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Abstract 

The Li-air battery was considered one of power sources instead of Li-ion battery for 

EV. Because of its extremely high theoretical energy density. However, it still showed 

drawbacks such as low cycle performance and high overpetential gap during cycle 

performance. Therefore, precious metal catalysts have been used to solve those 

problems. However its high cost also was considered serious problem. Therefore, many 

kind of catalysts were investigated such as carbon material and transition material to 

use for alternative material to solve cost problem. Nevertheless, its low electro catalytic 

activity and low duration were considered that new catalyst should be researched to 

enhance electrochemical performance for Li-air battery. 

 The electrochemical performance of RGO-Co(mqph) electro catalyst for Li-air 

batteries with hybrid electrolyte was investigated in Chapter 2. The RGO-Co(mqph) 

showed high onset potential (-0.06 V vs. Ag/AgCl) under oxygen condition in the 

rotating disk electrode system for oxygen reduction reaction, which was higher than 

that of RGO (-0.13 V vs. Ag/AgCl). Furthermore, the ORR mechanism of RGO-

Co(mqph) showed 3.52 electron pathway. On the other hand, the RGO only exhibited 

the electron transfer number of 2.2 for ORR. Moreover, the electrochemical 

performance of Li-air batteries with hybrid electrolyte showed that the RGO-Co(mqph) 

provided good discharge performance and cycle performance. It was thus considered 

that the Co(mqph) strongly affected ORR activity for cathode electrode. This was 

ascribed to synergic effect due to combination between RGO and Co(mqph). 

The use of advanced carbon materials as an air electrode in hybrid Li-air batteries was 
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thought to improve electrochemical performances such as cycle stability and a low 

voltage gap between discharge and charge. In chapter 3, a carbon nanofiber grown on 

carbon black (CNF-CB) was prepared by chemical vapor deposition (CVD) method at 

different temperatures (640-840 °C), and the electrochemical performance of hybrid Li-

air batteries based on the CNF-CB electrodes was investigated. The Li-air cell based on 

CNF-CB 740, with a cut-off voltage in the range 2.5-4.2 V at 0.5 mA cm-2, showed 

good cycle stability, and demonstrated about 75 cycles (about 300 h) without an obvious 

increase in charge voltage. 
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Chapter 1. General introduction 

1.1 Lithium oxygen battery 

1.1.1 Brief introduction of lithium-oxygen (Li-O2) battery 

In 18th century, the revolution of transportation and industrial facilitated mass 

production and mass transportation, which improved humanity more convenient. 

Nevertheless, the industrialization was developed continuously due to the humanity 

want higher technology. However, the more industrialization was improved, nature was 

destroyed. Especially, air pollution was became primary reason for several negative 

effect such as smog and greenhouse effect. Therefore, many nations discussed on 

environment protection forum such as Kyoto protocol at 2005 and Paris agreement at 

2015, respectively. Advanced countries were agreed to reduce greenhouse gases such 

as carbon dioxide gas (CO2), methane gas (CH4), nitrous oxide (N2O), perfluorinated 

carbon (PFC), hydrofluoro carbon (HFC) and sulfur hexafluoride (SF6) in Kyoto 

protocol. Nevertheless, greenhouse gases were increased gradually at every years. 

Therefore, new convention from Paris was announced instead of Kyoto protocol. This 

agreement regulated that whole countries have to reduce greenhouse gases including 

developing countries from 2021. 

 Therefore, the green energies such as solar generation and wind generation were 

investigated to reduce greenhouse gases during electric generations. Although these 

power sources were used instead of thermal power plant, it showed poor efficiency. 

Thus, the amount of produced electric power was not enough to cover that. Moreover, 

it has disadvantage for large space and first cost to install infrastructure. To solve these 

problems, many methods were studied for example improving efficiency and 

cooperation with architecture. 

Furthermore, the improvement of transportation and increase of vehicles were largest 

obstacle to reduced CO2 gas. Accordance with global research insight, the amount of 

vehicles increasing every year, it will be over 1 million at 2018. Thus, exhaust gas also 

will increase which will accelerate greenhouse effect as well as interruption to reduce 

CO2. Those problems became a main reason to investigate new transportation method 
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such as electric vehicles (EV) and hybrid electric vehicles (HEV) to use instead of 

gasoline engine. 

 At this time, Li-ion batteries (LIB) were usually used power sources of EV and HEV. 

Because, LIB showed high stability for long cycle performance. However, it also has 

serious problems for low power density and low energy density which make critical 

drawbacks. First, the limitation for application was occurred. The low power density of 

LIB was not enough to operate huge application such as bus and industrial vehicles. 

Second, the limitation for possible driving distance by one charge was occurred from 

low energy density. The EV, which used LIB for power sources, can drive only 250 km. 

It was not satisfied for needs of customers. In addition, many kind of international 

energy research institute such as NEDO established aim to increase possible driving 

distance of EV to 500 km until 2020 as one time charge. 

Therefore, many kind of power sources such as fuel-cell, super capacitor and metal-air 

batteries were investigated to use power sources of EV and HEV. Among these power 

sources, the fuel-cell has largest energy density than that of other power sources which 

was benefit for power source of EV and house. However, its high cost interrupted to be 

commercial products. In contrast, capacitor showed highest power density among other 

power sources which was suitable to use for huge application such as bus and industrial 

vehicles. However, it also showed drawbacks for low energy density. Theses serious 

problems were considered highest barrier to use power source of EV.  

On the other hands, the metal-oxygen batteries were regarded suitable power sources 

of EV. Because, metal-oxygen battery has more theoretical energy density as well as 

higher power density than that of LIB. The metal-oxygen batteries were used active 

metal such as Al, Zn, Mn and Li for anode and various porous carbon materials were 

used for cathode. Especially, Lithium-oxygen (Li-O2) battery showed highest 

theoretical energy density among all of metal-oxygen batteries. For the past few 

decades, interest in Li-O2 batteries increased due to its extremely high energy density 

and gravimetric energy, which is three to four times that of Li-ion batteries [1-5]. In 

contrast, it was considered structural problems that Li-O2 battery have to use pure 

oxygen gas bombe. Therefore, Li-air battery was investigated to solve structural 

problems, due to it was supplied oxygen gas the air instead of gas bombe. Especially, 

non-aqueous electrolyte Li-air battery was widely investigated because of it has an 



- 3 - 

 

advantage for the energy density (3504 Wh kg-1). However, the practical energy density 

of non-aqueous electrolyte Li-air batteries is limited by the deposition of the insoluble 

discharge product such as Li2O2 and LiO2, which caused the cycle performance fading 

due to clog air path way on cathode. To overcome this problem, a hybrid Li-air batteries 

system has been developed, composed of a non-aqueous electrolyte in the anode side 

and an aqueous electrolyte in the cathode side, separated by Li conducted solid state 

separate [6-10]. Our group also has reported that the hybrid Li-air batteries since 2009 

[11-14]. In the basic electrolyte, the overall reaction of Li-air batteries is 2Li + H2O + 

1/2O2 ↔ 2LiOH, and theoretical cell potential is 3.43 V [10-14]. However, the hybrid 

Li-air batteries were still in a developing to overcome the large discharge-charge 

overpotential gap and cycle stability. Therefore, the development of an electrocatalyst 

with highly active and stable for the ORR and oxygen evolution reaction (OER) was 

one of the most attractive challenges in hybrid Li-air batteries. 

 

 

Figure 1-1. The gravimetric energy densities for various types of rechargeable 

batteries compared to gasoline [15]. 
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1.1.2 Composites and working principle of Li-O2 battery  

Figure 1-2 showed schematics Li-O2 battery. The Li-O2 battery consists of anode, 

electrolyte and cathode. The lithium metal was used for anode. The cathode used porous 

material such as activation carbon materials. 

Figure 1-2. Schematics of Li-O2 battery 

 

The discharge reaction; Li ion was reacted with oxygen on the cathode surface, which 

reaction was called ORR. And then, it make discharge product, which created discharge 

product was difference depend on kind of electrolyte. On the other hands, the discharge 

product was decomposed during charge procedure. The Li ion returned to anode, which 

reduced Li metal. This phenomenon was called OER procedure. 

 

1.2 Various Li-O2 batteries 

Li-O2 batteries were distinguished depend on using electrolyte, which were organic 

electrolyte, aqueous electrolyte, solid-state electrolyte and hybrid electrolyte. In this 

section, we introduced the four kind of Li-O2 battery with their advantage and challenge 

points. 

1.2.1 Organic (aprotic) electrolyte Li-O2 battery 
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Figure 1-3 showed schematics of organic electrolyte Li-O2 battery. This model was 

investigated first time by Abraham and Zhang et. al. which used porous carbon material 

and organic solution for cathode and electrolyte, respectively. It was showed larger 

theoretical energy density over 10 times than that of Li-ion battery. 

 

Figure 1-3. Schematics of organic (aprotic) electrolyte Li-O2 battery [16] 

 

1.2.2 Aqueous electrolyte Li-O2 battery 

Figure 1-4. Schematics of aqueous electrolyte Li-O2 battery [16] 
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Figure 4 was schematics of aqueous electrolyte Li-O2 battery. The aqueous electrolyte 

Li-O2 battery used alkaline and acidic solution such as KOH, LiOH and HCl for 

electrolyte. This model can be showed advantage for highest power density than that 

other Li-O2 battery models. In contrast, it has stability problems between Li metal with 

electrolyte. 

 

1.2.3 Solid-state electrolyte Li-O2 battery 

Figure 1-5. Schematics of solid-state electrolyte Li-O2 battery [16] 

 

Figure 1-5 showed schematics of solid-state electrolyte Li-O2 battery. The solid state 

Li-O2 battery was investigated to improve stability of anode, which used Li ion conduct 

ceramic membrane such as LiSICON. Even though solid-state electrolyte Li-O2 battery 

showed highest stability, its ionic mobility was slow. Moreover, its high resistance also 

was considered serious problems.  

 

1.2.4 Hybrid (mixed) electrolyte Li-O2 battery 

The hybrid (mixed) electrolyte Li-O2 battery used organic electrolyte and aqueous 

electrolyte for anode and cathode, respectively (Figure 1-6). Both electrolyte was 

isolated by Li conducted solid-state membrane such as LiSICON to prevent inter mixed. 
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It was investigated to overcome drawbacks from discharge product in organic 

electrolyte Li-O2 battery. The hybrid electrolyte Li-O2 battery make soluble discharge 

product, which can resolve performance fading problems by discharge product. 

 

Figure 1-6. Schematics of hybrid electrolyte Li-O2 battery [16] 

 

1.3 Issue of organic electrolyte Li-O2 battery 

The organic Li-O2 battery was most concentrated among Li-O2 batteries, because of 

its highest theoretical energy density. However, it also had challenge points for each 

part.  

 

1.3.1 Issue for anode and electrolyte parts 

 Figure 1-7 showed formation of Lithium dendrite during cycling performance in the 

organic (aprotic) Li-O2 battery. The growth of lithium dendrite grown on the lithium 

metal surface as anode gradually, which was damaged separator finally. As a result, the 

short problems was occurred inside of Li-O2 battery under organic electrolyte. 

Furthermore, the electrolyte parts also have problems such as decomposed. During 

cycle performance, the electrolyte was decomposed at high charge potential. According 
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to Kraytsberg et. al. report, the electrolyte, which using propylene carbonate, had 

decomposed reaction above 4.2 V vs. Li/Li+ [6]. Furthermore, the evaporation of 

electrolyte by attendant air also was considered problem. 

 

Figure 1-7. Schematics of Lithium dendrite formation 

 

1.3.2 Issue for cathode part 

The organic electrolyte Li-O2 battery have each reaction for ORR, it is, 

Li + O2 → Li2O2  ( E0 = 2.95 V ) 

these discharge product such as Li2O2 and LiO2 was insoluble and solid, which became 

a main reason of battery performance fading. The most serious problem as cathode part 

of organic electrolyte Li-O2 battery was high overpotential gap during cycle 

performance. In general, the charging overpotential was higher than that of discharging 

in organic electrolyte Li-air battery, if it used carbon supported material as cathode. The 

charging overpotential increased above 4 V. Accordance with previous report of Thotiyl 

et. al., the carbon decomposition began above 3.5 V. Moreover, it occurred side reaction 

which was Li2CO3 formation [17]. Therefore, many research groups were studied for 

catalyst material to decrease overpotential gap during cycling performance.  

 

1.3.3 Catalyst materials for cathode of organic electrolyte Li-O2 

battery 

 

 
 Anode (Li) 

Separator 

Cathode  

 

Cycle number Li dendrite 
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Many research groups investigated various cathode materials to reduce overpotential 

gap during cycle performance in organic electrolyte Li-O2 battery. 

Yang et. al. reported for electro catalytic activation of platinum nano particle 

composite with graphene (PtNP-GNS). In the report, the discharge-charge curves for 

PtNP-GNS and comparison with bare graphene (GNS). As a result, PtNP-GNS reduced 

overpotential gap. Nevertheless, it still high overpotential at charging [18]. 

Ma et. al. reported catalytic activation of MnCo2O4 to improve stability for discharge-

charge curve in organic electrolyte Li-O2 battery. In the reports, the total overpotential 

gap of MnCo2O4 with Super-P composite was reduced to compare with bare Super-P. 

Especially, the charge overpotential of MnCo2O4 with Super-P composite was 3.90 V, 

which was smaller than 4.2 V of bare Super-P [19]. 

Xin et. al. investigated metal-free carbon composite material, which consist of graphene 

with activated carbon (G/AC). Their catalytic activation was compared with pristine 

graphene and pristine ketjen-black. The G/AC showed similar discharge performance 

with graphene and ketjen-black. In contrast, the charge potential showed different 

depends on the type of carbon material. The potential of graphene was highest which 

plateau value was near 4.25 V. The charge potential of ketjen-black on plateau region 

was about 4 V. On the other hands, the G/AC showed 2 step plateau region for charge 

curve, which were near 3.5 V and 4 V. As a result, G/AC have an effect to reduce 

overpotential gap, however that material still showed high overpotential for charging 

[20]. Ma et. al. group investigated Sr0.95Ce0.05CoO3-δ to improve stability for discharge 

and charge process. As a result, the Sr0.95Ce0.05CoO3-δ improved ORR, thus it increased 

discharge capacity from 1400 mAh g-1 to 2300 mAh g-1 but also discharge potential 

under 2.5 V to 2.65 V. In addition, Sr0.95Ce0.05CoO3-δ also effect to reduce charge 

overpotential from 4.5 V to 4.25 V. Although the Sr0.95Ce0.05CoO3-δ improved stability 

during discharge-charge, its charging potential was still high over 4 V [21].  

Furthermore, metal oxide materials such as α -MnO2/Pd composite was also 

investigated to improve electrochemical properties by Thapa et. al. That materials 

showed improvement not only stable capacity but also round trip efficiency [22]. Yang 

et. al. also researched electrochemical catalytic of perovskite structure material 

(Sr0.95Ce0.05CoO3-δ) for organic electrolyte Li-air battery [23]. Moreover, metal nano 



- 10 - 

 

particles catalyst (TiN) and metal composite (Fe/N/C and Cu/Fe) were investigated by 

Li et. al., Shui et. al. and Ren et. al., respectively. The TiN nano particles have 

significant role of bi-functional activity for OER and ORR. On the other hands, Fe/N/C 

composite catalyst had an effect to prevent decomposition of organic electrolyte. 

Although the Cu/Fe composite catalyst improved ORR activity, it showed decrease of 

discharge capacity [24,25]. Even though almost catalyst showed effect to be improved 

electroctalytic activation, organic electrolyte Li-O2 battery showed still high 

overpotential gap for cyclic peroformance. In addition, the Li-O2 battery has a structural 

disadvantage, which was necessary of additional oxygen tank. Because of the Li-O2 

batteries needed pure oxygen gas. Therefore, Zhou et. al. investigated hybrid electrolyte 

Li-air battery. 

 

1.4 The hybrid electrolyte Li-air battery 

1.4.1 Hybrid electrolyte Li-air battery 

Figure 1-8. Schematics of hybrid electrolyte Li-air battery 

 

 The figure 1-8 showed schematics of hybrid electrolyte Li-air battery. The hybrid 

electrolyte Li-air battery used oxygen in the air, therefore the module was more 
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convenience than that of before. Moreover, the aqueous electrolyte of anode site 

supplied few advantages. First, the discharge potential was higher than organic Li- O2 

battery. The theoretical ORR mechanism of hybrid electrolyte Li-air battery under basic 

electrolyte was, 

Li + O2 + 4e- → LiOH (E0 = 3.42 V) 

it has higher discharge potential than that of organic Li-O2 battery. Thus, the power 

density of hybrid electrolyte Li-air battery was improved, which is more than organic 

electrolyte Li-O2 battery suitable for huge applications.  

Second, it can be improved battery performance. The discharge product of organic 

electrolyte occurred negative side effect for cycle performance.  

 

1.4.2 Issue of hybrid electrolyte Li-air battery 

 Due to the hybrid electrolyte Li-air battery produce soluble discharge product, it can 

be prevented drawbacks about performance fading by discharge product. Thus, the 

hybrid electrolyte Li-air battery has not only improvement of battery performance but 

also reduced overpotential gap in comparison with organic electrolyte Li-O2 battery. 

Nevertheless, the overpotential gap of hybrid electrolyte Li-air battery was still high 

due to low catalytic activity for carbon material. Therefore, many research group 

investigated various catalyst materials as cathode of hybrid electrolyte Li-air battery to 

improve stability of discharge-charge performance. 

 

1.4.3 Catalyst materials for hybrid electrolyte Li-air battery 

Table 1-1. Different catalyst material for hybrid electrolyte Li-air battery with their 

synthetic details and result 

The catalyst 

material 

Synthesis 

procedure 

Optimiz

ed 

amount 

Improvemen

t 

Analysis Refer

ence 
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CNT array 

grown on 

carbon fiber 

paper 

The metal alloy 

catalyst was 

coated on 

commercial 

carbon paper. 

Then, CNT was 

grown on the 

coated carbon 

paper by 

PECVD 

 The 

discharge 

capacity was 

increased. 

And it 

showed 

good cycle 

performance

. 

The high 

surface area 

and low 

internal 

resistance. 

9 

TiN(nano 

size) 

Commercial 85 wt% Improvemen

t electron 

transferred 

number to 4 

electron path 

way 

The high 

electrical 

conductivity 

of titanium 

nitride (TiN) 

and small 

particle size 

improve 

ORR 

14 

Pt-Au nano 

particles 

with carbon 

To reduce 

HAuCl4 and 

H2PtCl in 

oleylamine and 

then loaded on 

carbon (XC-72) 

40 wt% Discharge 

overpotnetia

l and charge 

overpotentia

l were 

decreased 

The surface 

Pt and Au 

atoms on 

PtAu/C were 

responsible 

for ORR and 

OER 

kinetics, 

respectively 

26 

Pt/IrO2-CNT K3IrCl6 loaded 

on CNT (by 

reflux 

10wt% 

IrO2 and 

5wt% Pt 

OER activity 

was 

improved 

The bi-

functional 

catalytic 

27 



- 13 - 

 

condition) then 

annealing (for 

IrO2). And then 

Pt loaded on 

IrO2/CNT (by 

polyol) 

(vs. Pt-C) 

and 

increased 

round trip 

efficiency 

from 72% to 

81%. 

activation of 

Pt-IrO2 

improved 

OER 

performance 

Graphene 

nano sheet 

(after heat 

treatment) 

Graphene was 

prepare by 

hummer’s 

method, which 

was reduced by 

hydrazine. And 

then, that had a 

heat treatment 

at 950 °C for 

30 min in Ar/H2 

gas. 

90 wt% It showed 

low 

overpotnetia

l and stable 

cycle 

performance

. 

The carbon 

crystallizatio

n was 

improved 

and the 

functional 

group of 

carbon 

surface was 

removed 

after heat 

treatment. 

28 

N doped 

graphene 

nano sheets 

The graphene 

oxide has heat 

treatment at 

850 °C in NH3 

for 2h 

90 wt% This 

material 

showed 

improvemen

t for ORR, 

moreover its 

internal 

resistance 

also very 

small 

The 

pyridine-

type N with 

a large 

proportion 

of edge site 

in the N-

doped GNS 

may play 

positive role 

for 

improvemen

29 
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t of ORR 

O- and N- 

doped 

carbon 

nanoweb 

The N-CNW 

was prepared 

by oxidative 

template 

assembly 

method. Then, 

N-CNW was 

heat treatment 

with KOH 

powder at 

600 °C 

1 mg 

cm-1 

ON-CNW 

showed 

ORR 

improvemen

t and similar 

cell 

efficiency 

with 

commercial 

Pt/C 

The CNW 

structure has 

better to 

improve 

electron and 

mass 

transport. 

And the 

synergistic 

effect of O 

and N 

groups made 

high ORR 

30 

NiCo2O4(wit

hout carbon) 

Ni(NO3)2 

6H2O, 

Co(NO3)2 6H2O 

and 

hexamethylene-

tetramine had 

hydro thermal 

method at 90 °

C. 

1.0 mg 

cm-1 

High OER 

activity and 

good 

electrochemi

cal stability 

for OER 

process. 

This 

material was 

free for 

binder and 

carbon 

material. 

Therefore, it 

avoids 

performance 

fading by 

carbon 

support 

degradation. 

And high 

electrochemi

cal and 

mechanical 

31 
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stability of 

NiCo2O4. 

Co3O4 

(micro 

sphere) with 

Cu (nano 

particle) 

The 

hydrothermal 

method for 

Co3O4 and the 

polyol method 

for Cu nano 

particle loaing 

on Co3O4 

 Co3O4-Cu 

showed 

stable bi-

functional 

catalytic 

activity, 

which 

similar with 

precious 

catalyst 

material. 

The 

synergetic 

effect Co3O4 

with Cu. 

32 

Co3O4 nano 

cristal with 

ON-CNW 

The N-CNW 

was prepared 

by oxidative 

template 

assembly 

method. Then, 

N-CNW was 

heat treatment 

with KOH 

powder at 

600 °C for ON-

CNW. 

Co3O4 /ON-

CNW was 

prepared by 

refluxed 

method. 

80 wt% The long 

cycle 

performance 

and high 

durability 

for long 

cycle. 

The 

synergetic 

effect for 

good 

structure of 

carbon 

nanoweb 

and strong 

catalytic 

activation of 

Co3O4 with 

O-,N- 

functional 

group. 

33 

CoMn2O4 The hummer’s 30 wt% The ORR The 34 
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grown on 

Graphene 

method for 

graphene and 

the 

hydrothermal 

method for 

CoMn2O4/graph

ene 

electron 

transferred 

number was 

improved 

and OER on 

set potential 

also 

improved. 

graphene 

showed little 

electrochemi

cal 

activation 

but it made 

synergetic 

effect with 

CMO. 

Co/N/rGO(

NH3) 

The graphene 

(rGO) was 

prepared by 

Marcano 

method. 

The rGO and 

Co(NO3)2 6H2O 

with PEI was 

dissolved in DI 

water and heat 

treatment at 

850 °C in NH3 

for 30 min. 

 The electron 

transferred 

number for 

ORR was 

improved 

(n=3.9) and 

the 

durability 

also showed 

higher than 

that of Pt. 

The 

morphology 

of rGo was 

facilitated 

the create 

active Co-Nx 

site and to 

improve the 

catalytic 

activity for 

ORR. 

35 

La1.7Sr0.3Ni

O4 

(perovskite) 

La(NO3)3 

6H2O, 

Sr(NO3)2 

4H2O and 

Ni(NO3)2 

6H2O dissolved 

in DI water and 

ethylene glycol. 

And citric acid 

20 wt% La1.7Sr0.3Ni

O4 showed 

bi-functional 

catalytic 

activation 

and the 

stability of 

cycle 

performance 

The strong 

catalytic 

activation 

for 

La1.7Sr0.3Ni

O4. 

36 
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solution was 

added to the 

solution and 

heat and drying. 

And another 

heat treatment 

at 900 °C for 

5h. 

also 

improved. 

FePc-CNT The CNT and 

FePc were 

dissolved in 

ethanol, which 

ratio was 2:1. 

Then, it has 

evaporation 

process and 

dried. 

90 wt% The 

discharge 

performance 

and cyclic 

performance 

stability 

were 

improved. 

The electro 

catalytic 

activation of 

FePc had 

synergetic 

effect with 

CNT. 

37 

GO/CNT The hummer’s 

method for GO. 

The evaporation 

to composite 

GO with CNT. 

90 wt% The catalytic 

activation 

improved for 

oxygen 

reduction. 

The oxygen 

contained 

functional 

group of GO 

with 

electrical 

conductivity 

of CNT 

made 

synergetic 

effect for 

ORR 

38 

 

1.5 Target and outline of this thesis 
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1.5.1 Motivation of this research 

The research and improvement of Li-air battery for longer cycle performance, higher 

stability and stronger durability was positively necessary to reduce for rate of increase 

environment pollution and to save human society and earth through to achieve 

commercial of electric vehicles (EV). The one of most important factor was 

improvement of cathode material, due to it could determine not only the cost but also 

ability of Li-air battery performance. Present, many kinds of catalyst were investigated 

to improve electrochemical activity such as ORR and OER for hybrid electrolyte Li-air 

battery. Precious and rare metal such as Pt, Au, La and Ir with their composite were 

used to improve battery performance during discharge-charge performance. 

Furthermore, transition metal such as Fe, Mn and Ni with their composite and their 

oxide material also have been investigated. Course, those materials showed excellent 

electro catalytic activation as well as to be developed electrochemical performance. 

Nevertheless, those materials also showed several serious drawbacks, 

 The precious metal catalyst such as Pt, Au, Ag and their composite; 

Even though precious metal catalyst species showed best catalytic activation to 

improve electro catalytic activation for oxygen reduction and oxygen evolution 

in aqueous electrolyte, its poor stability and extremely high cost were 

considered serious drawback to make commercial product. 

 The non-precious metal catalyst and their various composite; 

Instead of precious metal catalyst, the transition metal material such as Fe, Mn, 

Ce, Ni, Cu, their oxide and their composite were used for alternative catalyst 

material. Although that showed advantage for cost than that of precious catalyst, 

its catalytic activation was weaker than that of precious material. Therefore, it 

was necessary for more research to using commercial product. 

Moreover, the metallic catalyst species has a common drawback. The metallic catalyst 

materials were supported by porous material, which was carbon material for almost 

cases. From the previous reports, many research groups demonstrated that carbon 

oxidation occurred on high potential for charging, especially. Furthermore, the high 

catalytic activity of metallic material was acceleration of carbon oxidation during 
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discharge-charge procedure [26, 38, 39]. Therefore, it was concentrated that metal-free 

catalyst was investigation to overcome limitation of metallic catalyst for last several 

years. 

 The nano structure carbon such as graphene (RGO), carbon nano tube (CNT); 

The nano structure carbons were concentrated for cathode material because 

their structure advantage such as large surface area and high electric 

conductivity than that of activated carbon material such as Super-P, ketjen-

black and acethylene-black. Therefore, the nano structure carbon material 

showed moderate electro catalytic activation for hybrid electrolyte Li-air 

battery system. Furthermore, those have cheapest cost than that other catalyst 

material for example precious metal, metal oxide, transition metal and their 

composite. 

However, the nano structure carbon had critical problems for low duration for 

cyclic performance. Because of the potential was changed for drop and rising 

to low potential level to high potential level to low potential level during 

discharge-charge procedure. This repetition was not only damage for carbon 

material but also to become a main reason for performance degradation.  

Course, the various catalyst materials were investigated and those material showed 

advanced electrochemical performance in hybrid electrolyte Li-air battery. However, 

those materials also showed several serious problems.  

Therefore, hybrid electrolyte Li-air battery still needed to investigate new catalyst 

material for improvement of cycle performance and their stability. In general, the 

catalytic performance associated with carbon properties. Because of the various carbon 

was used to support material of catalyst material in almost catalyst synthesize case. 

Furthermore, many previous reports also showed different catalytic activity dependence 

with kind of carbon materials. In previous report of Xin et. al. group, the graphene, 

activated carbon with their composite carbon was investigated for electro catalytic 

activation in organic Li-O2 battery model. All of carbon material showed difference for 

battery performance such as discharge capacity and the overpotential gap during 

discharge-charge process [20]. Wang et. al. researched about electro catalytic activation 

of graphene comparison with ketjen-black in hybrid electrolyte Li-air battery model. 
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Each carbon showed difference battery performance such as overpotential gap and 

discharge capacity [40]. From these previous reports, thus, the each carbon showed 

difference battery performance without kind of electrolyte. Because of each carbon had 

different mechanical properties such as surface area, pore size, carbon crystalline and 

functional groups. These previous reports showed catalytic role, when various carbon 

materials use for catalyst in Li-air battery. On the other hands, Yoo et. al. reported 

electrochemical performance for FePc with various carbon material composite in 

hybrid electrolyte Li-air battery. When graphene, CNT and AB were used support 

material of FePc, their each composite showed different electrochemical performance 

for ORR and battery cycle performance [34]. Thus, these previous reports indicated that 

properties of carbon material had an effect for battery performance when it uses catalyst 

as well as catalyst support material. 

Therefore, the excellent catalyst material should be satisfied some condition, 

Firstly, the good properties carbon should be prepared; the carbon surface area 

accommodated for discharge products, therefore it can improve discharge capacity. The 

high graphitization lead to improve electrical conductivity which can reduce internal 

resistance, moreover it also can improve durability during cycling.  

Second, the catalyst should be dispersed uniformly on the carbon surface; if carbon was 

used support material for other catalyst, it should be dispersed uniformly. In other word, 

the particle size of catalyst should be small and that is not aggregated. Because of the 

aggregated catalyst has difficulty to show equal performance. Moreover, it has 

possibility to be main reason of carbon decomposition more easily. Because of the 

reaction will concentrate around bulk of catalyst, which can make damage for carbon 

surface.  

Third, catalyst should be has good marketability; the precious metal catalyst such as Pt, 

Au already showed excellent performance for ORR and OER in almost energy storage 

system. Nevertheless, its extremely high cost interrupted to investigate commercial 

product. Thus, the catalyst should be low cost and easy for preparation.  

Therefore, we choose to improve electrochemical performance such as decrease 

overpotential gap and better cyclic performance for hybrid Li-air battery by 

investigation new cathode catalyst material as my doctoral thesis. And I also tried to 
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give the detailed analysis for the mechanism of improved electrochemical performance. 

 

1.5.2 Target of this research 

The targets of this research on investigation catalyst materials for hybrid electrolyte 

Li-air battery were as follows;  

 To improve the electrochemical performance for oxygen reduction by non-

precious metal catalyst material. 

 To enhance stability for long cycle performance by metal-free catalyst material. 

 Detail study the catalytic activation mechanism of catalyst materials and, get 

the final conclusions. 

 

1.5.3 Outline of this thesis  

  There are four chapters in this dissertation. 

  Chapter 1 is a comprehensive review of lithium-air battery. It mainly include a brief 

introduction about various lithium-air batteries with their drawbacks and cathode 

materials for Li-air battery under hybrid electrolyte. The research motivation and targets 

have also been introduced. 

In chapter 2, the organic metal complex (Co(mqph)) with reduced graphene oxide 

(RGO) was synthesized to improve ORR activity in hybrid Li-air battery. The RDE test 

was used to confirm electro catalytic activity of RGO-Co(mqph), which result was used 

to calculate electron transfer number for ORR. Furthermore, the battery test was carried 

out to examine effect of RGO-Co(mqph). 

In chapter 3, the CVD method was used to modify metal-free cathode material (CNF-

CB) to prevent carbon oxidationby metallic catalyst during discharge-charge 

performance. Similar techniques with Chapter 2 were applied to study the 

electrochemical performance. 
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  Chapter 4 is the general conclusion and avenues for future work of this research. 
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Chapter 2. Investigation organic metal 

complexed catalyst with reduced graphene 

oxide (RGO) composite to reduce discharge 

overpotential gap 

2.1 Introduction 

Above mentioned, the hybrid type Li-air battery formed LiOH for discharge product, 

which was soluble in aqueous electrolyte [1,2]. However, the Li-air batteries with 

hybrid electrolyte had still some critical problems such as poor cycle performance, high 

overpotential and poor durability of cathode catalyst. These problems were occurred 

from low durability and low catalyst reaction kinetics. Although many catalyst 

materials were investigated to solve those problems such as perovskite structure 

materials, spinel structure materials and transition materials, these catalysts also have 

not enough performance for solution of that [3,4]. Thus, optimization of the air 

electrode was still needed to improve the cell performance. 

 Graphene nano sheets (GNSs) have been reported as a good candidate for cathode 

catalyst in the Li-air batteries, because of high surface area, high conductivity and low 

cost [5-9]. Our group had already proposed that the GNSs had high discharge potential 

and good cycle performance (50th cycles) in Li-air batteries with alkaline condition [2]. 

However, GNSs only electrode in Li-air batteries with hybrid electrolyte still showed 

high overpotential in discharge and charge process. Thus, it was necessary to find the 

efficient and stable cathode catalyst alternatives to Pt and metal oxide supported carbon 

which used commonly cathode catalyst in Li-air batteries with aqueous electrolyte 

[3,10-13]. 

 Okada et al. reported that the electocatalyst using organic metal complexes (mqph: 

N,N’-mono-8quinolyl-o-phenylenediamine) showed good electrochemical 

performance in polymer electrolyte fuel cell (PEFCs) and methanol oxidation reaction 

(MOR) [14-17]. Especially, they reported that Co(mqph) supported valcan XC-72R 
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showed good oxygen reduction reaction (ORR). However, the electrochemical 

performance of Co(mqph) combined carbon in Li-air batteries with aqueous electrolyte 

have not been reported so far. Here, M(mqph) is featured as central metal-N 

coordination structure and peripheral aromatic rings [14-17]. The chemical structure of 

Co(mqph) was shown in Figure 2-1. 

 

Figure 2-1. Schematics of Co(mqph). 

 

 In this study, we reported the heat treatment effect for carbon properties improvement 

to remove oxygen contained functional groups on RGO surface. Furthermore, 

electrochemical performance of the reduced graphene oxide (RGO) combined with 

Co(mqph) was also reported, which was proposed as a new-type catalyst for Li-air 

batteries with hybrid electrolyte under alkaline condition. 

2.2 Experimental 

2.2.1 Preparation of reduced graphene oxide (RGO). 

Graphene Oxide (GO) was prepared by Hummers and Offeman’s method, which was 

as follows: Graphite of 10 g was dispersed in 95 % H2SO4 of 230 mL, and then KMnO4 
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of 30 g and NaNO3 of 5 g were slowly put in that solution [18]. The mixture was stirred 

for overnight at 50 °C. Then, 30 % H2O2 of 30 mL was gradually added into the 

suspension. Obtained suspension were filtered and rinsed by the 35 % HCl to remove 

metal ions, the powder was washed with deionized water until its pH value reached to 

neuter. GO was reduced by 2 step reduction procedure to obtain the reduced graphene 

oxide (RGO). Firstly, GO was reduced by stirring with hydrazine hydrate for 12 hr at 

room temperature, washed with distilled water and then dried at room temperature. 

Secondly, dried powder was heated in 4 % H2/Ar gas atmosphere for overnight at 300 

°C. 

 

2.2.2 Preparation of organic metal complexed catalyst (Co(mqph)). 

The metal organic complexed (Co(mqph) was prepared by previous report of T. Okada 

et.al. The aqueous mixture of 8-hydroxyquinoline (0.02 mol) of 2.90 g, sodium disulfate 

(0.02 mol) of 3.08g and O-phenylenediamine (0.01 mol) of 1.08 g was refluxed for a 

week at 110 °C, which solution has recrystallization step in methanol. From the 

recrystallization, mono-8-quinolyl-o-phenylenediamine (mqph) has formation, which 

has amber colored cubic. The organic ligand (mqph) and acetate tetrahydrate were 

added at room temperature in ethanol under nitrogen atmosphere condition. The 

solution was concentrated and refrigerated to get cobalt mono-8-quinolyl-o-

phenylenediamine (Co(mqph)). The Co(mqph) powder has a claret or reddish pupple 

color. The synthesized steps were showed as Figure 2-2. 
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Figure 2-2. The diagram for preparation of organic metal complexed catalyst 

(Co(mqph)). 

 

2.2.3 Preparation of reduced graphene oxide with organic metal 

complexed (RGO-Co(mqph). 

The figure 2-3 showed diagram for synthesized reduced graphene oxide with 

Co(mqph). To obtain the RGO-Co(mqph), RGO and Co(mqph) with mass ratios of 2:1 

were mixed by hand in ethanol solution for 30 min, it was heated in a furnace under Ar 

stream for 2 hr at 450 °C. 
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Figure 2-3. The diagram for synthesize reduce graphene oxide with Co(mqph). 

 

 

2.2.4 Fabrication of hybrid electrolyte Li-air battery and 

electrochemical test. 

 The electrochemical test set up for Li-air batteries with hybrid electrolyte was 

described in previous work of our group [2,19-21]. The schematics for hybrid 

electrolyte Li-air battery and the component ratio for cathode were shown as Figure 2-

4. 1M LiOH was used aqueous electrolyte and 1M LiClO4/ EC/DEC was used organic 

electrolyte for anodic electrolyte and cathodic electrolyte, respectively. Then, the solid 

state electrolyte Li(1+x+y)Alx(Ti, Ge)2_xSiyP(3_y)O12 (LiSICON) film was used as a 

separating membrane between the organic and aqueous electrolyte to prevent 

intermixing of both solutions.  

The cathode was composed catalyst film and gas diffusion layer (GDL). The catalyst 

film consisted RGO-Co(mqph) (85 wt%), acetylene black (AB) (5 wt%) and 10 wt% 

polytetrafluoretrelyene (PTFE) (10 wt%). The AB gave to improve electric 

conductivity for electrode, however it was used minimum quantity to prevent alteration 
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of electrochemical property for catalyst material. The PTFE had a role for binder which 

also used minimum amount, because of its volume also has an effect to change 

electrochemical property. And GDL consisted acetylene black and PTFE, which 

component ratio was 1:1 weight ratio. Furthermore, the Ni mesh and Cu mesh was used 

collector for anode and cathode, respectively. 

 

Figure 2-4. The schematics for hybrid electrolyte Li-air battery and the component 

ratio for cathode. 

The oxygen reduction reaction (ORR) activity was tested by using rotating disk 

electrode (RDE) with room temperature under nitrogen and oxygen gas under alkaline 

electrolyte (1M LiOH). The figure 2-5 (a) showed RDE system, which consisted 3-

electrode system. The counter electrode used a platinum and a silver/silver chloride 

electrode (Ag/AgCl) was used as the reference electrode. The figure 2-5 (b) showed 

schematics of cross section for working electrode on RDE system. The catalyst was 

loaded on glassy carbon electrode (0.285 cm2) with diluted (1:50 in methanol) 5 wt% 

Nafion solution (Aldrich).  

The ORR activity of catalyst was measured under pure N2 and O2 saturated condition. 

The pure N2 or O2 gases was fellow into alkaline solution through pipe of white color 



- 31 - 

 

over 30 min to exchange saturated gas condition. The gas was applying continuously 

during measurement of ORR activation for catalyst material. 

 

 

 

Figure 2-5. The image for rotating disk electrode (RDE) system (a) and schematics of 

cross section for working electrode (b), respectively. 
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2.2.5 Characterization 

 The RGO and RGO-Co(mqph) were characterized by X-ray diffraction (XRD), 

Thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), Raman 

spectroscopy, Scaning electron microscope (SEM), Transmission electron microscope 

(TEM), Energy dispersive X-ray spectroscopy (EDX) and Fourier Transform Infrared 

Spectroscopy (FTIR). A commercial 20 wt% Pt-CB was also used as a reference at the 

same condition. 

 

2.3 Result and discussion 

2.3.1 The characteristic changing and heat treatment effect for RGO 

Figure 2-6 showed the XRD diffraction of RGO after discharge for 20 h, which 

material also prepared by Hummer’s method and to be reduced by hydrazine solution.  

Figure 2-6. XRD pattern for Li2CO3 and RGO after discharge for 20 h. 

 

The XRD result showed that the RGO contained other XRD peaks after discharge for 

20 h, which was corresponded with LiCO3. This result indicated that the Li2CO3 was 

formed during discharge performance. Thus, it was considered that the oxygen 
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contained functional groups of RGO surface involved to form Li2CO3. Therefore, we 

suggested the removal of oxygen contained functional group to improve discharge-

charge performance in Li-air battery under hybrid electrolyte. Because of Li2CO3 

needed high potential for decomposition during charging, which also damaged carbon 

material. Thus, formation of Li2CO3 was related with carbon corrosion during 

discharge-charge performance. 

In general, RGO was reduced by reduction chemical such as mono-hydrazine hydrate 

solution. Nevertheless, the RGO still showed remaining oxygen contained functional 

groups. Thus, oxygen contained functional group was not removed by chemical 

reduction. Therefore, RGO was prepared trough 2-step reduction procedure to remove 

oxygen contained functional groups. This chapter showed to change of carbon 

properties after heat treatment by XRD, TG-DTA and FTIR. The hydrazine reduction 

RGO was denoted 1-step RGO. Furthermore, the heat treatment reduction RGO was 

denoted 2-step RGO. The figure 2-7 showed XRD of 1-step RGO and 2-step RGO.  

 

Figure 2-7. The comparison of XRD pattern for 1-step RGO and 2-step RGO. 

 

Both RGO showed X-ray diffraction pattern at 23.4 and 42.5 °, and no more diffraction 

pattern was detected by XRD (Figure 2-7). Furthermore, the XRD pattern of both 
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materials showed broaden and similar intensity. This result indicated that both materials 

were consisted only carbon material. In addition, the graphitization of them also was 

similar. 

The TG-DTA curve of 1-step RGO and 2-step RGO were shown in Figure 2-8 (a) and 

(b), respectively. The TG-DTA curve of 1-step RGO exhibited that the mass loss 

occurred couple times at 210 and 581 °C, respectively. In the first section, from room 

temperature to 210 °C, near 45 wt% of mass loss was obtained. On the other hands, 55 

wt% of remaining carbon material have decomposed in second section. In my opinions, 

in the initial part, few remaining water was decompose under 100 °C. Furthermore, the 

hydroxyl functional group (-OH) species was decompose from 100 °C to 210 °C, 

section. On the other hands, the DTA curve of 2-step RGO showed that the mass loss 

occurred only one time at 645 °C. Moreover, the functional group of 2-step RGO was 

decreased after heat treatment. 

This result indicated that the heat treatment has an effect for two things. First, it 

removed oxygen contained functional groups. Second, it was improved graphitization 

for RGO.  

Figure 2-8. The TG-DTA for 1-step RGO (a) and 2-step RGO (b), respectively. The 

temperature increased from room temperature to 900 °C. 
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Furthermore, the FTIR analysis also showed that alteration of functional group after 

heat treatment. Many kind of functional group were located on 1-step RGO surface 

such as C-O, O-H, C=C and C-H stretching, which applied defect site on carbon surface. 

After heat treatment some kind of functional groups still remained on carbon surface. 

However, few kind of functional group reduced on the surface of 2-step RGO after heat 

treatment. Those were alkoxy (C-O), epoxy (C-O), carboxyle (C=C) and O-H of water 

at 1026, 1202, 1634 and 1385 cm-1, respectively. Reduced functional groups were 

contained oxygen and water molecules, thus oxygen contained functional groups was 

combined with hydrogen gas. Finally, the combined oxygen contained functional 

groups was removed by heat. These result indicated that almost oxygen contained 

functional groups were removed during heat treatment, nevertheless it was not removed 

perfectly. These consequences agreed with TG-DTA result, which were shown as Figure 

2-9.  

Figure 2-9. The comparison of FTIR for 1-step RGO and 2-step RGO. 

 

The figure 2-10 showed cyclic performance at a current density of 0.5 mA/cm2 for 2 hr 

to each discharge-charge under hybrid electrolyte conditions for 1-step RGO and 2-step 

RGO, respectively. The 1-step RGO showed potential at 2.7 V for first discharging, 

which decreased to 2.5 V for 10th cycle gradually. Furthermore, the discharge potential 

reached under 2.5 V from 25th cycle. The charge potential of 1-step RGO was obtained 
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3.7 V at first cycle, which was suddenly increased to 4.1 V at 10th cycle. And then it 

showed stable charging potential until 25th cycle. The 1-step RGO worked during 25th 

cycles.  

In contrast, 2-step RGO showed 2.8 V and 3.8 V for discharge potential and charge 

potential, respectively. The 2-step RGO also showed performance fading during 

discharge-charge procedure. The discharge potential of 2-step RGO was decreased 

gradually to 2.51 V during 37 cycles, furthermore the charge potential also increased 

gradually to 4.0 V for 37 cycles. Thus, 2-step RGO showed longer cycle performance, 

lower potential fading and lower overpotential gap than that of 1-step RGO. Thus, 2-

step RGO showed high stability for cycle performance under hybrid electrolyte Li-air 

battery condition. 

This result related with removal functional group on the carbon surface. Yoo et. al. 

demonstrated that oxygen contained functional group of carbon surface had an negative 

effect for cycle performance under alkaline electrolyte Li-air battery. They compared 

electrochemical performance of commercial GNs (graphene nano sheets) with heat 

treated GNs under alkaline electrolyte condition. The heat treated GNs showed better 

electro catalytic activity for ORR than commercial GNs. Furthermore, heat treated GNs 

showed higher stability for cycle performance than that of pristine GNs. The 

overpotential gap of bare GNs showed to be increasing during cycle performance test. 

Even though overpotential gap of heat treated GNs showed also increasing, it was very 

stable comparison with pristine GNs. Furthermore, they reported that the reason of 

improvement electrochemical performance related with heat treatment effect. The 

oxygen contained functional group was removed during heat treatment, which lead to 

prevent increasing overpotential for charging [21]. In addition, the graphitization of 

GNs was improve for heat treatment, which related with the improvement of carbon 

durability. Thus, the improvement cycling performance of 2-step RGO has an effect for 

heat treatment, which improve carbon duration and electro catalytic activity. Therefore, 

the 2-step RGO was used for this research, which was denoted RGO. 
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Figure 2-10. The cyclic performance at a current density of 0.5 mA/cm2 for 2 hr to 

each discharge-charge under hybrid electrolyte conditions for 1-step RGO (a) and 2-

step RGO (b), respectively. 

 

2.3.2 The characteristics for RGO with RGO-Co(mqph) 

 Figure 2-11 showed the XRD patterns of Co(mqph), RGO-Co(mqph) and RGO. The 

diffraction peak for Co(mqph), RGO-Co(mqph) and RGO was observed at 22.8, 24.3 

and 23.4 °  of peak top, respectively. Furthermore, there were not observed the 

diffraction peaks of Co for Co(mqph) and RGO-Co(mqph). Thus, this result indicated 
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that the Co(mqph) did not decompose after heat treatment at 400 °C.  

Figure 2-11. The XRD pattern for Co(mqph), RGO-Co(mqph) and RGO.  

 

The SEM measurement were also carried out to observe the morphology of the RGO-

Co(mqph) and RGO. The SEM images showed no significantly different morphology 

for both samples as shown in Figure 2-12 (a), (b). Furthermore, TEM images of RGO 

and RGO-Co(mqph) also showed same carbon morphologies as shown Figure 2-12 (c), 

(d). Especially, the Co metal particles were not detected on surface of RGO-Co(mqph). 

That also indicated that Co(mqph) was not decomposed during heat treatment 

procedure, which agreed with XRD result.  
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Figure 2-12. The SEM and TEM image of RGO (a),(c) and RGO-Co(mqph) (b),(d), 

respectively. 

 

From the TEM image of RGO-Co(mqph) in Figure 2-12 (d), the EDX mapping was 

analyzed to confirm Co elements as shown in Figure 2-13. The EDX detected carbon, 

oxygen and Co, which was mapping by red, green and yellow color for carbon, oxygen 

and Co, respectively. The EDX mapping showed that the Co was not aggregated, thus 

it was dispersed on RGO surface very uniformly.  

Furthermore, the X-ray Photoelectron Spectroscopy (XPS) analysis result also showed 

the Co element was contained on RGO-Co(mqph) composite. The XPS detected peak 

for C1s, N1s and O1s for RGO at 285.1, 399 and 533 eV, respectively. In contrast, 

RGO-Co(mqph) showed C1s, N1s and O1s, moreover Co2p3 and Co2LM2 also was 

detected at 716 and 782 eV, respectively. This result also indicated that the Co was 

contained in RGO-Co(mqph) composite as shown in Figure 2-14. 

(a) (b) 

(c) (d) 
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Figure 2-13. The XDX mapping of RGO-Co(mqph) from TEM image. 

 

Figure 2-14. The XPS (X-ray Photoelectron Spectroscopy) analysis for RGO and 

RGO-Co(mqph) composite. 
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However, TG data obtained that RGO exhibited the mass loss of 15 % in the temperature 

range of room temperature to 600 °C, which resulted the removal of functional groups 

on RGO. Moreover, the TG curve of Co(mqph) showed the mass loss of 70 % at about 

370 °C. It indicated that Co(mqph) contained 30wt% Cobalt metals. While the RGO-

Co(mqph) started combusting at about 300 °C, the mass of RGO-Co(mqph) was lost 

about 90 % in the temperature range from 300 to 750 °C. Thus, this results clearly 

indicated that the Co(mqph) was mixed with RGO, which shown in Figure 2-15. 

Figure 2-15. The thermal gravimetric analysis for Co(mqph), RGO and RGO-

Co(mqph) composite, respectively. 

 

2.3.3 Electrochemical performance for RGO-Co(mqph) 

 The cycle voltammetry (CV) of RGO, RGO-Co(mqph) and 20 wt% Pt-CB to examine 

the onset potential of ORR were shown in Figure 2-16. The onset potential of ORR for 

the RGO, RGO-Co(mqph) and 20 wt% Pt-CB at scan rate of 20 mV/s with rotating rate 

of 500 rpm in nitrogen and pure oxygen condition were at -0.13, -0.089 and -0.033 V 

vs. Ag/AgCl. Furthermore, the current density at -0.3 V vs. Ag/AgCl was -0.25, -0.8 

and -1.97 mA/cm2 for RGO, RGO-Co(mqph) and 20 wt% Pt-CB, respectively. The 

RGO-Co(mqph) showed the high onset potential of ORR and high value of current 

density at -0.3 V vs. Ag/AgCl comparison with RGO, indicating that the Co(mqph) 
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combined with RGO led to improve the catalytic activity toward oxygen reduction, 

even though the catalytic activity of ORR was lower than that of 20 wt% Pt-CB. 

Figure 2-16. The cycle voltammetry (CV) for 20wt% Pt-CB (a), RGO-Co(mqph) (b) 

and RGO (c), respectively at 20mV/s, 500 rpm, under 1M LiOH solution in pure N2 

and O2 saturated condition. 

 

Figure 2-17 showed linear sweep voltammetry (LSV) curves for RGO, RGO-Co(mqph) 

and 20 wt% Pt-CB at scan rate of 20 mV/s with different rotating rates from 500 to 

1500 rpm in oxygen condition to investigate the number of electrons (n) involved in the 

ORR. As expected, the polarization curves of 20 wt% Pt-CB displayed current plateaus 

in the high polarization range. Furthermore, the mass transport limiting ORR voltage 

was reached at about -0.4 V and -0.5 V, for 20 wt% Pt-CB and RGO-Co(mqph), 

respectively.  
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Figure 2-17. The linear sweep voltammetry (LSV) for 20wt% Pt-CB (a), RGO-

Co(mqph) (b) and RGO (c), respectively at 20mV/s, 500-1500 rpm, under 1M LiOH 

solution in pure O2 saturated condition. 

 

While, the RGO did not reach the mass transport limiting ORR voltage, indicating a 2-

electron transferred for the H2O2 production [22]. The number of electrons involved in 

the ORR was estimated by using Koutechky-Levich (K-L) plots. The K-L equation was   
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where, 𝑖𝑙,𝑐  is the limiting current, n the number of electrons transferred in the half 

reaction, F the Faraday constant, A the electrode area, 𝐷0 the diffusion coefficient, w 

the angular rotation rate of the electrode, v the kinematic viscosity, and 𝐶0
∗ analyze 

concentration. The K-L plots determined from LSV data in Figure 2-18. In this study, 

the number of electron transfer for 20 wt% Pt-CB were assumed to be 4-electron, 

because it was well known that the ORR by Pt-CB proceeds via 4-electron pathway in 

an acidic or alkaline media [23-29].  

Figure 2-18. The K-L plots determined from LSV data at -0.5 V for 20wt% Pt-CB, 

RGO-Co(mqph) and RGO, respectively. 

 

Based on the slopes of the K-L plots, the electron transfer number was calculated to be 

2.22, 3.52 and 4 for RGO, RGO-Co(mqph) and 20 wt% Pt-CB, respectively. These 

results suggested that ORR catalyzed on RGO-Co(mqph) was a close 4-electron 

reduction process leading to the formation of H2O. It was thus indicated that the 

Co(mqph) played an important role in the ORR catalyst, because only RGO electrode 

was more less than 4-electron reaction. 

Figure 2-19 was diagram for ORR mechanism under alkaline electrolyte. Many 

research groups studied for reaction mechanism of oxygen reduction under aqueous 

solutions. As a result, it was demonstrated that the oxygen reacted with 4-electron and 

2-electron under aqueous solution. Furthermore, Li-air battery under aqueous 
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electrolyte has same mechanism. The 4-electron path way reaction was, 

O2 + 4e- +2H2O = 4OH- 

On the other hands, the 2-electron path way reaction was, 

O2 + 2e- +H2O = HO2
- 

The HO2
- was reacted consecutively, 

HO2
- + HO2

- +2e- = 3OH- 

Or HO2
- had chemical reaction with HO2

-, 

HO2
- + HO2

- = 2 HO2
- 

HO2
- = 2OH + O2↑ 

The LiOH was formation to combined OH- with Li+ by 4-electron path way reaction 

in Li-air battery under hybrid electrolyte.  

Thus, the RGO-Co(mqph) had 4-electron path way and it make soluble discharge 

product of LiOH during discharging. On the other hands, the RGO produced hydro 

peroxide (H2O2) for discharge product. Both reaction shown in the Figure 2-19. 
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Figure 2-19. The diagram for ORR mechanism with 4-electron and 2-electron under 

alkaline electrolyte. 
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 Figure 2-20 gave the discharge curves of RGO, RGO-Co(mqph) and 20 wt% Pt-CB 

at a current density of 0.5 mA/cm2 for 24 hr. The discharge voltage was 2.81, 2.87 and 

2.97 V vs. Li/Li+ for RGO, RGO-Co(mqph) and 20 t% Pt-CB, respectively. The 

discharge voltage of RGO-Co(mqph) exhibited higher than that of RGO. In other word, 

discharge overpotential was 0.61, 0.55 and 0.45 V for RGO, RGO-Co(mqph) and 20 t% 

Pt-CB, respectively. Thus, RGO-Co(mqph) showed smaller discharge overpotential 

than that of RGO. These difference of discharge properties between RGO-Co(mqph) 

and RGO were attributed to add the Co(mqph) on RGO, which indicated that the reason 

of higher electro catalytic activity of RGO-Co(mqph) for ORR under alkaline 

electrolyte was high electro catalytic ability of Co(mqph). Therefore, it can be 

considered that the RGO-Co(mqph) was the promising catalyst for Li-air batteries in 

aqueous media. 

Figure 2-20. The discharge performance for RGO, RGO-Co(mqph) and 20wt% Pt-CB 

under 1M LiOH solution at 0.5 mA cm-1 during 24 hours. 

 

 In order to investigate the stability of RGO-Co(mqph) for Li-air batteries with hybrid 

electrolyte, the Li-air cells with RGO, RGO-Co(mqph) and 20 wt% Pt-CB cathode were 

cycled at a current density of 0.5 mA/cm2 for 2 hr to each discharge-charge at 30th cycles 

(Figure 2-21). At 1st cycles, the discharge voltage for RGO, RGO-Co(mqph) and 20 wt% 
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at 1st cycles was 3.69, 3.74 and 3.80 V for RGO, RGO-Co(mqph) and 20 wt% Pt-CB. 

However, with discharge-charge cycling, the charge voltage of 20 wt% Pt-CB increased 

from about 3.80 to 4.3 V vs. Li/Li+ after 30th cycles. The discharge voltage of 20 wt% 

Pt-CB also decreased from 3.04 to 2.0 V after 30th cycles. In contrast, for the RGO-

Co(mqph), the charge voltage gradually increased, reaching the charge voltage of 3.87 

V after 30th cycles. The discharge voltage also gradually decreased with each cycle, 

reaching at 2.74 V after the 30th cycles. Furthermore, for the RGO, the increased voltage 

value after 30th cycles was about 0.08 and 0.08 V for charge and discharge process, 

respectively. It indicated that the RGO and RGO-Co(mqph) revealed good cycle 

stability comparison with 20 wt% Pt-CB. Our group already reported that the surface 

state of GNSs influenced the cycle performance in Li-air batteries with alkaline media 

[5]. Therefore, the difference of cycle stability between RGO, RGO-Co(mqph) and 20 

wt% Pt-CB may be attributed to different surface structure of RGO consisting of 

graphene sheets. Figure 2-22 showed the discharge and charge potential of whole 

measured samples for each cycle obtained from Figure 2-21 (a-c). Interestingly, we 

found that the charge potential of RGO was blow 3.8 V vs. Li/Li+ after 30th cycles. This 

value of RGO was lower by far than that of reported based on only carbon used as 

cathode in Li-air batteries under alkaline media (4.0 and 4.2 V vs. Li/Li+) [30.31]. In 

comparison, the RGO-Co(mqph) showed the charge potential of 3.87 V after 30th cycles. 

However, the difference discharge potential between the 1st cycles and 30th cycles was 

0.08 and 0.23 V for RGO and RGO-Co(mqph), respectively. Although the reason of 

decreasing discharge potential of RGO-Co(mqph) than RGO with cycling was unclear, 

it considered that adding Co(mqph) on RGO might activate the oxidation of RGO with 

cycling. To investigate the surface state of RGO and RGO-Co(mqph), the XPS 

measurement was examined.  
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Figure 2-21. The cycle performance under 1M LiOH solution at 0.5 mA cm-1, 

discharging and charging time each 2 h during 30 cycle for RGO (a), RGO-Co(mqph) 

(b) and 20wt% Pt-CB (c), respectively. 
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Figure 2-22. The discharge and charge potential of whole measured samples for each 

cycle for RGO, RGO-Co(mqph) and 20wt% Pt-CB, repectively. 

 

Figure 2-23 showed XPS spectra of C1s (a) and O1s (b) for RGO and RGO-Co(mqph), 

respectively. The C1s XPS spectra showed the presence several components correspond 

to carbon atoms in various functional groups. We could find that the C1s XPS spectra 

of RGO-Co(mqph) and RGO exhibited same functionalities. 

To understand the dependence of defects and edges state on RGO and RGO-Co(mqph), 

the sp3/sp2 hybridization ratio of the RGO and RGO-Co(mqph) was estimated by 

integrating the corresponding component against the binding energy for XPS peaks as 

shown Figure 2-24 (a). The sp3/sp2 hybridization ratio for RGO and RGO-Co(mqph) 

were 12.8 and 6.16, respectively. The decrease of sp3/sp2 ratio for RGO-Co(mqph) was 

mainly caused by an increase of sp2-bonded carbon sites due to the formation of 

graphitized C–C bonds on heating. Thus, we considered that the RGO-Co(mqph) was 

graphitized by heating. The Raman measurement also was carried out confirm the 

crystallization of RGO and RGO-Co(mqph) as shown in Figure 2-24 (b). The Raman 

spectra of RGO and RGO-Co(mqph) showed the two distinct peaks corresponding to 

the D and G bands of carbon, respectively. It was also revealed that the intensity ratio 

of IG/ID was 0.46 and 0.50 for RGO and RGO-Co(mqph), indicating that the RGO-

Co(mqph) was graphitized by heating. From XPS and Raman results, it was considered 
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that the high charge potential of RGO-Co(mqph) was ascribed to the flat surface 

structure of RGO by heat-treatment during RGO-Co(mqph) preparing process. 

Figure 2-23. XPS spectra of C1s (a) and O1s (b) for RGO and RGO-Co(mqph), 

respectively. 

X. Lu. et al. have reported that oxidized multiwall-carbon nanotubes (MWCNTs) 

showed good oxygen evolution reaction (OER) activity, due to the presence of oxygen-

containing functional groups on the outer wall of MWCNTs. Oxygen-Containing 

functional groups such as ketonic C=O generated on the outer wall of MWCNTs were 

found to play crucial role in catalyzing OER by altering the electronic structures of the 

adjacent carbon atoms and facilitates the adsorption of OER intermediates [32]. 

That was, the presence of functional groups on carbon may be the crucial factor to 

improve the OER activity in Li-air batteries. Although the detail mechanism of low 

charge overpotential for RGO was unclear, it was considered that the low charge 

overpotential of RGO after 30th cycles was attributed to the presence of functional group 

on carbon surface. Thus, we expected that controlling oxygen-containing functional 

group and surface state of carbon materials enabled to reduce the charge overpotential 

and enhance the cycle stability for Li-air batteries.  
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Figure 2-24. The sp3/sp2 hybridization ratio of the RGO and RGO-Co(mqph) (a) was 

estimated by integrating the corresponding component against the binding energy for 

XPS peaks. And the Raman spectroscopy and IG/ID value for RGO and RGO-

Co(mqph) (b). 

 

2.4 Conclusion 

We demonstrated that the ORR activity and cycle performance of Li-air batteries with 

hybrid electrolyte based on RGO and RGO-Co(mqph) used as a cathode electrode. The 

heat treated RGO has less oxygen contained functional group on carbon surface and 

higher graphitization than that of non-heat treated RGO. Therefore, heat treated RGO 

showed smaller overpotential gap for cycle performance, furthermore it also showed 

longer cycle performance in Li-air battery under hybrid electrolyte conditions. Because 

of various oxygen contained functional groups were removed as well as moreover 

carbon crystalline also improved during heat treatment. Therefore, heat treated RGO 

was used to combine with organic metal complexed catalyst (Co(mqph)). The RGO-

Co(mqph) exhibited good ORR activity, which was obtained enhanced electron transfer 

number than RGO. It showed about 3.52 electron path was for oxygen reduction 

reaction. Furthermore, the RGO-Co(mqph) showed the good stability of cycle 

performance comparison with commercial 20 wt% Pt-CB. This result indicated that 

introducing Co(mqph) on RGO promoted the ORR activity and electrochemical 

performance of Li-air batteries in alkaline condition. 
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Chapter 3. Investigation of grown carbon 

nanofiber on carbon black (CNF-CB) to 

improve cycle performance. 

3.1 Introduction  

 The reduced graphene oxide with Co(mqph) composite (RGO-Co(mqph)) was 

attempted to use cathode material to improve electrochemical performance during 

battery cycle performance in previous chapter. Furthermore, our gourp also reported 

that the hybrid Li-air batteries based on graphene nanosheet, Mn2O3 supported carbon 

for cathode. These displayed improved oxygen reduction reaction (ORR) activity 

during the discharge process and enhanced cycle stability [1,2]. Moreover, many 

research groups also attempted investigation of cathode material to use low-cost 

catalysts for example carbon materials or metal oxides MxOy (M=Ni, Cu, Mn, Co) [3-

10].  However, the hybrid Li-air batteries were still in a developing to overcome the 

large discharge-charge overpotential gap and cycle stability. The carbon oxidation for 

discharge-charge performance was serious problems. To prevent carbon oxidation, 

reduced graphene oxide with Co(mqph) composite was tried for cathode. Nevertheless, 

that catalyst also showed carbon oxidation during cycle performance. Therefore, the 

investigation of metal-free catalyst was very important. Moreover, the cycle stability 

problem of hybrid Li-air batteries was related to the sluggish kinetics of ORR and poor 

durability of the cathode catalyst. Therefore, the development of an electrocatalyst with 

highly active and stable for the ORR and oxygen evolution reaction (OER) was one of 

the most attractive challenges in hybrid Li-air batteries. 

Therefore, the nano structure carbon such as graphene and cabon nano tube was 

considered for good candidate for metal-free catalyst as cathode of Li-air battery under 

hybrid electrolyte because of its good properties such as low cost, good electrical 

conductivity, excellent mechanical strength and flexibility. 

Huang et al. reported the CNF composite with Co and Ni by electrospun method as 

cathode material in Li-O2 batteries led to high cyclic stability and low initial 
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overpotential. They suggested that the graphitization of CNF was contributed to 

electrical conductivity and carbon stability [11].  

Bhuvaneswari et al. has reported that the comparison of electrochemical performance 

for carbon nanofiber (CNF) composite with LiFePO4 and pristine LiFePO4 as a cathode 

in Li-ion batteries. The carbon nanofiber (CNF) composite with LiFePO4 showed 

decreased overpotential, furthermore the performance fading also reduced during 4 

cycles. Thus, carbon nanofiber (CNF) composite with LiFePO4 had better 

electrochemical with stability were improved during discharge-charge performance 

than that of pristine LiFePO4. They considered that the improvement of electro 

performance for carbon nanofiber (CNF) composite with LiFePO4 attributed to good 

conductivity of CNF [12].  

Jang et al. investigated the electrochemical performance of CNF composed with 

graphite in Li-ion batteries [13]. The CNF composite with graphite showed improved 

discharge capacity as well as cycleability. They suggested that the specific morphology 

of CNF-graphite led to improve cyclability and high rate capability in Li-ion batteries. 

Also, they showed that CNF grown on graphite had the large surface area. 

 Therefore, it considered that the CNF composited with carbon materials may provide 

sufficiently large active site as well as improving the kinetics of ORR due to the large 

surface area and high conductivity. In addition, the high electro conductivity of CNF 

could be advanced durability of cycle performance. However, the CNF composite with 

carbon materials had not yet been reported in the Li-air batteries. Herein, CNF-CB 

composites were prepared and their electrochemical properties as an air-electrode for 

hybrid Li-air battery were studied in the discharge-charge performance. 

 

3.2 Experimental 

3.2.1 Preparation of CNF-CB 

 CNF-CB composites were fabricated by CVD, as illustrated in Figure 3-1. The FeNi 

supported CB were prepared from Iron(Ⅲ) nitrate nonahydrate (Fe(NO3)3·9H2O) and 

Nickel(Ⅱ) nitrate hexahydrate (Ni(NO3)2·6H2O) to provide nuclei for CNF on CB. 

Firstly, 397.09 mg of Fe(NO3)3·9H2O and 144 mg of Ni(NO3)2·6H2O were dissolved in 
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250 ml of ethanol while stirring for 30 min at room temperature. Then, CB of 1 g was 

added to the Fe/Ni mixture solution and stirred for 2 h at room temperature. Ethanol 

was evaporated at 80 °C. Finally, the obtained FeNi@CB was dried in an oven at 100 °C 

overnight in the air condition. 

 The powdered FeNi@CB catalyst was placed in a quartz boat at the center of a reactor 

tube in the furnace to grow CNF on the CB surface. After reduction in 20 % H2/He for 

140 min, He gas was reflushed for 1 h before introduction of C2H4 gas and He mixture 

for 30 min at each reaction temperature (640-840 °C). Then, He gas was flowed during 

cool down to ambient temperature. The prepared CNF-FeNi@CB was washed with 2M 

HCl and distilled water to remove Fe and Ni metals. Finally, the obtained CNF-CB was 

dried at the temperature of 80 °C. The CNF-CB was denoted to CNF-CB 640, CNF-CB 

740 and CNF-CB 840 by the CNF grown temperature. 
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Figure 3-1. Preparation of CNF-CB by chemical vapour deposition (CVD) on 

different temperature from 640 °C to 840 °C. 

 

3.2.2 Assembly and testing of hybrid Li-air battery 

 The electrochemical test for hybrid Li-air batteries was described in our previous 

reports [7,9,19]. 1M LiClO4 EC/DEC and 1M LiOH were used an anodic and a cathodic 

electrolytes, respectively. Li(1+x+y)Alx(Ti, Ge)2_xSiyP(3_y)O12 (LiSICON) plate was used 

as an organic / inorganic electrolyte membrane to prevent intermixing of both solutions. 

For the preparation of cathode, CNF-CB, acetylene black (AB) and 10 wt% 
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polytetrafluoretrelyene (PTFE) binder in a weight ratio of 80 : 5 : 15 were mixed and 

then pressed onto the Ni mesh. The discharge-charge performance was measured in a 

voltage range of 2.5 - 4.2 V at the current density of 0.5 mA cm-2 each 2 h. The ORR 

activity was examined using a rotating disk electrode (RDE) in the 1M LiOH at room 

temperature under N2/O2 conditions. The catalysts were loaded on glassy carbon 

electrode (0.285 cm2) with diluted (1:50 in methanol) 5 wt% Nafion solution (Aldrich). 

The RDE used a 3-electrode system where platinum (Pt) and a silver/silver chloride 

electrode (Ag/AgCl) were used as a counter electrode and reference electrode, 

respectively.  

 

3.2.3 Characterization of CNF-CB 

 The specific surface area of all samples was measured by Brunauer-Emmett-Teller 

(BET). Raman spectroscopy (Raman) and Thermogravimetry-Diffrential Thermal 

Analysis (TG-DTA) were used to compare a graphitization of CNF-CB. The 

morphology of CNF-CB was examined by scanning electron microscope (SEM) and 

transmission electron microscope (TEM). A commercial CB was used as a reference at 

the same condition. 

 

3.3 Result and discussion 

3.3.1 The characteristics for CNF-CB 

The results of XRD pattern was measured from 20-80 ° of 2 theta, which shown as 

Figure 3-2. CNF-CB 740 showed slightly higher graphitization than that of CNF-CB 

640. On the other hands, the XRD pattern of CNF-CB 740 showed that some impurity 

was contained in CNF-CB, that pattern was corresponded to Ni3Fe. The CNF-CB 840 

was obtained stronger XRD pattern peak for Ni3Fe composite than that of other 

materials especially. The Ni3Fe might be composed during CVD procedure each 

different temperature. Thus, the high temperature of 840 °C could be supplied better 

condition than other temperature to accomplished high crystallization of Ni3Fe 
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composite. Furthermore, this result indicated that metal ions, which was used to grow 

CNF, was not remove perfectly after acidic wash by HCl solution.  

Figure 3-2. The XRD pattern of CNF-CB from 20° to 80° of 2 theta degrees. And 

the peak intensity, which corresponded with Ni3Fe of metallic composite. 

 

Therefore, the TG-DTA analysis was accomplished to measure quantitative analysis of 

Ni3Fe composite. Furthermore, the graphitization also could be compared, which shown 

as Figure 3-3. The temperature area for TG-DTA measurement was from room 

temperature to 900 °C in air condition and 100 ml s-1 of fellow speed. Moreover, the 

temperature raising rate was 10 °C min-1. From the TG curve, it showed nothing mass 

loss for initial area (~300 °C), which indicated that CNF-CB samples have not any 

functional group on the surface. Moreover, they showed different thermal decompose 

temperature for each samples as well as Ni3Fe was remained after carbon burned out. 

The quantity of remained Ni3Fe was very small (~ 3 wt%), however the amount of that 

was different each sample. The CNF-CB 640 contained most Ni3Fe, which was 2.82 

wt%. On the other hands, CNF-CB 740 had least amount of Ni3Fe, which was 1.84 wt%. 

The CNF-CB 840 has 2.81 wt% of Ni3Fe. The content of Ni3Fe was shown in table 3-

1. 

20 30 40 50 60 70 80

PDF#88-1715 Ni3Fe

 

 

In
te

n
s
it

y
 /

 a
.u

.

2 Theta / 

CNF-CB 640

CNF-CB 740

CNF-CB 840



- 62 - 

 

Figure 3-3. The thermo gravimetric (TG) and differential thermal analysis (DTA) 

curve from room temperature to 900 °C of temperature range under air condition (100 

ml min-1) and the 10 °C min-1 of temperature raising speed for CNF-CB 640 (a), CNF-

CB 740 (b) and CNF-CB 840 (c), respectively. 

 

Sample Ratio of Contents for Ni3Fe (wt%) 

CNF-CB 640 2.82 

CNF-CB 740 1.84 

CNF-CB 840 2.81 

Table 3-1. The Ratio of remained amount for Ni3Fe in CNF-CB 640, CNF-CB 740 

and CNF-CB 840 after acidic wash by HCl solution. 

 

 The combustion temperature of CNF-CB was confirmed by DTA curve. DTA curve 

showed strength of voltage. The voltage was occurred when material was bund out. 

Furthermore, the strength for rate of spread was able to be supposed through voltage 

values. Thus, the voltage value informed activation of combustion for materials. In 

addition, that supplied information for crystalline in carbon case. The highest voltage 
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values for DTA were 550, 565 and 533 °C for CNF-CB 640, CNF-CB 740 and CNF-

CB 840, respectively. This result indicated that CNF-CB 740 had highest carbon 

crystalline than that of CNF-CB 640 and CNF-CB 840. On the other hands, the CNF-

CB 840 showed burned out on lowest temperature, which indicated that the CNF-CB 

840 had lowest graphitization.  

The results of a specific surface area by nitrogen adsorption were given in Figure 3-4. 

The CNF-CB showed same N2 adsorption-desorption hysteresis curve, which indicated 

that the all of CNF sample has same pore structure. According to IUPAC standard, the 

carbon porosity could separate for micro pore, meso pore and macro pore by hysteresis 

loop. The average pore diameter of micro pore was under 2 nm. The average diameter 

of macro pore was over the 50 nm. On the other hands, meso pore had from 2 nm to 50 

nm for average diameter. Each porosity type had difference hysteresis loop for N2 

adsorption-desorption. The CNF-CB showed macro type hysteresis loop, which 

indicated that the CNF-CB two things. First, the CNF-CB have porous structure. 

Second, it was macro pore, thus its diameter was over 50 nm.  

Nevertheless, the specific surface area of CNF-CB was different by CVD temperature. 

The BET surface area of CNF-CB were 254, 324 and 251 m2 g-1 for CNF-CB 640, 

CNF-CB 740 and CNF-CB 840, respectively. This result indicated that the CVD 

temperature had an effect for specific surface area of carbon materials, thus the grown 

of CNF had a role to increase surface area. The CNF-CB material commonly showed 

higher specific surface area than that of CB. The BET surface area of CB was 218 m2 

g-1 as shown Table 3-2. 

 

 BET surface area / m2 g-1 

CNF-CB 640 254 

CNF-CB 740 324 

CNF-CB 840 251 

CB 218 

Table 3-2. The BET surface area for CNF-CB 640, CNF-CB 740, CNF-CB 840 and 

CB respectively. 
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Figure 3-4. The hysteresis loop and BET spacific surface area for CNF-CB 640, CNF-

CB 740 and CNF-CB 840, respectively. 

 

The graphite structure of all CNF-CB and CB was also evaluated by Raman 

spectroscopy measurements as shown in Figure 3-5 (a). All measured samples exhibited 

two distinct bands appearing at around 1324 cm-1 (D-band) and 1597 cm-1 (G-band). 

The D and G bands reflect the structure of sp3 and sp2 hybridized carbon atoms, 

indicating disordered graphite and the ordered state of carbon material, respectively 

[14-16]. The degree of the graphitization on CNF-CB can be quantified by the intensity 

ratio of the D to G bands, as shown Figure 3-5 (b). The peak intensity ratio (ID/IG) was 

1.68, 1.50, 2.14 and 1.86 for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, 

respectively. The small ID/IG ratio of CNF-CB 740 suggests that CNF-CB 740 be a best 

graphitization.  
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Figure 3-5. The Raman spectroscopy (a) and comparision of ID/IG ratio (b) from 

intensity value of D-band and G-band as Raman result for CNF-CB 640, CNF-CB 740, 

CNF-CB 840 and CB, respectively.  

 

The structure and morphology of the CNF-CB were observed using SEM and TEM 

measurement. Figure 3-6 displayed the typical SEM images of CNF-CB 640, CNF-CB 

740, CNF-CB 840 and CB, respectively. The CNF-CB 640 and CNF-CB 740 exhibited 

CNF grown on the CB surface with entangled and curl structure. However, the CNF as 

CNF-CB 740 was seen as thicker and longer than that of CNF-CB 640. Furthermore, 

the quantity also seem to more than that of CNF-CB 640. Moreover, only a few fibers 

were observed on the surface for the CNF-CB 840. On the other hands, pristine CB 



- 66 - 

 

showed that sphere of various diameter was aggregated, which had a very clean surface. 

 

Figure 3-6. The SEM images for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, 

respectively. 

 

This result reflects importance of CNF grown up temperature. Such a correlation 

between heat treatment temperature and structure of CNF was examined under TEM. 

Figure 3-7 shows the TEM images of all CNF-CB samples. From the nanostructure, 

CNF-CB 640 and 740 samples provided selectively thin fibers of near 10 nm in a 

diameter. For the CNF-CB 640 and 740, a tubular structure though a CB particles was 

observed. On the other hands, the CNF of CNF-CB 840 showed no tubular structure 

and random directions in relation to the fiber axis. These results indicated that the 

formation of the CNF on the CB surface influenced the heat treatment temperature and 

the heat treatment temperature of 640 °C, 740 °C favor the formation of CNF. 
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Figure 3-7. The TEM images for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, 

respectively. 

 

3.3.2 Analysis of electrochemical characterization for CNF-CB series 

 Figure 3-8 showed the cycle voltammetry of CNF-CB 640, 740, 840 and CB at a 

scan rate of 20 mV s-1 with a rotating rate of 500 rpm under 0.1M KOH in N2 and O2 

condition. The onset potential of ORR as shown in table 3-3, which was about -0.18, -

0.12, -0.17 and -0.14 V vs. Ag/AgCl for CNF-CB 640, 740, 840 and CB, respectively. 

At an overpotential of -0.3 V, the current density of CNF-CB 640, 740, 840 and CB was 

exhibited -0.85, -1.22, -0.92 and -0.9 mA cm-2, respectively. It indicated that CNF-CB 

CNF-CB 840 

CNF-CB 640 CNF-CB 740 
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640 and CNF-CB 740 had higher catalytic activity for ORR than that of CNF-CB 840 

and CB.  

Figure 3-8. The cycle voltammetry (CV) analysis at a scan rate of 20 mV s-1 with a 

rotating rate of 500 rpm under 0.1M KOH in N2 and O2 condition for CNF-CB 640 

(a), CNF-CB 740 (b), CNF-CB 840 (c) and CB (d), respectively. 

 

 

Sample The onset potential (V vs. Ag/AgCl) 

CNF-CB 640 -0.15 

CNF-CB 740 -0.15 

CNF-CB 840 -0.19 

CB -0.20 

Table 3-3. The onset potential of CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB 

for oxygen reduction reaction (ORR). 
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Figure 3-9. The linear sweep voltammetry (LSV) analysis at a scan rate of 20 mV s-1 

with a rotating rate of 500 rpm to 1500 rpm under 0.1M KOH in O2 condition for 

0wt% Pt-CB (a), CNF-CB 640 (b), CNF-CB 740 (c) and CNF-CB 840 (d), 

respectively. 

 

The figure 3-9 showed linear sweep voltammetry (LSV) curves for 20 wt% Pt-CB, 

CNF-CB 640, CNF-CB 740 and CNF-CB 840 at a scan rate of 20 mV s-1 under 0.1M 

KOH. The ORR of 20 wt% Pt-CB was diffusion controlled when the potential was less 

than -0.25 V. On the other hand, the CNF-CB 740 did not reach mass transport limiting 

voltage in the potential region from -0.2 V to -0.4 V. 

The K-L equation was usually used to calculate the electrons transfer number during 

the ORR. The K-L equation was followed  

1

𝑖
=

1

𝑖𝑘
+

1

𝑖𝑙,𝑐
 

𝑖𝑙,𝑐 = 0.62nFA𝐷0
2/3

𝑤1/2𝑣−1/6𝐶0
∗ 

where, 𝑖𝑙,𝑐 was the limiting current, n the number of electrons transferred in the half 
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reaction, F the Faraday constant (96485 C mol-1), A the electrode area (0.285 cm2), 𝐷0 

the diffusion coefficient (1.9 x 10-5 cm2 s-1), w the angular rotation rate of the electrode, 

v the kinematic viscosity (0.01 cm2 s-1), and 𝐶0
∗ analyze concentration (1.2 x 10-6 mol 

cm3). The corresponding K-L plots of 20 wt% Pt-CB, CNF-CB 640, CNF-CB 740 and 

CNF-CB 840 in Figure 3-10 displayed good linearity and parallelism, indicating the 

first-order reaction kinetics for ORR. The electron transfer number of 20 wt% Pt-CB 

was calculated to be 3.9 at -0.4 V, which near approaches the 4e- electron transfer 

number (n) of the Pt-based catalyst in aqueous electrolyte for ORR [17]. The CNF-CB 

series were according to their corresponding RDE curves. The electron transfer number 

was calculated as shown table 3-4. The electron transferred number was to be 1.8, 1.8, 

1.7 and 2.2 at -0.4 V for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, respectively. 

All of the CNF-CB were suggesting a 2e- reduction process in aqueous electrolyte for 

ORR.  

Figure 3-10. The Kouthechky-Levich (K-L) plots corresponded LSV result of 20 wt% 

Pt-CB (a), CNF-CB 640 (b), CNF-CB 740 (c) and CNF-CB 840 (d), respectively. 
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Sample The electron transferred number 

20wt% Pt-CB 3.9 

CNF-CB 640 1.8 

CNF-CB 740 1.8 

CNF-CB 840 1.7 

CB 2.2 

Table 3-4. The electron transferred number of 20wt% Pt-CB, CNF-CB 640, CNF-CB 

740, CNF-CB 840 and CB for oxygen reduction reaction (ORR). 

 

Nevertheless, the CNF-CB 740 showed better discharge performance than that of CNF-

CB 640 and CNF-CB 840. Figure 3-11 showed the discharge performance of CNF-CB 

640, CNF-CB 740 and CNF-CB 840 for 24h at current density of 0.5 mA cm-1 in Li-air 

battery under hybrid electrolyte condition. The CNF-CB had stable discharge 

performance without fading, which also showed discharge potential at 2.85, 2.80 and 

2.80 V vs. Li+/Li for CNF-CB 740, CNF-CB 640 and CNF-CB 840, respectively. This 

result indicated that CNF-CB 740 had higher electro catalytic activity for ORR than 

that of CNF-CB 640 and CNF-CB 840 under hybrid electrolyte. 

Figure 3-11. The discharge performance at a current density of 0.5 mA cm-1 for 24 h 

under hybrid electrolyte for CNF-CB 640, CNF-CB 740 and CNF-CB 840, respectively. 
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Moreover, the CNF-CB 740 was obtained best performance such as long cycle number 

and high stability than that of CNF-CB 640, CNF-CB 840 and CB for discharge-charge 

performance as shown in Figure 3-12. The discharge-charge performance was measured 

at 0.5 mA cm-2 with discharge and charge each 2h in cut off voltage from 2.5 V to 4.2 

V. The discharge-charge performance were operated during 264, 280, 176 and 72 hours 

for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, respectively. Thus, the hybrid 

Li-air battery were working for 66, 75, 44 and 18 cycle for CNF-CB 640, CNF-CB 740, 

CNF-CB 840 and CB, respectively. The discharge potential of hybrid Li-air battery cell 

was increased gradually during cell operating, which was over the cut off voltage after 

that time. In contrast, the charge potential showed smaller increase for overpotential 

than that of discharge overpotential. Thus, this result indicated that hybrid Li-air battery 

cell had more performance fading at discharge performance than charge performance. 

In addition, the discharge potential of hybrid Li-air battery cell based on CNF-CB 

showed higher durability for discharge-charge performance than that of CB. This result 

indicated that grown CNF on the carbon surface had something importance role to 

develop carbon durability. 
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Figure 3-12. The discharge-charge performance at a current density of 0.5 mA cm-2 

each 2 h under hybrid electrolyte for CNF-CB 640 (a), CNF-CB 740 (b), CNF-CB 

840 (c) and CB (d), respectively. 

 

Figure 3-13 showed the discharge and charge voltages obtained for all measured 

samples during cycling at a range of 2.5 to 4.2 V. The discharge voltage of CNF-CB 

640, CNF-CB 740, CNF-CB 840 and CB at the 1st cycle was 2.80, 2.75 and 2.77 V vs. 

Li+/Li, respectively. Comparing with the discharge voltage of CNF-CB 740 at the 1st 

cycle was 2.88 V vs. Li+/Li, 1st discharge voltage of CNF-CB 640, CNF-CB 840 and 

CB was small as 0.013 V, indicating the best ORR performance of CNF-CB 740. With 

cycling, the discharge voltage of the CNF-CB 640, CNF-CB 740 and CNF-CB 840 

decreased and the discharge voltage was reached at 2.5 V vs. Li/Li+ after 66, 70 and 44 

cycles, respectively. While, the CB showed discharge voltage of 2.52 V vs. Li+/Li after 

18 cycles. It is thus considered that the CNF grown on CB led to improve the cycle 

stability in hybrid Li-air batteries. The CNF-CB 740 enabled long term cycling 

performance of hybrid Li-air batteries near 300 h, which was much longer times than 
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those of reported Li-air batteries with carbon cathode (120h, 200h ) [1,18]. 

Figure 3-13. The discharge and charge voltages obtained for all measured samples 

during cycling at a range of 2.5 to 4.2 V for CNF-CB 640, CNF-CB 740, CNF-CB 

840 and CB, respectively. 

 

Figure 3-14 showed the discharge rate performance of hybrid Li-air batteries with 

CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB electrodes at various current 

densities up to 1.5 mA cm-2. The operating voltage was at 3.1, 3.12, 3.1 and 3.06 V vs. 

Li/Li+ at 0.001 mA cm-2 for CNF-CB 640, CNF-CB 740, CNF-CB 840 and CB, 

respectively. At 1.5 mA cm-2, the cell potential of the CNF-CB 740 was as high as 2.44 

V vs. Li/Li+ about 300 mV better than that of the CB. On the other hands, the CNF-CB 

640 and 740 were obtained cell potential at 2.36 and 2.31 V vs. Li/Li+, respectively. 

Thus, CNF-CB 640 and CNF-CB 840 had higher potential for about 220 and 250 mV 

than that of CB at 1.5 mA cm-2.  

0 10 20 30 40 50 60 70 80
2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

 

 CNF-CB 640 C  CNF-CB 740 C

 CNF-CB 840 C  CB
P

o
te

n
ti

a
l 

/ 
V

 .
v
s
L

i+
/L

i Cut off voltage = 4.2 V

Cut off voltage = 2.5 V

Cycle number



- 75 - 

 

 

Figure 3-14. The discharge rate performance of hybrid Li-air batteries with CNF-CB 

640 (a), CNF-CB 740 (b), CNF-CB 840 (c) and CB (d) electrodes at various current 

densities up to 1.5 mA cm-2 

 

This result indicated that CNF-CB showed higher stability for discharge at high current 

density. However, each CNF-CB material was different for discharge performance 

depend on grown temperature of CNF. With increasing the current densities, linear 

decrease of the operating voltage of both samples is clearly observed in Figure 3-14.  

We estimated the internal resistance of both samples by analyzing the I-V curve in the 

Figure 3-15. The internal resistance was calculated by Ohm’s equation; 
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Ω =  
∆𝑉

∆𝐼
 

Where, Ω was internal resistance, ∆𝑉 was increased potential and ∆𝐼 was increased 

current, respectively.  

Figure 3-15. The internal resistance for CNF-CB 640 (a), CNF-CB 740 (b), CNF-CB 

840 (c) and CB (d) electrodes by analysing the I-V curve at various current densities 

up to 1.5 mA cm-2. 

The internal resistance for the CNF-CB 740 and CB was estimated to be about 446 and 

666 Ω cm-2, respectively. It was also calculated that the internal resistance of CNF-CB 

640 and CNF-CB 840 was about 514 and 600 Ω cm-2, respectively. This result means 

that the low interfacial resistance of CNF-CB 740 provided the improvement of the 

activity of ORR and cycle stability in hybrid Li-air batteries. 
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3.3.3 The effect of remained Ni3Fe metallic particles for 

characterization and electrochemical performance of CNF-CB series 

The XRD diffraction and TG-DTA result showed that the Ni3Fe metallic particles were 

remained after acidic wash by HCl solution. Even though the quantity of Ni3Fe was 

very small (~ 3wt%), however we should determine electro catalytic activity of Ni3Fe 

particles to analysis role of CNF-CB in Li-air battery under hybrid electrolyte. 

Furthermore, some metallic catalyst such as precious metal or rare metal with their 

composite showed high electro catalytic activation to use only small amount, because 

it had excellent electro catalytic activity for ORR or OER. Therefore, the CNF-CB 740 

after acidic wash with CNF-CB 740 before acidic wash were examined battery test to 

confirm electro catalytic activity of Ni3Fe composite for Li-air battery under hybrid 

electrolyte. The CNF-CB 740 before acidic wash was prepared by same fabrication 

procedure, however the acidic wash step was skipped after grown CNF. 

Figure 3-16 showed XRD pattern for CNF-CB 740 before acidic wash with 

corresponded intensity of Ni3Fe at range 20 to 80 ° (2 theta). The X-ray diffraction 

intensities of Ni3Fe were obtained at 25, 35.7, 44.2, 51.5, 58.1, 64.3 and 75.8 ° (2 theta). 

The largest peak intensity was at 44.2 ° (2 theta) among those peaks. Furthermore, all 

diffraction peaks of Ni3Fe was corresponded with XRD pattern of CNF-CB 740 before 

acidic wash. This result indicated that the Ni3Fe metallic particles was located in CNF-

CB 740. The particle diameter of Ni3Fe was calculated by Scherrer equation. 

 

τ =  
𝑘𝛿

𝛽𝑐𝑜𝑠𝜃
 

 

where, k was the shape factor, which use 0.9 generally, 𝛿 the constant (0.1542), 𝛽 

was the half of maximum XRD peak intensity, and 𝜃 two theta angle for maximum 

intensity. The 𝛽  value calculated by “(the peak intensity of maximum – intensity of 

back ground)/2”. Furthermore, the 2wo theta angle used at 43.8 °.As a result, the 

calculated diameter value of Ni3Fe was near 4.1 nm. 
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Figure 3-16. The XRD pattern for CNF-CB 740 before acidic wash with corresponded 

intensity of Ni3Fe at range 20 to 80 ° of 2 theta. 

 

Figure 3-17 showed TG-DTA curve for CNF-CB 740 before acidic wash. The 

temperature area for TG-DTA measurement was from room temperature to 900 °C in 

air condition and 100 ml s-1 of speed. Moreover, the temperature raising rate was 10 °C 

min-1. From the TG curve, the CNF-CB 740 before acidic wash sample also showed 

nothing mass loss for initial area (~300 °C), which indicated that CNF-CB samples have 

not any functional group on the surface too. In addition, the 8.8 wt% of Ni3Fe was 

remained after carbon combustion, which quantity was higher 5 time. Thus, 80% of 

Ni3Fe particles for CNF-CB 740 was removed during acidic wash by HCl solution.  

Furthermore, DTA curve showed the temperature for carbon decomposition for CNF-

CB 740 before acidic wash sample. The top point of DTA curve was began at 533 ° to 

629 °, which indicated that the CNF-CB 740 was started to decompose at 533 ° and 

finished at 629 °. That was lower temperature than that of acidic washed CNF-CB 740. 

It might be considered that the Ni3Fe metallic particle had an effect to decompose 
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carbon material easier.  

Figure 3-17. The thermo gravimetric (TG) and differential thermal analysis (DTA) 

curve from room temperature to 900 °C of temperature range under air condition (100 

ml min-1) and the 10 °C min-1 of temperature raising speed for CNF-CB 740 before 

acidic wash. 

 

Figure 3-18 showed the 1st cycle discharge-charge performance for CNF-CB 740 before 

acidic wash by HCL solution (a) with CNF-CB 740 (b) after acidic wash samples to 

confirm electro catalytic effect of Ni3Fe metallic particle for Li-air battery under hybrid 

electrolyte. The comparison was occurred only at 1st cycle, because of the almost 

material showed most strong catalytic activation at 1st cycle.  The battery performance 

measurement had same condition with previous analysis, but measuring time was only 

2 h. Both material showed stable discharge-charge performance, however that showed 

difference performance. The CNF-CB 740 after acidic wash showed 2.88 V vs. Li+/Li 

for discharge potential. Furthermore, it also showed 3.78 V vs. Li+/Li for charge 

potential. The overpotential gap of CNF-CB 740 after acidic wash was 0.9 V at 1st cycle. 

In contrast, The CNF-CB 740 before acidic wash samples showed 2.82 and 3.83 V vs. 

Li+/Li for discharge potential and charge potential, respectively. Moreover its 

overpotential gap was little larger than that of washed sample, which was 1.01 V at 1st 

cycle. The 1st cycle performance result indicated that the Ni3Fe had not catalytic activity 
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to improve electrochemical performance in Li-air battery under hybrid electrolyte. Or, 

it interrupted electrochemical reaction for discharge-charge, because non-acidic washed 

sample showed potential fading and higher overpotential gap than that of washed 

sample. 

Figure 3-18. The discharge-charge performance for 1st cycle at a current density of 0.5 

mA cm-2 each 2 h under hybrid electrolyte for CNF-CB 740 before acidic wash (a) 

and after acidic wash (b), respectively. 

 

Moreover, the non-acidic wash CNF-CB 740 was obtained worse performance than that 

of CNF-CB 740 for discharge-charge performance as shown in Figure 3-19. The 

discharge-charge performance was also measured at 0.5 mA cm-2 with discharge and 

charge each 2h in cut off voltage from 2.5 V to 4.2 V. The discharge potential was 

reached cut-off voltage at 222 working hour, thus discharge-charge performance was 

operated during 220 hour. Thus, the hybrid electrolyte Li-air battery cell based on non-

acidic wash CNF-CB 740 was obtained 55 cycle performance. Although the 

overpotential gap at 1st cycle for non-acidic wash CNF-CB 740 showed higher than that 

of acidic wash CNF-CB 740, the charge potential was obtained similar potential with 

acidic wash CNF-CB 740 during cycling performance. In contrast, the overpotential of 

discharging was kept higher than that of acidic wash CNF-CB 740. This result indicated 

that the performance fading might be occurred more during discharging than the 
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charging. 

Figure 3-19. The discharge-charge performance at a current density of 0.5 mA cm-2 

each 2 h under hybrid electrolyte for CNF-CB 740 before acidic wash. 

 

Therefore, the non-acidic wash CNF-CB 740 was measured for BET analysis. As a 

result, the non-acidic wash CNF-CB 740 was obtained lower specific surface area than 

that of acidic was CNF-CB 740, as shown table 3-5. The specific surface area of non-

acidic was 194 m2 /g, which was smaller than 324 m2 /g of acidic was CNF-CB 740. 

Thus, non-acidic was CNF-CB 740 had 40% reduced surface area of CNF-CB 740 after 

acidic wash.  

 

 BET surface area (m2 /g) 

CNF-CB 740 before acidic wash 194 

CNF-CB 740 after acidic wash 324 

Table 3-5. The comparison of BET surface area for CNF-CB 740 before acidic wash 

with after acidic wash. 

This result indicated that the non-activation Ni3Fe metallic particles used many surface. 

Therefore, the smaller surface area of CNF-CB 740 before acidic wash could 
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accommodated tiny area for discharge product such as lithium hydroxide (LiOH). 

Therefore, the discharge performance fading was occurred more easily than that of 

acidic wash CNF-CB 740.  

 

3.4 Conclusion 

 This research aimed to improve cycle performance without using metallic catalyst, 

because of metallic catalyst had a negative side effect for carbon corrosion. Therefore, 

the carbon composite of CNF-CB was prepared CVD method at difference temperature 

condition, which was tested for cathode as Li-air battery under hybrid electrolyte. CNF-

CB materials shown that the difference electro catalytic activation, which might be 

attributed with grown temperature condition for CNF. Furthermore, Ni3Fe metallic 

composite was detected on XRD diffraction of CNF-CB after acidic wash by HCl 

solution. Therefore, the comparative experiment was examined to confirm 

electrochemical effect of remained Ni3Fe. As a result, remained Ni3Fe was not shown 

any electrochemical activation. Moreover, the non-acidic wash CNF-CB sample 

showed poor cycle performance than that of CNF-CB after acidic wash sample. 

Because of the Ni3Fe was decreased surface area. The detail of mechanism of ORR 

for the CNF-CB 740 was not clear yet. However, we have found that the CNF-CB 

740 exhibited good high activity of ORR in alkaline media. This good performance 

of CNF-CB 740 as a catalyst to reduce oxygen may be attributed to the presence of 

active site as shown by specific surface area. Moreover, the CNF-CB 740 enabled long 

term cycling performance of hybrid Li-air batteries near 300 h. This enhanced cycle 

stability could be attributed to the good graphitization of CNF, which is suggested by 

Raman result. It was the first time using CNF-CB as a cathode of hybrid Li-air batteries, 

and these results will encourage further investigation using optimized CNF-CB as a 

promising candidate to replace conventional carbon materials in hybrid Li-air batteries. 

 

3.5 Reference 

[1] E. Yoo, H. Zhou, ACS Nano, 5 (2011) 3020-3026. 



- 83 - 

 

[2] C H. Ahn, T. Okada, M. Ishida, E. Yoo, H. Zhou, Journal of Power Sources, 

307 (2016) 474-480. 

[3] S. Wang, S. Dong, J. Wang, L. Zhang, P. Han, C. Zhang, X. Wang, K. Zhang, 

Z. Lan, G. Cui, J. Mater. Chem., 22 (2012) 21051-21056. 

[4] L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R S. Ruoff, K J. Stevenson, J B. 

Goodenough, Journal of The Electrochemical Society, 158 (2011) A1379-

A1382. 

[5] C. Sun, F. Li, C. Ma, Y. Wang, Y. Ren, W. Yang, Z. Ma, J. Li, Y. Chen, Y. 

Kim, L. Chen, J. Mater. Chem., A 2 (2014) 7188-7196. 

[6] L. Li, A. Manthiram, Nano Energy, 9 (2014) 94-100. 

[7] J S. Lee, G S. Park, H I. Lee, S T. Kim, R. Cao, M. Liu, J P. Cho, Nano Lett., 

11 (2011) 5362-5366. 

[8] J. Wu, H W. Park, A. Yu, D. Higgins, Z. Chen, J. Phys. Chem., C 116 (2012) 

9427-9432. 

[9] E. M. Benbow, S. P. Kelly, L. Zhao, J. W. Reutenuer, S. L. Suib, J. Phys. Chem., 

C 115 (2011) 22009-22017. 

[10] L. Li, S. Liu, A. Manthiram, Nano Energy, 12 (2015) 852-860. 

 [11] J. Huang, B. Zhang, Y. Y. Xie, W. W. K. Lye, Z.-L. Xu, S. Abouali, M. 

Akbari Garakani, J.-Q. Huang, T.-Y. Zhang, B. Huang and J.-K. Kim, Carbon, 

100 (2016), 329-336. 

[12] M. S. Bhuvaneswari, N. N. Bramnk, D. Ensling, H. Ehrenberg, W. Jaegermann, 

Journal of Power Sources, 180 (2008) 553-560. 

[13] S.M. Jang, J. Miyawaki, M. Tsuji, I. Mochida, S.H. Yoon, K. Fei-yu, New 

carbon materials, 25 (2010) 89-96. 

[14] M S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett., 

10 (2010) 751-758. 

[15] T. Jawhari, A. Roid, J. Casado, Carbon, 33 (1995) 1561-1565. 

[16] Y. Wang, S. Serrano, J J. Santiago-Aviles, Synthetic Metals, 138 (2003) 423-

427. 

[17] L.Li, S. Liu and A. Manthiram, Nano Energy, 12 (2015), 852-860.. 

[18] L. Li, A. Manthiram, Adv. Energy Mater, 4 (2014) 1301795. 

 



- 84 - 

 

Chapter 4. Conclusion 

 The main goal of this research was to investigate the electrochemical performance 

improvement for Li-air battery under hybrid electrolyte by using two kind of cathode 

materials. Furthermore, we made an attempt to find unessayed material and applying as 

cathode for Li-air battery. Those material were based on nano structure carbon materials 

such as reduced graphene and carbon nanofiber. Furthermore, we also tried to analysis 

electro catalytic activity for these materials through various equipment.  

Moreover, we endeavored to suggest guidance for investigation of new catalyst 

materials for hybrid Li-air battery to show advantage and challenges for both material. 

The electro catalytic activity and result of battery test for RGO-Co(mqph) and CNF-

CB were to draw the conclusion as following.  

 In chapter 2, we studied Co(mqph) as cathode catalyst to improve electro catalytic 

activity for ORR in hybrid Li-air battery. The result of XRD, SEM, TEM, TG-DTA, 

XDX and XPS measurement showed that Co(mqph) was not decomposed during heat 

treatment, furthermore that was dispersed on the RGO surface very uniformly. The 

electrochemical performance for ORR of RGO-Co(mqph) was analyzed by CV and 

LSV measurement. From the CV and LSV result, RGO-Co(mqph) had on set potential 

at -0.06 V vs. Ag/AgCl for ORR. On the other hands, pristine RGO showed on set 

potential at -0.13 V vs. Ag/AgCl. This result indicated that Co(mqph) improve electro 

catalytic activity for ORR. Furthermore, the electron transferred number of RGO-

Co(mqph) was to be 3.52, however RGO had electron transferred number of only 2.22. 

Thus, RGO-Co(mqph) had 4 electron path way for ORR in aqueous electrolyte. It 

indicated that Co(mqph) enhanced electro catalytic activity for ORR.  

Nevertheless, the RGO-Co(mqph) showed larger overpotential gap than that of pristine 

RGO during cycle performance. It was considered that the carbon oxidation might 

occur by metallic catalyst during cycle performance. 

Even though RGO-Co(mqph) showed improvement of catalytic activity for ORR in 

aqueous electrolyte, it also showed critical problem of carbon oxidation during cycle 

performance. The CNF-CB was used metal-free cathode catalyst to prevent carbon 

oxidation by metallic catalyst in chapter 3.The CNF-CB had different properties such 
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as graphitization, surface area and shape of grown CNF depend on grown temperature 

(640, 740 and 840 °C) during CVD method. It was obtained by TG-DTA, Raman and 

BET that CNF-CB 740 had not only highest graphitization but also largest surface area 

than that of CNF-CB 640 and CNF-CB 840. The pristine CB showed lowest 

graphitization and surface area than that of CNF-CB.  

The CNF-CB 740 showed most long cycle performance (near 300 h) than that of CNF-

CB 640, CNF-CB 840 and CB. In addition, the CNF-CB 740 had internal resistance 

about 466 666 Ω cm-2. It was also calculated that the internal resistance of CNF-CB 

640, CNF-CB 840 and CB was about 514, 600 and 666 Ω cm-2, respectively. This result 

means that the low interfacial resistance of CNF-CB 740 provided the improvement of 

the activity of ORR and cycle stability in hybrid Li-air batteries. 

We demonstrated the electrochemical performance hybrid electrolyte Li-air battery for 

based on RGO-Co(mqph) and CNF-CB as cathode. Both material showed good electro 

catalytic activity for ORR as well as moreover good cycle performance in hybrid 

electrolyte Li-air battery. At same time, both material also showed drawbacks. The data 

shown in this thesis can be help other future research to design catalyst material as 

cathode. 
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