(τ) in (A.18). The a = 2

NSNS-sector is thus projected out by the P4-action, while the a = 0 RR-sector drops off.

We are then left with the P2-projection of the ‘opposite BPS’ boundary state, which ac-

counts for the second line of (2.12). In other words, if we consider the type IIA (IIB) vacuum

of this asymmetric orbifold, |B〉〉(opp. BPS)
0 is regarded as describing a BPS brane in the type

IIB (IIA) strings on R5,1 × T 4[D4]. One could schematically understand these aspects as

[IIA (IIB) vacuum on T 4[D4]/σ] with σ2 = (−1)FR

∼= [IIB (IIA) vacuum on T 4[D4]/σ] with σ2 = 1. (2.14)

In fact, in the second case (ii), we can resolve the orbifold group as2

Z4 generated by {σcase (ii)} ∼= Z2 × Z2 generated by {σcase (i), (−1)FR}, (2.15)

and by the relation suggested in [21, 23],

[IIA (IIB) vacuum]/(−1)FR ∼= [IIB (IIA) vacuum], (2.16)

we obtain the above equivalence (2.14). Given this equivalence, a way to construct |B〉〉(a=2)
0

is tracing back the relation in (2.12), as mentioned above. The observation here is used to

reduce the number of the cases to be analyzed in the following sections.

2.2 Asymmetric orbifold
[
T 4[D2 ⊕ D2] × S1

R

]
/
[
(−1L)

⊗2 ⊗ (−1R)⊗4
]

The point of the construction in the previous subsection is rather general as described in

the introduction, and various generalizations would be possible. As an example where the

open-string boundary condition is more relevant, we next focus on a case of the 5-dim.

torus T 5 along the X5,...,9-directions. To be more specific, we begin with the following

compactification:

• X6,7,8,9-directions.

We consider

T 4[D2 ⊕D2] ≡ T 2[D2]× S1[A1]× S1[A1], (2.17)

where S1[A1] denotes the circle with the self-dual radius.

• X5-direction.

We just consider S1
R, that is, the circle compactification with an arbitrary radius R.

2If further incorporating a shift operator into the orbifold action, i.e. considering the orbifolding by

σ ⊗ T2πR as in [11], we do not have such a resolution.

– 7 –
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Then, we consider the orbifolding by

σ := (−1L)
⊗2

∣∣
5,6

⊗ (−1R)
⊗4

∣∣
5,7,8,9

, (2.18)

where (−1L)
⊗2

∣∣
5,6

, for instance, means the chiral reflection acting along the left-movers of

X5,6-directions. Based on the twists of this type and related ones, non-SUSY vacua with

vanishing cosmological constant have been investigated in [12].

The total modular invariant is given in the form,

Z(τ, τ̄) = Z5d
bosonic(τ, τ̄)

1

4

∑

a,b∈Z4

ZT 4×S1

(a,b) (τ, τ̄)g(a,b)(τ)f(a,b)(τ), (2.19)

with

ZT 4
×S1

(a,b) (τ,τ̄) :=





ZT 4[D2⊕D2](τ,τ̄)ZS1
R(τ,τ̄) (a,b∈2Z),

ǫ
[2]
(a,b)χ

D2

(a,b)(τ)
∣∣∣χA1

(a,b)(τ)
∣∣∣
2 ∣∣∣χ̃A1

(a,b)(τ)
∣∣∣
4(

χ̃A1

(a,b)(τ)
)2

(a∈2Z+1, or b∈2Z+1).

(2.20)

Here Z5d
bosonic denotes the contribution from the bosonic part of R4,1. In the second line, we

have combined
∣∣χ̃A1

(a,b)(τ)
∣∣2 from the X5-direction, ǫ

[−1]
(a,b)χ̃

A1

(a,b)χ
A1

(a,b) from the X6-direction,

and ǫ
[3]
(a,b)χ

D2

(a,b)χ
A1

(a,b)

(
χ̃A1

(a,b)

)3
from the X7,8,9-directions. The character functions χA1

(a,b),

χ̃A1

(a,b), χ
D2

(a,b) and the free fermion chiral blocks f(a,b), g(a,b) are summarized in appendix

A. As already mentioned, the modular covariance of ZT 4×S1

(a,b) is assured due to the phase

factor ǫ
[∗]
(a,b) (2.4).

Again we have various possibilities of the action of σ2 on the R-sector; (i) σ2 = 1,

(ii) σ2 = (−1)FR , (iii) σ2 = (−1)FL , (iv) σ2 = (−1)FL+FR . The modular invariant (2.19)

describes the first case (i). The modular invariants for the remaining cases are easy to

construct. Namely, we only have to replace the chiral blocks f(a,b), g(a,b) in (2.20) with

the ones given in (A.18), (A.19) suitably. However, as mentioned at the last part in the

previous subsection, the cases (ii), (iii) reduces to the first case (i) as in (2.14), and the

case (iv) corresponds to a non-SUSY vacuum, which is beyond the scope of this work.

Therefore, it is enough to focus on the simplest case (i). We can pick up any BPS

boundary states |B〉〉0 in the unorbifolded theory on T 4 × S1, and define the non-BPS

brane |B〉〉 by the orbifold projection in the same way as (2.7). It is not difficult to

show that |B〉〉 has the vanishing self-overlap as long as |B〉〉0 satisfies the general gluing

condition (for the T 4 × S1-directions) given by

[
α5
L,n ± α5

R,−n

]
|B〉〉0 = 0,

[
ψ5
L,r ± iψ5

R,−r

]
|B〉〉0 = 0,

[
α6
L,n ± α6

R,−n

]
|B〉〉0 = 0,

[
ψ6
L,r ± iψ6

R,−r

]
|B〉〉0 = 0,

[
αi
L,n +M i

jα
j
R,−n

]
|B〉〉0 = 0,

[
ψi
L,r + iM i

jψ
j
R,−r

]
|B〉〉0 = 0,

(i, j = 7, 8, 9), (2.21)
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where αi
L,n, α

i
R,n and ψi

L,r, ψ
i
R,r denote the bosonic and fermionic oscillators (including the

bosonic zero modes), and M i
j is an arbitrary SO(3)-matrix.3 To show this fact, it is useful

to note the relation,

σ |B〉〉0 ≡ (−1L)
⊗2

∣∣
5,6

⊗ (−1R)
⊗4

∣∣
5,7,8,9

|B〉〉0 = (−1R)
⊗4

∣∣
6,7,8,9

|B〉〉0, (2.22)

for any |B〉〉0 satisfying (2.21). We thus obtain

0〈〈B|σe−πsH(c) |B〉〉0 ∝ f(0,1)(is) = 0, (2.23)

similarly to (2.8), leading to the vanishing cylinder amplitude, 〈〈B|e−πsH(c) |B〉〉 = 0.

We add a comment: in the model of (2.1) the vanishing self-overlaps have been

achieved for arbitrary BPS boundary states |B〉〉0 in the unorbifolded theory. On the

other hand, in the current case, |B〉〉0 defined by (2.21) is restricted to (M i
j) ∈ SO(3)

rather than (M i
j) ∈ SO(4). If adopting a different orbifold action instead of (2.18), say,

σ ≡ (−1L)
⊗2

∣∣
5,7

⊗ (−1R)
⊗4

∣∣
5,6,8,9

, we still obtain the same modular invariant, yielding

the equivalent spectrum of closed string states. Moreover, it is obvious to have an essen-

tially equivalent spectrum of non-BPS branes with the vanishing self-overlaps, in which

(M i
j) ∈ SO(3) appearing in (2.21) should act on the X6,8,9

R -directions this time. This fact

is not surprising, of course. However, in the next section, we will see the examples in which

the spectra of the non-BPS branes with vanishing self-overlaps would notably depend on the

choice of orbifolding, while the modular invariant partition functions remain unchanged.

3 Chiral SUSY vacua as asymmetric orbifolds of T 2 × K3

In this section, we shall study less supersymmetric cases with M = K3 in the back-

ground (1.3),

R3,1 × T 2[D2]×M. (3.1)

The strategy to construct the non-BPS D-branes with vanishing self-overlaps is the same as

in the previous section. The discussion is however a little more involved. We thus first sum-

marize the relevant asymmetric orbifolds in the bulk in subsection 3.1. We then concentrate

on the examples of the Gepner construction in subsection 3.2. For these subsections, we

follow [24] where the modular invariant partition functions of related asymmetric orbifolds

(‘mirrorfolds’) are constructed. (See also [25].) Based on these set-ups, we construct the

non-BPS D-branes in subsection 3.3, which is the main part of this section 3.

3.1 Asymmetric orbifolds of T 2 × K3 with chiral SUSY

To begin with, we assume that the M-sector is described by a general N = (4, 4) SCFT

with ĉ
(
≡ c

3

)
= 2, not reducing to the toroidal models. We denote the relevant N = 4

SCA [26] by Ln (Virasoro), Jα
n (ŜU(2)1) with α = 1, 2, 3, Ga

r with a = 0, 1, 2, 3. Recall that

the total R-symmetry is given by SO(4) ∼= SU(2)c × SU(2)f , in which the inner symmetry

3Since T 4[D2⊕D2] = T 4[(A1)
4] holds, the SO(3)(⊂ SO(4))-rotated gluing condition is well-defined, even

though SO(3) is not a part of symmetry on this string vacuum.

– 9 –



J
H
E
P
0
8
(
2
0
1
7
)
0
8
2

(‘color SU(2)’) is generated by the affine currents Jα, whereas the global SU(2)-symmetry

(‘flavor SU(2)’) is an outer one. G0 is a singlet of SU(2)diag ⊂ SU(2)c × SU(2)f , while

G1, G2, G3 compose a triplet of SU(2)diag.

We also assume that N = 2 SCA is embedded into the N = 4 one in the standard

fashion by identifying the N = 2 U(1)R-current as

JN=2 = 2J3, (3.2)

and

G± =
1

2

(
G0 ± iG3

)
. (3.3)

The generators of integral spectral flows U±1 are identified with the remaining SU(2)-

currents

U±1 = J± ≡ J1 ± iJ2, (3.4)

and the half-spectral flows U±1/2 define the Ramond sector.

Let us now consider the asymmetric orbifolding of (3.1) by σ ≡ σM⊗ (−1R)
⊗2, where

(−1R)
⊗2 denotes the chiral reflection along the T 2[D2]-direction. We first note the action

of (−1R)
⊗2 on the world-sheet fermions, which we assign to ψ4

R, ψ
5
R. We bosonize them as4

ψ4
R + iψ5

R =
√
2eiH

T2

R , (3.5)

and (−1R)
⊗2 should act as the shift HT 2

R → HT 2

R + π. It fixes the action of (−1R)
⊗2 on

the R-sector and we find
[
(−1R)

⊗2
]2

= (−1)FR . (3.6)

We next consider the M-sector. We would like to suitably choose the orbifold twisting

σM so as to obtain a 4-dim. vacuum with N = (0, 1)-chiral SUSY unbroken. Obviously

σM should be an automorphism of both left and right-moving N = 4 SCAs. Furthermore,

since working on superstring vacua in the NSR-formalism, σM should satisfy the following

conditions:

(i) σM preserves T (energy-momentum tensor) and G0, which is necessary for the BRST-

invariance.

(ii) σM keeps the Ramond sector intact so as to be compatible with U±1/2. This means

that the automorphism σM has to satisfy σMJ3σ−1
M = J3, or σMJ3σ−1

M = −J3.

The same conditions are required for the right-mover.

4If we had adopted the bosonization for the combinations, e.g. ψ2
R+iψ4

R and ψ3
R+iψ5

R, the L.H.S of (3.6)
would have been the identity. However, we shall not consider this possibility here in order to respect the

super-Poincare symmetry in R3,1, and (3.5) is the unique choice. We also simply assume that (−1R)
⊗2 is

involutive on the bosonic coordinates X4
R, X

5
R (on the untwisted Hilbert space) in this paper, even though

we have more general possibilities if utilizing the fermionization of them as discussed in [12].
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Let us now introduce the automorphisms σ
(α)
L (α = 1, 2, 3) of the left-moving N = 4

SCA. They are defined by

σ
(α)
L T (z)σ

(α)−1
L = T (z), σ

(α)
L G0(z)σ

(α)−1
L = G0(z),

σ
(α)
L Jα(z)σ

(α)−1
L = Jα(z), σ

(α)
L Gα(z)σ

(α)−1
L = Gα(z),

σ
(α)
L Jβ(z)σ

(α)−1
L = −Jβ(z), (β 6= α), σ

(α)
L Gβ(z)σ

(α)−1
L = −Gβ(z), (β 6= α), (3.7)

and we assume that they are involutive on the whole Hilbert space;
(
σ
(α)
L

)2
= 1L (∀α).

We also set σ̂
(α)
L := e

iπ
2
FLσ

(α)
L for convenience. σ̂

(α)
L obviously acts on the N = 4 SCA in

the same way as (3.7), but it is no longer involutive;
(
σ̂
(α)
L

)2
= (−1)FL .

To complete the definition of σ
(α)
L (and σ̂

(α)
L ), we still have to specify their actions

on the Ramond ground states, in other words, on the half-spectral flow operators U±1/2.

Recalling the simple relation J± ≡ J1 ± iJ2 = U±1 =
(
U±1/2

)2
, we can naturally define

σ
(1)
L U±1/2 σ

(1)−1
L = U∓1/2, σ

(2)
L U±1/2 σ

(2)−1
L = ±iU∓1/2, (3.8)

which are surely consistent with
(
σ
(α)
L

)2
= 1L. We next consider the composition σ

(1)
L σ

(2)
L .

It obviously acts on each N = 4 chiral current in the same way as σ
(3)
L . However, since σ

(1)
L

and σ
(2)
L are anti-commutative on the R-sector due to (3.8), we find (σ

(1)
L σ

(2)
L )2 = (−1)FL .

Thus, we should identify

σ
(1)
L σ

(2)
L = (−1)FLσ

(2)
L σ

(1)
L = σ̂

(3)
L ≡ e

iπ
2
FLσ

(3)
L , (3.9)

and σ̂
(3)
L acts on the half-spectral flows U±1/2 as

σ̂
(3)
L U±1/2 σ̂

(3)−1
L = ±iU±1/2. (3.10)

σ
(α)
R (α = 1, 2, 3) for the right-mover are defined in the same way.

Now, let us specify the possible orbifold actions σ ≡ σM ⊗ (−1R)
⊗2. We again have

four possibilities (i) σ2 = 1, (ii) σ2 = (−1)FL , (iii) σ2 = (−1)FR , (iv) σ2 = (−1)FL+FR , as

in the previous section. However, all the space-time SUSY are broken in the fourth case,

and the second and third cases reduce to the first case by the chirality flip; IIA ←→ IIB

as mentioned in subsection 2.1. It is thus enough to consider the first case such that

σ is involutive, that is, the cases with σ ≡ σ
(α)
L ⊗ σ̂

(β)
R ⊗ (−1R)

⊗2. We shall especially

focus on the following three cases; (1) σM ≡ σ
(3)
L ⊗ σ̂

(1)
R , (2) σM ≡ σ

(3)
L ⊗ σ̂

(3)
R , (3) σM ≡

σ
(1)
L ⊗ σ̂

(1)
R . Of course, we have to examine whether they are actually compatible with the

modular invariance. In the next subsection, we explicitly confirm in the case of the Gepner

construction that the asymmetric orbifolding by σ ≡ σM ⊗ (−1R)
⊗2 constructed this way

yields superstring vacua with modular invariance. In all the three cases, the space-time

SUSY from the left mover is broken to achieve the 4-dim. N = (0, 1) chiral SUSY.
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3.2 Concrete examples: Gepner construction

Let us consider the generic Gepner construction [27, 28] for K3, that is, the superconformal

system defined by

[Mk1 ⊗ · · · ⊗Mkr ] |ZN -orbifold ,
r∑

i=1

ki
ki + 2

= 2 , (3.11)

where Mk denotes the N = 2 minimal model of level k (ĉ ≡ c
3 = k

k+2), and we set

N := L.C.M.{ki + 2 ; i = 1, . . . , r}. (3.12)

We start with the diagonal modular invariant for simplicity. We have to make the ZN -

orbifolding that renders the total U(1)R-charge (in the NS-sector) integral,

Q(I) :=

r∑

i=1

mi

ki + 2
∈ Z, (3.13)

where I := {(ℓ1,m1), . . . , (ℓr,mr)} denotes the collective label of the primary state in

Mk1 ⊗ · · · ⊗ Mkr (0 ≤ ℓi ≤ ki, mi ∈ Z2(ki+2), ℓi + mi ∈ 2Z), and the twisted sectors of

orbifolding are identified with the ‘spectral flow orbits’ by the actions Un (n ∈ ZN ) with

U : I ≡ {(ℓ1,m1), · · · , (ℓr,mr)} 7−→ U(I) ≡ {(ℓ1,m1 − 2), · · · , (ℓr,mr − 2)}. (3.14)

See [29] for more detail.

The relevant Hilbert space for the K3 sector (before imposing the GSO projection) is

schematically expressed as

H(s,s̃)
Gepner =

⊕

n∈ZN

⊕

I,Ĩ
Q(I)∈Z, Q(Ĩ)∈Z

[
δI,Ĩ H

(s)
Un(I),L ⊗H(s̃)

Ĩ,R

]
, (s, s̃ = NS,R), (3.15)

where the Ramond Hilbert space H(R)
I,∗ is uniquely determined by the half-spectral flow in

the standard manner.5 Note that the left-right symmetric primary states lie in the n = 0

sector, but we also have many asymmetric primary states generated by the spectral flows.

As already mentioned, the N = 2 superconformal symmetry with ĉ = 2 is enhanced to

the N = 4 by adding the spectral flow operators, which are identified with the ŜU(2)1
currents J± ≡ J1 ± iJ2 in the N = 4 SCA [29]. Accordingly, the chiral parts of H(s,s̃)

Gepner

are decomposed into irreducible representations of N = 4 SCA at level 1, that are classified

as follows [30, 31]:

• Massive representations: C
(NS)
h

, C
(R)
h

.

These are non-degenerate representations whose vacua have conformal weights h. The

vacuum of C(NS)
h belongs to the spin 0 representation of the ŜU(2)1-symmetry. The

four-fold degenerate vacua of C(R)
h generate the representation 2[spin 0]⊕ [spin 1/2].

Unitarity requires h ≥ 0 for C(NS)
h and h ≥ 1

4 for C(R)
h . The 1/2-spectral flow connects

C(NS)
h with C(R)

h+ 1
4

.

5Notice however that the label I in H
(R)
I,∗ indicates the quantum numbers in the NS-sector.
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• Massless representations: D
(NS)
ℓ

, D
(R)
ℓ

(ℓ = 0, 1/2).

These are degenerate representations whose vacua have conformal weights h = ℓ for

the NS representations D(NS)
ℓ , and h = 1

4 for the Ramond representations D(R)
ℓ ; they

belong to the spin ℓ representation of ŜU(2)1. To be more specific, D(NS)
0 (‘graviton

rep.’ or ‘identity rep.’) corresponds to the unique vacuum with h = 0, J3
0 = 0,

while D(NS)
1/2 (‘massless matter rep.’) is generated over doubly degenerated vacua

with h = 1/2, J3
0 = ±1/2. The Ramond sector D(R)

1
2
−ℓ

is connected with D(NS)
ℓ by the

1/2-spectral flow.

The relevant character formulas are summarized in appendix A.

Now, let us construct the asymmetric orbifolds by the involution σ. Since a detailed

account of closely related asymmetric orbifolds has been given in [24], based on [25], we

here briefly describe the relevant construction.

Since the most non-trivial part σM has the form σ
(α)
L ⊗ σ̂

(β)
R (α, β = 1 or 3), we should

specify how the N = 4 involutions σ
(1)
L , σ

(3)
L act on the primary states in the Gepner

construction. First, we can naturally identify σ
(1)
L with the N = 2 involution,

σ
(1)
L :=

r∏

i=1

σ
N=2,(i)
L , (3.16)

where the N = 2 involution σ
N=2,(i)
L acts as

T (i) → T (i), J (i) → −J (i), G± (i) → G∓ (i), (3.17)

in each minimal factor Mki .

On the other hand, σ
(3)
L acts on the N = 4 SCA as the automorphism (3.7). We still

have to define how it acts on the N = 4 primary states |v〉L. A simple choice would be

given as

σ
(3)
L |v〉L :=





σ
(1)
L |v〉L , (2J3

L,0|v〉L = 0) ,

J+
L,0 σ

(1)
L |v〉L , (2J3

L,0|v〉L = |v〉L) ,
−J−

L,0 σ
(1)
L |v〉L , (2J3

L,0|v〉L = −|v〉L) ,
(3.18)

where J±
L ≡ J1

L ± iJ2
L are the SU(2) currents in the N = 4 SCA, which turns out to be

compatible with the modular invariance.

By these definitions and the fact that σ
(1)
L (R) and σ

(3)
L (R) induce the equal twisted char-

acters of N = 4 SCA (see appendix B), we find that the torus partition function does not

depend on α, β in σM ≡ σ
(α)
L ⊗ σ̂

(β)
R . The total modular invariant is now written as

Z(τ, τ̄) := Z4d
bosonic(τ, τ̄)

1

4

∑

a,b∈Z4

Z(a,b)(τ, τ̄). (3.19)

As before, Z4d
bosonic denotes the contribution from the bosonic part of R3,1, which is related

with neither the σ-twisting nor the GSO-projection. Those for the various σ-twisted sectors

Z(a,b) (a, b ∈ Z4), which are crucial in our arguments, are described in the following way:
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• Even sectors with a, b ∈ 2Z.

Z(a,b)(τ, τ̄) :=
1

4

∑

s,s̃

∑

I,Ĩ

NI,Ĩ F
(s)
I (τ)F

(s̃)

Ĩ (τ) · ZT 2[D2](τ, τ̄) ·
(
θ[s]

η

)2(θ[s̃]

η

)2

, (3.20)

where F
(s)
I (τ), F

(s̃)

Ĩ (τ) denote the chiral building blocks with the chiral spin structures

s, s̃ = NS, ÑS, R, R̃, in the Gepner model for M, which are labeled by the spectral

flow orbits I, Ĩ. For instance, F (NS)
I (τ) is explicitly written as

F
(NS)
I (τ) =

∑

{(ℓi,mi)}∈I

r∏

i=1

ch
(NS)
ℓi,mi

(τ),

with

I ≡ {(ℓ1,m1 − 2n), . . . , (ℓr,mr − 2n)}n∈ZN
,

and the N = 2 minimal character ch
(s)
ℓi,mi

(τ) [32–35]. The chiral blocks for other spin

structures are determined by the 1/2-spectral flows and by incorporating the suitable

sign factors to impose the GSO condition. (See [29] for more detail.) We also adopted

the concise notation θ[s](τ) := θ3(τ), θ4(τ), θ2(τ), iθ1(τ)(≡ 0) for s = NS, ÑS, R, R̃

respectively. The modular invariant coefficients NI,Ĩ are straightforwardly deter-

mined due to the Gepner construction, which are independent of a, b, and the overall

factor 1/4 originates from the chiral GSO projection.

• Odd sectors with a ∈ 2Z + 1 or b ∈ 2Z + 1.

Z(a,b)(τ, τ̄) := ZM
(a,b)(τ, τ̄) · Z

T 2[D2]
(a,b) (τ, τ̄) · Zf

(a,b)(τ, τ̄)

≡
∑

l,̃l

N
(a,b)

l,̃l
χl,(a,b)(τ)χl̃,(a,b)(τ) · ǫ

[2]
(a,b)χ

D2

(a,b)(τ)
(
χ̃A1

(a,b)(τ)
)2

× ǫ
[2]
(a,b)χ

D2,[−]
(a,b) (τ)

1

2

[(
χ̃A1

(a,b)(τ)
)2

−
(
χ̃A1

(a,b)(τ)
)2

]
, (3.21)

where we set

χl,(a,b)(τ) :=
∏

i

χki
ℓi,[a,b]

(τ), l ≡ (ℓ1, . . . , ℓr), (3.22)

and χk
ℓ,[a,b](τ) denotes the twisted N = 2 character (B.4). Recall that ǫ

[r]
(a,b) ≡

e
iπ
8
r(−1)aab and the definitions of the functions χD2

(a,b)(τ), χ
D2,[−]
(a,b) (τ) and χ̃A1

(a,b)(τ) are

summarized in (A.7), (A.8) and (A.12). The 4-dim. N = (0, 1) chiral SUSY is

confirmed from (3.21).

The coefficients N
(a,b)

l,̃l
in the odd sectors are slightly non-trivial. We can determine

them in a way parallel to that presented in [24, 25]. We here briefly describe the

results, which depend on the spectrum of the level ki in (3.11) as follows:
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(i) At least one of ki’s is odd. In this case, the modular invariant coefficients are

very simple,

N
(a,b)

l,̃l
=

r∏

i=1

δℓi,ℓ̃i . (3.23)

(ii) All ki’s are even. In this case, N in (3.12) is even, and we set

S1 :=

{
i ∈ {1, . . . , r} ;

N

ki + 2
∈ 2Z+ 1

}
,

S2 :=

{
i ∈ {1, . . . , r} ;

N

ki + 2
∈ 2Z

}
. (3.24)

Then, the relevant coefficients are given by

N
(a,b)

l,̃l
:=





∏
i∈S2

δℓi,ℓ̃i

(∏
i∈S1

δℓi,ℓ̃i +
∏

i∈S1
δℓi,ki−ℓ̃i

)
(a ∈ 2Z, b ∈ 2Z+ 1),(

1 + (−1)
∑

i∈S1
ℓi
)∏r

i=1 δℓi,ℓ̃i (a ∈ 2Z+ 1).

(3.25)

One can directly confirm that the Z(a,b)(τ, τ̄) in the odd sectors (3.21) show the suitable

modular covariance by using the modular transformation formulas given in (B.7). Note

that σ
(α)
L (R)-insertion only provides non-vanishing contributions to the trace over the sectors

with {(ℓ1, 0), . . . , (ℓr, 0)} in the spectral flow orbit (of NS-sector). The difference of the

two cases (3.23) and (3.25) originates from this fact.

We make a few comments:

• As already mentioned, we are considering the orbifolding by σ = σ
(α)
L ⊗σ̂

(β)
R ⊗(−1R)

⊗2

for various α, β, and obtain the equivalent spectra of closed string states in all these

models. However, this fact does not necessarily imply that they are equivalent string

vacua. Indeed, it turns out that they have quite different D-branes, as we elucidate

in subsection 3.3.

• One finds that the contributions from the (R, ∗) or (∗,R)-sectors do not appear in

the building block (3.21) with a ∈ 2Z and b ∈ 2Z+ 1. This fact is actually expected

so as to achieve the modular invariance. It is not difficult to confirm that this is

indeed the case in almost all the Gepner models for K3 due to the basic properties

of the twisted characters. (See appendix B.) The exception is only the (4)3 type, in

which there would exist a non-vanishing (R,NS) contribution6 that could spoil the

modular invariance. However, by suitably fixing the sign ambiguity of σ
(α)
L on the

Ramond vacua with Q = 0, one can avoid this possibility still in the (4)3-model.

3.3 General construction of boundary states with vanishing self-overlaps

Let us present our main studies. Namely, we investigate how we achieve the vanishing

self-overlaps in the current models of asymmetric orbifolds,

R3,1 ×
[
T 2[D2]×M

]∣∣
σ−orbifold

. (3.26)

6The (R,R) and (NS,R)-contributions trivially vanish due to the fermionic zero-modes in the R3,1 ×

T 2[D2]-directions.

– 15 –



J
H
E
P
0
8
(
2
0
1
7
)
0
8
2

We begin with specifying the boundary conditions in the (unorbifolded) M-sector

that characterize general BPS D-branes.7 Naively, any boundary conditions preserving

the N = 4 superconformal symmetry with an arbitrary twisting by automorphism may be

allowed, which are schematically expressed as in [39] by
[
AI

r + g · ÃI
−r

]
|B〉〉 = 0. (3.27)

Here, AI
r , ÃI

r are the chiral currents and g denotes any (inner or outer) automorphism of

the N = 4 SCA. However, since we are working on the physical boundary states in the

RNS superstrings, we still have to impose the following conditions:

(i) |B〉〉 preserves G0-symmetry without any twisting, which is necessary for the BRST-

invariance.

(ii) |B〉〉 contains the correct components of the RR-sector compatible with the above

definition of U±1/2. This means that the automorphism g in (3.27) has to satisfy

g · J3 = J3, or g · J3 = −J3.

Thus, at least generically, the allowed twisting g by the N = 4 automorphism is restricted

and we eventually obtain the following two types of gluing conditions:

A-type:
[
Ln − L̃−n

]
|θ〉〉A = 0,

[
J3
n − J̃3

−n

]
|θ〉〉A = 0, (3.28)

[
G0

r − iG̃0
−r

]
|θ〉〉A = 0,

[
G3

r + iG̃3
−r

]
|θ〉〉A = 0,

[
Gα

r − iR̂(θ)αβG̃
β
−r

]
|θ〉〉A = 0,

[
Jα
n + R̂(θ)αβ J̃

β
−n

]
|θ〉〉A = 0, (α, β = 1, 2).

B-type:
[
Ln − L̃−n

]
|θ〉〉B = 0,

[
J3
n + J̃3

−n

]
|θ〉〉B = 0, (3.29)

[
Gα

r − iG̃α
−r

]
|θ〉〉B = 0, (α = 0, 3) ,

[
Gα

r − iR(θ)αβG̃
β
−r

]
|θ〉〉B = 0,

[
Jα
n +R(θ)αβ J̃

β
−n

]
|θ〉〉B = 0, (α, β = 1, 2).

In the above, R(θ) denotes the SO(2)-rotation with the angle parameter θ, and R̂(θ) ≡
R(θ)σ3 ∈ O(2). The relevant Ishibashi states [40] are characterized by the N = 4 irrep.

classified in the subsection 3.2 as well as the gluing conditions given above, and should

satisfy e.g.

A

〈〈
D(NS)

ℓ ; θ
∣∣∣e−πsH(c)

∣∣∣D(NS)
ℓ ; θ

〉〉
A
= ch

(NS)
0 (ℓ; is),

A

〈〈
C(NS)
h ; θ

∣∣∣e−πsH(c)
∣∣∣C(NS)

h ; θ
〉〉

A
= ch(NS)(h; is) ≡ e−2π(h− 1

8)
θ3(is)

2

η(is)3
, (3.30)

7In this paper, we shall not work with explicit forms of the boundary states in Gepner model for M,

which should be constructed as tensor products of those for the N = 2 minimal models. See [36] and also

e.g. [37, 38] for detail.
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where ch
(NS)
0 (ℓ; is), ch(NS)(h; is) denote the N = 4 massless and massive characters sum-

marized in (A.20), (A.21) and (A.22). To be more precise, since the Gepner points are

rational, it turns out that only the discrete values of the angle parameter θ = 2πr
N (r ∈ ZN )

are allowed. In fact, let us recall the schematic decomposition of an N = 4 irrep. by the

integral spectral flows as

[irrep.](NS),N=4 =
⊕

n∈ZN

Un [irrep.]
(NS),N=2,

where N is defined by (3.12), and we also express the N = 2 Ishibashi state of the A-type

as
∣∣[irrep.](NS)

〉〉N=2

A
(defined by the gluing conditions given in the first and second lines

in (3.28)). Then, the N = 4 Ishibashi states of A-type with the twist angle θ = 2πr
N are

written as

∣∣∣∣[irrep.](NS); θ =
2πr

N

〉〉

A

=
∑

n∈ZN

(−1)ne2πi
r
N
n Un ⊗ Ũn

∣∣∣[irrep.](NS)
〉〉N=2

A
. (3.31)

This shows why θ is restricted to discrete values θ = 2πr
N . The B-type Ishibashi states are

similarly constructed.

The Ishibashi states in the RR-sector are obtained by the half-spectral flow from the

NSNS ones,

∣∣∣∣[irrep.](R);
2πr

N

〉〉

A

= U1/2 ⊗ Ũ1/2

∣∣∣∣[irrep.](NS);
2πr

N

〉〉

A

,

∣∣∣∣[irrep.](R);
2πr

N

〉〉

B

= U1/2 ⊗ Ũ−1/2

∣∣∣∣[irrep.](NS);
2πr

N

〉〉

B

. (3.32)

We note the correspondence of the representations,

U±1/2 : D(NS)
ℓ −→ D(R)

1/2−ℓ, (ℓ = 0, 1/2),

U±1/2 : C(NS)
h −→ C(R)

h+ 1
8

. (3.33)

The R-massive rep. C(R)
h is generated by doubly degenerated vacua with conformal weight

h belonging to an SU(2)-doublet, as opposed to the NS-one C(NS)
h .

As in the previous analyses on the toroidal models, generic D-branes in our asymmetric

orbifold (3.26) are expressed by the boundary states in the form of the orbifold projection

with σ2 = 1,

|B〉〉 =
√
2P |B〉〉0 ≡

√
2P

[
|B〉〉(NS)

0 + |B〉〉(R)
0

]
, (3.34)

where |B〉〉0 is a (GSO-projected) boundary state describing a D-brane in the unorbifolded

theory and P ≡ 1+σ
2 . We assume that |B〉〉0 describes a half-BPS brane with the Dirichlet

conditions for all the transverse coordinates along R3,1 × T 2[D2], just for convenience.

Namely, |B〉〉0 is expanded by the Ishibashi states given above for the M-sector and the
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self-overlap is schematically written as

0〈〈B|e−πsH(c) |B〉〉0 =
∑

i

αi
1

η4

[(
θ3
η

)2

ch
(NS)
∗ (r

(NS)
i ; is)−

(
θ4
η

)2

ch
(ÑS)
∗ (r

(NS)
i ; is)

−
(
θ2
η

)2

ch
(R)
∗ (r

(R)
i ; is)

]
≡ 0, (3.35)

where r
(NS)
i and r

(R)
i are unitary irrep.’s of N = 4 SCA related with each other by U±1/2

and αi are some non-trivial coefficients that we are not interested in here. The R.H.S

of (3.35) indeed vanishes due to the BPS-property of |B〉〉0. One can easily confirm that

the each term associated to the irrep. r
(∗)
i actually vanishes.

Therefore, to achieve the vanishing cylinder amplitudes in the asymmetric orb-

ifolds (3.26), it is enough to examine whether or not the amplitude 0〈〈B|σe−πsH(c) |B〉〉0
vanishes. From now on, we examine this problem in each case of (1) σM ≡ σ

(3)
L ⊗ σ̂

(1)
R , (2)

σM ≡ σ
(3)
L ⊗ σ̂

(3)
R , (3) σM ≡ σ

(1)
L ⊗ σ̂

(1)
R , as addressed before. We set θr ≡ 2πr

N , (r ∈ ZN ) in

the following.

(1) σM = σ
(3)
L

⊗ σ̂
(1)
R

: we first pick up the M-sector. Because of the gluing condi-

tions (3.28), (3.29), we obtain the equality

σM |∗; θr〉〉A(B) ≡ σ
(3)
L ⊗ σ̂

(1)
R |∗; θr〉〉A(B) = σ̂

(1)
R σ

(3)
R |∗; θr〉〉A(B) = σ

(2)
R |∗; θr〉〉A(B). (3.36)

It is worthwhile to emphasize that this relation does not depend on the angle parameter θr
at all. Thus, the amplitude from each component of Ishibashi state is eventually evaluated

by the σ
(2)
R -twist irrespective of θr, yielding the N = 4 twisted character,

χ[0,1](h; is) ≡
2e−2πs(h− 1

8)

θ2(is)
, (3.37)

or trivially vanishing one. We summarize necessary formulas for the N = 4 twisted char-

acters in appendix B. In this way, we obtain for the NSNS-sector,

A(B)

〈〈
D

(NS)
0 ;θr

∣∣∣σMe
−πsH(c)

∣∣∣D(NS)
0 ;θr

〉〉

A(B)
=A(B)

〈〈
D

(NS)
0 ;θr

∣∣∣ (−1)fLσMe
−πsH(c)

∣∣∣D(NS)
0 ;θr

〉〉

A(B)

=χ[0,1](h=0;is),

A(B)

〈〈
D

(NS)
1/2 ;θr

∣∣∣σMe
−πsH(c)

∣∣∣D(NS)
1/2 ;θr

〉〉

A(B)
=A(B)

〈〈
D

(NS)
1/2 ;θr

∣∣∣ (−1)fLσMe
−πsH(c)

∣∣∣D(NS)
1/2 ;θr

〉〉

A(B)

=0,

A(B)

〈〈
C
(NS)
h ;θr

∣∣∣σMe
−πsH(c)

∣∣∣C(NS)
h ;θr

〉〉

A(B)
=A(B)

〈〈
C
(NS)
h ;θr

∣∣∣ (−1)fLσMe
−πsH(c)

∣∣∣C(NS)
h ;θr

〉〉

A(B)

=χ[0,1](h;is), (3.38)

where (−1)fL denotes the twisting for the GSO projection. The fact that (−1)fLσM-

insertion leads to the equal amplitude is obvious from the boundary conditions for the

fermionic currents Ga(z), (a = 0, 1, 2, 3).

We also recall that σ includes (−1R)
⊗2, which just makes the free fermion contribution

from the (transverse part of) R3,1×T 2[D2]-sector proportional to
θ3
η

θ4
η for the NSNS-sector,
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while (−1)fL(−1R)
⊗2 gives the term ∝ θ4

η
θ3
η . On the other hand, the contributions from

the RR-sector trivially vanish due to free fermion zero-modes along either of the R3,1 or

T 2[D2]-directions.

Combining all the contributions and taking account of the GSO-projection, we finally

obtain

0〈〈B|σe−πsH(c) |B〉〉0 =
∑

i

α′
i

1

η4

[
θ3
η

θ4
η

− θ4
η

θ3
η

]
χ[0,1](hi; is) ≡ 0. (3.39)

In this expression8 the summation is taken over all the spin 0 irrep.’s, that is, C(NS)
h or

D(NS)
0 , and we assign hi = 0 for the case of D(NS)

0 . In this way, we have shown that any

boundary states (3.34) associated to |B〉〉0 satisfying the gluing conditions (3.28) or (3.29)

with an arbitrary value of parameter θr =
2πr
N (r ∈ ZN ) provide the vanishing self-overlaps,

〈〈B|e−πsH(c) |B〉〉 = 0. (3.40)

As in the toroidal case in section 2, the couplings of |B〉〉 and the closed string states

are multiplied by the overall factor in |B〉〉. The D-brane tension and the RR charge

are hence
√
2 times those in the unorbifolded theory. The open string excitations in the

unorbifolded theory remain in the self-overlap of |B〉〉0, which are tachyon-free.

(2) σM = σ
(3)
L

⊗ σ̂
(3)
R

: in the second case, (3.36) should be replaced with

σM |∗; θr〉〉A(B) ≡ σ
(3)
L ⊗ σ̂

(3)
R |∗; θr〉〉A(B) = σ̂

(3)
R σ

(3)
R |∗; θr〉〉A(B) = e

iπ
2
FR |∗; θr〉〉A(B). (3.41)

Thus, the net effect of the twist is just a phase factor for the RR-component of boundary

state. Incorporating also the R3,1×T 2-sector, the RR-component of the overlap again drops

off due to the fermionic zero-modes, and we obtain the following amplitude instead of (3.39),

0〈〈B|σe−πsH(c) |B〉〉0 =
∑

i

αi
1

η4

[
θ3
η

θ4
η
ch

(NS)
∗ (r

(NS)
i ; is)− θ4

η

θ3
η
ch

(ÑS)
∗ (r

(NS)
i ; is)

]
. (3.42)

At least for generic Gepner models, the R.H.S of (3.42) does not vanish for any value of

the moduli parameter θr. In fact, R.H.S of (3.42) does not depend on θr, and

ch
(NS)
∗ (r

(NS)
i ; τ) 6= ch

(ÑS)
∗ (r

(NS)
i ; τ),

for a generic rep. ri. Rephrasing more physically, the D-brane tension has been modified

by the σ-insertion, while the RR-charge remains the same as in case (1). This causes

the mismatch of amplitudes for the graviton and RR-particle exchanges. In this way, we

conclude that all of the D-branes in the second case have non-vanishing self-overlaps, as

one expects from the general features of non-BPS D-branes.

8We note that the coefficients α′
i are not necessarily equal to those appearing in (3.35), since they would

depend on the phases arising from the σM-actions on the N = 4 primary states.
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(3) σM = σ
(1)
L

⊗ σ̂
(1)
R

: the third case is the most subtle one. When translating the σ
(1)
L -

insertion into that of the right-mover similarly to (3.36), (3.41), we have to take account of

the R(θ) (R̂(θ)) rotation appearing in the gluing conditions (3.29) ((3.28)). For instance,

for the B-type gluing condition, we obtain

σM |∗; θr〉〉B ≡ σ
(1)
L ⊗ σ̂

(1)
R |∗; θr〉〉B = σ̂

(1)
R σ

(1),[θr ]
R |∗; θr〉〉B, (3.43)

instead of (3.36), (3.41), where σ
(1),[θr ]
R denotes the automorphism acting on the N = 4

SCA rotated by R(θr) in the same way as σ
(1)
R .9 Obviously the relation (3.43) yields the

self-overlap that depends on the parameter θr, as opposed to the first and second cases. The

resultant amplitude does not vanish generically. However, for the special value θr = ±π
2 ,

we find

σ̂
(1)
R σ

(1),[±π
2
]

R = σ̂
(1)
R σ

(2)
R = (−1)FRσ

(3)
R , (3.44)

yielding the cancellation as given in (3.39). The A-type gluing condition is likewise treated.

In this way, we conclude that the D-branes in the third case have the vanishing self-

overlaps only for the gluing conditions with θr ≡ 2πr
N = ±π

2 , which is possible when

N ∈ 4Z>0.

Absence or presence of tachyonic instabilities. Here we would like to further discuss

whether the non-BPS branes considered above could include the tachyonic instabilities.

Since it is obvious that no closed string tachyons appear in the relevant boundary states,

we should examine the open string excitations in the orbifolded sector. Indeed, it is easy

to estimate the lightest excitation in the open string channel. By detailed case studies, it

would be possible to write down the formulas of the general spectra, which are however

beyond the scope of this paper.

Let us first note common features in the orbifolded sector for the above three cases; (i)

the RR contribution to the self-overlap vanishes due to the fermionic zero-modes, implying

the lack of GSO-projection for the open string Hilbert space, (ii) the twist by (−1R)
⊗2

along the T 2[D2]-direction adds the conformal weight 1
4 to the open string vacua.

Now, the estimations for the above three cases are summarized as follows;

Case (1): in this case we have the bose-fermi cancellation in the open string spectrum as

noted above. Thus, it is enough to consider the NS-sector.

Recall that σM acts on the N = 4 primary states as the product of the N = 2

involutions for each minimal sector Mki , which gives rise to the energy shifts bounded

from below by ĉi
8 ≡ ki

8(ki+2) in the open string spectrum. (See the formula of conformal

weight (B.6).) Eventually we find that the minimum value of conformal weight for

the open string excitations should satisfy the inequality;

h(min) ≥ 1

4
+

r∑

i=1

ĉi
8

=
1

2
, (3.45)

9Since the R(θr)-rotation is an outer-automorphism, it seems difficult to write σ
(1),[θr ]
R down explicitly.

– 20 –



J
H
E
P
0
8
(
2
0
1
7
)
0
8
2

and the inequality can be saturated only when all the ki’s are even. Therefore, the

lightest open string excitation could be massless when all ki’s are even, and always

massive if at least some ki’s are odd. In this way, we conclude that no tachyonic

instability emerges in the open string spectrum.

Case (2): σM again acts on the N = 4 primary states in the same way, whereas it

effectively makes theN = 4 SCA invariant, after taking account of the identity (3.41).

Thus, the twisted N = 4 character χ[0,1](∗; is) ∝ θ3θ4
η3

(is) for the case (1) has to be

replaced with the untwisted one ∝ θ23
η3
(is) for the NS-sector. Making the modular

transformation, the net effect just amounts to the shift by −1
8 to the R.H.S of (3.45).

We thus obtain the inequality

h(min) ≥ 1

4
+

{
r∑

i=1

ĉi
8
− 1

8

}
=

3

8
, (3.46)

and open string tachyons would appear. This result is expected since the open string

spectrum is non-supersymmetric in this case.

Case (3): again, σM acts on the N = 4 primary states as the above two cases. On the

other hand, by utilizing (3.43), we find that the net effect on the (right-moving)

N = 4 SCA by the σM-insertion amounts to the SO(2)-rotation with the angle

parameter 2θr on the J1
R, J

2
R (and G1

R, G
2
R) plane, while leaving the other generators

intact. Then, the twisted N = 4 character ∝ θ3θ4
η3

(is) for the case (1) is replaced with

∝ θ3(is,0)θ3(is,2θr)
η3

, which induces the additional energy shift of the amount: −1
8 +

1
8π2 (2θr)

2 to the R.H.S of (3.45). The relevant inequality now becomes

h(min) ≥ 1

4
+

{
r∑

i=1

ĉi
8
− 1

8
+

1

8π2
(2θr)

2

}
=

3

8
+

θ2r
2π2

. (3.47)

This implies that open string tachyons would generically emerge except for the special

angle θr = π
2 for N ∈ 4Z>0, which realizes the bose-fermi cancellation in the open

string spectrum as mentioned above.

3.4 Points of toroidal orbifolds

Our discussion so far is based mostly only on general properties of the N = 4 SCFT for M.

Thus, we would expect that the spectrum of the non-BPS branes with the vanishing over-

laps is unchanged over generic points of the moduli space of K3, as long as the asymmetric

orbifolding by σ ≡ (−1R)
⊗2 ⊗ σM is well-defined. The points in our argument were:

• The global symmetry SU(2)diag preserving G0 is only identified with an outer -

automorphisms of the N = 4 SCA.

• We need to pick up a particular U(1)-subalgebra of the N = 4 SCA to define the

Ramond sector by the half-spectral flows, which has been generated by J3 in the

above arguments.
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Then, only the restricted SO(2)(⊂ SU(2)diag) twisting is allowed in the gluing condi-

tions (3.28), (3.29), so as to preserve the Ramond sector Hilbert space.

On the other hand, there are special points with the ‘symmetry enhancement’ in the

moduli space, at which more general gluing conditions could be solved. For instance, it

has been known [29] that the Gepner model (2)4 (Kummer surface) is equivalent with

the Z2-orbifold of T 4[D4, Bij ≡ 0], which is defined as the 4-dim. torus associated to

the root lattice of D4 with the vanishing Kalb-Ramond field.10 We can reinterpret this

system in terms of free bosons and fermions, and thus, the SU(2)diag is explicitly realized

by these free fields. In this special case all the choices of orbifold twisting σM = σ
(α)
L ⊗ σ̂

(β)
R

(α, β = 1, 2, 3) lead to equivalent superstring vacua, as in the toroidal models studied

in section 2. Especially we find the equivalent spectra of the non-BPS D-branes with

the vanishing self-overlaps. Indeed, with the help of free field interpretation, one can

straightforwardly solve the following equations for the boundary states,
[
Ln − L̃−n

]
|θ, ϕ〉〉 = 0,

[
G0

r − iG̃0
−r

]
|θ, ϕ〉〉 = 0, (3.48)

[
Ga

r − iR(θ, ϕ)abG̃
b
−r

]
|θ, ϕ〉〉 = 0,

[
Ja
n +R(θ, ϕ)abJ̃

b
−n

]
|θ, ϕ〉〉 = 0, (a, b = 1, 2, 3),

where R(θ, ϕ) denotes an arbitrary SO(3)-rotations.

There also exist the Z3, Z4, Z6-orbifold points within the Gepner models for K3 as

discussed in [29]. However, such an enhancement of symmetry does not happen for these

points, and SU(2)diag is still identified as outer-automorphisms.

4 Discussion

We have studied the type II string vacua with chiral space-time SUSY constructed as

asymmetric orbifolds, focusing on the D-branes on these backgrounds. The simple but

crucial idea in this paper is that all the D-branes are non-BPS in any chiral SUSY vacua.

As clarified in sections 2 and 3, one can straightforwardly construct the chiral SUSY vacua

based on asymmetric orbifolds which accommodate rather generally the non-BPS D-branes

with vanishing cylinder amplitudes. This would be hardly realized in the geometrical

compactifications of superstring theory.

We have especially investigated the asymmetric orbifolds of T 2×M, as well as simpler

toroidal models, where M = K3 is described by a general N = 4 SCFT with c = 6 defined

by the Gepner construction. We have demonstrated in subsection 3.3 that the spectra

of such non-BPS D-branes with the bose-fermi cancellation depend notably on the choice

of orbifolding, even when the closed string spectra remain unchanged. This feature is in

contrast to those of the toroidal asymmetric orbifolds presented in section 2.

In this respect we note that the most of the analyses on the boundary states given in

subsection 3.3 are based only on general properties of theN = 4 SCFT forM, as mentioned

in the previous section. Thus, the spectrum of the non-BPS D-branes with vanishing

cylinder amplitudes would be unchanged over generic points of the moduli space of K3, as

10To avoid a possible confusion, we here emphasize that T 4[D4, Bij ≡ 0] differs from the symmetry

enhancement point of ŜO(8)1, which is denoted as ‘T 4[D4]’, say, in (2.1) in the present paper (and also [22]).

– 22 –



J
H
E
P
0
8
(
2
0
1
7
)
0
8
2

long as the asymmetric twist is well-defined. The point in our discussion is summarized in

subsection 3.4. The exception would be the orbifold point with symmetry enhancement.

Based on the results in this paper, one may now discuss a possible application to the

problem of cosmological constant. As mentioned in the introduction, the cosmological con-

stant induced solely by the non-BPS D-branes would be exponentially suppressed for small

string coupling. Furthermore, in a given non-BPS D-brane background, the contributions

to the closed-string vacuum amplitude would come only from the diagrams with the exter-

nal legs sourced by that non-BPS D-brane. The analysis of the loops thus would be much

simpler than the case of the bulk SUSY-breaking [1, 3, 9, 20], to control the almost van-

ishing cosmological constant. It would also be challenging to substantiate the scenario [4],

which is based on the analysis on the heterotic dual side and mentioned in the introduc-

tion, that the non-BPS D-branes condensate to produce the non-perturbative mismatch of

the spectrum. This would also be an interesting problem involving a non-supersymmetric

duality. We hope to return to these issues elsewhere.
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A Summary of conventions

Theta functions.

θ1(τ,z) := i

∞∑

n=−∞

(−1)nq(n−1/2)2/2yn−1/2≡2sin(πz)q1/8
∞∏

m=1

(1−qm)(1−yqm)(1−y−1qm), (A.1)

θ2(τ,z) :=

∞∑

n=−∞

q(n−1/2)2/2yn−1/2≡2cos(πz)q1/8
∞∏

m=1

(1−qm)(1+yqm)(1+y−1qm), (A.2)

θ3(τ,z) :=
∞∑

n=−∞

qn
2/2yn≡

∞∏

m=1

(1−qm)(1+yqm−1/2)(1+y−1qm−1/2), (A.3)

θ4(τ,z) :=

∞∑

n=−∞

(−1)nqn
2/2yn≡

∞∏

m=1

(1−qm)(1−yqm−1/2)(1−y−1qm−1/2). (A.4)

Θm,k(τ,z) :=

∞∑

n=−∞

qk(n+
m

2k )2yk(n+
m

2k ), (A.5)

η(τ) :=q1/24
∞∏

n=1

(1−qn). (A.6)

Here, we have set q := e2πiτ , y := e2πiz (∀τ ∈ H+, ∀z ∈ C), and used abbreviations,

θi(τ) ≡ θi(τ, 0) (θ1(τ) ≡ 0), Θm,k(τ) ≡ Θm,k(τ, 0).

Bosonic building blocks. Here we summarize the notation of the building blocks

used in the main text according to [22]. Associated to the basic representation of (̂Dr)1
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(r ∈ 2Z>0), we set

χDr

(a,b)(τ) :=





1
2η(τ)r

{
θ3(τ)

r + e
iπr
4

aθ4(τ)
r
}
, (a ∈ 2Z, b ∈ 2Z+ 1),

1
2η(τ)r

{
θ3(τ)

r + e
iπr
4

bθ2(τ)
r
}
, (a ∈ 2Z+ 1, b ∈ 2Z),

1
2η(τ)r

{
θ4(τ)

r + e
iπr
4

(a+b−1)θ2(τ)
r
}
, (a ∈ 2Z+ 1, b ∈ 2Z+ 1).

(A.7)

We also define the following functions,

χ
Dr ,[−]
(a,b) (τ) :=





1
2η(τ)r

{
θ3(τ)

r − e
iπr
4

aθ4(τ)
r
}
, (a ∈ 2Z, b ∈ 2Z+ 1),

1
2η(τ)r

{
θ3(τ)

r − e
iπr
4

bθ2(τ)
r
}
, (a ∈ 2Z+ 1, b ∈ 2Z),

1
2η(τ)r

{
θ4(τ)

r − e
iπr
4

(a+b−1)θ2(τ)
r
}
, (a ∈ 2Z+ 1, b ∈ 2Z+ 1),

(A.8)

which are associated to the vector representation of (̂Dr)1.

For (Â1)1, we introduce

χA1

(a,b)(τ) :=





1
2

{
χA1
+ (τ) + e

iπ
2
aχA1

− (τ)
}
, (a ∈ 2Z, b ∈ 2Z+ 1),

1√
2

{
χA1
0 (τ) + e

iπ
2
bχA1

1 (τ)
}
, (a ∈ 2Z+ 1, b ∈ 2Z),

1√
2

{
χA1
0 (τ) + e

iπ
2
(a+b−1)χA1

1 (τ)
}
, (a ∈ 2Z+ 1, b ∈ 2Z+ 1),

(A.9)

where we set

χA1
± (τ) := χA1

0 (τ)± χA1
1 (τ), (A.10)

and the (Â1)1-characters are given as

χA1
0 (τ) :=

θ3(2τ)

η(τ)
≡ Θ0,1(τ)

η(τ)
, (basic rep.),

χA1
1 (τ) :=

θ2(2τ)

η(τ)
≡ Θ1,1(τ)

η(τ)
, (spin 1/2 rep.). (A.11)

On the other hand, we define

χ̃A1

(a,b)(τ) :=





√
θ3(τ)θ4(τ)

η(τ)2
, (a ∈ 2Z, b ∈ 2Z+ 1),√

θ3(τ)θ2(τ)
η(τ)2

, (a ∈ 2Z+ 1, b ∈ 2Z),√
θ4(τ)θ2(τ)

η(τ)2
, (a ∈ 2Z+ 1, b ∈ 2Z+ 1),

(A.12)

which are interpretable as the (̂A1)1-characters twisted by the involution ρ
(α)
A1

≡ e−iπ ℓ
2 eiπJ

α
0 ,

(α = 1, 2, 3) for the spin ℓ/2-integrable representation of (̂A1)1.

Fermionic building blocks. To describe the supersymmetric chiral blocks for the free

fermions, we introduce the notation

J (τ) :=
1

2η(τ)4
{
θ3(τ)

4 − θ4(τ)
4 − θ2(τ)

4
}
(≡ 0) , (A.13)
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and associated to the reflection of four components (−1L)
⊗4,

f(a,b)(τ) := q
1
4
a2e

iπ
2
ab

(
θ1
(
τ, aτ+b

2

)

η(τ)

)2(
θ1(τ,0)

η(τ)

)2

(A.14)

≡





e
iπ
2
ab 1

2η(τ)4

{
θ3(τ)

2θ4(τ)
2−θ4(τ)

2θ3(τ)
2+0

}
, (a∈2Z, b∈2Z+1),

e
iπ
2
ab 1

2η(τ)4

{
θ3(τ)

2θ2(τ)
2+0−θ2(τ)

2θ3(τ)
2
}
, (a∈2Z+1, b∈2Z),

−e
iπ
2
ab 1

2η(τ)4

{
0+θ2(τ)

2θ4(τ)
2−θ4(τ)

2θ2(τ)
2
}
, (a∈2Z+1, b∈2Z+1),

J (τ) (a∈2Z, b∈2Z).

In the second line, each term corresponds to the NS, ÑS, R sectors with keeping this order.

These trivially vanish, as is consistent with the space-time SUSY. They satisfy the modular

covariance of the form,

f(a,b)(τ)|S ≡ f(a,b)

(
−1

τ

)
= f(b,−a)(τ),

f(a,b)(τ)|T ≡ f(a,b)(τ + 1) = −e−2πi 1
6 f(a,a+b)(τ). (A.15)

We next define the non-supersymmetric chiral block twisted by the two component

reflection (−1L)
⊗2,

g(a,b)(τ) :=(−1)abǫ
[−2]
(a,b)

[
χ̃A1

(a,b)(τ)
]2
χ
D2,[−]
(a,b) (τ) (A.16)

≡





e−
iπ
4
ab 1

2η(τ)4

{
θ3(τ)

3θ4(τ)−(−1)
a
2 θ4(τ)

3θ3(τ)+0
}
, (a∈2Z, b∈2Z+1)

e
iπ
4
ab 1

2η(τ)4

{
θ3(τ)

3θ2(τ)+0−(−1)
b
2 θ2(τ)

3θ3(τ)
}
, (a∈2Z+1, b∈2Z)

−e
iπ
4
ab 1

2η(τ)4

{
0+θ4(τ)

3θ2(τ)+i(−1)
a+b
2 θ2(τ)

3θ4(τ)
}
, (a∈2Z+1, b∈2Z+1)

J (τ) (a∈2Z, b∈2Z),

and also for the twisting by (−1)FL ,

h(a,b)(τ) := q
a2

2 eiπab

(
θ1

(
τ, aτ+b

2

)

η(τ)

)4

(A.17)

≡





1
2η(τ)4

{
θ3(τ)

4 − θ4(τ)
4 + θ2(τ)

4
}
≡

(
θ2(τ)
η(τ)

)4
, (a ∈ 2Z, b ∈ 2Z+ 1),

1
2η(τ)4

{
θ3(τ)

4 + θ4(τ)
4 − θ2(τ)

4
}
≡

(
θ4(τ)
η(τ)

)4
, (a ∈ 2Z+ 1, b ∈ 2Z),

− 1
2η(τ)4

{
θ3(τ)

4 + θ4(τ)
4 + θ2(τ)

4
}
≡ −

(
θ3(τ)
η(τ)

)4
, (a, b ∈ 2Z+ 1),

J (τ), (a, b ∈ 2Z).

Again they satisfy the modular covariance in the same sense as (A.15).

We also introduce slightly modified chiral blocks,

f(a,b)(τ) :=

{
f(a,b)(τ), (a ∈ 2Z+ 1 or b ∈ 2Z+ 1),

h(a
2
, b
2
), (a, b ∈ 2Z),

(A.18)

g(a,b)(τ) :=

{
g(a,b)(τ), (a ∈ 2Z+ 1 or b ∈ 2Z+ 1),

h(a
2
, b
2
), (a, b ∈ 2Z).

(A.19)
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They correspond to the cases of
[
(−1L)

⊗4
]2

= (−1)FL , and
[
(−1L)

⊗2
]2

= (−1)FL , respec-

tively, and behave modular covariantly as above.

Characters for the N = 4 SCA with c = 6. The character formulas of the unitary

irrep.’s of the N = 4 SCA with c = 6 (level 1) are given in [30, 31], and we exhibit them

here. We focus on the NS-sector:

Massive representation C
(NS)
h

.

chN=4,(NS)(h; τ, z) = qh−
1
8
θ3(τ, z)

2

η(τ)3
(for C(NS)

h ). (A.20)

Massless representations D
(NS)
ℓ

.

ch
N=4,(NS)
0

(
ℓ=

1

2
;τ,z

)
=q−1/8

∑

n∈Z

1

1+yqn−1/2
q

n2

2 yn
θ3(τ,z)

η(τ)3
(for D(NS)

1/2 ),

(A.21)

ch
N=4,(NS)
0 (ℓ=0;τ,z)=q−1/8

∑

n∈Z

(1−q)q
n2

2
+n− 1

2 yn+1

(1+yqn+1/2)(1+yqn−1/2)

θ3(τ,z)

η(τ)3
(for D(NS)

0 ).

(A.22)

The R-sector characters are obtained by the 1/2-spectral flow. Namely,

chN=4,(R)(h; τ, z) = q
1
4 y chN=4,(NS)

(
h− 1

4
; τ, z +

τ

2

)
, (for C(R)

h ) ,

ch
N=4,(R)
0 (ℓ; τ, z) = q

1
4 y ch

N=4,(NS)
0

(
1

2
− ℓ; τ, z +

τ

2

)
, (for D(R)

ℓ ) . (A.23)

B Twisted characters of N = 2 and N = 4 SCFTs

In this appendix we summarize the definitions of the twisted characters of N = 2 and

N = 4 superconformal algebras, according to [24, 25].

N = 2 twisted characters for the minimal model Mk. We consider the characters

of the N = 2 SCA, twisted by the Z2-autormorphism

σN=2
L : T −→ T, J −→ −J, G± −→ G∓, (B.1)

and express them as ch
(α)
[S,T ], where α are the spin structures, and S, T ∈ Z2 signify the

spatial and temporal boundary conditions associated with the σN=2-twist (S, T = 1 means

twisted, and S, T = 0 means untwisted). We then have the following identities,

ch
(NS)
[0,1] (τ) = ch

(ÑS)
[0,1] (τ), ch

(NS)
[1,0] (τ) = ch

(R)
[1,0](τ), ch

(ÑS)
[1,1] (τ) = ch

(R)
[1,1](τ) , (B.2)

ch
(R)
[0,1](τ) = ch

(R̃)
[0,1](τ), ch

(ÑS)
[1,0] (τ) = ch

(R̃)
[1,0](τ), ch

(NS)
[1,1] (τ) = ch

(R̃)
[1,1](τ), (B.3)
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and denote the twisted characters in the first line (B.2) as ‘χ[0,1](τ)’, ‘χ[1,0](τ)’ and ‘χ[1,1](τ)’

for brevity. Especially, for the minimal models Mk, they are presented in [24, 25] (based

on [32–34, 41–43]) as

χk
ℓ [0,1](τ) =

{
2

θ2(τ)

(
Θ2(ℓ+1),4(k+2)(τ) + (−1)kΘ2(ℓ+1)+4(k+2),4(k+2)(τ)

)
, (ℓ : even),

0, (ℓ : odd).

χk
ℓ [1,0](τ) =

1

θ4(τ)

(
Θℓ+1− k+2

2
,k+2(τ)−Θ−(ℓ+1)− k+2

2
,k+2(τ)

)

=
1

θ4(τ)

(
Θ2(ℓ+1)−(k+2),4(k+2)(τ) + Θ2(ℓ+1)+3(k+2),4(k+2)(τ)

−Θ−2(ℓ+1)−(k+2),4(k+2)(τ)−Θ−2(ℓ+1)+3(k+2),4(k+2)(τ)
)
,

χk
ℓ [1,1](τ) =

1

θ3(τ)

(
Θ2(ℓ+1)−(k+2),4(k+2)(τ) + (−1)kΘ2(ℓ+1)+3(k+2),4(k+2)(τ)

+(−1)ℓΘ−2(ℓ+1)−(k+2),4(k+2)(τ) + (−1)k+ℓΘ−2(ℓ+1)+3(k+2),4(k+2)(τ)
)
. (B.4)

The conformal weights of the ground states corresponding to the first characters are

h = hℓ ≡
ℓ(ℓ+ 2)

4(k + 2)
, (B.5)

while those for the second and third ones are given by

h = htℓ ≡
k − 2 + (k − 2ℓ)2

16(k + 2)
+

1

16
. (B.6)

Note that only the states with the vanishing U(1)-charges can contributes to the relevant

characters. Note also that χk
k−ℓ [1,0] = χk

ℓ [1,0], χ
k
k−ℓ [1,1] = χk

ℓ [1,1]. Due to these relations the

corresponding fields are identified, leaving only ℓ = 0, 1, . . . ,
[
k
2

]
as independent primary

fields.

The modular transformations of the twisted N = 2 characters are

χk
ℓ [0,1](τ + 1) = e

2πi
(
hℓ− k

8(k+2)

)

χk
ℓ [0,1](τ), χk

ℓ [0,1]

(
−1

τ

)
=

k∑

ℓ′=0

(−1)ℓ/2Sℓ,ℓ′ χ
k
ℓ′ [1,0](τ),

χk
ℓ [1,0](τ + 1) = e

2πi
(
ht
ℓ− k

8(k+2)

)

χk
ℓ [1,1](τ), χk

ℓ [1,0]

(
−1

τ

)
=

k∑

ℓ′=0

Sℓ,ℓ′(−1)ℓ
′/2 χk

ℓ′ [0,1](τ),

χℓ [1,1](τ + 1) = e
2πi

(
ht
ℓ− k

8(k+2)

)

χk
ℓ [1,0](τ), χk

ℓ [1,1]

(
−1

τ

)
=

k∑

ℓ′=0

Ŝℓ,ℓ′ χ
k
ℓ′ [1,1](τ). (B.7)

Here Sℓ,ℓ′ ≡
√

2
k+2 sin

(
π(ℓ+1)(ℓ′+1)

k+2

)
is the modular S-matrix of the SU(2) WZW model at

level k, and Ŝℓ,ℓ′ ≡ e
πi
2 (ℓ+ℓ′− k

2 ) Sℓ,ℓ′ .

Let us briefly comment on the remaining minimal model characters appearing in the

second line (B.3). For example, for the [0, 1]-type boundary condition in the R-sector,

almost all the characters vanish, except for the special representation generated by the

non-degenerate Ramond ground state with h = ĉ
8 , Q = 0, that is, ℓ = k

2 , m = ±(k2 + 1)

with k ∈ 2Z>0. The corresponding character equal ±1, where the sign ambiguity is just

due to the action of σN=2
L on primary states.
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N = 4 twisted characters. We next summarize the twisted N = 4 characters defined

by the σ
(1)
L and σ

(3)
L -twists in the unitary irrep.’s of the N = 4 SCA with c = 6. We first

focus on the σ
(3)
L -twist for the boundary conditions given in (B.2). The key formula is the

spectral flow decomposition of the N = 4 characters by the N = 2 ones [30, 31], written

schematically as

chN=4,(NS)(∗; τ, z) =
∑

n∈Z
qn

2
y2nchN=2,(NS)(∗; τ, z + nτ), (B.8)

for the NS-sector, where n ∈ Z is identified with the n-th spectral flow sector. It is again

the simplest to evaluate the case of [S, T ] = [0, 1] (i.e. with the insertion of σ
(3)
L into the

trace). This just yields an extra phase factor (−1)n in each n-th spectral flow sector in the

decomposition (B.8), and we obtain the desired character formulas (by setting z = 0):

Massive representation C
(NS)
h

.

TrC(NS)
h

[σ
(3)
L qL0− 1

4 ] = qh−
1
8

∑

n∈Z
(−1)nq

n2

2
θ3(τ)

η(τ)3
= qh−

1
8
θ3(τ)θ4(τ)

η(τ)3

≡ 2qh−
1
8

θ2(τ)
=: χ[0,1](h; τ). (B.9)

Massless representations D
(NS)
ℓ

.

TrD(NS)
1/2

[σ
(3)
L qL0− 1

4 ] = q−1/8
∑

n∈Z
(−1)n+1 1

1 + qn−1/2

θ3(τ)

η(τ)3
≡ 0, (B.10)

TrD(NS)
0

[σ
(3)
L qL0− 1

4 ] = q−1/8
∑

n∈Z
(−1)n

(1− q)q
n2

2
+n− 1

2

(1 + qn+1/2)(1 + qn−1/2)

θ3(τ)

η(τ)3

= q−1/8 θ3(τ)θ4(τ)

η(τ)3
≡ χ[0,1](h = 0; τ, z). (B.11)

The second line of (B.11) follows from the identity

(1− q)qn−
1
2

(1 + qn+1/2)(1 + qn−1/2)
= 1− 1

1 + qn−
1
2

− qn+
1
2

1 + qn+
1
2

. (B.12)

We next consider the σ
(1)
L -twist. Since the σ

(1)
L -twist acts as J(≡ 2J3) → −J on the

U(1)R-current of the underlying N = 2 SCA, the spectral flow sectors of n 6= 0 cannot

contribute when σ
(1)
L is inserted into the trace. Thus, the wanted characters should be

equal to the ones for the N = 2 non-degenerate representations, that is,

TrC(NS)
h

[σ
(1)
L qL0− 1

4 ] =
qh−1/8

η(τ)
·
√

2η(τ)

θ2(τ)
·
√

θ3(τ)θ4(τ)

η(τ)2
≡ χ[0,1](h; τ), (B.13)

TrD(NS)
1/2

[σ
(1)
L qL0− 1

4 ] = 0, (B.14)

TrD(NS)
0

[σ
(1)
L qL0− 1

4 ] =
q−1/8

η(τ)
·
√

2η(τ)

θ2(τ)
·
√

θ3(τ)θ4(τ)

η(τ)2
≡ χ[0,1](h = 0; τ). (B.15)
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They indeed coincide with those of σ
(3)
L -twisting (B.9), (B.10) and (B.11).11 The σ

(2)
L -

twisting leads to the same formulas, too.

The character formulas for other boundary conditions are just determined by the mod-

ular transformations. We denote the spin structures as well as the boundary conditions

of σ
(α)
L such as {NS, [S, T ]}. Starting from the character formula of {NS, [0, 1]} given

above, we find that there are three types of non-trivial characters χ[0,1](h; τ), χ[1,0](h; τ),

χ[1,1](h; τ);

{NS, [0, 1]}, {ÑS, [0, 1]} : χ[0,1](h; τ) ≡
2q

p2

2

θ2(τ)
,

(
h =

p2

2
+

1

8

)
,

{NS, [1, 0]}, {R, [1, 0]} : χ[1,0](h; τ) ≡
2q

p2

2

θ4(τ)
,

(
h =

p2

2
+

1

4

)
,

{ÑS, [1, 1]}, {R, [1, 1]} : χ[1,1](h; τ) ≡
2q

p2

2

θ3(τ)
,

(
h =

p2

2
+

1

4

)
. (B.16)

There still remain the boundary conditions presented in (B.3). We briefly describe

them although only the ones listed in (B.16) are necessary in the main text,

TrC(R)
h

[
σ
(α)
L qL0− 1

4

]
= TrD(R)

1/2

[
σ
(α)
L qL0− 1

4

]
= 0 , TrD(R)

0

[
σ
(α)
L qL0− 1

4

]
= ±1, (B.17)

(∀α = 1, 2, 3). The sign ambiguity in the formula for D(R)
0 is due to the same reason

as above. We also obtain the same results for the {R̃, (0, 1)}-characters. It is trivial

to modular transform these results to obtain the remaining ones {ÑS, [1, 0]}, {NS, [1, 1]}
({R̃, [1, 0]}, {R̃, [1, 1]}).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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