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Abstract

This thesis focuses on developing theory and algorithms for the single-image
super-resolution problem based on filtering and learning methods. Our pro-
posed methods are divided into three categories.

First part, First-order Derivatives- based Super-resolution is filtering based
method. A single fast super-resolution method based on first-order derivatives
from neighbor pixels is proposed. The basic idea of the proposed method is
to exploit a first-order derivatives component of six edge directions around a
missing pixel; followed by back projection to reduce noise estimated by the
difference between simulated and observed images. Using first-order deriva-
tives as a feature, the proposed method is expected to have low computational
complexity, and it can theoretically reduce blur, blocking, and ringing artifacts
in edge areas compared to previous methods. Experiments were conducted us-
ing 900 natural grayscale images from the USC-SIPI Database. We evaluated
the proposed and previous methods using peak signal-to-noise ratio, structural
similarity, feature similarity, and computation time. Experimental results indi-
cate that the proposed method clearly outperforms other state-of-the-art algo-
rithms such as fast curvature based interpolation.

Second part, Super-Resolution via Adaptive Multiple Sparse Representation
is learning based method. We propose a super-resolution algorithm based on
adaptive sparse representation via multiple dictionaries for images taken by
Unmanned Aerial Vehicles (UAVs). The super-resolution attainable through
the proposed algorithm can increase the precision of 3D reconstruction from
UAV images, enabling the production of high-resolution images for construct-
ing high-frequency time series and for high-precision digital mapping in agri-
culture. The basic idea of the proposed method is to use a field server or
ground-based camera to take training images and then construct multiple pairs
of dictionaries based on selective sparse representations to reduce instability
during the sparse coding process. The dictionaries are classified on the basis
of the edge orientation into five clusters: 0, 45, 90, 135, and non-direction.



The proposed method is expected to reduce blurring, blocking, and ringing
artifacts especially in edge areas. We evaluated the proposed and previous
methods using peak signal-to-noise ratio, structural similarity, feature similar-
ity, and computation time. Our experimental results indicate that the proposed
method clearly outperforms other state-of-the-art algorithms based on qualita-
tive and quantitative analysis. In the end, we demonstrate the effectiveness of
our proposed method to increase the precision of 3D reconstruction from UAV
images.

Last part, Deep Residual Learning Super-resolution is learning based method.
The light and efficient residual network for super-resolution is proposed. We
adopt inception module from GoogLeNet to exploit the features from the low-
resolution images and residual learning to have fast training steps. The pro-
posed network called Deep Residual Learning Super-resolution (DRLSR). The
network is proven to have fast convergence and low computational time. It is
divided into three parts: feature extraction, mapping, and reconstruction. In
the feature extraction, we apply inception module followed by dimensional re-
duction. Then, we map the features using simple convolutional layer. Finally,
we reconstruct the HR component using inception module and 1⇥1 convolu-
tional layer. The experimental results show our proposed method can reduce
more than half of computational time from the-state-of-the-art methods, while
still having clean and sharp images.
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Chapter 1

Introduction

1.1 Background

Computer vision is a multidisciplinary field that deals with how computers can be use
to gain high-level understanding from digital images or videos. From the perspective of
engineering, it seeks to automate tasks that the human visual system can do [33]. Computer
vision tasks include methods for acquiring, processing, analyzing and understanding digital
images. It deals with the extraction of high-dimensional data from the real world in order
to represent it as numerical or symbolic information. There are many computer vision
algorithms such as object recognition and object tracking. To get accurate result, the input
images must be in acceptable quality and resolution. However, numerous object was taken
in low-resolution (LR) due to several reason such as small charge-coupled device (CCD)
sensors or image compression. Therefore, the ability of super-resolution (SR) to create
high-resolution (HR) image and enhance the quality to get more accurate result is necessary
as shown in Fig. 1.1.

Figure 1.1: The use of super-resolution in computer vision task

SR algorithms were motivated to solve the problems caused by digital imaging devices
[43]. The invention of digital scanners facilitate the conversion from paper-based docu-
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ments into digital images. However, the image quality was poor, in low-resolution, and
present some noise from COD sensors. With the goal of acquiring sharper and higher reso-
lution image, SR algorithms were developed to combine multiple input LR from repeatedly
scanning the same document with shifts and rotations.

Digital image data are unfortunately often at a lower quality than the desired one, be-
cause of several possible causes: spatial and temporal down-sampling due to noise degra-
dation, high compression, etc. When we consider still images, the new sources of image
contents, like the Internet or mobile devices, have generally a lower quality than high-
definition display standard. Moreover, if we consider the past production, there is an enor-
mous amount of images collected in the years, that are valuable but have a poor quality.
The need of increasing the resolution of an image can also be required by the particular
application context. Many applications, e.g. video surveillance and remote sensing, in fact,
require the display of images at a desired resolution, for specific computer vision tasks like
object recognition, zoom-in operations, or 3D reconstruction. For example, in Fig. 1.2,
we can clearly see that after preprocessing using SR algorithm, the accuracy of 3D model
increased. From these reasons, the urgency to improve the image quality is very important
issue.

Figure 1.2: The example of super-resolution algorithm in 3D reconstruction

With the improvement of computational capability and mobile imaging devices, single
SR has gained more attention with proven success. The fundamental difference is the
number of input LR images required for SR to produce HR image. Since there is merely one
input image, the formulation becomes an under-determined problem rather than an over-
determined one as posited in the classical SR research. Because the problem is ill-posed
and the available image data are limited, priors are exploited in the process to determine
the generated pixel intensities. Numerous methods have been proposed based on different
image properties and they can be roughly categorized into two approaches: filtering-based
(non-learning) and learning-based.
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Filtering methods include, among others, analytic interpolation methods, e.g. tradi-
tional bilinear and bicubic interpolation, which compute the missing intermediate pixels in
the enlarged HR grid by averaging the original pixel of the LR grid with fixed filters. Edge-
direction-based algorithms have been used to improve the limitation of traditional methods
by exploiting local features such as edges by adapting each interpolating surface locally and
assuming local regularity in a curvature. Once the input image has been upscaled to HR
via interpolation, image sharpening methods can be applied. Sharpening methods aim at
amplifying existing image details, by changing the spatial frequency amplitude spectrum
of the image: in this way, the existing high frequencies in the image are enhanced, thus
producing a more pleasant and richer output image.

Starting nineties, many powerful algorithms have been developed to solve different
problems in a variety of scientific areas. Among single-image SR methods, the other im-
portant category is represented by algorithms that make use of machine learning techniques
or learning-based approach. Although covering different meanings, machine learning can
be generally referred to as that branch of artificial intelligence that concerns the construc-
tion and study of algorithms that can learn from data. In SR, learning method aims at es-
timating missing high-resolution detail that is not present in the original image, by adding
new plausible high frequencies from the training data.

Several fundamental questions are still remained for single SR. In this thesis, we aim to
address some of these important issues. For example, what are the important structures that
can exploit and ensure for high-quality results? How to learn generating high-resolution
image patches from low-resolution with and without learning process? In summary, single
SR involves exploiting rich information contained in a single image. The challenges of
single SR include recognizing important visual artifacts, refilling the HR details, and ren-
dering them as faithfully and aesthetically pleasing as possible to be able to increase more
accurate result on doing computer vision task. Addressing these challenges effectively and
efficiently is the main motivation behind the research in this thesis.

1.2 Organization

Interested in the SR approach to the task of increasing the resolution of an image, and
intrigued by the effectiveness of filtering- and learning-based techniques, during this doc-
torate we mostly investigated the SR problem and the application to it. On filtering based
SR, we focus on reducing computational complexity by using only first-order derivative
which involve only subtraction operator. In the other hand, learning-based SR procedures
are patch-based procedures: the input image is partitioned into patches and from a single
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LR input patch a single HR output patch is estimated via learning methods by learning
the correspondences stored in the learned system. Finally, the whole set of estimated HR
patches is then reconstruct to finally build the super-resolved image.

Figure 1.3: Research flowchart

The rest of this manuscript is structured as illustrated in Fig. 1.3. We start with Chap-
ter 1 by explaining the introduction and motivation of our thesis. In Chapter 2, we give a
general overview of SR and going deeper into the classification. The novel filtering based
methods presented in Chapter 3 are a single fast SR method based on first-order derivatives
from neighbor pixels which exploit a first-order derivatives component of six edge direc-
tions around a missing pixel; followed by back projection to reduce noise estimated by the
difference between simulated and observed images. In Chapter 4, we presented an SR al-
gorithm based on adaptive sparse representation via multiple dictionaries for images taken
by Unmanned Aerial Vehicles (UAVs) which construct multiple pairs of dictionaries based
on selective sparse representations to reduce instability during the sparse coding process.
Then, to deal with very high non-linear relation between high- and low resolution images,
we exploit the deep learning capability to propose efficient and fast architecture of convo-
lutional neural networks based SR in Chapter 5. Finally, in Chapter 6 we end the thesis by
summarizing our accomplishments, drawing conclusions from them and discussing about
future directions.
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Chapter 2

Image Super-resolution

2.1 Introduction

Super-resolution (SR) is the process of obtaining high-resolution (HR) image from one
or more input low-resolution (LR). Numerous SR algorithms have been proposed and at-
tracted many researchers to investigate the theory and application of SR [29]. It is found
that SR can be applied in many practical applications such as image and video enhance-
ment, medical images analysis, text analysis, satellite imaging, facial recognition. They are
mainly divided based on the input and output image assumptions which can be categorized
into two different types: spatial or temporal. In the spatial domain, SR aims to create an
image with higher resolution and sharper image. While in the temporal domain, SR aims to
insert extra frames in the video. Spatial SR or image SR has many applications and is the
focus of this thesis. In the following, the term SR refers to algorithms in the spatial domain
unless mentioned otherwise.

Depending on the input image, SR is mainly divided into two types: single- and multi-
image SRs. Multi-image SR requires multiple images to acquire intrinsic characteristics.
It then combines the information to construct a higher resolution image. Multi-image SR
is highly suitable for video enlargement. It can exploit intrinsic characteristics that may
differ from one sequence to another as illustrated in Fig. 2.1. For example, Liu et al. [25]
proposed a Bayesian approach to adaptive video SR that involved simultaneous estima-
tion of underlying motion, blur kernel, and noise level to reconstruct original HR frames;
however, this approach has high computational complexity. Furthermore, the accuracy of
multi-image SR is highly dependent to the variation of input LR images which is unnatural
to obtain multiple images using common camera with different and complex motion, and
known parameters.

The other method, single-image SR, requires only a single image to construct a higher
resolution image. Single-image SR typically exploits the characteristics of the input image
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Figure 2.1: Basic premise for multi-image super-resolution [31]

and uses prior knowledge to learn the relationship between the LR and HR images. Single-
image SR filled the missing pixels by observed the input LR or training data as illustrated in
Fig. 2.2. Therefore, in this thesis, we focus on single-image SR which is highly applicable
to the real world.

Figure 2.2: Basic premise for single-image super-resolution

Based on the approaches [29], single-image SR can be divided into three approaches:
filtering-based, learning-based (non-direct examples), and reconstruction-based (direct ex-
amples). Each approach has published many research papers and designed for both specific
and general purpose. However, the reconstruction-based method is eliminated from this
dissertation because it requires high computational load for searching adequate instances
in the exemplar set. If the exemplar set is large, the load for searching adequate exem-
plars will be high. Moreover, reconstruction approaches did not require training phase
which make direct learning to the examples and produce more noise and instability during
enlargement process.
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The filtering methods were proven to have short computational time. However, it is hard
to achieve the optimal result. Furthermore, the learning-based methods was able to accu-
rately estimate the HR information by using training data but require long computational
time. The more detail description of these two approaches are explained in the following
sections.

2.2 Filtering-Based Approaches

Filter-based approaches focus on obtaining reasonably good result with short computa-
tional time. The focus of this approach is to be able to minimize the use of computational
resource and mainly works on spatial domain. The first conventional methods utilize low
complexity and easy implementation. The classic nearest neighbor, bilinear, and bicubic
interpolation methods have been widely applied for real-time processing in image viewers
and image-processing tools [30]. However, these methods produce unnatural images due to
excessive blurring and jagged artifacts [2]. Such conventional methods do not use a prior
model between HR and LR images, which plays a strong role in algorithm performance
relative to quality improvement.

Edge-direction-based algorithms, often called edge-adaptive algorithm, have been used
to overcome that limitation by exploiting local features such as edges [14, 24, 17, 18, 39].
For example, new edge directed interpolation (NEDI) [24] provides good results by adapt-
ing each interpolating surface locally and assuming local regularity in a curvature. Fast
curvature based interpolation (FCBI) [14], inspired by NEDI, obtains interpolated pix-
els by averaging two pixels determined by second-order directional derivatives of image
intensity. An improved version of the FCBI algorithm, i.e., iterative curvature based in-
terpolation (ICBI), which optimizes interpolated pixels using iterative correction has been
introduced [14]. Haris et al. [18] proposed the improvement of FCBI algorithm by in-
troducing single-image SR that extends from two to six directions and accommodates a
wide range of the interpolating directions of the missing pixels, then improve the result by
back-projection algorithm.

Many researcher explore on this approach because it is highly suitable for real-time
application due to its low computation and insensitivity to training data. Moreover, this
type of SR is very easy to implement. However, the result cannot produce sharper and
clearer HR image compare to learning-based approach.
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2.3 Learning-Based Approaches

Learning-based SR were first introduced in 1985 by [28] which used neural-network to
improve the resolution of fingerprint images. This approach can be divided into two types
of input domain: spatial- and frequency-based. In the spatial-based approaches, the SR
algorithm directly extracts the features or high frequency components from the pixel values.
However, in frequency-based approach, the input image first transforms to the frequency
domain, such as wavelet transform and fourier transform, then transforms back to spatial
domain.

Takeda et al. [36] generalized the use of spatially adaptive (steering) kernel regression,
which produces results that preserve and restore details with minimal assumptions about
local signal and noise models. An improvement of previous algorithm also proposed us-
ing adaptive enhancement and spatiotemporal up-scaling of videos without explicit motion
estimation [37]. However, this method is not robust and is sensitive to parameters such as
smoothing.

Danielyan et al. [6] proposed spatially adaptive filtering in the image domain and pro-
jection in a wavelet domain. Mallat et al. [27] introduced a class of inverse problem
estimators computed by adaptively mixing a family of linear estimators corresponding to
different priors computed over a wavelet frame. Demirel et al. [7] investigated discrete
wavelet transform to decompose the input image into different sub-bands. Celik et al. [4]
exploit a forward and inverse dual-tree complex wavelet transform to construct an HR im-
age from the given LR image. However, these methods are computationally very complex.

SR using sparse representation has become popular because of its ability to naturally
encode the semantic information of images [10]. By collecting representative samples in
order to create an over-completed dictionary, it is possible to discover the correct basis for
correctly encoding an input image. The studies by Yang et al. [44] and Zeyde et al. [45]
focused on using a single pair of dictionaries; intuitively, however, using a single pair of
dictionaries can produce many redundancies, which may cause instability during the image
reconstruction process.

The latest convolutional neural networks (CNNs) is used in many image processing
algorithm with large improvement in accuracy. On SR algorithm, Cao dong et al.[8] has
demonstrated a CNNs’ ability mapping LR to HR patches called Super-resolution Convo-
lutional Neural Networks (SRCNN). The method is constructed by a very simple and a
lightweight structure CNNs using two hidden layers and 3⇥3 filter size. Jiwon Kim et al.
[22] introduces Very Deep Convolutional Networks (VDSR), a very deep CNN with resid-
ual learning, which proven have accurate result but have critical issues on convergence
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speed. VDSR includes 20 layer of CNN using 3⇥3 filter size. The recent improvement has
been published. FSRCNN [9] demonstrated superior performance than previous SRCNN.
They focused on improving the current SRCNN and proposed faster and more accurate
algorithm. FSRCNN redesign the network using three main principal: deconvolution, di-
mension shrinking, and smaller filter.

2.4 Our Contributions

The SR algorithm is the core algorithm to support computer vision tasks, such as pattern
recognition and 3D reconstruction. It has the ability to transform the input image/video
to acceptable resolution for improving the accuracy of computer vision tasks. However,
in terms of the application, the requirements of each task are different and unique. For
example, in video streaming application, the SR algorithm has to offer low computation
algorithm without the use of training data to avoid the bottleneck during data transfer in the
network. In the application for satellite images, the training data is limited, the proposed
SR algorithm should be insensitive to training data. Moreover, in 3D reconstruction, the
details and quality of input images are necessary, we should use many training data to
improve the proposed SR algorithm.

The existing SR problems solved by varieties solutions offered by researchers. The
same with our research, we aim to offer various solutions which suitable for many ap-
plications depend on the requirements. Nowadays, the researchers focus on dividing SR
based on the theoretical approach as mentioned in the previous section. However, in the
application problems, the author found three main problems existed during SR algorithm
implementation: computational time, sensitivity to training data, and quality improvement.
Therefore, in this dissertation, we deeply investigate the SR based on the application prob-
lems which divided into three categories: non training data, limited training data, and un-
limited training data.

On non training data approaches which is low computational process, we proposed
filtering based methods using first-order derivatives from neighbor pixels on six edge di-
rections around a missing pixel, then followed by back projection to reduce noise estimated
by the difference between simulated and observed images. The next proposed method is
insensitive to training images. We develop an adaptive sparse representation via multiple
dictionaries based on selective sparse representations to reduce instability during the sparse
coding process using limited training data. Last, we propose a method where training data
is unlimited. In this case, we propose to use convolutional networks which has been proven
to construct the best image quality.
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In details, we also show the importance of feature variation in developing SR algo-
rithms. In our proposed methods, we focus to use multiple features, such as multiple edge
direction and convolution filter, to extract the contextual information from the input images
or videos. Moreover, we show that multiple feature extractions are not only able to increase
the quality of SR result, but also deliver efficient and low computation algorithm if treated
correctly based on the nature of the images.

In summary, we offer the solution for different problems based on the main imple-
mentation problem. We aim to develop SR algorithm as a service where the end user can
easily choose the required SR algorithm for each application. With many application re-
quirements, the end user can use our proposed methods easily and produce the expected
result.
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Chapter 3

First-order Derivatives- based
Super-resolution

3.1 Introduction

The need for a fast super-resolution (SR) method has become increasingly necessary due
to increased availability of SR hardware such as televisions and smartphones, which have
low computational capacity. Mobile devices have limited ability to enlarge images and
videos, which are still available in lower-resolution formats (such as older videos on the
Internet). The primary problem of an enlarging process is to predict missing areas using
existing pixels. Therefore, developing an algorithm to predict the most suitable pixel value
in the missing area effectively is extremely challenging.

Depending on the input image, SR is primarily divided into two types, i.e., single- and
multi-image SRs. Multi-image SR requires multiple images to acquire intrinsic character-
istics. It then combines the information to construct a higher resolution image. However,
in daily applications, it is unnatural to obtain multiple images using common camera with
known parameters. Single-image SR requires only a single image to construct a higher res-
olution image. Single-image super-resolution typically exploits the characteristics of the
input image and uses prior knowledge to learn the relationship between the low- (LR) and
high-resolution (HR) image. Therefore, our proposed method uses single-image SR which
is highly applicable to the real world.

Utilizing their low complexity and easy implementation, classic nearest neighbor, bilin-
ear, and bicubic interpolation methods have been widely applied for real-time processing in
image viewers and image-processing tools [30]. However, these methods produce unnatu-
ral images due to excessive blurring and jagged artifacts [2]. Such conventional methods do
not use a prior model between HR and LR images, which plays a strong role in algorithm
performance relative to quality improvement.

11



Multi-image SR is highly suitable for video enlargement. It can exploit intrinsic charac-
teristics that may differ from one sequence to another. Liu et al. [25] proposed a Bayesian
approach to adaptive video SR that involved simultaneous estimation of underlying motion,
blur kernel, and noise level to reconstruct original HR frames; however, this approach has
high computational complexity.

Takeda et al. [36] generalized the use of these techniques to spatially adaptive (steer-
ing) kernel regression, which produces results that preserve and restore details with mini-
mal assumptions about local signal and noise models. An improvement that uses adaptive
enhancement and spatiotemporal up-scaling of videos without explicit motion estimation
has been proposed [37]. However, this method is not robust and is sensitive to parameters
such as smoothing.

Danielyan et al. [6] proposed spatially adaptive filtering in the image domain and pro-
jection in a wavelet domain. Yang et al. [44] designed a pair of sparse to construct an HR
image. Mallat et al. [27] introduced a class of inverse problem estimators computed by
adaptively mixing a family of linear estimators corresponding to different priors computed
over a wavelet frame. Demirel et al. [7] used discrete wavelet transform to decompose the
input image into different sub-bands. Celik et al. [4] used a forward and inverse dual-tree
complex wavelet transform to construct an HR image from the given LR image. However,
these methods are computationally very complex.

Edge-direction-based algorithms, often called edge-adaptive algorithm, have been used
to overcome that limitation by exploiting local features such as edges [14, 24, 17]. For ex-
ample, new edge directed interpolation (NEDI) [24] provides good results by adapting each
interpolating surface locally and assuming local regularity in a curvature. Fast curvature
based interpolation (FCBI) [14], inspired by NEDI, obtains interpolated pixels by averag-
ing two pixels determined by second-order directional derivatives of image intensity. An
improved version of the FCBI algorithm, i.e., iterative curvature based interpolation (ICBI),
which optimizes interpolated pixels using iterative correction has been introduced [14].

Learning from the FCBI algorithm, we propose single-image SR that extends from two
to six directions and accommodates a wide range of the interpolating directions of the miss-
ing pixels. The use of first-order derivatives can reduce computational complexity because
the main process uses only a subtraction operator. As mentioned before, previous inter-
polation methods have several drawbacks, including (1) blurring, blocking, and ringing
artifacts in edge areas; (2) less smoothness along edges; (3) discontinuity along edges; and
(4) high computational complexity. Therefore, a simple and fast mechanism to interpolate
edges based on the largest first-order derivatives is proposed to solve these problems. Ta-

12



ble 3.1 shows a comparison of the proposed method and previous methods based on our
experiment results.

Table 3.1: Comparison between proposed algorithm and previous methods (� = good, 4
= normal, ⇥ = not good)

Method Computation Time Image Quality

Nearest neighbor � ⇥
Bilinear � ⇥
Bicubic 4 4
KR[37] 4 4
SpR[44] ⇥ �
SME[27] ⇥ �
FCBI[14] � 4
ICBI[14] 4 �
NEDI [24] 4 4
DFDF[47] 4 4
Proposed � �

This remainder of this paper is organized as follows. Section 3.2 explains the FCBI
algorithm. Section 3.3 introduces the proposed algorithm and a flowchart of the system.
Section 3.4 demonstrates the results of experiments and analysis on the basis of four factors:
peak signal-to-noise ratio (PSNR), structural similarity (SSIM), feature similarity (FSIM)
index, and computational time.

3.2 Fast Curvature Based Interpolation

Here, we describe the FCBI algorithm [14]. First, we present the mechanism by which
the FCBI algorithm copies original pixels to a new enlarged grid and then performs edge
confirmation. Next, we describe the calculation of edge direction. After the edge direc-
tion is obtained, new interpolated pixels are calculated on the basis of the direction. Last,
we discuss the limitation of FCBI and describe how the proposed method can outperform
FCBI.

3.2.1 Copying original pixels (FCBI Step 2.2.1)

The original image is formulated with M as height and N as width, where total pixels is
M ⇥N. Let X = {xm : m = 0,1,2, ...,M � 1} and Y = {yn : n = 0,1,2, ...,N � 1} be finite
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sets that determine the number of pixels. The original image is defined as the function
f : X ⇥Y ! I where I = {0,1,2, ...,255} is the value of each pixel. Then, an enlarged
grid (M

0 ⇥N
0
) applies the following condition, M

0
> M and N

0
> N. Let X

0
= {x

0
m : m =

0,1,2, ...,M
0 � 1} and Y

0
= {y

0
n : n = 0,1,2, ...,N

0 � 1} be finite sets that determine the
number of pixels in the enlarged image.

Technically, FCBI image I f (xp,yq) copies all pixels from the original image and then
calculates missing pixels using first- and second-order derivatives filter. The FCBI image’s
size is powered by order two from the original image. The total number of pixels is M

0 ⇥N
0
,

where M
0
= ((M ⇥ 2zk)� (2zk � 1)), N

0
= ((N ⇥ 2zk)� (2zk � 1)), and zk 2 Z (zk is the

interpolation zoom factor). To obtain the relation between (m
0
,n

0
) and (m,n), we calculate

m = b((m0 �1)/2)c and n = b((n0 �1)/2)c if m
0
and n

0
are available. The floor function is

defined as bxc= max{r 2 Z|r  x}, where x is a real number and {Z,r} are sets of integers,
i.e., positive, negative, and zero.

3.2.2 Checking edge or texture (FCBI Step 2.2.2)

In signal processing, first-order derivatives can be represented as three types of signals: dis-
continuity (edge), texture, and smoothness. In this step, FCBI uses a parameter of constant
value to determine the edge. Here, v1, v2, p1, p2, and T M are parameters used to interpo-
late I f (i, j) based on Algorithm 1, where v1 and v2 are first-order derivatives of intensity in
the particular coordinates, p1 and p2 are the average of two neighbor pixels, I1, I2, I3, I4 are
neighbor pixels, and T M is a constant value as shown in Fig. 3.1.

Figure 3.1: Checking edge or texture (FCBI Step 2.2.2): (A) Diagonal left-right; (B)
horizontal-vertical (I1, I2, I3, and I4 are neighbor pixels)

Figure 3.2 illustrates the edge determination step. First, we calculate the value of pa-
rameters v1,v2, p1, and p2 on the basis of Algorithm 1. In Fig. 2, the discontinuity from the
corresponding pixels is clearly shown in the edge area. The texture area shows only gra-
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dation of texture without clear discontinuity. Using the constant value T M as a threshold,
FCBI can obtain the edge area using simple calculation.

Algorithm 1: FCBI Step 2.2.2: Interpolation for edge area [14]
Result: Missing pixel I f (i, j)

1 initialization;
2 v1 = |I1 � I4|;
3 v2 = |I2 � I3|;
4 p1 = (I1 � I4)/2;
5 p2 = (I2 � I3)/2;
6 if (v1 < T M^ v2 < T M^ |p1� p2|< T M) then
7 it is not edge, go to (Step 2.2.3)
8 else
9 it is edge;

10 if v1 < v2 then
11 I f (i, j) = p1
12 else
13 I f (i, j) = p2

Figure 3.2: Sample of FCBI Step 2.2.2. For the texture image, v1 = 1,v2 = 3, p1 = 120,
and p2 = 119. For the edge image, v1 = 52,v2 = 186, p1 = 143, p2 = 128.

3.2.3 Checking texture direction (FCBI Step 2.2.3)

After the edge area is determined, each identified texture area requires a further calculation
to obtain the interpolation direction. This stage uses a second-order derivatives filter from
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eight-neighbor pixels. The equation is expressed as follows [14].

Ĩ1(xm0 ,yn0 ) = f (xm�1,yn+1)+ f (xm,yn)

+ f (xm+1,yn�1)�3 f (xm,yn+1)

�3 f (xm+1,yn)+ f (xm,yn+2)

+ f (xm+1,yn+1)+ f (xm+2,yn),

(3.1)

Ĩ2(xm0 ,yn0 ) = f (xm,yn�1)+ f (xm+1,yn)

+ f (xm+2,yn+1)�3 f (xm,yn)

�3 f (xm+1,yn+1)+ f (xm�1,yn)

+ f (xm,yn+1)+ f (xm+1,yn+2).

(3.2)

3.2.4 Interpolating missing pixel (FCBI Step 2.2.4)

After all direction calculations are completed, as shown in Eqs. (1) and (2), we interpo-
late I f (xm0 ,yn0 ) by calculating the average of two neighbors in the direction wherein the
derivative is lower, which is expressed as follows [14].

I f (xm0 ,yn0 ) =

8
><

>:

ja1 +b1

2

k
; if Ĩ1(xm0 ,yn0 )< Ĩ2(xm0 ,yn0 )ja2 +b2

2

k
; otherwise.

Here,

a1 = f (xm,yn)

a2 = f (xm+1,yn)

b1 = f (xm+1,yn+1)

b2 = f (xm,yn+1)

(3.3)

3.2.5 Limitation of FCBI

In Fig. 3.3, we illustrate how the first- and second-order derivatives work in a 1D signal.
The first-order derivatives are useful for selecting the strongest edges by thresholding the
gradient magnitude. The zero-crossings of the second-order derivatives are useful for local-
ization of the edge. Both are used by FCBI to obtain the interpolation direction. Diagonal
gradients of the surrounding blocks of missing pixels are used to ensure better detection
of edge locations in natural images; then, the average of two neighbors from the directions
are used to fill the missing pixel. However, the diagonal gradient is insufficient to accom-
modate all possible edge directions. This limitation can cause a blur effect and makes it
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Figure 3.3: First- and second-order derivatives

difficult to preserve the detail element during interpolation. Therefore, extending to six
edge directions is proposed.

Figure 3.4: FCBI interpolation can cause some artifacts. Original pixels is 71, while inter-
polation from FCBI is p1 = 90 or p2 = 124

Figure 3.4 shows the differences between a real HR pixel value and FCBI results.
Both directions (p1 = 90 and p2 = 124) have different values from the original pixel
(I(m,n) = 71), which is shown in red. FCBI uses both first- and second-order derivatives
filters to detect the interpolation direction, which still have limitations as shown by this
case. Meanwhile, the proposed method only uses first-order derivatives, which can ensure
lower computational complexity and better quality.
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3.3 Proposed Method

In this section, the core algorithm of the proposed method is explained. Then, we describe
backprojection, which is an algorithm to smoothen the high frequency of the proposed
method’s result. The proposed algorithm consists of three stages, i.e., initialization, inter-
polation, and smoothing. A complete flowchart of the proposed method is given in Fig.
3.5.

Figure 3.5: Flowchart of the proposed method

3.3.1 Initialization (Proposed Step 1)

The proposed method uses 2⇥ magnification. The total number of pixels is M
0 ⇥N

0
, where

M
0
= ((M⇥2zk)�(2zk�1)), N

0
= ((N⇥2zk)�(2zk�1)), and zk 2 Z. Here, zk is the inter-

polation zoom factor and M⇥N is the width and height of an LR image. The initialization
stage begins by copying all original pixels I(m,n) to an enlarged grid I f (m

0
,n

0
) as shown

in Fig. 3.6.

3.3.2 First-order derivatives interpolation (Proposed Step 2)

Many methods, such as the Sobel operator, have been developed to discover the direction of
an edge. First-order derivatives, which have low computational complexity, are a common
feature used to estimate edge direction. The core module of this algorithm is discussed in
the following section.
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Figure 3.6: Proposed Step 1: Copy all original pixels I(m,n) to an enlarged grid I f (m
0
,n

0
).

3.3.2.1 Edge direction and weight calculation

The interpolation step of the proposed method is divided into two stages: diagonal (Stage
1) and vertical-horizontal (Stage 2), as shown in Fig. 3.7.

Figure 3.7: Interpolation in the proposed method. Stage 1 is diagonal; Stage 2 is vertical-
horizontal.

The six directions proposed by our algorithm are shown in Figs. 3.8 and 3.9. In the
figures, black corresponds to a missing pixel (Ik(xm0 ,yn0 )) and blue corresponds to neighbor
pixels. In each direction, we group the pixels into two matrices a and b. This rule is also
applied to the second stage of the interpolation.

Let K be the filter to calculate the weight from each element of neighbor pixels. Func-
tions diff1(a,b, t) and diff2(a,b, t) are used to calculate the absolute difference between ma-
trix a and b for each direction, where t is the interpolation direction. diff1(a,b, t) calculates
the direction where a missing pixel is interpolated from the side neighbor pixels (where
t={1,2,3,4}), and diff2(a,b, t) calculates the direction where a missing pixel is interpolated
from the crossing neighbor pixels (where t={5,6}). These functions are expressed by Eqs.
4, 5, and 6.

K = [1,�1,�1,1];

ddt =

(
K ⇤diff1(a,b, t), if t = {1,2,3,4}
K ⇤diff2(a,b, t), else if t = {5,6};

dht =

(
K ⇤diff1(a,b, t), if t = {1,2,3,4}
K ⇤diff2(a,b, t), else if t = {5,6};

(3.4)
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Figure 3.8: Stage 1 edge directions (ddt)
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3.3.2.2 Interpolation direction

The last step is to obtain the interpolation direction and calculate the missing pixel. In Fig.
3.10, black corresponds to the missing pixel (Ik(xm0 ,yn0 )) and red corresponds to neighbor-
ing pixels.

This step begins after completing Proposed Step 2. We calculate the missing pixel
by averaging the neighbor from the strongest direction. We determine the largest value
of ddt and dht and obtain the maximum index tmax. Then, we obtain the corresponding
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Figure 3.9: Stage 2 edge directions (dht)

Figure 3.10: Interpolation pixels are calculated from the average of neighbor pixels (Stage
1: iddt) and (Stage 2: idht)

interpolation value with the maximum index (Eq.3.7 for Stage 1 and Eq.3.8 for Stage 2.

ddmax = max(dd1,dd2,dd3,dd4,dd5,dd6);

Ik(xm0 ,yn0 ) = iddmax

(3.7)

dhmax = max(dh1,dh2,dh3,dh4,dh5,dh6);

Ik(xm0 ,yn0 ) = idhmax

(3.8)

3.3.3 Back Projection (Proposed Step 3)

Back projection is used to construct an image by taking each view and smearing the image.
The HR image is estimated by back projecting the difference between the simulated and
observed LR images. The process is iterated until some criterion is met, such as minimiza-
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tion of the energy of the error, or the maximum number of allowed iterations is reached.

Figure 3.11: Back-projection flowchart

The process begins with the input LR and HR image. First, the initial HR image (in-
terpolated image) is degraded and down-sampled to generate the observed LR image. The
input LR image is subtracted from the observed LR image. Then, the difference is upscaled
and added to the initial HR image. Generally, the HR image is estimated by a high-pass
filter for edge projection and back-projecting the error (difference) from the simulated and
the observed LR image. The back-projection step is illustrated in Fig. 3.11.

Figure 3.12: RMSE for each back projection iteration
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In the proposed method, we use 20 iterations without other criteria. The number of
iteration was selected to simplify the process and was chosen on the basis of the analysis
of the experiment results. We found that 20 iterations were optimal to reduce image noise.
In graph in Fig. 3.12 shows that the error is constant after 20 iterations.

3.4 Experimental conditions and results

We conducted experiments to confirm the efficiency of the proposed method and analyzed
the result quantitatively and qualitatively. All experiments were conducted using Matlab
R2009b on OS X Yosemite 10.10.3 (Intel Core i5@2.3GHz, 8GB RAM). We used an
images dataset from the USC-SIPI Image Databases. The test images contained various
patterns and natural objects. Example images from the dataset are shown in Fig.3.13. The
image criteria for the experiments were grayscale images (intensity range, 8 bits), images
(256 x 256 pixels), and using 900 images.

Figure 3.13: Example test images from the USC-SIPI Image Database

The experiments compared the observed images obtained by downsampling original
images and enlarging the downsampled results using different methods and various scales.
We compared 11 methods: nearest neighbor, bilinear, bicubic, kernel regression (KR) [37],
sparse representation (SpR) [44], sparse mixing estimator (SME) [27], FCBI, ICBI [14],
NEDI [24], directional filtering and data fusion (DFDF) [47], and the proposed method.

The algorithms used in the experiments have different characteristics. Therefore, to
obtain objective comparisons, all parameters used in training and testing were similar to
those recommended in the respective literature.
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3.4.1 Quantitative analysis

PSNR [21], SSIM [41], FSIM [48], and computational time were used as quantitative mea-
surements. The PSNR (dB) between the original image and the upscaled image was de-
termined according to the literature [21]. The SSIM measures the quality of images on
the basis of the structural content of the original image and the magnified image. FSIM is
based on the fact that the HSV primarily understands an image according to its low-level
features. Two features are considered in the FSIM computation: the primary feature (i.e.,
phase congruency), which is a dimensionless measure of a local structure’s significance,
and the secondary feature (i.e., image gradient magnitude). FSIM combines both features
to characterize the local quality of the image. Higher PSNR, SSIM, FSIM indicate better
quality. CPU time was computed using Matlab functions (tic and toc), which measure the
elapsed time of a certain process.

Table 3.2: Average quantitative results (PSNR, SSIM, and FSIM for 2x magnification)
Methods PSNR SSIM FSIM

Nearest neighbor 25.712±3.55 0.776±0.07 0.841±0.04
Bilinear 26.118±3.72 0.778±0.07 0.830±0.04
Bicubic 26.712±3.75 0.803±0.07 0.848±0.04
FCBI 26.107±3.70 0.782±0.07 0.834±0.04
ICBI 26.604±3.73 0.802±0.07 0.848±0.04
DFDF 26.249±3.72 0.787±0.07 0.836±0.04
NEDI 25.444±3.61 0.758±0.08 0.819±0.04
SpR 25.884±3.54 0.794±0.07 0.846±0.04
SME 26.521±3.73 0.799±0.07 0.845±0.04
KR 26.085±3.71 0.777±0.07 0.818±0.04
Proposed 27.268±3.71 0.830±0.06 0.872±0.03

Table 3.2 and 3.3 shows the qualitative results for images with 2x and 4x magnification.
The average values from three measurements are provided. The results confirm that the
proposed method outperforms the other methods. The proposed method achieves the best
PSNR, SSIM, and FSIM values. As observed in Table 3.2 and 3.3, the proposed method
gave higher PSNR, SSIM, and FSIM values for 2x magnification (approximately 4.5%,
6.1%, and 4.6%) and 4x magnification (approximately 4.4%, 7.3%, and 6.4%) respectively,
compared to FCBI, which has relatively equal elapsed time.

Generally, the proposed method gave the highest values for PSNR, SSIM, and FSIM
compared to the other methods, ranging from 2-7%, 3-9%, and 3-6% for 2x magnification
and 1-12%, 2-15%, and 3-14% for 4x magnification.
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Table 3.3: Average quantitative results (PSNR, SSIM, and FSIM for 4x magnification)
Methods PSNR SSIM FSIM

Nearest neighbor 23.014±3.32 0.615±0.11 0.678±0.06
Bilinear 23.459±3.46 0.632±0.11 0.731±0.06
Bicubic 23.864±3.51 0.653±0.11 0.749±0.06
FCBI 23.106±3.43 0.622±0.11 0.729±0.06
ICBI 23.400±3.46 0.638±0.11 0.743±0.06
DFDF 23.179±3.45 0.626±0.11 0.728±0.06
NEDI 22.131±3.27 0.582±0.12 0.708±0.06
SpR 21.530±3.20 0.579±0.12 0.735±0.05
SME 23.361±3.46 0.636±0.11 0.741±0.06
KR 23.095±3.45 0.619±0.12 0.722±0.06
Proposed 24.131±3.48 0.668±0.10 0.775±0.05

The elapsed times of each method are shown in Table 5.3. Nearest neighbor, bilinear,
and bicubic are excluded because we used Matlab’s built-in function. As observed, the
proposed method required the least amount of time among all methods. The proposed
method and FCBI required nearly the same amount of time, followed by ICBI, which is an
extension of FCBI with an iterative function. SpR required the greatest time (approximately
215 seconds for 2x enlargement), and SME required approximately one-half the elapsed
time of SpR. However, it should be noted that our proposed method has been optimized by
using built in function of bicubic interpolation during the back-projection step.

Table 3.4: Average elapsed time for 2x magnification (seconds)
Methods Elapsed time

FCBI 0.756±0.03
ICBI 1.201±0.19

DFDF 5.589±0.34
NEDI 7.129±0.45
SpR 215.040±16.55
SME 102.180±4.96
KR 6.442±0.33

Proposed 0.705±0.06

3.4.2 Qualitative analysis

Here, we present a qualitative evaluation of the results obtained by the proposed and pre-
vious methods. 2x and 4x magnification was used to clarify the results without blurring,
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ringing, blocking artifacts, etc. Note that in the following figures, red arrows indicate
clearly identifiable noise.

In Fig. 3.14 (2x magnification), with the exception of the proposed method, all images
suffer from many types of artifacts. However, in 4x magnification, it is very difficult to
distinguish the best quality image. Note that most algorithms suffer from some noise.
We also compared the proposed method to FCBI, which is most closely related to the
proposed method. In Fig. 3.15, the proposed method clearly demonstrates better texture
and smoother edges with less blur.

However, there are some anomalies in the qualitative and quantitative experiments. For
example bicubic, which ranked second in our quantitative analysis, suffers from signifi-
cantly more artifacts, particularly blurring, than SpR, which demonstrated lower PSNR,
SSIM, and FSIM values. From a qualitative perspective, SpR demonstrates very good re-
sults that are close to the quality of the proposed method. Other methods, such as ICBI and
SME, also demonstrate very good results, yet suffer from some artifacts.

This analysis verifies that the proposed method can reduce common artifacts such as
ringing, blurring, and blocking. It is also proven that the proposed method can successfully
reconstruct image details.
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Figure 3.14: Experimental results for 2x magnification. (A) ground truth, (B) nearest neigh-
bor, (C) bilinear, (D) bicubic, (E) DFDF, (F) FCBI, (G) ICBI, (H) KR, (I) NEDI, (J) SME,
(K) SpR, and (L) the proposed method

Figure 3.15: Comparison of FCBI and the proposed method for 2x magnification: (A)
ground truth, (B) FCBI, and (C) the proposed method
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Chapter 4

Super-Resolution via Adaptive Multiple
Sparse Representation

4.1 Introduction

The use of unmanned aerial vehicles (UAVs) in agriculture has increased in recent years
[32, 11, 15]. The use of UAVs offers alternatives to manual breeding methods in agriculture,
which are laborious, time-consuming, unreliable, and often impossible to implement. For
example, high-frequency time series data are almost impossible to obtain without the use
of a UAV. Moreover, large-scale, hilly landscapes make it impractical to manually analyze
each tree individually using hand-held or ground-based devices. The use of UAVs can
overcome such limitations, and UAV imaging offers advantages in terms of high-resolution
data and precise 3D imaging.

Table 4.1: Comparison of agricultural monitoring systems (� = superior, 4 = average, ⇥
= poor).

Method Hand-held device Ground-based device UAV Aircraft Satellite

Frequency ⇥ 4 � 4 ⇥
Coverage ⇥ ⇥ 4 � �
Cost � 4 4 ⇥ ⇥
User friendly � 4 � ⇥ ⇥
Resolution � � 4 4 ⇥

Examples of some of the advantages offered by the use of UAVs over traditional field-
based monitoring methods are listed in Table 4.1. UAV imaging can efficiently provide
high-frequency time series data, whereas aircraft and satellite systems are very complicated
and their use requires arrangements be made in advance. Hand-held and ground-based
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devices have short preparation times but require long execution times. In terms of coverage,
aircraft and satellites perform well because they can rapidly image several hectares in area,
but they produce low-resolution images. By contrast, UAVs can provide better resolution
as they have adjustable flight altitudes. Although hand-held and ground-based devices can
provide the best resolution because they can observe parts of plants in detail, they cannot
be used for large area and coverage or to produce high-frequency time series data. UAVs
also require lower expenditures than aircraft or satellite as UAV sensors are much cheaper.
As a UAV can be operated autonomously, control by the end user is much simpler. These
advantages make UAV utilization in agricultural monitoring quite useful by offering a new
perspective from which to monitor the ground with high precision [46].

The main problems in constructing 3D high-resolution maps using UAV images are
flight-time limitations and image quality from the target object. Taking aerial images of a
large field will consume a large amount of time, and to reduce time consumption, it is nec-
essary to set an optimum height for UAV flight. However, maximizing the height, which
increase the viewing perspective of the UAV and thus potentially reduces the flight time, re-
duces the optical detail of a target object. Therefore, it is necessary to use a super-resolution
(SR) technique to obtain higher-resolution, high-precision images of target objects [5].

Figure 4.1: DJI Phantom and Field Server sample images.

Field Server (FS) systems [12, 16] can be used for ground-based monitoring via a se-
ries of small sensor nodes equipped with a Web server that can be accessed via the Internet
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and communicate, unlike traditional sensor nodes, through a wireless LAN over a high-
speed transmission network. An FS system can be easily installed for remotely monitoring
field information anywhere. By including the functionality of a Web server in each mod-
ule, an FS system can collectively manage each module over the Internet, producing high-
resolution images that can be used as training images for an SR algorithm. A comparison
of FS and UAV images is shown in Fig. 4.1.

Depending on the input image, SR imaging is primarily divided into two types, i.e.,
single- and multi-image SR imaging. Multi-image SR requires multiple images to acquire
intrinsic characteristics; it combines the information from each image to construct a higher-
resolution image. In day-to-day applications, however, it is unusual to obtain multiple
images using a generic camera with known parameters. Single-image SR requires only a
single image to construct a higher-resolution image - a much simpler task than multi-image
SR. Single-image SR typically exploits the characteristics of the input image and uses prior
knowledge to determine the relationship between a low- (LR) and high-resolution (HR)
image. Our proposed method therefore uses single-image SR, which is highly suitable
for the use real world applications. Furthermore, training based on SR can produce better
prediction using a training model for enlarging images of phenotyping fields.

Owing to their low complexity and ease of implementation, classic nearest neighbor,
bilinear, and bicubic interpolation methods have been widely applied in image processing
[30]. However, such methods produce unnatural images due to excessive blurring and
jagged artifacts [2].

Multi-image SR is highly suitable for video enlargement. It can exploit intrinsic charac-
teristics that may differ from one sequence to another. Liu et al. [25] proposed a Bayesian
approach to adaptive video SR that involved the simultaneous estimation of the underly-
ing motion, blur kernel, and noise level to reconstruct original HR frames; however, this
approach has high computational complexity.

Edge-direction-based algorithms, which are applied to single-image SR and often termed
edge-adaptive algorithms, have been used to overcome computational complexity limita-
tions by exploiting local features such as edges [14, 24, 17, 18]. For example, new edge
directed interpolation (NEDI) [24] produces good imaging results by adapting each interpo-
lating surface locally and assuming local regularity of curvature. Iterative curvature-based
interpolation (ICBI), inspired by NEDI, produces interpolated pixels by averaging sets of
two pixels using second-order directional derivatives of the image intensity [14].

SR using sparse representation has become popular because of its ability to naturally
encode the semantic information of images [10]. By collecting representative samples in
order to create an over-completed dictionary, it is possible to discover the correct basis for
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correctly encoding an input image. The studies by Yang et al. [44] and Zeyde et al. [45]
focused on using a single pair of dictionaries; intuitively, however, using a single pair of
dictionaries can produce many redundancies, which may cause instability during the image
reconstruction process.

In this paper, we propose adapting multiple pairs of dictionaries that classify by edge
orientation in order to select the most suitable pair of dictionaries for a particular signal.
These dictionaries are obtained by determining bases from HR images produced by FS.
Following this, we discuss how input images from a UAV can be enlarged to obtain higher-
resolution images. Finally, we demonstrate the effectiveness of the proposed method in
reconstructing 3D images.

The paper is organized as follows. Section 4.2 presents an explanation of the cur-
rent state-of-the-art of sparse-based SR. Section 4.3 explains the proposed edge orientation
measurement-based algorithm, multiple dictionaries construction, and enlargement pro-
cess. Section 4.4 discusses the results of our experiments and analysis. Finally, section 4.5
shows an application of the proposed method for 3D reconstruction.

4.2 Super-resolution Based On Sparse Representation

Sparse signal representation is widely used as a powerful tool for representing and com-
pressing high-dimensional signals. The success of this method primarily depends on the
ability to find a proper basis for naturally representing a signal as, for example, audio or im-
ages, and sparse representation can be used to naturally generate the semantic information
of the input data. These advantages, however, make it challenging to effectively construct
sparse systems, which differ from conventional systems for which it is usually assumed
that sufficient and suitable properties have already been obtained.

Much research has confirmed the strength of sparsity as a powerful visual representa-
tion tool [45, 44]. Sparse representation naturally chooses the most relevant patch bases
in a dictionary to best represent a patch for an LR input image. There are two constraints
to solving ill-posed SR problems proposed in this system: (1) the reconstruction constraint
requires forcing the recovered input X to be consistent with the input Y ; (2) the prior spar-
sity constraint requires that every patch from an image can be represented as a sparse linear
combination in the dictionary.

Let X be an HR image recovered from an input LR image Y . In eq.(4.1) below, the
patch x of the HR image X is represented as a sparse linear combination in a dictionary Dh

of high-resolution patches sampled from training images.

x ⇡ Dha for some a 2 RK with kak⌧ K (4.1)
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The sparse representation a is recovered by representing the patches y of the input
image Y with respect to an LR dictionary Dl trained with Dh.

Yang et al. [44] proposed an algorithm that attempts to infer the HR image patch for
each input LR image patch. For this system, they developed two dictionaries, Dh and Dl ,
which are trained to have the same sparse representations. In order that each patch can be
represented as a texture rather than an absolute intensity, a mean value is obtained from
each patch. Finally, in the recovery process the mean value for each high-resolution patch
is predicted from its LR patch.

For each input LR patch y, this algorithm obtains a sparse representation from Dl; and
the corresponding HR patch bases Dh are then combined according to the coefficients in Dl

to generate an output HR patch x. The problem of finding a sparse representation of y can
be defined as in eq. (4.2) below:

minkak0 s.t kFDla�Fyk2
2  e (4.2)

where F is the feature extraction operator, which plays primary role as a perceptually
meaningful constraint to presenting the relation between a and y.

4.2.1 Single Pair Dictionary Limitation

Figure 4.2: Error produced in K-SVD dictionary learning for single and multiple pair dic-
tionaries with 1024 atoms. Single pair dictionary error, labeled as ”Single”, produces
higher error than multiple pair dictionaries that classify into five classes based on edge
orientation (0, 45, 90, 135, and non-directional).
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Figure 4.3: Process of dictionary construction.

The studies conducted by Yang et al. [44] and Zeyde et al. [45] focused on constructing
single pairs in the sparse dictionary. However, as the training patch is not categorized into
specific categories, it can produce many redundancies that lead to instability during the
sparse coding process. We found that selectively choosing the training patches and then
categorizing them into particular classes could reduce the error produced during the sparse
coding process.

A comparison of single and multiple pair dictionaries from the K-SVD dictionary learn-
ing algorithm is shown in Fig. 4.2. The experiment used 40 iterations to calculate the error
per element for each iteration. The figure indicates that the single pair dictionary produces
a higher error rate per element than multiple pair dictionaries that have subtle errors for
each class.

4.3 Proposed Method

In this section, the core algorithm is explained. The section is divided into two subsections:
multiple dictionary construction (training step), and SR algorithm (testing step).

4.3.1 Multiple Dictionary Construction

In the training step, the proposed method constructs multiple pairs of dictionaries that cat-
egorize by edge orientation. This step will produce five pairs of dictionaries that will be
used in the sparse coding step to form an HR image. The complete steps of the dictionary
construction process are explained in Algorithm 2.
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Algorithm 2: The proposed multiple pair dictionary construction.
Input: HR images set as training images.
Output: Multiple pairs of dictionaries Ah and Al .

1 Create LR images by blurring and downsampling HR images
2 Upsample each LR image to create MR images
3 Apply feature extraction filters to each MR image and obtain high-frequency

elements from HR images
4 Estimate the edge orientation from each HR image
5 Divide each HR and MR feature into patches then reshape each into one pair of

vectors
6 Gather and cluster the vectors into 5 classes based on edge orientation
7 Combine the vectors into an array of multiple class MR patches ({pl

z}0, {pl
z}45,

{pl
z}90, {pl

z}135, {pl
z}non) and HR patches ({ph

z}0, {ph
z}45, {ph

z}90, {ph
z}135, {ph

z}non)
8 For each cluster, learn a pair of coupled dictionaries
9 return X?

Dictionary construction is divided into four steps: training pair collection; feature ex-
traction for each patch; categorizing the set of features into five clusters based on edge
orientation; and finally, dictionary construction. For each cluster, we construct HR and LR
dictionaries using the learning algorithm K-SVD. A brief outline of this process is illus-
trated in Fig. 4.3.

4.3.1.1 Training pairs collection (step 1)

The HR image is formulated with height M and width N, where the total number of pixels
is M⇥N. Let XH = {xm : m = 0,1,2, · · · ,M�1} and YH = {yn : n = 0,1,2, · · · ,N �1} be
finite sets that determine the number of pixels. The HR image is defined as the function fH :
XH ⇥YH ! I where I = {0,1,2, · · · ,255} is the value of each pixel. Then, downsampled
grid (M

0 ⇥N
0
) applies the following condition, M

0
< M and N

0
< N. Let XL = {xm : m =

0,1,2, · · · ,M0 � 1} and YL = {yn : n = 0,1,2, · · · ,N 0 � 1} be finite sets that determine the
number of pixels in the LR image. The LR image is defined as the function fL : XL⇥YL ! I.

Using a set of HR images Ih 2 fH from a field server or a hand-held camera as the input
for the dictionary construction process, an LR image Il 2 fL is constructed by blurring and
downsampling each HR image. Middle resolution (MR) image Im 2 fH is then obtained
by up-sampling this LR image and have the same size with the HR images. This condition
simplifies the process of extracting training pairs for the dictionary learning since both
training images (HR and MR) have the same indexes. The algorithm starts by gathering
pairs of HR and MR images, as illustrated in Fig. 4.4.
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Figure 4.4: Training pairs (step 1).

4.3.1.2 Feature extraction (step 2)

The feature extraction process is intended to produce more informative and non-redundant
data for large sets of resources. Features are extracted directly onto full images rather than
small image patches in order to avoid boundary problems. Then, features based on the
image patch indices are obtained from the patches.

In this step, features from the HR and MR images obtained from previous step are
extracted. The HR features consist of high-frequency components which collected by sub-
tracting the MR images from the HR images, and the LR features consist of first- and
second-order derivative components collected by applying four types of filter and then
convoluting to MR images.

The HR feature is obtained by computing the difference images Id(xm,yn)= Ih(xm,yn)�
Im(xm,yn) where (xm,yn)2XH ⇥YH that is, Id 2 fH . This step serves to establish the relation
of HR and MR images to edges and textures. The LR features are obtained by convoluting
to k-filter dk where dk ⇤ Im 2 fH for k 2 {1,2,3,4}. The filter function is expressed in the
eq. (4.3).

d1 = [1,�1];d2 = dT
1 ;d3 = [1,�2,1];d4 = dT

3 ; (4.3)

After the step described above, the HR feature patches ph are extracted from the HR
features Id and then the LR feature patches pl are obtained from each corresponding filter
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of the LR features. By using patch size s⇥ s where s = 9, all features are merged into one
vector with total length pl = 324, and ph = 81, so that ph 2 R81 and pl 2 R324.

The variable s can be changed depend on the zoom factor. In our experiment, we use
s = 9 because we enlarge the input image by 3. Other reason is computational time. Higher
s might produce better result but surely produce longer computational time. While, lower
s (e.g. s = 3) cannot represent the information of HR well but have shorter computational
time. Therefore, we need to optimize the value of s and based on our experiment, s = 9 is
the optimum value.

Let Z = bM/sc⇥bN/sc be the total number of patches. The floor function is defined as
bxc= max{r 2 Z|r  x}, where x is a real number and {Z,r} are sets of positive, negative,
and zero integers. Let q 2 {0,s⇥1,s⇥2, ...,bM/sc} and r 2 {0,s⇥1,s⇥2, ...,bN/sc} be
the coordinates to obtain the patch by size s. The HR patch ph

z 2 R81⇥Z can be expressed
in eq. (4.4).

ph
z =[ph(0,0) ph(0,s⇥1) · · · ph(bM/sc,bN/sc)]

where

ph(q,r) =[Id(q,r) Id(q,r+1) · · · Id(q,r+ s�1)

· · · Id(q+1,r+ s�1) · · · Id(q+ s�1,r+ s�1)]T

(4.4)

The MR patch pl
z 2R324⇥Z can be expressed in eq. (4.5) below where

L
is the operator

used to concatenate each LR feature into one vector:

pl
z =[pl(0,0) pl(0,s⇥1) · · · pl(bM/sc,bN/sc)]

where

pl(q,r) =[
4M

k=1
dk ⇤ [Im(q,r) Im(q,r+1) · · · Im(q,r+ s�1)

· · · Im(q+1,r+ s�1) · · · Im(q+ s�1,r+ s�1)]]T

(4.5)

4.3.1.3 Edge orientation measurement (step 3)

As shown in Fig. 4.5, five edge orientations are defined to classify the features of both
patches. There are four directional edges and one non-directional edge, with the four di-
rectional edges including vertical, horizontal, 45-degree, and 135-degree diagonal edges.
These directional edges are extracted from the 9 ⇥ 9 image-blocks; if an image-block
contains an arbitrary edge without directionality, it is classified as a non-directional edge
(shown as the black area at Fig. 4.6).

Fig. 4.6 details the steps used to obtain the edge orientation. First, the edge image is
obtained from an HR image using canny edge detection [3]. The edge image is then used to
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Figure 4.5: Five types of edge orientation

calculate the edge orientation as follows. For each patch of size 9 ⇥ 9, the gradient, which
is a scalar that specifies the angle between the x-axis and the major axis of the ellipse that
has the same second-moments as the region, is calculated. If q is the angle of a particular
edge and ranges in value from -90 to 90 degrees, including null value, then the image can
be calibrated into 5 classes of pair patches (MR patches {pl

z}0, {pl
z}45, {pl

z}90, {pl
z}135,

{pl
z}non and HR patches {ph

z}0, {ph
z}45, {ph

z}90, {ph
z}135, {ph

z}non). The function C(q) is
used to classify the edge as follows:

C(q) =

8
>>>>>><

>>>>>>:

0 ; if(�67.5  q < 22.5)
45 ; if(22.5  q < 67.5)
90 ; if(�22.5 < q  67.5)
135 ; if(�67.5 < q �22.5)
non ; if(q is null)

(4.6)

Figure 4.6: Process of edge orientation calculation. The blue arrow in the edge image
shows the edge orientation of a particular patch (step 3).
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Fig. 4.7 shows the average number of elements for each edge cluster for two set of
images. Each set is consist of 10 agricultural images (image A) and 10 natural images
(image B). It is seen from the figure that image A mostly contains diagonal edges, while
the types of component in image B are distributed almost normally. Thus, natural images
have different characteristic to the agriculture images. We can therefore classify each patch
into a group, which can help reduce inconsistency during the sparse coding process.

Figure 4.7: Edge distribution based on orientation. The y-axis gives the number of mem-
bers, while the x-axis gives the cluster types. Image A is an agricultural image, and image
B is a natural image.

4.3.1.4 Dictionary learning (step 4)

In this step, we construct HR and LR dictionaries (Ah and Al) for each edge cluster where
ah = |ph|, al = |pl|, and LL is the dictionary number of atoms, so that Ah 2 Rah⇥LL and
Al 2 Ral⇥LL. Starting by constructing Al , we use LR features pl

z and apply a dictionary
learning procedure using OMP [38] and K-SVD [1]. In addition to Al , this process also
produces a sparse representation vector qz that corresponds to pl

z. This process is expressed
in eq. (4.7) as follows:

Al,{qz}= argminAl,{qz}Â
z
kpl

z �Alqzk2 (4.7)

After obtaining Al , we proceed to the construction of the HR dictionary Ah. We multiply
qz, from the preceding equation, by Ah, as shown in eq. (4.8):

Ah = argminAh Â
z
kph

z �Ahqzk
2
2 (4.8)
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4.3.2 Super-resolution algorithm

Figure 4.8: The proposed super-resolution algorithm.

The reconstruction process starts by upsampling an LR image into an MR image using
a conventional interpolation e.g., bicubic. After the features are extracted, each patch of
LR features pl

z is reshaped into a one-row vector as is done in dictionary construction in the
training step. After the edge orientation is calculated, the LR features pl

z are classified based
on their edge orientation {pl

z}q. Using the corresponding dictionaries obtained from the
learning steps, the sparse coding coefficients qk of each LR feature over the LR dictionary
are calculated. Finally, an HR patch is obtained by multiplying the cluster HR dictionary
by the sparse coding coefficients obtained from the previous step. The proposed algorithm
is briefly outlined in Fig. 4.8.

4.4 Experimental Results

To confirm the efficiency of the proposed method, we conducted several experiments. The
analysis of these experiments is divided into two subsections: quantitative and qualitative
analyses. All experiments were conducted using Matlab R2012b on Win 8.1 64-bit (Intel
Core i7@3.2GHz, 8GB). The images used in the experiment were taken at Kazusa DNA
Research Institute, Chiba, Japan, red clover tree phenotyping field.

The image dataset consisted of two sub-datasets: training and testing. The training
dataset was obtained using a hand-held camera (size: 2592⇥ 1936). The testing dataset
was taken using DJI Phantom 2 Vision (resolution: 14 Megapixels; sensor size: 1/2.3”;
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FOV: 120o/110o/85o) with an original size of 5472⇥ 3648 pixels. Noted that the image
produced by DJI Phantom 2 Vision might have been enhanced before delivered to the users.
To simplify the process, we divided the image into 256⇥ 256 pixel sub-images. In total,
we used 5 training images and 300 testing images, as shown in Fig. 4.9 and Fig. 4.10.

In Fig. 4.11, we illustrate the transformation from original color image into YCbCr
color channel. We only enhanced the brightness components (Y) while enhancing the other
components using bicubic interpolation because human vision is more sensitive to bright-
ness change. Then, each resulting image channel was combined to produce a final color
image. This procedure will be very effective because it can speed up the computational
process of the proposed method.

Figure 4.9: Samples of training images taken by hand-held digital camera.

Figure 4.10: Images A-D show sample testing images taken by UAV (DJI Phantom 2 Vi-
sion).

In the experiments, we obtained images by downsampling and blurring the original
images and then enlarging using different methods to 3⇥ magnification. We compared the
effectiveness of seven methods: nearest neighbor, bilinear, bicubic, Yang et al. [44], Kim
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Figure 4.11: YCbCr color components. A) Original color image, B) Y component, C) Cb
component, D) Cr component.

et al. [23], Zeyde et al. [45], and the proposed method. The algorithms associated with
these vary in nature; therefore, in order to produce objective comparisons, all parameters
used in the training and testing had to be similar. However, no specific parameter needed
to be used for the conventional interpolation methods.

Our proposed method uses 3⇥3 patches with no overlapping pixels and five pairs of
dictionaries. The algorithm of Yang et al. [44] uses 5⇥5 patches with a 4-pixels patch
overlap and a single pair of dictionaries with 1024 atoms with back-projection. The algo-
rithm of Zeyde et al. [45] uses 3⇥3 patches with 2-pixels patch overlap and a single pair of
dictionaries with 1000 atoms. As mentioned above, these algorithms have different charac-
teristics, and therefore obtaining objective comparisons required that all parameters used in
training and testing were similar to those recommended in the respective literature. How-
ever, our proposed method is not sensitive to number of training images. In our experience,
five training images with size 2592⇥1936 is enough to obtain the best result.

4.4.1 Quantitative Analysis

Methods for measuring the peak signal-to-noise ration (PSNR) [21], structural similarity
(SSIM) [41], feature similarity (FSIM) [48], and elapsed time were used for quantitative
measurement. The PSNR in decibels (dB) between the original image and the upscaled
image is given by [21]. SSIM is a method that measures the quality of images based on
the structural content of the original and magnified images. FSIM is based on the fact that
the human visual system processes an image mainly in terms of its low-level features. Two
features are considered in FSIM computation: the primary feature, i.e., phase congruency
(PC), which is a dimensionless measure of a local structure’s significance; and the sec-
ondary feature, i.e., the image gradient magnitude. FSIM combines both of these features
to characterize the local quality of an image. Higher values of PSNR, SSIM, and FSIM
indicate better quality. CPU time was computed using Matlab functions (tic and toc) to
measure the elapsed time for a certain process. All measurements used only the luminance
channel (Y) to simplify and objectively calculate the error.
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Table 4.2: Comparison of the average quantitative results produced by PSNR, SSIM, and
FSIM for 3⇥ magnification (bold font indicates the best values).

Methods PSNR SSIM FSIM Time

Nearest neighbor 22.762±3.85 0.637±0.12 0.736±0.06 -
Bilinear 23.243±3.91 0.650±0.12 0.767±0.06 -
Bicubic 23.361±3.93 0.663±0.12 0.779±0.06 -
Kim et al. [23] 23.205±3.93 0.674±0.11 0.789±0.06 5.568±1.83
Yang et al. [44] 23.213±3.93 0.673±0.11 0.795±0.05 67.189±4.78
Zeyde et al. [45] 23.328±3.93 0.677±0.11 0.794±0.05 0.669±0.04
Proposed 25.847±4.35 0.768±0.09 0.845±0.05 6.290±1.15

Table 4.2 lists the average values from four measurements, with the best values shown
in bold. These result confirm that our proposed method clearly out-performs other methods
in terms of PSNR, SSIM, and FSIM. Our method obtains a PSNR value of 25.847 dB,
which is at least 11% higher than the other methods. Our proposed method also obtains
an SSIM value higher by at least 14% than the other methods. In terms of FSIM, our
methods outperforms the others by at least 6%. However, it should be noted that PSNR
is not suitable for measuring the quality of bicubic and bilinear, as the quantitative and
qualitative analysis for both methods produced some anomalies.

Although our proposed method does not provide the lowest computational time, it is
still far better in this respect than Yang et al.’s algorithm [44]. Zeyde et al. [45] produced the
lowest computational time in our experiments, while our method competes competitively
with Kim et al. [23] with a less than 1 s differential. Moreover, in future applications
and research, the use of a graphics processing unit (GPU) application should offer the
opportunity to decrease the computational time of the proposed method.

Nearest neighbor, bilinear, and bicubic were all excluded from the time evaluation as
these had salient differences in nature to the proposed and other methods; these conven-
tional methods are simple interpolators that do not use prior information or any learning
processes. Moreover, their implementations use Matlab built-in functions, making the com-
parison unfair as these implement the optimization process automatically.

In different scenes, such as breeding of broad-acre cereals, the edge orientation will be
ultimately diverse. However, since we classify the features into 5 groups, our proposed
method will have smaller error than other methods. It can reduce the redundancy that lead
to instability during image reconstruction process. Yet, we also agree that it will need some
modification towards uniform scenes. First, we need to have training images that contains
uniform scenes. Second, add new image construction’s constraint. Third, use features

42



Figure 4.12: Results of experiment for 3⇥ magnification (uppercase for color image, low-
ercase for difference image): A-a) Bilinear, B-b) Bicubic, C-c) Kim et al. [23], D-d) Yang
et al. [44], E-e) Zeyde et al. [45], F-f) The proposed method.

that have better rotation properties, such as Zernike moments. More detail investigation is
needed since the modification should be based on the characteristic of the image.

4.4.2 Qualitative Analysis

To evaluate the proposed method in terms of visual results, we conducted experiments using
3⇥ magnified images to compare the proposed method to the other five methods: bilinear,
bicubic, Kim et al. [23], Yang et al. [44], and Zeyde et al. [45].

Fig. 4.12 shows the differences between the original images and the results produces
by the respective methods. Our method clearly produces sharper and smoother edges and
is able to clearly construct the details of a scene. The other methods all produced images
with some artifacts, especially in the line and tree areas, while bicubic and bilinear also
produced blurring effects in the enlarged image. Although Yang’s and Zeyde’s methods
generate sharp edge, they still suffer from some noise and produce undesired smoothing.
By contrast, Kim’s method produces too strong of an edge with unrealistic result. More-
over, it is seen that our proposed method has the least amount of difference from the original
image, which means that the proposed method has produces the least amount of artifacts,
as it can clearly reconstruct edges better than the other algorithms.
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Figure 4.13: Flight experimental procedure and sample of image taken at 5m.

4.5 Application to 3D Reconstruction

High-resolution imaging is necessary in the construction of high-precision 3D images; cor-
respondingly, the resolution of the input image affects the quality of the 3D reconstruction
precision. In this section, we describe an application of our proposed method as a prepro-
cessing step in 3D reconstruction and then compare it with the other methods.

A DJI Phantom 2 Vision was used to take aerial images of boxes in a field oriented
at differing angles, directions, and heights with 25% end-lap for each direction. However,
since the flight direction is divided into 5 directions (which are horizontal, 45, vertical, 135)
towards the main object, it is very hard to calculate the side-lap percentage because each
image will have different percentage. Before collecting the images, we created a flight plan
that considered altitude, latitude, longitude, the distance of each turning point, and flight
speed. The UAV periodically collected images from different angles in order to create
3D images. Only one operator was required to oversee the autonomous flight because the
equipment was configured and the UAV can run in fully autonomous mode using defined
parameters (e.g., sensors and flight plan). The flight procedure and sample of images are
shown in Fig. 4.13.

Next, we implemented the Structure from Motion (SfM) algorithm developed by the
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Table 4.3: Results of matching points between original images and particular methods (bold
font indicates the best values).

Key points Matching points
Methods 30o 45o 90o 30o 45o 90o

Bilinear 11866 20906 20039 488 (4.1%) 976 (4.6%) 727 (3.6%)
Bicubic 15984 22222 23259 598 (3.7%) 1213 (5.4%) 844 (3.6%)
Proposed method 27935 32053 29409 1812 (6.5%) 2708 (8.4%) 2068 (7%)

Table 4.4: 3D measurement results on 5m. The measurement is determined by picking six
pairs of random points (XYZ) in each corner area of the boxes then calculating the average
distances and error is the difference between real and observed measurement. (A* is used
as reference and bold font indicate as the best value.)

Height (cm) Width (cm)
Methods A⇤ B C A B C

Real scale 61 47 25 101 24 32

Original 61 45.25 22.76 106.34 22.94 32.27
(-1.75) (-2.24) (+5.34) (-1.06) (+0.27)

Proposed 61 42.83 20.45 105.82 20.34 30.26
(-4.17) (-4.55) (+4.82) (-3.66) (-1.74)

Bicubic 61 41.03 16.94 107.54 20.25 25.98
(-5.97) (-8.06) (+6.54) (-3.75) (-6.02)

Bilinear 61 38.93 17.32 � � �
(-8.07) (-7.68)

authors of [13] on a PC (Windows 8.1, 64-bit; CPU: Intel R� CoreTM i7- 4790, RAM: 32
GB, GPU: GeForce TX780). SfM is the converse problem of estimating the locations
of 3D points from multiple images given only a sparse set of correspondences between
image features. This process often involves simultaneously estimating both 3D geometry
(structure) and camera pose (motion) [35].

Table 4.3 lists the result produces by particular methods from matching points with
original images. Using a SIFT algorithm [26], we extracted the feature points from each
image and aligned the matching points. The results show that our proposed method pro-
duced the highest number of matching points of all of the methods.

We measured the height and width of each box and then calculated the error by com-
paring these to the real scale with the best result indicated by the lowest error value. First,
we align our point cloud data with xy-axis by calculating the transformation matrix using
Helmert Transformation [42]. We use 4 pairs of reference points from our mesh (source
coordinates) and the destination position after the transformation (destination coordinates).
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Table 4.5: 3D measurement results on 10m. The measurement is determined by picking six
pairs of random points (XYZ) in each corner area of the boxes then calculating the average
distances and error is the difference between real and observed measurement. (A* is used
as reference and bold font indicate as the best value.)

Height (cm) Width (cm)
Methods A⇤ B C A B C

Real scale 61 47 25 101 24 32

Original 61 40.71 20.68 107.69 16.73 26.37
(-6.29) (-4.32) (+6.69) (-7.27) (-5.63)

Proposed 61 45.78 28.13 100.37 17.88 28.84
(-1.22) (+3.13) (-0.63) (-6.12) (-3.16)

Bicubic 61 40.95 17.98 89.73 12.09 15.01
(-6.05) (-7.02) (-11.27) (-11.91) (-16.99)

Bilinear 61 35.18 � 115.95 15.06 �
(-11.82) (+14.95) (-8.94)

This condition can occur since we know the real coordinates of our objects. We used
an application in this link (http://helmparms3d.sourceforge.net) to apply Helmert
Transformation. Second, we apply the transformation using CloudCompare. Then, we ob-
tain the final point cloud data. Last, the height of box A was used as the scale reference
to determine the height and width of other boxes. The observed measurements were cal-
culated by randomly taking six pairs of points (XYZ) in each corner area of the boxes and
determining the average distances of each pair using the Euclidian distance. The measure-
ment results are listed in Table 4.4 and 4.5. In the case where the width of box A is 10m, it
is seen that our proposed method can decrease the measurement error to a millimeter order
of magnitude, while other methods have at least an approximate 11cm error. Some results
for the bilinear method could not be calculated owing to bad reconstruction results.

In the case where the imaging was performed from a height of 5m, the original image
has the highest precision, even better than the proposed method. However, the proposed
method can still keep its measurement error lower than the other methods, and it has the
least error in measuring the width of box A.

In the case where imaging occurred from 10m, we found that the proposed method
produced an error even lower than that of the original image - a striking result. The greater
height of the UAV meant that images with lower detail, or lower amount of pixels per
centimeter (PPCM), were produced. In this case, an image taken from 10m has around 1
PPCM, while one taken from 5m has around 2 PPCM. Based on this, we know that the
images from 10m suffered at least twice the noise of the 5m image, and the results prove
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Table 4.6: Mean of C2C distance between original and particular methods (bold font indi-
cates the best values).

Height
Methods 5m 10m

Bilinear 0.195012±0.204566 0.092167±0.047541
Bicubic 0.123733±0.125171 0.092898±0.050812
Proposed method 0.077964±0.069467 0.053951±0.028842

that our proposed method is able to recover test images, reinsert high-frequency details,
and repair some of the inconsistency in edges owing to a lowered PPCM.

Finally, we measured cloud to cloud (C2C) distance between the original image and
particular methods including the proposed method shown in Table 4.6. The measurement
is implemented using Open Source Software - CloudCompare (3D point cloud and mesh
processing). Our proposed method has the closest distance compare to other methods which
means it is the most similar to the original image. Detail comparison can be seen in Fig.
4.14 and Fig. 4.15. Bilinear and bicubic suffer from bad contours. Meanwhile, our pro-
posed method can produce excellent contours which mostly the same with original image.

Bigger, well-shaped objects are easy to reconstruct. In this experiment, we used boxes,
not trees, to simplify the experiment. However, in the future we will attempt to conduct real
field phenotyping. We note that the lowest error was achieved by our proposed method in
calculating the width of box A, which did this with an accuracy within a millimeter order
of magnitude. However, for smaller dimensions such as the height of C or the width of B,
it will be harder to obtain accurate measurements.

The use of our proposed method is not restricted to 3D reconstruction. We are currently
assessing the procedure to collaborate with other agronomy researchers as well. One of
the challenges is to observe flowering timing on paddy rice. Flowering (spikelet anthesis)
is one of the most important phenotypic characteristics of paddy rice, and researchers ex-
pend efforts to observe flowering timing. Observing flowering is very time-consuming and
labor-intensive, because it is still visually performed by humans. An image-based method
that automatically detects the flowering of paddy rice is highly desirable. However, varying
illumination, diversity of appearance of the flowering parts of the panicles, shape deforma-
tion, partial occlusion, and complex background make the development of such a method
challenging. In Fig. 4.16, it shows that higher resolution can boost the accuracy to detect
the flowers of paddy rice [16].
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Figure 4.14: Alignment result from original image and particular methods on 5m’s height
images. (A) The proposed method (B) Bicubic, (C) Bilinear
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Figure 4.15: Alignment result from original image and particular methods on 10m’s height
images. (A) The proposed method (B) Bicubic, (C) Bilinear
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Figure 4.16: Example of flower detection in different resolution. Each violet block indi-
cates a part of detected flower where higher resolution can provide better accuracy. (A)
Size: 2001 x 1301 pixels, (B) Size: 1501 x 976, (C) Size: 1001 x 651 [16].
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Chapter 5

Deep Residual Learning
Super-resolution

5.1 Introduction

The availability of various types of images due to internet technologies provide big chance
for learning algorithm to learn image characteristic deeply. This opportunity has been
exploited by many researchers to develop robust super-resolution (SR) algorithms based on
learning approaches. The main goal of SR is to recover high-frequency information from
the input low-resolution (LR) image to be able to produce high-resolution (HR) one. Other
goal of SR algorithm is to increase the accuracy of computer vision task. The SR algorithm
is expected to reconstruct the LR input image in acceptable quality and resolution.

Currently, learning methods are widely used to map from LR to HR patches. Super-
resolution using sparse representation shows its popularity because of the ability to natu-
rally encode the semantic information of images [10]. By collecting representative samples
in order to create an over-completed dictionary, it is possible to discover the correct basis
for correctly encoding an input image. The studies by Yang et al. [44] and Zeyde et al. [45]
focused on using a single pair of dictionaries; intuitively, however, using a single pair of
dictionaries can produce many redundancies, which may cause instability during the image
reconstruction process.

Lately, convolutional neural networks (CNN) is used in many image processing al-
gorithm with large improvement in accuracy. On SR algorithm, Cao dong et al.[8] has
demonstrated a CNNs’ ability mapping LR to HR patches called Super-resolution Convo-
lutional Neural Networks (SRCNN). The method is constructed by a very simple and a
lightweight structure CNNs using two hidden layers and 3⇥3 filter size. Jiwon Kim et al.
[22] introduces Very Deep Convolutional Networks (VDSR), a very deep CNN with resid-
ual learning, which proven have accurate result but have critical issues on convergence
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Figure 5.1: The proposed network.

speed. VDSR includes 20 layer of CNN using 3⇥3 filter size.
The recent improvement has been published. FSRCNN [9] demonstrated superior per-

formance than previous SRCNN. They focused on improving the current SRCNN and pro-
posed faster and more accurate algorithm. FSRCNN redesign the network using three main
principal: deconvolution, dimension shrinking, and smaller filter.

In this paper, we propose fast convergence and low-computation convolutional network
for image super-resolution as shown in Fig. 5.1. Our proposed network is inspired by in-
ception module and residual learning. GoogleNet [34] introduces inception concept which
use multiple type of filter size then combine it into one stream. This concept has been
proven in the 2015 ILSVRC challenge. While, residual learning introduces by He et al.
[19] to ease the training of networks and gain better accuracy.

The paper is organized as follows. Section 5.2 explains the proposed CNN’s called
Deep Residual Learning Super-resolution (DRLSR) and training strategy. Section 5.3 dis-
cusses the results of our experiments and analysis.

5.2 Proposed Method

This section is divided into two subsections: the proposed network and training strategy. In
the proposed network, we explain how to achieve fast convergence and low-computation
network. Moreover, the use of inception module in the image super-resolution. Next,
the training strategy describe the initialization strategy, followed by tuning using multiple
image dataset.
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Figure 5.2: Residual Learning.

5.2.1 Proposed Network

In Fig. 5.1, we illustrate the proposed network. The network is only composed by convo-
lutional layer. For better understanding, our network can be divided into 3 parts: feature
extraction, mapping, and reconstruction. Let conv( ft ,nt) as convolutional layer where ft
represent the filter size and nt represent the number of filters. In total, we use 10 convolu-
tional layers.

We aim to have faster convergence during training. To achieve this objection, we con-
struct the network using residual learning and gradient clipping. Residual learning [19]
has the ability to ease the training of the networks. This assumption is motivated by the
general SR problem where reconstructed HR images lose its HR component while doing
enlargement process. This HR component can be substituted by residual component from
the proposed network as illustrated in the Fig. 5.2.

In our proposed method, we use high learning rate to achieve fast convergence. How-
ever, high learning rate can effect the infinity loss during training process. Therefore, we
use gradient clipping to avoid the infinity error. Gradient clipping is illustrated in Fig. 5.3.
Gradient clipping is suitable for residual learning because it has the ability to limit the in-
dividual gradient to the predefined range. Using gradient clipping, we can avoid infinity
error and ensure the fast convergence. The same concept also used by VDSR [22] which
proven to have high PSNR value than other state-of-the-art methods.

The proposed network is inspired by Inception module from GoogLeNet [34] as shown
in Fig. 5.4. The feature extraction and reconstruction parts exploit the ability of inception
module. The inception module basically use because of the greedy assumption. It started
from the confusion of using filter size. Instead of choosing the optimal filter size, it use
multiple filter size, then combine results. We found that this ability is very suitable with
image super-resolution concept where we can have various features from the image. Other
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Figure 5.3: Gradient Clipping.

Figure 5.4: Inception module.

useful layer is 1⇥1 convolutional layer, which reduce dimension of the layer. We use 1⇥1
convolutional layer to select the best features in the feature extraction and reconstruction
parts.

Low computation network is required due to the needs of real time application. Our
proposed network optimized the use of number of filter. We analyze the optimum number
of filter and filter size based on our experiment. The use of inception module can caused
long computational time, however, we can still achieve fast computation by reducing the
number of filter.

5.2.2 Training Strategy

The learning step is very crucial to construct optimal convolutional networks. Many re-
searchers have been investigated this issue for last couple years. During initialization, the
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Figure 5.5: Sample of 91-images dataset.

Figure 5.6: Sample of 100-general-images dataset.

std value for each layer should be determined. In our proposed network, we calculate the
std value based on [20]. Let the std computed by (

p
2/nl) where nl = k2

l dl . The kl is the
filter size, and dl is the number of filter. For example, filter size kl = 3 and dl = 8, then the
std is 0.111.

The use of various training image which have clear edge and texture also can give better
performance to the proposed network. We adopt training images which used by Cao et al.
[9]. First, we train our proposed network using 91 images as shown in Fig. 5.5. In the first
training step, we use 0.1 learning rate for each convolutional layer. Then, after the network
is saturated, we use mixed images, the combination of 91-images and 100-general-images
for fine-tuning (see Fig. 5.6). In the tuning step, we increase the learning rate into 1 for
each convolutional layer.

In the fine tuning step, the training images are generated using image augmentation
process which proposed by Wang et al. [40]. We downscaled the image into several scales,
and rotated each image with multiple degrees.
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Figure 5.7: Set-5 dataset for experiment testing (From left to right: baby (size: 512⇥512),
bird (size: 288⇥ 288), butterfly (size : 256⇥ 256), face (size: 280⇥ 280), woman (size:
228⇥344)).

5.3 Experimental Result

To confirm the efficiency of the proposed method, we conducted several experiments. The
analysis of these experiments is divided into two subsections: quantitative and qualitative
analyses. All experiments were conducted using Caffe in Windows 8 64bit, Intel Core
i7@3.2GHz, RAM 32GB, NVIDIA GTX780. The images used in the experiment was
taken from Yang et al. [44] and Dong et al. [9].

We only enhanced the brightness components (Y) while enhancing the other compo-
nents using bicubic interpolation because human vision is more sensitive to brightness
change. Then, each resulting image channel was combined to produce a final color image.
This procedure will be very effective because it can speed up the computational process
of the proposed method. Fig. 5.7 shows Set5 which used during testing step. First, we
downscale the original image into one third from the original size to produce testing image.
Then, testing image is used to be an input for various methods.

In our network, we used a set of 41 ⇥ 41 pixels sub-images taken from 91-images
dataset with total size 267MB during the first training session. During this session, we
use 0.1 learning rate for each convolutional layer. Then, we applied fine tuning of the
network using a set of 41⇥ 41 pixels sub-images taken from 100-general-images dataset
with total size 5.9GB. In the tuning session, we increased the learning rate into 1 for each
convolutional layer.

Figure 5.8 shows that our network has very fast convergence. In the experiment, it
shown that we only train the network for 300000 epochs compare to FSRCNN which use
12⇥ 108 epochs during training. In the fine tuning, we use another 300000 epochs, so in
total, we construct the network only from 600000 epochs.

To evaluate the proposed method, we conducted experiments using 3⇥ magnified im-
ages to compare the proposed method to the other five methods: bicubic, sparse-based [45],
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Figure 5.8: PSNR value during first training and fine-tuning.

SRCNN-ex[8], FSRCNN [9], and FSRCNN-s [9]. All parameters and training images are
provided by the original authors using the optimized setting.

5.3.1 Quantitative Analysis

Methods for measuring the peak signal-to-noise ratio (PSNR) [21], structural similarity
(SSIM) [41], feature similarity (FSIM) [48], and elapsed time were used for quantitative
measurement. The PSNR, in decibels (dB), calculates the similarity between the original
image and the upscaled image. SSIM is a method that measures the quality of images
based on the structural content of the original and magnified images. FSIM is based on
the fact that the human visual system processes an image mainly in terms of its low-level
features. Two features are considered in FSIM computation: the primary feature, i.e., phase
congruency (PC), which is a dimensionless measure of a local structure’s significance; and
the secondary feature, i.e., the image gradient magnitude. FSIM combines both of these
features to characterize the local quality of an image. Higher values of PSNR, SSIM, and
FSIM indicate better quality. CPU time was computed using Matlab functions (tic and
toc) to measure the elapsed time for a certain process. All measurements used only the
luminance channel (Y) to simplify and objectively calculate the error.

Table 5.1 and Table 5.2 list the average values from four measurements on Set5 and
B100 datasets. The result confirm that our proposed method has the least computational
time compare to other methods. However, it should be noted that there is not much differ-

57



Table 5.1: Comparison of the average quantitative results produced by PSNR, SSIM, FSIM,
and computational time for 3⇥ magnification on Set5.

Methods PSNR SSIM FSIM Time

Bicubic 30.392 0.868 0.897 0.001
Sparse-based [45] 31.906 0.897 0.924 1.035
SRCNN-ex [8] 32.749 0.909 0.941 3.471
FSRCNN [9] 33.155 0.914 0.946 2.588
FSRCNN-s [9] 32.604 0.906 0.938 1.274
Proposed 32.555 0.908 0.939 0.917

Table 5.2: Comparison of the average quantitative results produced by PSNR, SSIM, FSIM,
and computational time for 3⇥ magnification on B100 images.

Methods PSNR SSIM FSIM Time

Bicubic 27.207 0.738 0.827 0.001
Sparse-based [45] 27.875 0.773 0.856 1.565
SRCNN-ex [8] 28.412 0.786 0.876 5.321
FSRCNN [9] 28.518 0.789 0.878 3.417
FSRCNN-s [9] 28.284 0.783 0.873 1.690
Proposed 28.323 0.783 0.872 1.394

ence in PSNR, SSIM, and FSIM with other convolutional networks methods. For example,
compared to FSRCNN-s who has the closest computational time, our method has higher
PSNR value on B100 dataset. In Set5, our proposed method shows the higher value on
SSIM and FSIM. The detail illustrations can be see in the qualitative analysis subsection.

Table 5.3 shows the detail measurement of computational time for all testing images.
It is shown that our proposed network has the lowest computational time except Bicubic.
This measurement did not use GPU processing, all measurement used CPU-based meth-
ods. Therefore, to achieve real-time application, the computational time can be reduced by
implemented GPGPU-based method.

Table 5.3: Detail computational time for 3⇥ magnification (in seconds).
Methods Baby Bird Butterfly Face Woman

Bicubic 0.0029 0.0016 0.0009 0.0011 0.001
Sparse-based [45] 2.400 0.737 0.634 0.666 0.739
SRCNN-ex [8] 9.374 1.905 2.365 1.880 2.099
FSRCNN [9] 5.398 2.146 1.683 1.868 1.928
FSRCNN-s [9] 2.843 1.022 0.754 0.914 0.888
Proposed 2.625 0.481 0.529 0.485 0.510

58



Figure 5.9: Results of experiment for 3⇥ magnification on ”Butterfly” image.

5.3.2 Qualitative Analysis

In the quantitative measurement, Table 4.2 shows our proposed network has the lowest
PSNR value except for bicubic, and sparse-based. However, we can see by human visual-
izations that our method clearly produces sharper and smoother edges and is able to clearly
construct the details of a scene especially better than FSRCNN-s. The FSRCNN-s still
suffer from some artifact especially in the edge area. Bicubic and sparse-based also pro-
duced blurring effects in the enlarged image. The best result still produce by FSRCNN and
SRCNN-ex which have the sharper edge and less artifact.

We specially compare our proposed network with FSRCNN-s because of the similar-
ity in nature of low computation. On butterfly image (Fig. 5.9), our proposed network
has higher PSNR value than FSRCNN-s. We can see the wings pattern produced by our
proposed method has clear shape and pattern. While, FSRCNN-s produce halo artifact.

The same case also happen in the woman image (Fig. 5.10). In the chin area of the
image, we can see our proposed network is able to produce sharper contour and shape,
better than FSRCNN-s.
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Figure 5.10: Results of experiment for 3⇥ magnification on ”Woman” image.
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Chapter 6

Conclusion and Future Works

6.1 Summary

The work of this thesis focused on the study of super-resolution (SR) as a technique to
augment the spatial resolution of images, to a greater extent than conventional methods.
In particular, we adopted the single-image SR approach based on filtering and learning
methods. The filtering method predict the HR component based on curvature modeling
using first-order derivatives. Then, the SR procedure based on machine learning paradigm,
where the HR output image is predicted/estimated patch by patch: for each LR input patch
we compute a model on the basis of local examples and we use this model to predict the
related HR output patch.

In the first part, the main contribution is the extension of edge direction based on first-
order derivatives for single-image SR. In the proposed method, we employ six edge direc-
tions and first-order derivatives as a feature to extract the interpolation direction. This is
followed by a back-projection process to refine the image. The proposed method was im-
plemented and evaluated. The results of our evaluations show that the our proposed method
has the lowest computational complexity and demonstrates superior quality compared to
other methods. The experiment results from both quantitative and qualitative analysis show
that the proposed method outperforms previous method. Furthermore, the proposed method
can preserve image details and reduce artifacts, such as blurring and ringing around edges.

In the second part, an SR based on adaptive multiple pairs of dictionaries for UAV
images was proposed. The proposed method employs a classification based on edge orien-
tation to obtain selective patches by creating five clusters, each of which obtains a pair of
dictionaries Al and Ah. The proposed method was implemented and out-performed other
methods. The experimental results show the superiority of our proposed method for both
quantitative and qualitative analysis by preserving detail and reducing artifacts such as
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blurring and ringing around the edge. Our method was also proven effective for 3D recon-
struction and produced an image superior to the original image from a 10m height. The
use of a GPU application could further enhance our method by enabling opportunities to
decrease its computational time.

In the third part, we proposed Deep Residual Learning Super-resolution (DRLSR). The
network inspired by Inception module of GoogLeNet to produce multiple features during
feature extraction and reconstruction process. Our strategies ensure the network having fast
convergence and low computational time. The proposed network was assessed. The results
show that our proposed network can cut half of computational time from the the-state-
of-the-art network. Furthermore, our proposed network successfully exploit the Inception
module and residual learning in the SR approach.

In summary, Fig. 6.1 shows the summary of our dissertation. We aim to solve the
three main problems during SR implementation: computational time, sensitivity to training
data, and quality improvement. In the beginning, we focus to create low computation SR
algorithm which considered as filtering based method. Then, we investigate the ability of
multiple sparse coding in the SR approach with insensitivity from training images. Finally,
we develop efficient convolutional networks with superb quality compare to current-state-
of-the-art methods. Moreover, the proposed method from Chapter 3 can be used as inter-
polated method to produce middle or medium resolution which is used in Chapter 4 and 5
to create training pairs.

6.2 Future works and perspectives

Apart from the results, we are aware that our work is far from finished. In the last section,
we would highlight some questions as the future works.

First part is First-order Derivatives- based Super-resolution. The proposed method is
very simple and light. However, the edge direction can be wrongly interpolated and cause
some noise in the image. Currently, this noise can be polished by back-projection method.
For the next step, we need to observe the edge and texture modeling using first-order deriva-
tives. Furthermore, we can correctly interpolate the direction of the edge in the input image.

Second part is Super-Resolution via Adaptive Multiple Sparse Representation. Sparse-
based method is notably one of the-state-of-the-art in the super-resolution methods. It
has the ability to create basis to connect low-resolution image and high-resolution image.
However, the sparse and dictionary initialization is crucial for this method. We can observe
carefully the impact of the initialization. Moreover, the possibility of K-SVD giving the
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Figure 6.1: The summary of the proposed methods

local optimum solution is high especially using single dictionary. Therefore, the chance to
improve the current methods is high.

The last part is Deep Residual Learning Super-resolution. We aim to have light network
yet constructing clear and sharp HR image. In the experiment, we have not observed and
analyzed deeply regarding the advantages of Inception modules and various settings. The
current network have high possibility to be trapped in local optimum solution. In the future,
more efficient network is need to be designed to produce better quality of obtained HR
image.
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