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Abstract

Beginning with the September 11 attacks of 2001, in recent years, a number or terrorist

attacks using improvised explosives such as the November 2015 Paris attacks have oc-

curred all over the world, and the threat of such terrorism has become a serious problem.

In addition, the terrorism using toxic chemicals has still been a threat since the Tokyo

subway sarin attack in 1995. For preventing terrorist attacks with these hazardous chem-

icals at train stations, airports, sports stadium, etc., systems for detecting the hazardous

chemicals such as improvised explosives are required.

In terms of the size of monitoring areas, there are two types of the detection systems.

One is a gate-type which detects chemicals at only an entrance of a high security area

(e.g. “walkthrough portal explosives-detection system”), and high accuracy of detection

is especially necessary. The other is a large-area-monitoring-type which detects chemicals

all over the area. In the large-area-monitoring-type, a function for finding the location

of chemicals is required because, if the location of chemicals is known, it will be possible

to evacuate people and to capture a suspect. For localization, high speed is especially

the most important. We study methods for making the gate-type and the large-area-

monitoring-type into practical use through the improvement of the detection-accuracy

and the localization-speed respectively.

When considering the improvement of the detection-accuracy for the gate-type and

the localization-speed for the large-area-monitoring-type, we are inspired by “sparsity-

aware signal processing”. Although sparsity-aware signal processing has drawn interest in

recent years, it is still rarely applied to chemical signal processing. “Sparsity” means the

assumption that the observed signal consists of a small number of basis components. It is

known that the sparsity assumption can improve the accuracy of estimation even though

the size of the observed signal is small. In this study, methods of sparsity-aware signal
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processing are proposed for improving the detection-accuracy and the localization-speed.

First, for the gate-type, to improve the detection-accuracy, we improve the separation

performance by using the sparsity assumption. Second, for the large-area-monitoring-

type, to speed-up localization, we propose a “compressive sensing”-based approach which

takes the mixed air from a combination of multiple ducts at each time-frame unlike

time-division-sampling, and it switches the combination of active ducts temporally, and

it estimates the location of chemicals from time series of observations. The sparsity

assumption makes it possible to localize chemicals from a small number of observations.

This dissertation consists of two parts. The first part corresponds to chemicals de-

tection for the gate-type. The second part corresponds to chemicals localization for

the large-area-monitoring-type. In the first part, for a “walkthrough portal explosives-

detection system”, a signal-separation-method using a sparsity assumption is proposed to

improve the detection-accuracy. In addition, an independent-component-analysis (ICA)-

based acceleration of the signal-separation-method is proposed. Furthermore, for re-

ducing the uncertainty to improve the robustness, a signal-separation-method using an

attenuation model is proposed. In the second part, for the large-area-monitoring-type,

a compressive sensing-based approach using a sparsity assumption is proposed to speed

up localization of chemicals, and, especially, to achieve the robustness to the difference

of the number of the positions of chemicals, adaptive Boolean compressive sensing is

proposed. In addition, to improve the robustness to estimation errors, an extension of

the adaptive Boolean compressive sensing into a “multi-armed bandit” algorithm is pro-

posed. Furthermore, to improve the robustness to change of the location of chemicals, a

combination of change-point detection and the adaptive Boolean compressive sensing is

proposed.
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Chapter 1

Introduction

1.1 Background

Beginning with the September 11 attacks of 2001, in recent years, a number or terrorist

attacks using an improvised explosive device (IED) such as the 2005 London bombings,

the 2013 Boston Marathon bombing, the November 2015 Paris attacks, 2016 Brussels

bombings, etc. have occurred all over the world, and the threat of such terrorism has

become a serious problem. IEDs can be created from consumer goods, and information

about creating IEDs can be easily accessed via the Internet. In Japan, even a high-

school student attacked a train station with an IED in 2002 [3]. In IEDs, explosive

substances such as triacetone triperoxide (TATP) are used. TATP has a higher vapor

pressure than military explosives [3], and gases emitted from IEDs or traces attached

to people or luggage can be detected in principle. Detecting gases from IEDs makes it

possible to prevent IED attacks, and countries such as the United States Government

states the necessity to counter IED attacks [4]. In addition, the terrorism using toxic

chemicals has still been a threat since the Tokyo subway sarin attack in 1995. For such

chemical terrorisms, rapid evacuation is important to reduce casualties. For evacuation,

it is necessary to detect toxic chemicals. However, in most public areas, detectors for

toxic chemicals still have not been applied yet, and countermeasures still have not been

taken. For preventing terrorist attacks with these hazardous chemicals at train stations,

airports, sports stadium, etc., systems for detecting the hazardous chemicals such as

improvised explosives and toxic chemicals are required.

1



In terms of the size of monitoring areas, there are two types of the detection systems.

One is a gate-type which detects chemicals at only an entrance of a high security area (e.g.

“walkthrough portal explosives-detection system” [3]), and high accuracy of detection is

especially necessary. The other is a large-area-monitoring-type which detects chemicals

all over the area. In the large-area-monitoring-type, a function for finding the location

of chemicals is required because, if the location of chemicals is known, it will be possible

to evacuate people and to capture a suspect. For localization, high speed is especially

the most important. We study methods for making the gate-type and the large-area-

monitoring-type into practical use through the improvement of the detection-accuracy

and the localization-speed respectively.

1.2 Purpose of dissertation

When considering the improvement of the detection-accuracy for the gate-type and the

localization-speed for the large-area-monitoring-type, we are inspired by “sparsity-aware

signal processing”. Although sparsity-aware signal processing has drawn interest in re-

cent years, it is still rarely applied to chemical signal processing. “Sparsity” means the

assumption that the observed signal consists of a small number of basis components. It is

known that the sparsity assumption can improve the accuracy of estimation even though

the size of the observed signal is small. In this study, methods of sparsity-aware signal

processing are proposed for improving the detection-accuracy and the localization-speed.

First, for the gate-type, to improve the detection-accuracy, we improve the separation

performance by using the sparsity assumption. Second, for the large-area-monitoring-

type, to speed-up localization, we propose a “compressive sensing”-based approach which

takes the mixed air from a combination of multiple ducts at each time-frame unlike

time-division-sampling, and it switches the combination of active ducts temporally, and

it estimates the location of chemicals from time series of observations. The sparsity

assumption makes it possible to localize chemicals from a small number of observations.

Figure 1.1 shows the position of the target of this dissertation. For practical use,

both the high accuracy per measurement time and the low sensing-cost must be sat-

isfied. However, traditional approaches could not have satisfied both of them. In this

dissertation, we apply sparsity-awareness to solve the problem of traditional approaches.
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Figure 1.1: Position of the target of this dissertation.

1.3 Overview of dissertation

In Chapter 2, the preliminaries are introduced: first, sensor devices for chemicals de-

tection are explained; second, conventional approaches to signal processing for chem-

icals detection are explained; third, conventional approaches to chemicals localization

are explained; finally, basic theories of sparsity-aware signal processing is explained.

The body of this dissertation consists of two parts. The first part (from Chapter 3

to Chapter 5) corresponds to chemicals detection for the gate-type. The second part

(from Chapter 6 to Chapter 8) corresponds to chemicals localization for the large-area-

monitoring-type. In Chapter 3, for a “walkthrough portal explosives-detection system”

[3], a signal-separation-method using a sparsity assumption is proposed to improve the

detection-accuracy. In Chapter 4, an independent-component-analysis (ICA)-based ac-
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celeration of the signal-separation-method is proposed. In Chapter 5, for reducing the

uncertainty to improve the robustness, a signal-separation-method using an attenua-

tion model is proposed. In Chapter 6, for the large-area-monitoring-type, a compressive

sensing-based approach using a sparsity assumption is proposed to speed up localization

of chemicals, and, especially, to achieve the robustness to the difference of the number of

the positions of chemicals, adaptive Boolean compressive sensing is proposed. In Chapter

7, to improve the robustness to estimation errors, an extension of the adaptive Boolean

compressive sensing into a “multi-armed bandit” algorithm is proposed. In Chapter 8, to

improve the robustness to change of the location of chemicals, a combination of change-

point detection and the adaptive Boolean compressive sensing is proposed. Finally, in

Chapter 9, the conclusions of this dissertation are shown.
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Chapter 2

Preliminaries

2.1 Sensor device

2.1.1 Bulk detection and trace detection

Many kinds of sensors for detecting substances have been developed. There are two

types of the sensors, i.e. one is bulk detection, and the other is trace detection [5][6].

Bulk detection includes X-ray imaging, nuclear quadrupole resonance (NQR), and

neutron techniques. Bulk detection is used for determining the shape, size, density, and

elemental composition of suspicious objects in luggage, letters, packages, etc. Even if the

container of a suspicious object is not opened, bulk detection is possible. Therefore, bulk

detection is effective for the hazardous materials that do not leak gases or particles such

as military explosives. Among the types of bulk detection, X-ray imaging is mostly used

for baggage screening at security-checkpoints of most airports. However, bulk detection

cannot detect a small amount of substances [5], i.e. if it is divided into small portions,

detection is impossible. Also, bulk detection cannot easily identify the type of substances

[5][6].

Trace detection is a chemical-analysis method including “mass spectrometry” (MS),

etc. It detects the existence of gases or particles of substances directly, and a small

amount of substances can be detected. Trace detection is fit to IEDs because gases or

particles of IEDs can be detected by it. Trace detection identifies the type of substances,

and its selectivity is higher than that of bulk detection. Therefore, the false-alarm-rate

of trace detection is less than that of bulk detection. However, it cannot determine the
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amount of substances in a suspicious object. As above, the features of bulk detection

and trace detection are different. Thus, it is recommended to combine bulk detection

and trace detection to improve security [6]. In this study, we focus on trace detection

because trace detection is fit to IEDs.

2.1.2 Types of trace detection

Trace detection is classified into three categories: biosensors, optical sensors, electronic/-

chemical sensors [7]. In this section, typical technologies of trace detection are explained.

Biosensors include canines (dogs), rats, and bees. Among them, canines are the most

typical, and trained canines have been used successfully for mine clearance since World

War II [8][9]. Even in the present day, canines are still the most standard for detecting

explosives and drugs. A major advantage of canines is that they can move their noses

to near a suspicious object actively. However, it is not clearly known what kind of vapor

signatures canines rely on [5], and interpretability is low. A research has shown that

canines do not rely on vapor signatures from the pure compound, but a combination

of solvents, residual substances from the manufacturing process, and degradation by-

products [5][8][9]. In addition, canines have the disadvantage that both the costs of

bringing up them and the labor costs for leading them are expensive[5].

Optical sensors include “infrared spectroscopy”, “terahertz spectroscopy”, and “Ra-

man spectroscopy”. Based on an interaction between light and matter, these approaches

identify the chemical composition of air [7]. These approaches have high selectivity for

monitoring from remote distances, whereas they provide good results only in the case

of long-path absorption [7]. They have not been widely used for applications such as

explosives detection.

“Chemiluminescence” (CL) is one of electronic/chemical-sensing-approaches. CL de-

tects a characteristic emission of radiation from a product by an exothermic reaction.

Hexamethylenetriperoxidediamine (HMTD), which is one of explosive substances, can

be detected by CL, whereas TATP can not be detected [5]. A major disadvantage of CL

is the lack of selectivity [7].

Approaches based on “surface acoustic wave” (SAW) are one class of electronic-

/chemical-sensing. SAW sensors are microelectromechanical systems (MEMS) and are
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called “electric noses”. SAW sensors rely on the modulation of SAW that occurs when the

SAW passes through a film polymer absorbing a gas. Different kinds of film polymers can

selectively absorb different gases, and individual sensors can selectively detect different

target substances. SAW sensors are thus commonly used as an array of multiple SAW

sensors with different polymers, and many kinds of substances can be detected by the

array on one chip. Although there are examples of military applications that SAW

sensors are used for detecting explosive, biological, and chemical weapons[10], SAW is

still in a phase of study.

“Ion mobility spectrometry” (IMS) is one of electronic/chemical-sensing-approaches.

IMS ionizes the chemicals and sorts the ions according to their mobility. The detector of

IMS counts the number of ions of different mobility, and produces a signal called an “ion

mobility spectrum”, which is a record of ions as a function of mobility. Major advantages

of IMS are their high response-speeds, their small sizes, and their low cost [5], and there

are a number of IMS products. A major disadvantage of IMS is low selectivity, in other

words, the resolution of spectra is low, and the false-alarm-rate tends to be high.

“Mass spectrometry” (MS) is one of electronic/chemical-sensing-approaches. MS ion-

izes the chemicals and sorts the ions according to their mass-to-charge ratios. Sorting is

based on the principle that ions of different mass-to-charge ratios have different velocities

or resonance frequency in a magnetic field. The detector of MS counts the number of

ions of different mass-to-charge ratios, and produces a signal called a “mass spectrum”,

which is a record of ions as a function of mass-to-charge ratios. MS has high sensitivity,

and it also has higher selectivity than IMS. Historically, MS could not have measured

complex mixtures, and it must have been combined with “gas chromatography” (GC),

which separates a mixture into different substances according to the strength of adsorp-

tion. However, the combination is called GC-MS, and it has the disadvantage that it

takes a long time to achieve a signal [5]. To solve this problem, “atmospheric pressure

chemical ionization” (APCI) has been proposed [3]. APCI can extract a target-substance

roughly by ionization instead of GC, and the combination of APCI and MS can achieve

a signal within 1 to 2 seconds after a gas is drawn [5], i.e. the response-speed of the

APCI-MS is fast. Historically, two major disadvantages of MS have been its size and

cost. However, major progress has been made in downsizing MS devices that reduces
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costs [8]. In addition, analysis and detection of explosives by MS has been well studied

[6][11]. As above, MS is the most promising approach from various perspectives.

IMS and MS can be used for our system because they can detect explosive substances

of IEDs such as TATP and have high response-speed and high sensitivity. In addition,

MS has the advantage that it has higher selectivity than IMS, and the spectra of MS

have higher resolution than those of IMS. Therefore, in this study, we assume that MS

is used for our systems, and we study signal processing methods on the premise of MS.

Actually, the spectra of IMS are similar to those of MS, and it can be expected that the

results of this study is applicable for IMS.

2.2 Conventional signal processing for chemicals de-

tection

Signal processing for chemicals detection is a part of the area called “chemometrics”.

Chemometrics is the area of study on extracting information from chemical data, and

chemometrics is applied for solving problems of chemistry, biology, medicine, etc. A

general procedure of chemometrics is divided into three parts: (1) pre-processing, (2)

classification, and (3) quantification. In this section, these techniques are explained.

2.2.1 Pre-processing

Pre-processing includes baseline-removal/noise-reduction/signal-separation and peak-a-

lignment. In most cases, an observed signal is contaminated by noise, and a target

component needs to be extracted from the contaminated signal. One of the main prob-

lems for chemicals detection is extraction of the target component from the contaminated

signal, and baseline-removal/noise-reduction/signal-separation is necessary in most ap-

plications.

Baseline-removal removes a “baseline”, which is defined as low frequency noise with

smoothness. Most baseline-removal approaches consist of two steps: (1) the baseline is

estimated from an observed signal based on the assumption of the smoothness, and (2)

the fitted function is subtracted from the observed signal. In many cases, for estimation of

the baseline, a Savitzky-Golay filter [12] is customarily used (e.g. [13]), and it can achieve
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success. Although many researches on baseline-removal have been done [13][14][15], the

need for almost automatic methods is still present [16]. However, as for our system, it

is not necessary to improve the performance of baseline-removal.

Noise-reduction is defined as reducing high frequency noise in particular here. A

smoothing filter is used by noise-reduction in most cases. For smoothing, approaches such

as Savitzky-Golay filters and wavelet techniques are used [17][18], and these conventional

approaches can achieve success. This topic has been well established, and it is not

necessary to develop a new technique.

As above, in the case that the noise has only a higher or lower frequency than the

target component, it is comparatively easy to extract the target component. In contrast,

if other substances exist with the target substance simultaneously, the target component

and the interferences corresponding to the other substances can not be distinguished

by frequency, and extraction of the target component is difficult. In this case, signal-

separation is applied. Signal-separation is to estimate individual source signals from the

mixed signal. In most cases, the observation is modeled by linear mixing:

X = SC, (2.1)

where X is the observed mixed signal, which is a M × T matrix, S is the spectral basis

components, which is a M ×K matrix, C is the temporal activations, which is a K × T

matrix, M is the number of spectral indices, T is the number of temporal indices, and

K is the number of substances. Signal-separation can be formulated as estimation of C

from X. If all the substances that may be observed are known and the spectral basis

components do not change, S can be obtained by using a set of training data in advance.

In this case, estimation of C gives a closed-form solution:

Ĉ = S+X. (2.2)

Actually, in real cases, not all the substances can be known, i.e. an unknown substance

may be observed. In addition, the spectral basis components may change dependently on

the condition of a sensor device. Thus, “blind-source-separation”, which is applicable to

the case that both S and C are unknown, is used. Especially, principal component anal-

ysis (PCA) and independent component analysis (ICA) are applied in most researches

[17][19]. However these approaches are not always suitable for mass spectrometry. PCA
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relies on the orthogonality of the spectral basis components. In mass spectrometry, the

spectral basis components of different substances tend to be similar, so the orthogonal-

ity of the spectral basis components does not hold. ICA relies on the independence of

the temporal activations, so ICA needs a certain time when the temporal activations of

different substances change independently. If a sufficient time when the temporal activa-

tions change independently cannot be observed, ICA may fail, that is, the independence

is not a sufficient constraint.

Peak-alignment is adjusting the spectral axis of the spectrum. Peak-alignment is

necessary because the spectral axis tends to be shifted or distorted non-linearly. The

shift and distortion are caused by complex chemical mixtures and sensing conditions [20].

For measurement of chemicals with many peaks such as proteomics, peak-alignment can

be solved by dynamic time warping (DTW), correlation optimized warping (COW), and

similar methods [21]. For our application, chemicals that may be observed have a small

number of peaks, and methods like DTW can not work. Conversely, required accuracy

of the spectral axis is not high relatively. Thus, for applications such as our systems,

the peak-alignment problem can be solved by setting the tolerance of peak positions to

a large value instead of DTW.

2.2.2 Classification

Classification includes multiclass-classification as well as detection. Multiclass-classification

is important in a typical case of chemometrics, analysis of foods [22]. Multiclass-

classification can be applied for investigating the characteristics of foods such as which

ingredient is used, where foods are from, etc. Many kinds of pattern-recognition algo-

rithms are applied for chemometrics[22]. Linear discriminant analysis (LDA) is one of

the most simple algorithms that assumes that all the classes are Gaussian distributions

and the covariance matrices are equal. Quadratic discriminant analysis (QDA) may be

used when covariance matrices are different. Partial Least Squares Discriminant Anal-

ysis (PLS-DA) is customarily used in chemometrics [23]. It is also known that support

vector machines (SVMs) can be applied to many fields [22].

Detection is to determine whether each target substance exists or not, and it is the

main function of our systems. In many applications other than chemicals detection for
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security, patterns of anomalies are unknown in advance, whereas normal patterns can

be known. In these cases, approaches of anomaly-detection/outlier-detection such as

the Mahalanobis-distance, Hotelling’s T 2, D-Static, the one-class SVM, etc. are widely

applied [22]. Anomaly-detection/outlier-detection determines whether an input signal is

derived from normal conditions defined by the given normal patterns. In contrast, in

chemicals detection for security, spectral patterns of target substances (explosives, toxic

chemicals, etc.) can be known in advance, whereas spectral patterns of interferences such

as cosmetics are unknown. Therefore, for applications such as our systems, template

matching is the most standard approach [24][25], i.e. the input spectrum is matched

with known templates in database, a similarity measure is calculated, and an alert will

be displayed if the similarity measure is higher than a threshold. As similarity measures,

the Euclidean distance, the inner product, the cosine similarity, the Pearson correlation

coefficient, etc. are used [22].

2.2.3 Quantification

Quantification is estimation of the amount of a substance from chemical data. Quantifi-

cation follows a supervised-learning-manner; i.e. in advance, signals need to be recorded

on different conditions that a known amount of the pure target substance exists, and

a regression function is trained from the combination of the recorded signals and the

amount of the substance. Based on the trained regression function, for a new observed

signal, the amount of the substance can be estimated. For example, the partial-least-

squares (PLS) method is widely used as a regression algorithm similarly to classification.

In some cases, according to sensors such as IMS, the variance of the feature value is too

large, and quantification is difficult. For our system, accurate quantification is not nec-

essary because an accurately-estimated amount can not be used for capturing a suspect

or evacuating people. In this study, we do not treat quantification as a main topic.
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2.3 Conventional approaches for chemicals localiza-

tion

There are two main approaches of chemicals localization. One is to search for chemicals

by using an autonomous mobile robot equipped with a sensor [26], and the other is to

use stationary sensors to localize a chemical source [27][28].

Approaches of mobile robots have been studied intensively in the research community

[26][29][30][31][32][33][34]. The task of mobile robots consists of several tough sub-tasks:

• detecting a target substance in a noisy environment;

• making a robot follow the trail of the substance from the source;

• integrating incomplete information achieved by multiple robots;

• making a strategy such that multiple robots can move cooperatively to achieve as

much information as possible.

Also for the hardware, difficult problems must be solved; the size of sensors must be small

enough to be equipped in robots; batteries must be designed to provide a long lasting

power; everyday maintenance for robots must be done. Although a number of researches

on mobile robots have been done, there is rarely an example of practical application.

The main reasons are that the cost of robots in itself is high, that the life of batteries is

short, and that the cost of maintenance is high [28].

For approaches of stationary sensors, a large number of sensors must be deployed

densely arranged [27][28]. On assumption that many sensors can be deployed, Cao et al.

proposed a localization algorithm based on a distributed least-squares estimation [27].

Nofsinger proposed a localization algorithm based on the multiple hypothesis tracking

(MHT) [28]. A greater number of sensor-nodes are needed than the number of sensors

for the case of autonomous robots, so the cost of sensors must be much lower, the power

consumption must be much lower, and the required maintenance must be much less [28].

However, such sensors can detect only the limited kinds of substances, and they can not

be applied for our application.

For both of the above approaches, an enormous sensing-cost is required, so there

are few examples of practical use. However, there is another approach for reducing the
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sensing cost [35]. This approach uses only a single detector and multiple air-intake-ducts

corresponding to the positions all over the area, and all the ducts are connected with

the detector. The system can switch the ON/OFF of intake of individual ducts, and

at each time-frame, only one duct is selected and is set to ON. The system sequentially

selects a duct and takes air from only the selected duct corresponding to the time-frame.

Because there is a one-to-one-correspondence between the ducts and the time-frames,

The position of the duct corresponding to the time-frame when a target substance is

detected can be determined as the position where the substance exists. Hereafter, we

call this approach “time-division-sampling”. However, time-division-sampling spends a

long time to test all the positions, and time-division-sampling is not fit for applications

such as evacuation guidance.

2.4 Basic theory of sparsity-aware signal processing

In recent years, sparsity has been a very hot topic of signal processing. The sparsity

means the assumption that the source signal is a combination of a small number of

basis components in a transform domain. Using the assumption of the sparsity can

improve the accuracy and robustness of estimation, and it can also reduce the required

number of observations. This approach is called sparsity-aware signal processing. The

sparsity-aware signal processing is explained in this section.

We consider a matrix A ∈ Rn×m (n < m), and define an underdetermined linear

observation system y = Ax, where A is given, y ∈ Rn is an observed vector, and

x ∈ Rm is an unknown vector. One of the main tasks of signal processing is to achieve

x from A and y. A and y can be regarded as the degradation process and the degraded

signal respectively, and the goal is to reconstruct the source signal x. The same problem

appears in various fields such as super-resolution [36], image inpainting [37][38], audio

inpainting [39], signal compression [40], noise reduction [41], etc. However, there are an

infinite number of solutions to the underdetermined system. To find the best one in a

sense from an infinite number of solutions, an additional constraint is needed.

A popular way to add a constraint is “regularization”. We define the optimization

problem:

min
x

∥y −Ax∥22 + J(x), (2.3)
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where the first term is a fit measure, and J(x) is a penalty term on the complexity of x.

J(x) is called a regularization term. In many cases, J(x) is a norm of x, and a solution

with a smaller norm is chosen. The most popular form of J(x) is the squared Euclidean

norm λ∥x∥22, and (2.3) is converted to:

min
x

∥y −Ax∥22 + λ∥x∥22. (2.4)

Equation (2.4) gives the closed-form solution:

x̂ =
(
ATA + λI

)−1
ATy. (2.5)

This regularization is well known as L2 regularization [42], Tikhonov regularization [43],

or ridge regression [44]. L2 regularization is widely used in various fields, and this is due

to its simplicity of the closed-form-algorithm. However, L2 regularization is not always

the best way.

If J(x) is the ℓ1-norm λ∥x∥1, (2.3) is converted to:

min
x

∥y −Ax∥22 + λ∥x∥1. (2.6)

This is called L1 regularization [42] or basis pursuit denoising [45], which can be solved by

convex optimization. L1 regularization has a tendency to prefer sparse solutions, i.e. the

shortest solution x in ℓ1-norm tends to have a fewer number of non-zero elements than

the shortest in ℓ2-norm. Sparsity appears in various fields such as audio [46], medical

imaging [47], natural images [48], seismic data [49], biological data [50], etc. In many

cases, sparse solutions are desired.

A more general case is Lp regularization, which uses ℓp-norm (0 ≤ p ≤ 1), has a

tendency to prefer sparser solutions. The special case that J(x) is the ℓ0-norm with

λ → ∞ is the following form:

∥x∥0 s.t. y = Ax, (2.7)

where ∥x∥0 means the number of non-zero elements of x. In a narrow sense, this form

is called “compressive sensing” or “compressed sensing”. The compressive sensing is a

problem of combinatorial search, and the computational complexity of the exhaustive

search is exponential in the dimension of x, i.e. this problem is NP-hard. Actually, it

has been proven that, under some conditions, the unique solution of the compressive
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sensing can be calculated by approximation algorithms. For example, if a solution x

exists obeying

∥x∥0 <
1

2

(
1 +

1

µ(A)

)
, (2.8)

a greedy algorithm called “orthogonal matching pursuit” is guaranteed to find the unique

solution exactly, where µ(A) is the mutual coherence of A [51]. In addition, if a solution

x exists obeying (2.7), the solution is equal to the unique solution of L1 minimization

[52][53]:

∥x∥1 s.t. y = Ax, (2.9)

which can be solved by linear programming.

As above, for the undetermined linear system, many researches on guarantees have

been done. Actually, it is known that the sparsity-awareness is useful for not only the

undetermined linear system but also other problems, such as blind-source-separation

[54][55][1], a Boolean system called “group-testing” [2], non-linear systems [56][57], etc.

In the following chapters, we study methods based on sparsity-aware signal processing

for improving the detection-accuracy and the localization-speed.
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Chapter 3

Separation of mass spectra based on

probabilistic latent component

analysis for explosives detection

3.1 Introduction

The threat of improvised explosive devices (IEDs) has recently become a serious problem

for all countries because the recipes for making them are freely available on the Internet.

It is therefore necessary to develop technologies for detecting IEDs. Aiming to prevent

terrorist attacks with IEDs at train stations, airports, sports stadiums, shopping malls

and such places, a “walkthrough portal explosives-detection system” was previously de-

veloped. The system consists of a high-throughput ticket gate-type vapor sampler, a

high-sensitivity atmospheric-pressure chemical-ionization source, a high-selectivity lin-

ear ion-trap mass spectrometer, and an ion-counting detector [3]. In the first step of

the detection process, the vapor sampler draws the vapor emitted from traces of sub-

stances attached to the body, clothes, and luggage of the person being checked. Next,

the ionization source ionizes the molecules in the drawn vapor, and the mass spectrom-

eter separates the ions according to their mass-to-charge ratios (m/z) by means of an

electromagnetic field. The detector translates the number of separated ions striking

the detector to intensity for each m/z value. The series of the intensities is called the

“mass spectrum”, and the system observes a time series of the mass spectra continuously.
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Hereafter, the time series of the mass spectra is called the “mass spectrogram”. Finally,

the system detects explosive substances based on whether particular spectral patterns

appear in the mass spectrogram.

Signals corresponding to cosmetics, paint, and dust as well as those corresponding to

explosive substances are mixed in the mass spectrogram observed in real environments.

It is therefore necessary to separate the mass spectrogram into individual substances.

The system knows neither the spectral patterns corresponding to individual substances

nor the times when individual substances are observed in advance. In other words, the

problem known as “blind-source-separation” (BSS) must be solved. In the field of mass

spectrometry, algorithms for blind-source-separation, such as principal-component anal-

ysis (PCA) [58] and independent-component analysis (ICA) [59][60], are widely used.

Multiple substances have spectral peaks at the same m/z value in the mass spectrogram;

that is, orthogonality does not hold in general. The separation performance of PCA

is degraded because it imposes orthogonality. ICA does not impose orthogonality but

statistical independence. ICA, however, fails in many cases because uncertainty in mass

spectra separation can not be solved only by statistical independence. Recently, new

approaches based on “non-negative matrix factorization” (NMF) [61][62] have been ap-

plied to mass spectrometry [63][64]. To solve problems of uncertainty in mass spectra

separation, NMF makes use of the fact that all the signals corresponding to individual

substances are non-negative. However, there is no study on explosives detection using

NMF-based separation of a mass spectrogram.

In regard to NMF, the main approach to further reduce uncertainty is to introduce

sparsity constraints. A number of NMF algorithms with sparsity constraints have been

proposed [65][1][66][67]. It has been shown that L1 regularization [65] and L1/L2 reg-

ularization [1][66] improve the separation performance in audio and image processing

by using the constraint that the activation matrix is sparse or that the basis matrix

is sparse. Moreover, “probabilistic latent-component analysis” (PLCA) [68][69][70][71],

which is a statistical formulation of NMF with the Kullback-Leibler (KL) divergence,

has been proposed and applied to musical-signal processing. It is known that sparsity

assumptions can be applied to PLCA [70][71]. However, there is no study on whether

sparsity assumptions are effective for explosives detection.
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In this study, a new method for separating a mass spectrogram for explosives detection-

based on PLCA with a sparsity constraint-is proposed. Similarly to NMF, PLCA imposes

the constraint of non-negativity, but does not impose orthogonality; therefore, it is ap-

plicable to mass spectra. In addition, the separation performance is improved by using

a sparsity constraint. The results of experiments on separation with mass-spectra data

obtained in a real station demonstrate that the proposed method outperforms existing

methods. They also show that the sparsity assumptions improve separation performance.

It is also shown that the algorithm accelerated by a graphical processing unit (GPU)

can work in real time.

3.2 Problem statement

The input signal is a time series of mass spectra, called a mass spectrogram x(t,m),

where t is the time index, and m is the index corresponding to m/z in a mass spectrum.

T is the number of the time indices, i.e. 1 ≤ t ≤ T . M is the number of the indices

corresponding to m/z, i.e. 1 ≤ m ≤ M . The set of substances in the air that can be

observed by the system consists of explosive substances, interference substances, and a

chemical background. Interference substances are defined as those of which peaks rise

and fall within seconds, such as cosmetics of the person being checked, and the chemical

background is defined as those of which peaks are stationary over a period of minutes,

such as paint on building walls, etc. The number of substances that can be observed

is given as K. It is assumed that each substance has a particular spectral pattern

corresponding to the ions derived from the substance, which is called a spectral basis

component. This means that K is also the number of spectral basis components. It is

also assumed that spectral basis components are time-invariant over minutes. x(t,m)

may be modeled as a linear combination of spectral basis components as follows,

x(t,m) =
K∑
k=1

c(k|t)s(m|k), (3.1)

where k (1 ≤ k ≤ K) is the index of substances, c(k|t) is the intensity corresponding

to the amount of the k-th substance at time-point t, and s(m|k) is the m-th element

of the spectral basis component corresponding to the k-th substance. c(k|t) is called a

temporal activation.
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Unknown variables c(k|t) and s(m|k) are estimated from known variables x(t,m).

This estimation is a “blind-source-separation” problem. In addition, the following con-

ditions concerning the explosives-detection system are set. First, s(m|k) is non-negative

for all m/z values and substances because the mass spectrum represents the number

of ions for each m/z value; second, c(k|t) is non-negative for all substances and times

because c(k|t) represents the amount of each substance at the time-point t; third, or-

thogonality among the spectral basis components cannot be assumed because different

substances in real environments may have ions with the same m/z value.

3.3 Proposed method

3.3.1 PLCA model

The PLCA model [68][69] consists of a pair of probabilistic trials:

1. At each time t, the probability that the k-th substance is selected is P (k|t).

2. For the selected substance k, the m-th index corresponding to m/z is selected from

probability distribution P (m|k), and a positive constant value, ∆, is added to the

spectral bin (t,m) corresponding to x(t,m).

It is assumed that x(t,m) is generated by the iteration of this selection-addition process

for each time-point t. It is therefore possible to formulate the probability distribution

that x(t,m) is generated as follows:

P (x(t,m)∀t,m) =
T∏
t=1

M∏
m=1

{
K∑
k=1

P (k|t)P (m|k)

}x(t,m)

, (3.2)

which leads to the log-likelihood

logP (x(t,m)∀t,m)

=
T∑
t=1

M∑
m=1

x(t,m) log
K∑
k=1

P (k|t)P (m|k). (3.3)

With the PLCA model, (3.1) can be interpreted as trials following a probability dis-

tribution (3.3). P (k|t) corresponds to c(k|t) in (3.1), and P (k|t) is called the probabilistic

temporal activation. Moreover, P (m|k) corresponds to s(m|k) in (3.1), and P (m|k) is
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called the probabilistic spectral basis component. Therefore, first, the estimation process

calculates P (k|t) and P (m|k) that maximizes (3.3). Next, it calculates the maximum-

likelihood estimates of c(k|t) and s(m|k) from these probabilistic distributions. However,

it cannot estimate both P (k|t) and P (m|k) directly because P (k|t) is needed to estimate

P (m|k). The expectation-maximization (EM) algorithm for maximum-likelihood esti-

mation with missing data can be employed. Therefore, EM-based estimation algorithm

(Algorithm 1) can be obtained. After the iteration process, the estimate ĉ(k|t) of c(k|t)

can be calculated from (3.5), and ŝ(m|k) of s(m|k) can also be estimated from (3.7).

The PLCA-based method can utilize the non-negativity constraint similarly to NMF

because both P (k|t) and P (m|k) are probability variables that are always non-negative.

Moreover, the PLCA-based method does not make use of orthogonality, thus we can

estimate the spectral basis components that are not orthogonal to each other.

The statistical relationship between PLCA and the mass spectrometry-based explo-

sives detection is described as follows. There are three cost functions commonly used

in NMF, namely, the Euclidean distance, KL divergence, and Itakura-Saito divergence.

These versions are special cases of NMF with β-divergence [72][73]. PLCA is a sta-

tistical formulation of NMF with KL-divergence (KL-NMF). In the case of NMF with

KL-divergence, the cost function equals the minus-log-likelihood under the assumption

that the input signal is generated from a Poisson distribution [73]. On the other hand,

it is commonly known that the variation of intensities of mass spectra follows a Poisson

distribution [74]. Because both of them follow a Poisson distribution, it can be consid-

ered that PLCA is valid for mass spectrometry-based explosives detection. However, the

problem concerning the scale factor of the Poisson distribution [75] must be noted. In

regard to the developed system, the scale factor of the Poisson distribution corresponds

to the sensitivity of the mass spectrometer. After the sensitivity of the mass spectrome-

ter is tuned adequately in advance, the sensitivity does not change largely. In this study,

the problem concerning the scale factor can therefore be neglected.
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3.3.2 Solving the uncertainty problem by using a sparsity as-

sumption

The non-negativity constraint of NMF or PLCA cannot completely solve the uncer-

tainty problem. That is, the uncertainty can degrade the accuracy of P (k|t) and that

of P (m|k). To obtain the solution accurately, a sparsity assumption can be applied to a

mass spectrogram obtained by the explosives-detection system is introduced as follows:

Sparsity of activation: It is assumed that only a few substances k are active at the

same time. This assumption is derived from two facts. The first is that people can

walk through the gate of the explosives detection system one by one. The second is

that when a person passes through the detector, peaks in the mass spectrogram rise

rapidly and attenuate within seconds. Due to these facts, the sparsity of activation,

P (k|t), can be assumed.

As mentioned in Section 3.1, there are many approaches to formulate the sparsity

assumption for NMF and PLCA. For example, to represent the sparsity of activation, L1

regularization [65], L1/L2 regularization [1][66], Dirichlet prior[76], and Gamma-Poisson

Model[77] can be applied to NMF. Here, to represent the sparsity constraint, an entropic

prior [70], which is widely used in PLCA, is used. From an industrial viewpoint, it is

important that an algorithm is easy to be implemented for applying it to a product.

The sparsity constraint by the entropic prior is easier to be implemented than other

approaches. We therefore choose the entropic prior. The objective function is defined

by adding the term corresponding to the “entropic prior” to (3.3) as follows:

J ({P (k|t)} , {P (m|k)})

=
T∑
t=1

M∑
m=1

x(t,m) log
K∑
k=1

P (k|t)P (m|k)

−α

T∑
t=1

H({P (k|t)}k), (3.9)

where α is the parameter of the sparsity of P (k|t), and H({P (k|t)}k) represents the

entropy of P (k|t), i.e. H({P (k|t)}k) = −
∑

k P (k|t) logP (k|t). In (3.9), the second term

corresponds to the sparsity of P (k|t). Because the objective function is transformed from

(3.3) to (3.9), one step of Algorithm 1 is also transformed to a new step. First, (3.6)
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is transformed by the sparsity of P (k|t) as follows:

P (k|t) = g(β, {ĉ(k|t)}k), (3.10)

where β ≥ 1.0 is the sparsity parameter, and g(β, {γk}k) is the sparsity-controlling func-

tion proposed by Grindlay and Ellis [78]: g(β, {γk}k) = γk
β∑

k γkβ . The sparsity-controlling

function proposed by Grindlay and Ellis [78] is widely used. The derivation of the func-

tion has not been proven, whereas it is empirically known that the function is effective.

β can be tuned manually by checking the separation performance for a test sample. If

the detection performance can be evaluated in a real environment, β can be set such

that the detection performance is maximized.

It is necessary to pay attention to that the sparsity assumption does not hold for the

chemical background. The signal corresponding to the chemical background is not sparse

because the chemical background is stationary. Thus, the sparsity constraint may have

a bad effect on the separation performance. In order not to apply the sparsity constraint

to the chemical background, it is required to distinguish the index corresponding to

the chemical background from those corresponding to the other substances, and it is

required to apply the sparsity constraint only to the other substances. Here, the chemical

background is assigned to the first index of substances, i.e. k = 1. To assign the

signal corresponding to the chemical background to k = 1, the feature that the chemical

background always exist can be used, i.e. P (k = 1|t) is always larger than P (k ̸= 1|t).

By using this feature, P (k = 1|t) is set to a higher value than P (k ̸= 1|t) in (3.10) as

follows:

P (k|t) =


1

1+
∑

k′ ̸=1 g(β,{ĉ(k′|t)}k)
if k = 1,

g(β,ĉ(k|t))
1+

∑
k′ ̸=1 g(β,{ĉ(k′|t)}k)

otherwise.
(3.11)

Because P (k = 1|t) is the highest value at all the time-points, the spectral bins that are

active at all the time-points are mapped to the first substance k = 1. This approach

makes the algorithm robust to noise from the chemical background. Hereafter, this

heuristic approach is called “background mapping”. Converting the steps as above gives

an algorithm (Algorithm 2), for estimating P (k|t) and P (m|k). After the iteration

process, finally, the estimate ĉ(k|t) of c(k|t) can be calculated from (3.5), and the estimate

ŝ(m|k) of s(m|k) can be calculated from (3.7).

The convergence of the proposed method is explained in the following. For the NMF
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Figure 3.1: Convergence of the objective function (3.9).

with KL-divergence, Lee and Seung proved the monotonic convergence of the objective

function [62]. However, in general, it is hard to prove the convergence of unknown pa-

rameters. Badeau et al. analyzed the convergence properties of unknown parameters

[79]. For the supervised NMF, Badeau et al. proved the convergence of unknown param-

eters [79], whereas for the unsupervised NMF, the convergence of unknown parameters

was not proven. Also for Algorithm 2, it is difficult to prove the convergence of P (k|t)

and P (m|k). For practical use, the convergence of the objective function of Algorithm 2

has been experimentally checked. Here, an example of the convergence of the objective

function (3.9) is shown in Fig. 3.1.

The sensitivity of Algorithm 2 to the sparsity parameter is explained as follows. This

sensitivity is not an essential problem in regard to the developed system for the following

reason. It is considered that the sparsity of activation depends mainly on pedestrian

traffic. There is therefore a probability that the sparsity parameter will be changed by

pedestrian traffic. Pedestrian traffic can be measured easily because the walk-through

portal explosives detection system [3] has an optical sensor for detecting people passing

through it. Consequently, if the sparsity parameter corresponding to the pedestrian

traffic is tuned in advance, explosive substances can be separated by selecting the tuned
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parameter according to on the pedestrian traffic. (The sensitivity of the algorithm to

the sparsity parameter will be empirically verified in future work.)

3.3.3 Methods for applying the proposed algorithm to the explosives-

detection system

In this section, how to apply the proposed separation algorithm to the explosives-

detection system is described. Fig. 3.2 shows the process block diagram of an example

of the explosives-detection system using the proposed separation algorithm. The system

obtains a new mass spectrum from the mass spectrometer every sampling interval. Each

time when the system obtains the new mass spectrum, the system runs in the following

steps:

1. The new mass spectrum is appended to the past spectrogram buffered in a memory,

and the input signal for separation, x(t,m), is generated.

2. By the proposed separation algorithm, x(t,m) is separated into individual sub-

stances, and the estimated basis component ŝ(m|k) and the estimated activation

ĉ(k|t) are obtained for each substance.

3. For each k-th substance, the separated spectrum, yk = [y(1, k), · · · , y(M,k)]T , is

calculated by y(m, k) = ĉ(k|T )ŝ(m|k).

4. For each v-th explosive substance registered in a database, yk is compared with the

v-th template spectrum, dv = [d(1, v), · · · , d(M, v)]T , and the score corresponding

to the amount of the v-th explosive substance in yk, a(v, k), is calculated. A simple

method for calculating a(v, k) is the inner product, i.e. a(v, k) = dT
v yk. However,

actually, the m/z-axis may shift due to the condition of the mass spectrometer.

Thus, to improve the robustness to the shift of the m/z-axis, a(v, k) is calculated

as follows:

a(v, k) = max
δ∈[−∆,∆]

∑
m

d(m, v)y(m + δ, k), (3.12)

where ∆ is the tolerance range for the shift, and δ is an integer between −∆ and

∆.
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Figure 3.2: Process block diagram of explosives-detection using the proposed algorithm.

5. If a(v, k) is larger than a threshold for any v and k, then an alert is displayed as

the detection result.

As above, the proposed separation algorithm works as an online algorithm, i.e. the

proposed algorithm uses only past data, Thus, the system can detect explosive substances

in real time in principle.

The calculation time is also important for real-time detection. The computational

complexity of the proposed separation algorithm is O(KTML), where L is the number

of iterations. As shown from the computational complexity, if T or M is larger, the

algorithm can not work in real time by central processing unit (CPU) computation.

To solve this problem, it is possible to utilize graphical processing units (GPU), which

are installed on a number of personal computers today. In the proposed algorithm

(Algorithm 2), three parts can be performed in parallel by GPU computation as follows:

1. (3.4) in E step can be calculated in parallel for each m and t.

26



2. (3.5) (3.11) in M step can be calculated in parallel for each t.

3. (3.7) in M step can be calculated in parallel for each m.

By parallel computing, the algorithm can be accelerated and can work in real time.

3.4 Experimental results

The performance of the proposed method was experimentally evaluated by using the

walk-through portal explosives-detection system [3] to record an input mass spectrogram.

We previously developed a prototype system as supported by The Ministry of Education,

Culture, Sports, Science and Technology, Japan (2007 to 2009). A model of the system

is shown in Fig. 3.3. To measure the chemical background of a real environment, the

device was used to record a mass spectra recorded in a real station. 3500 mass spectra

obtained from several people passing through the detector for about five minutes from

the whole recorded data; i.e. T = 3500, were used, and the number of the m/z points,

M , was 512. The input mass spectra are shown in Fig. 3.4 (a), and the chromatogram

(time profile) corresponding to around m/z 59 is shown in Fig. 3.4 (b). The chemical-

background components have stationary peaks at m/z 59, m/z 62, and m/z 75 (Fig.

3.4 (a)). In this experimental evaluation, an experimenter passed through the system

carrying substance 1 (m/z 59) four times in the first half of the time, and with substance

2 (m/z 59, m/z 62, m/z 76 and m/z 77) five times in the second half of the time. As

shown in Fig. 3.4 (b), the fourth peak of substance 1 (t = 1600) is small and at the same

level as those of when substance 2 was passed (e.g. t = 1950). From Fig. 3.4, P (m|k)

for substance (k) is not orthogonal to P (m|k)s for the other substances. The number

of substances (K) in the estimation process was set at eight. The maximum number of

iterations was 100. The sparsity parameter β was 1.01. This sparsity parameter with

fully manual tuning such that they maximize the separation performance was found.

The estimates of P (m|k) and P (k|t) are shown in Fig. 3.5 and 3.6. As shown in Fig.

3.5, all correct main peaks for the chemical background, substance 1, and substance 2

were estimated. As shown in Fig. 3.6, the peaks exist at the correct times when substance

1 and substance 2 were passed. In particular, for substance 1, the fourth peak of P (k|t)

is obviously higher than that of P (k|t) in the second half of the time (Fig. 3.6 (b)).
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Figure 3.3: Explosives detector.

The results shown in Figs 3.5 and 3.6 indicate that the proposed algorithm can separate

explosive substances precisely. However, substance 2 was separated into two different

basis components k = 3 and 4. The side lobes of the spectral basis component P (m|k=3)

(Fig. 3.5 (c)) are broader than those of P (m|k = 4) (Fig. 3.5 (d)). This feature infers

that the component for k = 3 corresponds to a saturation state known as the “space

charge effect” [74], and the component for k = 4 corresponds to a non-saturation state.

A partially enlarged view of the probabilistic temporal activation of Figs. 3.6 (c) and (d)

is shown in Fig. 3.7. As shown in Fig. 3.7, the component for k = 4 rose immediately

after the person passed through the system, the peak of the component for k = 3 rose

largely, and the component of for k = 4 became active with time. These results indicate

that when the component of for k = 3 was active, the amount of substance 2 was large.

This finding strengthens the assumption that the component for k = 3 corresponds to

the saturation state. In this experimental evaluation, the saturation actually occurred in

the mass spectrometer because the amount of substance 2 was too large. The algorithm

described in this chapter cannot handle temporal structure of spectral basis components

because each basis component is modeled by only one spectral pattern. An method for

modeling temporal structure is described in Chapter 5.

The separation performance of the proposed method was compared with that of
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existing methods (i.e. PCA, ICA, and PLCA) without the sparsity constraint. For

performance evaluation of source separation, in general, it is desired to measure the error

between the ground truth and the separated signal if the ground truth can be obtained.

However, in this experimental evaluation, the ground truth can not be prepared because,

even in laboratory environments, not only explosive substances but also interference

substances and a chemical background exist in the air. It is therefore required to use

another method for evaluating the separation performance. Here, it is possible to use the

fact that, conversely, the explosive substances did not exist in the real station when the

experimenter did not pass through the system. Thus, if the separation performance is

high, the intensity of the separated signal will be small at the time when the experimenter

did not pass through the system. Considering this feature, we evaluated the separation

performance by using the Signal-to-Noise Ratio (SNR) defined by

SNRk,i,j = 10 log10

maxt∈Ak,i
|ĉ(k|t)j|√

1
|Nk|

∑
t∈Nk

|ĉ(k|t)j|2
[dB] , (3.13)

where the numerator in the logarithm is the intensity of the separated signal at the time

when the k-th substance is passed through the device, the denominator in the logarithm

is the root-mean-square of the intensity of the separated signal at the time when the k-th

substance is not passed through the device, Ak,i is the i-th short-time range when the k-

th substance is passed through the device, Nk is the time range when the k-th substance

is not passed through the device; i.e. Nk=2 is [2000, 3500], and Nk=3 is [0, 1500], j is the

index of executions of the estimation process, and the number of the execution times is

50, i.e. 1 ≤ j ≤ 50. (In each execution, all the unknown parameters were initialized

by different random values.) If the separation performance is high, the denominator in

the logarithm of (3.13) is small, and then (3.13) is large. In addition, SNRk is defined

as an ensemble mean over i and j. In the case of the arithmetic mean, SNR is prone to

an excessively high value even if there is a low SNRk,i,j. Therefore, the arithmetic mean

is not fit to measure the robustness. In contrast, the harmonic mean is sensitive to the

case that SNRk,i,j is low. Therefore, the harmonic mean is fit to measure the robustness.

SNRk is thus defined as the harmonic mean of SNRk,i,j:

SNRk = #passing trials × #process executions

×

{∑
i,j

1

SNRk,i,j

}−1

. (3.14)
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SNRk is shown in Fig. 3.8. “PLCA” means the original PLCA (Algorithm 1).

“Background mapping” means Algorithm 2 without the sparsity constraint (β = 1).

“Sparse” means Algorithm 2 with the sparsity constraint (β = 1.01). In Fig. 3.8, the

separation performance of the proposed algorithm (“PLCA”, “background mapping”,

and “sparse”) is higher than that of PCA and ICA. In relation to the results, the spectral

basis components for substance 1 estimated by PCA and ICA are shown in Fig. 3.9.

Figs. 3.5 (b) and (c) are compared with Figs. 3.9 (a) and (b). PCA and ICA estimate the

spectral basis components without the constraint of non-negativity, so the estimates of

the spectral basis components have both a negative peak and a positive peak. In contrast,

the proposed method can estimate the spectral basis components accurately by using

the constraint of non-negativity. From this figure, it is considered that the reasons for

the high performance of the proposed algorithm are the constraint of non-negativity and

no assumption about orthogonality. In addition, in Fig. 3.8, the separation performance

of background mapping is higher than that of the original PLCA. The results of this

comparison indicate that background mapping improves robustness to noise from the

chemical background. Moreover, to evaluate the effect of the sparsity constraint, PLCA

with the sparsity constraint (“sparse”) was compared with the other algorithms. The

results of this comparison (Fig. 3.8) indicate that the sparsity constraint improves the

separation performance.

Fig. 3.10 shows the separation performance of the proposed algorithm and that of the

conventional NMF with L1/L2 regularization [1]. As shown in Fig. 3.10, in L1/L2 regu-

larization, the separation performance was improved by tuning the sparseness parameter.

These results indicate that L1/L2 regularization is effective. However, the performance

of the L1/L2 regularization was not higher than that of the proposed algorithm. The

L1/L2 regularization applies the sparsity constraint to all the substances equally without

distinguishing the chemical background from the other substances, whereas the proposed

algorithm can apply the sparsity constraint only to the substances except the chemical

background. It can be considered that the reason why the separation performance of

the proposed algorithm was higher than the L1/L2 regularization. These results indi-

cate that the sparsity constraint of the proposed algorithm is effective for improve the

performance although it is easy to be implemented.
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Table 3.1: The calculation time for CPU and GPU. The real-time factors (RTF) were

calculated in the assumption that the sampling interval is 0.5 seconds. (Under the

condition that the sampling interval is 1.0 seconds, the RTFs are equivalent to the

columns of the calculation time [sec].)

CPU GPU

T Calculation time [sec] RTF Calculation time [sec] RTF

50 0.92 1.84 0.21 0.42

500 4.24 8.48 0.27 0.54

1500 11.63 23.26 0.42 0.84

Finally, the calculation time described in Section 3.3.3 was evaluated. Computation

was performed on a desktop personal computer running Windows 7. The computer

had an Intel Core i7 980 CPU with 3.33GHz, 12GB of RAM, and an NVIDIA GeForce

GTX580 GPU with 512 cores. CPU computation was performed using a single compu-

tation thread. For CPU computation, the code of the algorithm was implemented by

using the C language. For GPU computation, the code was implemented by using the

CUDA. M was 512, K was 8, and the number of iterations was fixed to 100. The calcu-

lation time was measured for T = 50, 500, and 1500. Table 3.1 shows the results of the

calculation time. The real-time factors (RTF) were calculated in the assumption that

the sampling interval is 0.5 seconds. (The sampling interval is set typically between 0.5

seconds and 1.0 seconds.) As shown in Table 3.1, the RTFs were lower than 1 in the case

of GPU computation. These results indicate that the algorithm accelerated by GPU

computation works in real time. Particularly, if the sampling interval is 0.5 seconds,

the algorithm can be performed in real time by using 3000-second mass spectrogram

(T = 1500) as the input signal.

3.5 Conclusion

A new algorithm for separating a mass spectrogram into individual substances was pro-

posed for explosives detection. The proposed algorithm is based on PLCA. By using

PLCA, the algorithm imposes the constraint of non-negativity and does not impose
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orthogonality. In addition, to estimate the components more accurately, the sparsity as-

sumptions were applied to PLCA. In this chapter, industrial application of the algorithm

into the explosives-detection system was shown. In an experimental evaluation of the

algorithm using data obtained from a real environment, it was shown that the proposed

algorithm outperforms conventional ones. Moreover, the evaluation results show that

the sparsity constraint improves separation performance. It was also shown that the

algorithm accelerated by a graphical processing unit (GPU) can work in real time.

However, the results also show that one basis component tends to be split into mul-

tiple basis components mistakenly, because the proposed method does not model the

temporal structure of spectral basis components. In Chapter 5, an extended version of

the proposed method for modeling temporal structure of a mass spectrogram is explained.
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Algorithm 1 PLCA-based algorithm

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step until convergence

or a maximum number of iterations is reached.

E step:

Compute P (k|t,m) as follows:

P (k|t,m) =
P (k|t)P (m|k)∑
k′ P (k′|t)P (m|k′)

. (3.4)

M step:

Compute ĉ(k|t) as follows:

ĉ(k|t) =
∑
m

x(t,m)P (k|t,m), (3.5)

Compute P (k|t) as follows:

P (k|t) =
ĉ(k|t)∑
k ĉ(k|t)

, (3.6)

Compute ŝ(m|k) as follows:

ŝ(m|k) =
∑
t

x(t,m)P (k|t,m), (3.7)

Compute P (m|k) as follows:

P (m|k) =
ŝ(m|k)∑
m ŝ(m|k)

. (3.8)
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Algorithm 2 PLCA-based algorithm with the sparsity constraint

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step until convergence

or a maximum number of iterations is reached.

E step:

Compute (3.4).

M step:

Compute (3.5).

Compute (3.11).

Compute (3.7).

Compute (3.8).
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Chapter 4

ICA-based acceleration of

probabilistic latent component

analysis for mass

spectrometry-based explosives

detection

4.1 Introduction

In Chapter 3, an algorithm for separating a mass spectrogram into individual substances

was proposed for explosives detection. However, the convergence of the method is slow,

and the total calculation time is long. As shown in Chapter 3, for GPU, the method runs

in real time, whereas it can not run in real time for CPU, and the execution environments

are limited. In this chapter, we propose an acceleration method for PLCA. We focus

on that ICA can stably obtain a solution near the correct solution, and its speed is

fast. Thus, the proposed method makes use of ICA in the initialization process of

PLCA. Experimental results indicate that the convergence of the proposed method is

accelerated, and total calculation time is decreased.
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4.2 Problem statement

The problem statement is the same as Chapter 3. The input signal is the time series of

mass spectra x(t,m), where t is the index of a time, and m is the index of m/z. T is the

number of the time index, and M is the number of the index of m/z. x(t,m) is modeled

as follows,

x(t,m) =
∑
k

c(k|t)s(m|k), (4.1)

where k is the index of a compound basis, K is the number of the kinds of the compounds

in the air, c(k|t) is the intensity of the k-th compound in the time index t, and s(m|k)

is the time-invariant spectral basis component of the k-th compound. The task is to

estimate the unknown variables c(k|t) and s(m|k) from the known variables x(t,m), i.e.

this is a blind-source-separation problem.

4.3 Proposed method

We assume that the reason why the speed of convergence is slow is that the initial

solution is not adequate. As shown in Chapter 3, in mass spectra separation domain,

the correct solutions have a tendency to be a sparse solution. For example, temporal

activations tend to be sparse on the time axis, and spectral basis components also tend

to be sparse on the m/z axis. However, the solution initialized by random values tends

to be dense and far from the correct solution. In addition, there is a small probability

that an incorrect solution is obtained by the random initialization because the result of

PLCA can be highly dependent on the initial values. Thus, it is necessary to develop

an initialization method that finds a solution near the correct solution and does not use

randomness.

We focus on ICA for initialization. Similarly to PLCA, ICA is a blind-source-

separation method, so that ICA is available for initialization. ICA does not impose

non-negativity or orthogonality but independence to the solution. The independence is

assumed also in PLCA, and the solution of ICA is near that of PLCA. Although the

orthogonality does not hold in mass spectrometry, PCA and SVD impose orthogonality,

and so the solution of ICA tends to be closer to the correct solution than PCA and SVD.

In addition, ICA does not use randomness, so ICA does not suffer from the initial-value-
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sensitivity. Moreover, fast algorithms of ICA are commonly known, for example, Fast

ICA [80], the Natural Gradient algorithm [81], and the Auxiliary-function-based ICA

[82]. So that, by comparison with PLCA, the calculation time of ICA is extremely short.

Thus, by initializing the unknown parameters by ICA and reducing the number of iter-

ations of PLCA, we aim to shorten the total calculation time. By converting PLCA, we

can achieve ICA-PLCA algorithm (Algorithm 2). Similarly to the method proposed in

Chapter 3, in order to concentrate the stationary chemical background on the first basis,

i.e. k = 1, we set P (m|k = 1) to the uniform distribution in (4.6), and set P (k = 1|t) to

the higher value than P (k ̸= 1|t) in (4.7).

The calculation complexity of PLCA is O(LTKM), where L is the number of it-

erations. In contrast the calculation complexity of the above initialization process is

O(LTK2). Therefore the initialization process is faster than PLCA in the case of K < M .

The proposed method makes use of this feature, and it can reduce the total calculation

time by increasing the number of iterations of the initialization process and decreasing

that of PLCA.

4.4 Experimental results

By using the mass spectrogram of the experiment of Chapter 3, the performance of the

proposed algorithm was experimentally evaluated. We compared the proposed method

(ICA-PLCA) with the PLCA-based method of Chapter 3. In PLCA, all the unknown

parameters were initialized by random values. On each condition, the estimation process

was run 20 times. We set the number of bases K in the estimation process at eight, and

β was 1.02. The estimation process was run in C# on a PC with an Intel Core i7 3.3GHz

CPU and 12GB of RAM. The measurements were SNRk,i,j as follows:

SNRk,i,j = 10 log10

maxt∈Ak,i
|ĉ(k|t)j|√

1
|Nk|

∑
t∈Nk

|ĉ(k|t)j|2
[dB] , (4.8)

where Ak,i was the area around the i-th time when the k-th compound is passed through

the device, Nk is the non-active time area; i.e. Nk=2 was [2000, 3500], and Nk=3 was

[0, 1500], and j is the index of executions. Next, we defined SNR as an ensemble mean

over k i, and j. In the case of the arithmetic mean, a peak SNRk,i,j of which will be

extremely high tends to cause SNR to be higher excessively. In order to make much
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Algorithm 3 ICA-PLCA

In PLCA, replace the initialization process with the following equations:

1. By the whitening matrix W , prewhiten x(t) = [x(t, 1), · · · , x(t,M)]T and reduce

the number of dimensions:

z(t) = [z(t, 1), · · · , z(t,K)]T = Wx(t). (4.2)

2. Compute the separated signals:

y(t) = [y(t, 1), · · · , y(t,K)]T = V z(t). (4.3)

3. Compute the natural gradient;

V = V + η

[
I − 1

T
tanh(y(t))y(t)

]
V . (4.4)

4. Return to 2. until convergence.

5. Convert V into a basis matrix S on the m/z space:

S = V W . (4.5)

6. By normalizing S, initialize P (m|k):

P (m|k) =

 1
M

if k = 1,

|Sm,k−1|∑
m |Sm,k−1|

otherwise.
(4.6)

7. By normalizing y(t), initialize P (k|t):

P (k|t) =


1

1+
∑′

k y′k(t)
if k = 1,

y′k−1(t)

1+
∑′

k y′k(t)
otherwise.

(4.7)

where y′k(t) = |yk(t)|∑
k |yk(t)|

.

8. Run the iteration process of PLCA with the sparsity constraint (Algorighm 2).
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Figure 4.1: SNR for each method. X and Y show the number of iterations and SNR

[dB]. Error bars represent 95% confidence intervals.

account of worse SNRk,i,j, we defined SNR as the harmonic mean of SNRk,i,j over k i,

and j:

SNR =

{∑
k=2,3

∑
i,j

1

SNRk,i,j

}−1

(4.9)

As Fig. 4.1 shows, the larger the number of iterations, mostly the higher the perfor-

mance. SNR of ICA-PLCA converged to about 22 dB at about 10 iterations. However,

in the cases that the range of the number of iterations was 1 to 10, SNR of PLCA was

about 0 dB. The convergence of PLCA was much slower than that of ICA-PLCA, and

SNR of ICA-PLCA converged at about 30 iterations. These results indicate that the

performance of ICA-PLCA with 10 iterations is comparable to that of PLCA with 30

iterations. In contrast, as Fig. 4.2 shows, the calculation time of PLCA with 30 itera-

tions was much longer than that of ICA-PLCA with 10 iterations. This indicates that

the total calculation time can be reduced to less than 1/2 without loss of performance

by reducing the number of iterations of PLCA. Thus, the proposed method can reduce

the total calculation time by using ICA. Referring back to the experiment of Chapter
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Figure 4.2: The calculation time for each method. X and Y show the number of iterations

and the calculation time [second]. Error bars represent 95% confidence intervals.

3, the RTF of CPU was less than 2.0 under the condition of T = 50 (c.f. Table 3.1).

Combined with the fact that the total calculation time can be reduced to less than 1/2,

it is indicated that the proposed method can work in real time even on CPU.

4.5 Relation to prior work

As far as we know, in the domain of mass spectrometry, there are no researches on

acceleration of PLCA because, so far, it has not been necessary that signal separation is

executed in real-time in the domain of mass spectrometry.

There are several approaches on improving the initialization process of NMF such as

PCA/SVD [83][84][85] and fuzzy clustering [86]. Although the orthogonality does not

hold in mass spectrometry, PCA and SVD impose orthogonality, and so PCA and SVD

are not fit for initialization in mass spectrometry. Fuzzy clustering uses random values,

and it suffers from the initial-value-sensitivity. From these points of view, the proposed

method is superior to conventional approaches.
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4.6 Conclusion

We proposed a new method to separate mass spectra into components of each chemical

compound for explosives detection. In order to speed up the conventional method based

on PLCA, the proposed method makes use of ICA in the initialization process. In the

experiment using the data in a real environment, it was shown that the proposed method

can reduce the total calculation time. Referring back to the experiment of Chapter 3,

the RTF of CPU was less than 2.0 under the condition of T = 50 (c.f. Table 3.1).

Combined with the fact that the total calculation time can be reduced to less than 1/2,

it is indicated that the proposed method can work in real time even on CPU.
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Chapter 5

Mass spectra separation for

explosives detection by using an

attenuation model

5.1 Introduction

In the previous chapters, it was required for a separation algorithm to work with on-

line in real time, and the PLCA-based online algorithm was proposed. However, in

some cases, the time delay for detection is allowed, and it is not required for the al-

gorithm to work with online. In this chapter, a separation algorithm for such cases is

proposed. The PLCA-based algorithm has the problem that there is a high probabil-

ity that uncertainty still remains. To reducing the uncertainty, mass spectra separation

based on shift-invariant PLCA (SIPLCA) making use of temporal correlation of the mass

spectrogram is proposed. In addition, to prevent overfitting, the temporal correlation

is modeled with a function representing attenuation by focusing on the fact that the

amount of a substance is attenuated continuously and slowly with time. Results of an

experimental evaluation of the algorithm with data obtained in a real railway station

demonstrate that the proposed algorithm outperforms the PLCA-based algorithm and

the simple SIPLCA-based one. Also, an evaluation of the detection performance of explo-

sives detection is demonstrated, and results of the evaluation indicate that the proposed

separation algorithm can improve the detection performance.
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5.2 Problem statement

Most parts of the problem statement are the same as Chapter 3. The system observes a

time series of mass spectra, called a mass spectrogram x(t,m), where t is defined as the

time index, and m is defined as the index corresponding to m/z in a mass spectrum. T is

defined as the number of the time indices, and M is defined as the number of the indices

corresponding to m/z. The set of substances in the air consists of explosive substances,

interference substances, and a chemical background. The number of substances that can

be observed is set to K. x(t,m) can be modeled as a linear combination of spectral basis

components as follows,

x(t,m) =
K∑
k=1

c(k|t)s(m|k), (5.1)

where k (1 ≤ k ≤ K) is defined as the index of substances, c(k|t) is defined as the

intensity corresponding to the amount of the k-th substance at the time-point t, and

s(m|k) is defined as the m-th element of the spectral basis component corresponding to

the k-th substance. c(k|t) is called a temporal activation. The problem is to estimate

unknown variables c(k|t) and s(m|k) from known variables x(t,m).

The difference of the problem statement is that it is not required for the separation

process to work with online; i.e. the algorithm is allowed to use the signal obtained in

the future for estimation. The reason why offline separation is permitted is described in

Section 5.4.3.

5.3 PLCA-based mass spectra separation

In this section, the conventional algorithm is clarified. The conventional algorithm is

the PLCA-based one, which is proposed in Chapter 3. In PLCA [68], x(t,m) is modeled

with the following probability distribution:

x(t,m) ∝ P (t,m) = P (t)
K∑
k=1

P (k|t)P (m|k) (5.2)

The conventional algorithm can estimate the unknown parameters P (k|t) and P (m|k)

from the input signal x(t,m). P (k|t) corresponds to c(k|t) in (5.1), and P (k|t) is called

a probabilistic temporal activation. P (m|k) corresponds to s(m|k) in (5.1), and P (m|k)
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Figure 5.1: Basis components of each algorithm (the PLCA-based algorithm, SIPLCA,

SIPLCA-R, and SIPLCA-A).

is called a probabilistic spectral basis component. PLCA is a statistical formulation of

NMF with the KL divergence. PLCA is thus suitable for separating a mass spectro-

gram because all the elements of temporal activations and spectral basis components are

non-negative. In addition, the conventional algorithm makes use of sparsity of tempo-

ral activations to reduce uncertainty. The conventional algorithm uses the entropic prior

proposed by Grindlay and Ellis [78] for modeling the sparsity. The entropic prior is effec-

tive for improving the separation performance although it is easy to be implemented. By

using the entropic prior, the conventional algorithm can estimate P (k|t) and P (m|k) ac-

curately in many cases. The algorithm, however, fails in some cases because uncertainty

can not be resolved only by non-negativity and sparsity constraints.

5.4 Proposed algorithm

5.4.1 Shift-invariant PLCA-based mass spectra separation

To reduce the uncertainty, shift-invariant PLCA (SIPLCA) [87] is introduced into the

PLCA-based algorithm in this chapter. In the PLCA-based algorithm, the basis compo-

nent of one substance is regarded as a one-dimensional probability distribution P (m|k),

whereas in SIPLCA, it is regarded as a two-dimensional probability distribution P (m, τ |k)

as Fig. 5.1 shows. Here, τ = 1, · · · ,W is defined as the time index in the basis component

P (m, τ |k), where W is the frame size of the basis component. With the two-dimensional
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basis components, SIPLCA can make use of the fact that the mass spectrogram is cor-

related temporally. In SIPLCA, it is assumed that the input signal x(t,m) is generated

by convolving P (m, τ |k) over time as follows:

x(t,m) ∝ P (t,m)

=
∑
k

P (k)
∑
τ

P (m, τ |k)P (t− τ |k) (5.3)

=
∑
τ

P (t− τ)
∑
k

P (m, τ |k)P (k|t− τ) (5.4)

As the above equation shows, (5.3) and (5.4) are equivalent. Smaragdis [87] uses the

formulation of (5.3). Equation (5.4) can be also used instead of (5.3). In this chapter,

(5.4) is used to keep consistency between the conventional PLCA-based algorithm and

the proposed algorithm.

From (5.4), an algorithm for estimating P (k|t) and P (m, τ |k) is obtained as the

Algorithm 4 shows. Similarly to the PLCA-based algorithm, P (k|t) for k = 1 is set to

a higher value than P (k|t) for all k ̸= 1 in (5.7) to map the signal of the stationary

chemical background to the first substance, i.e. k = 1. In the case of W = 1, the

SIPLCA-based algorithm is equivalent to the PLCA-based algorithm.

In the conventional PLCA-based algorithm, the number of the unknown variables

P (k|t) and P (m|k) is (KT +MK), whereas in the SIPLCA-based algorithm, the number

of the unknown variables P (k|t) and P (m, τ |k), is (KT+MWK). However, the SIPLCA-

based algorithm is prone to overfitting because it has more unknown parameters than

the PLCA-based algorithm.

5.4.2 Attenuation model

To prevent overfitting, a model for the temporal correlation is introduced into the

SIPLCA-based algorithm in this subsection. When a person with an explosive sub-

stance passes through the detector, ions of the substance will be measured within two or

three seconds, and the peaks of the basis component corresponding to the substance will

rise rapidly in the mass spectrogram. After that, the intensity of the peaks decreases

continuously and slowly. In this way, the temporal profile of P (m, τ |k) varies largely

depending on τ , whereas the spectral pattern of P (m, τ |k) does not vary largely depend-

ing on τ . Therefore, for the explosives-detection system, P (m, τ |k) can be decomposed
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into a spectral basis component P (m|k) and a temporal basis component Q(τ |k), which

are mutually independent. The temporal basis component is represented as Q(τ |k) to

distinguish the temporal basis component Q(τ |k) with the temporal activation P (k|t).

Q(τ |k) is invariant for t, whereas P (k|t) varies depending on t. P (m, τ |k) is therefore

converted to the following equation:

P (m, τ |k) = P (m|k)Q(τ |k). (5.11)

Using (5.11), the estimation process of P (m, τ |k) in the SIPLCA-based algorithm is

decomposed into the estimation process of P (m|k) and that of Q(τ |k). Here, the new

separation algorithm based on this derivation is called “SIPLCA-R” (Algorithm 5). As

Fig. 5.1 shows, the basis component of SIPLCA-R can be interpreted as a rank-one

matrix, which is the multiplication of P (m|k) and Q(τ |k).

To enhance robustness, a constraint is imposed on the temporal basis component

Q(τ |k). We focus on the fact that Q(τ |k) rises rapidly first, and then it decreases

continuously and slowly with time after passing through the detector. To represent such

temporal structure of attenuation, Q(τ |k) for each k is modeled by a gamma distribution

having parameters different depending on k. G(τ ; θk, ϕk) = ϕk
θk

Γ(θk)
τ θk−1e−ϕkτ , where Γ(θk)

is the gamma function, and θk and ϕk are the parameters of the gamma distribution for

k. It is known that θk can be estimated by the following update rule [88]:

θknew = θk −
log(θk) − Ψ(θk) − log(Q(τ |k)/Q̃(τ |k))

1/θk − Ψ′(θk)
, (5.14)

where Q(τ |k) = 1
W

∑
τ Q(τ |k), Q̃(τ |k) = (

∏
τ Q(τ |k))1/W , Ψ(·) is the digamma function,

and Ψ′(·) is the trigamma function. ϕk can be estimated by

ϕk = θk/Q(τ |k). (5.15)

Therefore, Algorithm 6 can be achieved, and the new separation algorithm based on

this derivation is called “SIPLCA-A” here. In (5.16), only for k = 1, Q(τ |k) is set to

the uniform distribution to represent the fact that the intensity of the chemical back-

ground does not change in a short time. As Fig. 5.1 shows, the basis component of

SIPLCA-A can be interpreted as the multiplication of P (m|k) and Q(τ |k), where Q(τ |k)

is approximated by the gamma distribution.
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It is necessary to pay attention to that the proposed algorithm is offline and that the

time delay occurs. In (5.6) of the proposed algorithm, x(t + τ,m), which is obtained in

the future, is used for calculating ĉ(k|t), which is past activation. For example, if the

frame size of the basis component, W , is 20, the separated signals can be calculated at

19 (= W − 1) time-points after the input signal corresponding to the same time-point

is observed. A method for solving the problem of the time delay is explained in Section

5.4.3.

5.4.3 Method for applying the proposed algorithm to the explosives-

detection system

In this section, methods for applying the proposed separation algorithm to the explosives-

detection system are described.

First, a method for integrating the proposed separation algorithm with the detection

process is described. By the proposed separation algorithm, for each k-th substance,

the estimated basis ŝ(m|k) and the estimated activation ĉ(k|T −W + 1) are calculated,

and the separated spectrum, yk = [y(1, k), · · · , y(M,k)]T , is calculated by y(m, k) =

ĉ(k|T − W + 1)ŝ(m|k). Because the proposed algorithm is a blind-source-separation

approach, it can not be known which k-th separated spectrum corresponds to an explosive

substance. Therefore, for each k-th separated spectrum yk, the detection process is

performed equally. The detection process compares yk with the template spectrum for

each v-th explosive substance, dv = [d(1, v), · · · , d(M, v)]T , and the score corresponding

to the v-th explosive substance is calculated. As described in Section 5.1, in the explosive-

detection system, the m/z-axis may shift due to the condition of the mass spectrometer.

To solve the problem of the shift of the m/z-axis, a(v, k) is calculated as follows:

a(v, k) = max
δ∈[−∆,∆]

∑
m

d(m, v)y(m + δ, k), (5.17)

where ∆ is the tolerance range for the shift, and δ is an integer between −∆ and ∆.

If a(v, k) is larger than a threshold for any v and k, then an alert is displayed as the

detection result.

Next, a method for solving the problem of the time delay is described. As described

in Section 5.4.2, the proposed algorithm is offline, and the time delay occurs. To solve
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the problem of the delay for detection, it is required to integrate another sub-system for

tracking passengers, e.g. a video surveillance system. We have proposed a system for

tracking passengers by using distributed surveillance cameras [89]. The tracking system

observes the images of passengers passing through the explosives-detection system, and

the tracking system searches for the images observed by the distributed surveillance

cameras by using the images of passengers as query, and the tracking system performs

tracking passengers after passing through the explosives-detection system. Therefore, it

can be considered that the problem of the time delay due to the proposed algorithm can

be solved by integrating the tracking system with the explosives-detection system.

5.5 Experimental results

5.5.1 Evaluation of separation performance

The input mass spectrogram is the same as that of the experiment of Chapter 3. The

separation performance of the proposed algorithm (SIPLCA-A) was compared with that

of the PLCA-based algorithm, SIPLCA, and SIPLCA-R. In the case of W = 1, SIPLCA,

SIPLCA-R, and SIPLCA-A are equivalent to the PLCA-based algorithm. In the esti-

mation process, all the unknown parameters were initialized by random values. Under

each condition, the estimation process was run twenty times. The number of substances

(K) in the estimation process was set at eight. The sparsity parameter β was 1.01.

Separation performance was measured by SNRk,i,j as follows:

SNRk,i,j = 10 log10

maxt∈Ak,i
|ĉ(k|t)j|√

1
|Nk|

∑
t∈Nk

|ĉ(k|t)j|2
[dB] , (5.18)

where Ak,i is the temporal span around the i-th time when the k-th substance is passed

through the system, i.e. Nk=2 is [2000, 3500], and Nk=3 is [0, 1500], and j (1 ≤ j ≤ 20)

is the index of executions. In addition, SNR is defined as an ensemble mean over k, i,

and j. In the case of the arithmetic mean, SNR is prone to an excessively high value

even if there is a low SNRk,i,j. Therefore, the arithmetic mean is not fit to measure the

robustness. In contrast, the harmonic mean is sensitive to the case that SNRk,i,j is low.

Therefore, the harmonic mean is fit to measure the robustness. SNR is thus defined as
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the harmonic mean of SNRk,i,j:

SNR = 2 × #passing trials × #process executions

×

{∑
k=2,3

∑
i,j

1

SNRk,i,j

}−1

. (5.19)

Fig. 5.2 shows estimates of the temporal activations P (k|t) and estimates of the

spectral basis components P (m|k) respectively. As shown in Fig. 5.2 (a), the peaks

exist at the correct times when substance 1 and substance 2 were passed. As shown in

Fig. 5.2 (b), the correct main peaks for substance 1 and substance 2 were estimated. The

results shown in Fig. 5.2 indicate that the proposed algorithm can separate explosive

substances precisely. SNR is shown in Fig. 5.3. As shown in Fig. 5.3, the longer

the frame size W is, mostly the higher the separation performance is. The separation

performances of SIPLCA, SIPLCA-R, and SIPLCA-A for W = 20 were higher than

that of the PLCA-based algorithm (corresponding to W = 1). The results shown in

Fig. 5.3 indicate that the two-dimensional basis component is effective for making use

of the temporal correlation of the mass spectrogram. For W = 1 to 5, the separation

performances of each version are not significantly different, whereas for W = 20, SNR of

SIPLCA-A is higher than those of the other versions at about 4dB. These results indicate

that SIPLCA and SIPLCA-R are prone to overfitting, and that SIPLCA-A can prevent

overfitting successfully by using the attenuation model. In relation to the results, the

temporal basis components for substance 1 and substance 2 estimated by SIPLCA-R are

shown in Fig. 5.4. In this experiment, substance 1 was split into two basis components

(k = 2 and k = 4), and substance 2 was also split into two basis components (k = 3 and

k = 5). As shown in Fig. 5.4, the temporal basis components estimated by SIPLCA-R

did not follow the attenuation model described in Section 5.4.2, i.e. it is clear that the

temporal basis components were not estimated precisely. The results shown in Fig. 5.4

indicate that SIPLCA-R suffered from overfitting.

5.5.2 Evaluation of detection performance

The performance of detection using the proposed separation algorithm was experimen-

tally evaluated. In this experiment, both “negative data” and “positive data” are re-

quired. The negative data are signals containing only noise components, and the positive
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data are signals containing explosive components and noise components. For obtaining

the negative data, first, signal in a real environment was recorded during a day when con-

senting volunteers passed through the system. Then, the recorded signal was segmented

into 351 signals corresponding to individual subjects by using a infrared passenger sen-

sor. The time range of each segmented signals is between 20 seconds before passing and

10 seconds after passing, i.e. the length of each segmented signal is 30 seconds (T = 45).

We assumed that the segmented signals do not contain explosive components and that

the segmented signals contain only noise components, and the 351 segmented signals

were used as the negative data. To obtain the positive data, first, 18 signals contain-

ing explosive components were recorded by measuring 0.05µg particles of an explosive

substance 18 times in a laboratory environment. In this experiment, a lot of explosive

signals can not be recorded. To obtain 1000 explosive signals, the Monte Carlo method

was used based on the 18 recorded explosive signals. For each trial, a signal was selected

from the 18 recorded explosive signals, and the simulated signal was obtained multiply-

ing the selected signal by a random variable generated from a log-normal distribution,

which had been fit to the samples of the maximum intensity of the recorded explosive

signals in advance. Then, for each simulated explosive signal, a signal was selected from

the negative data at random, and the simulated explosive signal was mixed with the

selected negative signal. The 1000 mixed signals were regarded as the positive data. In

this experiment, the number of the explosive substances registered in the database was

1, i.e. only the template spectrum for v = 1 was used. The explosive substance was

detected by checking whether a(v = 1, k) calculated by (5.17) is larger than a threshold

value or not. If a(v = 1, k) is larger than the threshold, the input signal is recognized as

positive. If not so, the input signal is recognized as negative. ∆ was set to the integer

corresponding to 0.5 atomic mass units. The detection performance was evaluated by

the Receiver Operating Characteristic (ROC) curves. The ROC curves evaluate the false

alarm rate and the misdetection rate simultaneously. The false alarm rate is defined by:

False alarm rate

=
#the negative data recognized as positive

#all the negative data
, (5.20)
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The misdetection rate is defined by:

Misdetection rate

=
#the positive data recognized as negative

#all the positive data
, (5.21)

The detection performance of the proposed algorithm (SIPLCA-A) was compared with

that of the case without separation and that of the PLCA-based algorithm. In both

SIPLCA-A and the PLCA-based algorithm, T was 45, M was 512, K was 8, and β was

1.01. W was set to 5 in SIPLCA-A. Fig. 5.5 shows the ROC curves for each algorithm.

The detection performance of the PLCA-based algorithm was higher than that of the

case without separation. Moreover, the detection performance of SIPLCA-A was higher

than that of the case the PLCA-based algorithm. These results in Fig. 5.5 indicate

that SIPLCA-A is effective for improving the detection performance of the explosives-

detection system.

5.6 Relation to prior work

The proposed algorithm is strongly related to non-negative matrix factor deconvolution

(NMFD) [90]. NMFD is a convolutional version of NMF and is capable of separating

the signal into two-dimensional components with temporal structure [90]. In the point

that temporal structure is modeled by two-dimensional components, NMFD is similar

to the SIPLCA-based algorithm, and it can be considered that NMFD also suffers from

overfitting similarly to the SIPLCA-based algorithm. However, SIPLCA-A has two dif-

ferent points from NMFD for preventing overfitting. The first is that two-dimensional

components are decomposed to a spectral basis component and a temporal basis com-

ponent as SIPLCA-R, and the second is that the constraint of gamma distributions as

SIPLCA-A is imposed on temporal basis components.

Some researches on methods using “temporal continuity” have been done [91] [92].

Virtanen [91] proposed a method finding a solution such that the differences between

adjacent temporal activations are small. Bertin et al. [92] proposed a method finding

a solution such that temporal activations are generated by an inverse-gamma-Markov-

chain. These conventional approaches impose constraints only on a relationship between

adjacent temporal activations, and it can be considered that temporal activations may
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change more freely than SIPLCA-A. In musical-signal processing, temporal envelopes

may change largely, and it is expected that these approaches are suitable. In contrast,

mass spectrometers can be modeled by a linear time-invariant system, and it can be con-

sidered that the mass spectrogram is generated by convolution. SIPLCA-A is therefore

more reasonable than the conventional approaches.

5.7 Conclusion

A new algorithm for separating a mass spectrogram into individual substance was pro-

posed for explosives detection. To resolve the uncertainty of the conventional algorithm,

the proposed algorithm is based on SIPLCA utilizing the temporal correlation of the

mass spectrogram. Moreover, to prevent overfitting, the temporal correlation is mod-

eled with the Gamma distribution for utilizing the fact that the amount of a substance

is attenuated continuously and slowly with time. In an experimental evaluation of the

algorithm using data obtained from a real environment, it was shown that the proposed

algorithm (SIPLCA-A) outperforms the conventional PLCA-based one and the other

SIPLCA-based versions (SIPLCA and SIPLCA-R). It was also shown that the detection

performance is improved by the proposed separation algorithm.
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Algorithm 4 SIPLCA-based algorithm (SIPLCA)

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step until convergence

or a maximum number of iterations is reached.

E step:

Compute P (k, τ |t,m) as follows:

P (k, τ |t,m) =
P (t− τ)P (k|t− τ)P (m, τ |k)∑

k′,τ ′ P (t− τ ′)P (k′|t− τ ′)P (m, τ ′|k′)
. (5.5)

M step:

Compute ĉ(k|t) as follows:

ĉ(k|t) =
∑
m,τ

x(t + τ,m)P (k, τ |t + τ,m). (5.6)

Compute P (k|t) as follows:

P (k|t) =


1

1+
∑

k′ ̸=1 g(β,{ĉ(k′|t)}k)
if k = 1,

g(βa,ĉ(k|t))
1+

∑
k′ ̸=1 g(β,{ĉ(k′|t)}k)

otherwise,
(5.7)

where g(β, {γi}i) is the entropic prior of Grindlay and Ellis [78]:

g(β, {γi}i) =
γi

β∑
i γi

β
. (5.8)

Compute P (m, τ |k) as follows:

P (m, τ |k) =

∑
t x(t,m)P (k, τ |t,m)∑

m,τ,t x(t,m)P (k, τ |t,m)
. (5.9)

Compute P (t) as follows:

P (t) =

∑
k,τ,m x(t + τ,m)P (k, τ |t + τ,m)∑
t,k,τ,m x(t + τ,m)P (k, τ |t + τ,m)

. (5.10)
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Algorithm 5 SIPLCA-based algorithm with a rank-one model (SIPLCA-R)

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step until convergence

or a maximum number of iterations is reached.

E step:

Compute (5.5).

M step:

Compute (5.6).

Compute (5.7).

Compute P (m|k) as follows:

P (m|k) =

∑
t,τ x(t,m)P (k, τ |t,m)∑

m,t,τ x(t,m)P (k, τ |t,m)
. (5.12)

Compute Q(τ |k) as follows:

Q(τ |k) =

∑
t,m x(t,m)P (k, τ |t,m)∑

τ ′,t,m x(t,m)P (k, τ ′|t,m)
. (5.13)

Compute (5.11).

Compute (5.10).
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Algorithm 6 SIPLCA-based algorithm with an attenuation model

1. Initialization process

Set all the unknown parameters to random values.

2. Iteration process

Iterate the following E step and M step until convergence

or a maximum number of iterations is reached.

E step:

Compute (5.5).

M step:

Compute (5.6).

Compute (5.7).

Compute (5.12).

Compute (5.13).

Estimate θk for each k by computing (5.14) until convergence.

Estimate ϕk for each k by computing (5.15).

Update Q(τ |k) as follows:

Q(τ |k) =

 1
W

if k = 1,

G(τ ; θk, ϕk) otherwise.
(5.16)

Compute (5.11).

Compute (5.10).
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Figure 5.2: Estimates for substance 1 (k = 2, black) and substance 2 (k = 3, red).
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Figure 5.3: SNR for each algorithm. X and Y show the frame size of the basis component

W and SNR [dB]. Error bars represent 95% confidence intervals.
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(b) Substance 2.

Figure 5.4: Splitted temporal basis components estimated by SIPLCA-R for W = 20. X

and Y show τ and Q(τ |k). The broken red lines mean the temporal basis components

by SIPLCA-A.
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Figure 5.5: ROC curve for each algorithm. X and Y show the false alarm rate and the

misdetection rate. “without separation” means the case without separation, “PLCA”

means the method of Chapter 3 (Algorithm 2), and “SIPLCA-A” means the proposed

algorithm (Algorithm 6).
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Chapter 6

Adaptive Boolean compressive

sensing for large-area-monitoring

6.1 Introduction

In previous chapters, signal processing techniques for a single explosive detector were

proposed; however, a single explosive detector can monitor only limited spaces such as

an entrance of a high security area. For monitoring all over the area, there is a strong

need to provide a large-area-monitoring-type system. In the large-area-monitoring-type,

a function for finding the location of chemicals is required because, if the location of

chemicals is known, it will be possible to evacuate people and to capture a suspect. For

localization, high speed is especially the most important. In this chapter, an approach

for high-speed chemicals localization is proposed.

There are two main approaches of chemicals localization. One is to search for chem-

icals by using an autonomous mobile robot equipped with a sensor [29], and the other

is to estimate the location of chemicals by using a large number of densely arranged

sensors [27]. For both of them, a large amount of sensing cost is required, so there are

few examples of practical use. However, there is another approach for reducing the sens-

ing cost [35]. This approach uses only a single detector and multiple air-intake-ducts

corresponding to the positions all over the area, and all the ducts are connected with

the detector. The system can switch the ON/OFF of intake of individual ducts, and

at each time-frame, only one duct is selected and is set to ON. The system sequentially
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selects a duct and takes air from only the selected duct corresponding to the time-frame.

Because there is a one to one correspondence between the ducts and the time-frames,

The position of the duct corresponding to the time-frame when a target substance is de-

tected can be determined as the position the substance exists at. We call this approach

“time-division-sampling”. However, time-division-sampling spends a long time to test

all the positions, and time-division-sampling is not fit for applications such as evacuation

guidance.

To shorten the measurement time of time-division-sampling, we have proposed a

“compressive sensing”-based approach [93]. This approach uses a hardware structure,

which are similar to time-division-sampling, consists of a single detector and the multiple

air-intake-ducts corresponding to the positions all over the area. This approach takes the

mixed air from a combination of multiple ducts at each time-frame unlike time-division-

sampling, and it switches the combination of active ducts temporally, and it estimates

the location of chemicals from time series of observations. Using the sparsity assumption

that a target substance exists at only a small number of positions, it becomes possible

to localize chemicals from a small number of observations, i.e. the measurement time

can be shortened. Actually, such a hardware structure can not have sufficient quantita-

tiveness, and we assume that it can observe only existence or absence of explosives, i.e.

positive/negative (1/0) by one observation. The localization result is also the vector of

existence, the elements of which are positive/negative. This formulation is a Boolean

version of compressive sensing, which is called group-testing.

Group-testing is a well-known approach for discovering a sparse subset of positive

elements in a large set of elements by using a small number of tests. In group-testing,

each test consists of three processing steps: (1) selecting elements for a pool on the basis

of a certain method, (2) mixing the selected elements into the pool, and (3) observing

a single Boolean result by testing the pool. When the proportion of positive elements

is small, a small number of the tests on the mixed pool are sufficient to detect the

positive elements; that is, all the elements need not be tested directly. Group-testing

dates back to the work of Dorfman [94] in 1943, during the Second World War. Dorfman

developed this approach in order to test blood for detecting sick soldiers. Nowadays, it

is commonly known that group-testing has a lot of applications such as blood screening,
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deoxyribonucleic acid screening, and anomaly detection in computer networks [95].

Traditionally, group-testing has been regarded as a combinatorial problem. As for

this problem, many researches about the upper and lower bounds on the number of tests

required to find all the positive elements have been done. A set of information-theoretic

bounds for group-testing with random mixing was established by Malyutov [96, 97], Atia

and Saligrama [98], Sejdinovic and Johnson [99], and Aldridge et al. [100]. In addition,

several tractable approximation algorithms, such as one based on belief propagation [99]

and one based on matching pursuit [101], have been proposed.

In recent years, group-testing has drawn interest from the active research area of com-

pressive sensing. Compressive sensing solves a kind of underdetermined linear equation,

namely, y = Ax, where x is an unknown high-dimensional vector to be estimated, A is a

given mixing matrix, and y is a given low-dimensional observed vector. The problem with

compressive sensing is similar to that with group-testing from the viewpoint that both

of them are underdetermined problems such that an unknown high-dimensional vector is

decoded from an observed low-dimensional vector. However, while compressive sensing

is defined in a real vector space, group-testing is defined in a Boolean vector space. To

improve the performance of group-testing by using compressive sensing, Malioutov and

Malyutov [2] proposed a method for converting group-testing into compressive sensing

through linear-programming relaxation. As for this conversion method, ℓ1 minimization

imposes the sparsity constraint to the solution and solves the uncertainty of the un-

derdetermined problem. It thus outperforms other methods (i.e. the method based on

belief propagation [99], the method based on matching pursuit [101], etc.). However, the

method based on linear-programming relaxation is defined in non-adaptive group-testing,

which cannot choose the pool adaptively based on observation data. In particular, the

optimal size of the pool depends on the number of positive elements, and the number of

positive elements is unknown; therefore, in the case that Malioutov’s method is applied,

a larger number of tests are required when the pool-size is not optimal.

To reduce the number of tests of Malioutov’s method, a method for adaptive group-

testing is proposed here. The proposed method controls the pool-size for each test. The

criterion of the control is the expected information gain that can be calculated from

the ℓ0 norm of the estimated solution. Simulation results indicate that the proposed
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method outperforms the conventional method even under the condition that the number

of positive elements is varied and the number of positive elements is unknown.

6.2 Problem statement

To state the problem, first, the following notation is fixed. N is the number of elements,

of which a subset of size K is positive. Non-positive elements are called “negative”.

xn = 1 indicates that the n-th element is positive, and xn = 0 indicates that the n-th

element is negative. For convenience, x = [x1, x2, · · · , xN ]T is written. T tests, where

T < N , are then performed. As explained above, in each test, g elements are selected

from all the elements, and they are mixed into the same pool. g is called the pool-size.

This selection is defined by a mixing matrix, A, which is a T × N binary matrix. The

element of the t-th row and the n-th column of A is given as at,n, where at,n = 1 indicates

that the n-th element is mixed into the pool of the t-th test, and at,n = 0 indicates that

the n-th element is not mixed into the pool of the t-th test. The observed signal of each

test, t, is a single Boolean value, yt ∈ {0, 1}. yt is obtained by taking the Boolean sum

(the OR operation) of {xn|at,n = 1}. Thus, the observation model is represented by

yt =
N∨

n=1

(at,n ∧ xn) . (6.1)

For convenience, y = [y1, y2, · · · , yT ]T is written. The vector notation

y = Ax (6.2)

is used in the following.

The problem of group-testing is to estimate unknown vector x from given A and y.

In addition, the noise of the observation is considered. The noise includes both the false

positive and the false negative. The former represents the case that yt = 1 even when

the Boolean sum (the OR operation) of {xn|at,n = 1} is 0. The latter represents the case

that yt = 0 even when the Boolean sum (the OR operation) of {xn|at,n = 1} is 1. The

observation with noise is represented by

y = (A ∨ x) ⊗ v, (6.3)

where v is the Boolean vector of errors, and ⊗ means the XOR operation.

72



A number of works have studied the design of A [95]. For example, K-separating and

K-disjunct are well-known properties of A. When these properties hold, x can be recov-

ered exactly. However, such design is often unsuitable for practical situations because

it assumes that the exact number of the positive elements (K) is known before group-

testing. Moreover, if all T tests cannot be carried out, the performance of the method will

not be guaranteed [100]. Therefore, in many works, the simple-random-sampling-design

and the Bernoulli-random-design is used for design of A. In the simple-random-sampling-

design, each element of A is randomly generated subject to the constraint
∑

n at,n = g

for all t. In the Bernoulli-random-design, each element of A is randomly generated with

a probability p; that is, at,n is 1 with probability p, and at,n is 0 with probability 1 − p.

The simple-random-sampling-design is used in this study.

There are two types of group-testing, i.e. one is called non-adaptive group-testing,

and the other is adaptive group-testing. In non-adaptive group-testing, A is designed

in advance and can not be changed dependently on test results y. In contrast, adaptive

group-testing can control A adaptively to y. One of the problems of non-adaptive group-

testing is that, although the number of positive elements K is unknown, the optimal

pool-size largely depends on K. To solve this problem, the present study thus focuses

on adaptive group-testing. In addition, because the simple-random-sampling-design is

assumed, control of g is focused on. Therefore, the next mixing vector after the T -th

test aT+1 is determined by the following random trial:

Pr [aT+1] =


1/

 N

g

 if ∥aT+1∥0 = g,

0 otherwise,

(6.4)

where g is determined by

g = FT (A,y) , (6.5)

and FT is a function of A and y. In Section 6.4, a new function FT is proposed.
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6.3 Boolean compressive sensing for group-testing

6.3.1 Compressive sensing

Malioutov and Malyutov [2] proposed a conversion of group-testing into compressive

sensing through a linear-programming relaxation. This conventional method is the basis

of our method, which is explained in this section.

Many works on compressive sensing have been reported [102]. In this study, a sparse

signal, x ∈ RN , is assumed, and it is estimated from M measurements y ∈ RT by using a

random measurement matrix A, where M < N . Compressive sensing, namely, decoding

x, uses the following ℓ0 minimization:

min
x

∥x∥0 subject to y = Ax. (6.6)

However, Eq. (6.6) is a NP-hard problem, which cannot be solved practically. Candes

et al. [102] proved that if certain conditions hold, x can be decoded exactly by the

following ℓ1 minimization:

min
x

∥x∥1 subject to y = Ax. (6.7)

Since ℓ1 minimization is a simple linear-programming problem, a number of practicable

algorithms can be used to solve it.

6.3.2 Noise-free case

Equation (6.2) is similar to constraint equation (6.7). However, it is not a linear equation

in a real vector space but a Boolean equation. It is shown in [2] that (6.2) can be replaced

with a closely related linear formulation: 1 ≤ AIx, and 0 = AIx, where I = {t|yt = 1}

is the set of the tests that obtain positive results, and J = {t|yt = 0} is the set of the

tests that obtain negative results. A linear-programming formulation similar to Eq. (6.7)

is therefore given as

min
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0 (6.8)
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6.3.3 Noisy case

Because (6.8) can not represent noisy cases, the performance of the method is degraded

in noisy cases. One version of [2]’s method thus covers the noisy case by adding slack

variables as follows:

min
x,ξ

{∑
n

xn + α
∑
t

ξt

}
subject to 0 ≤ x ≤ 1, 0 ≤ ξI ≤ 1, 0 ≤ ξJ ,

AIx + ξI ≥ 1, AJx = ξJ , (6.9)

where ξ = [ξ1, · · · , ξT ] is the vector composed of the slack variables for preventing degra-

dation in the case that the test-results y include noise, and α is the regularization

parameter that balances the noise tolerance and the sparsity of the solution.

6.4 Proposed method

The proposed method for controlling g is described as follows. Expected information

gain of the next (T + 1)-th test is introduced as

IT+1(g | ∥x∥0 = K) = γINEG + (1 − γ)IPOS, (6.10)

where IT+1(g | ∥x∥0 = K) is the expected information gain corresponding to the pool-size

g given ∥x∥0 = K, γ is the probability that the result of the (T + 1)-th test is negative,

INEG is the information gain of the negative test, and IPOS is the information gain of

the positive test. The negative test means that all the elements of the pool are negative,

so γ is given by

γ =

 N −K

g


 N

g

 . (6.11)

The negative test gives the information that all the elements of the pool are negative, so

INEG is the sum of the current entropy of the g elements of the pool; therefore, INEG

is given by

INEG = g {−r log r − (1 − r) log(1 − r)} , (6.12)
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where r = K/N is the probability that each element is positive. The positive test gives

the information that there is at least one positive element in the pool; therefore, IPOS

is given as

IPOS = {−rg log rg − (1 − rg) log(1 − rg)} . (6.13)

The temporary estimate of x, x̂, is obtained by using T tests, K can be substituted

for ∥x̂∥0 in (6.10), and g can be optimized by maximizing IT+1(g | ∥x∥0 = K). However,

x̂ may include an estimation error because x̂ is only a temporary result based on a small

number of tests. The control of g is degraded by the estimation error; therefore, the

objective function (6.10) is revised in consideration of the estimation error as follows:

ĪT+1(g | ∥x∥0 = K) =
∑

{K′|K′=K−a+b}

IT+1(g | ∥x∥0 = K)

×

 K ′

a

 ϵa(1 − ϵ)K
′−a

×

 N −K ′

b

 ϵb(1 − ϵ)N−K′−b, (6.14)

where ϵ is the probability of the estimation error, a is the number of the false-positive

elements, and b is the number of the false-negative elements. g can be optimized by

maximizing (6.14). This revision can be regarded as smoothing the information gain,

and it is expected that robustness to the estimation error is achieved.

The convergence of the above-described adaptation of the case of no noise is discussed

as follows. x̂T is defined as the estimates of x by using T tests. x̂T+1 is defined as the

estimates of x by using (T + 1) tests. x̂T is given by Eq. (6.8). When the (T + 1)-th

test is positive, x̂T+1 is given by

x̂T+1 = arg min
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0,

aT+1
Tx ≥ 1. (6.15)

(6.15) is the version of (6.8) with an additional constraint (aT+1
Tx ≥ 1). By the

additional constraint, ∥x̂T+1∥0 may increase from ∥x̂T∥0 by 1 or 0. This leads to
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∥x̂T∥0 ≤ ∥x̂T+1∥0. When the (T + 1)-th test is negative, x̂T+1 is given by

x̂T+1 = arg min
x

{∑
n

xn

}
subject to 0 ≤ x ≤ 1,

AIx ≥ 1, AJx = 0,

aT+1
Tx = 0. (6.16)

∥x̂T+1∥0 does not change from ∥x̂T∥0 because ∥x̂T∥0 has been already minimized at the

time of the T -th test. From the above, for all T , ∥x̂T∥0 ≤ ∥x̂T+1∥0; i.e. ∥x̂T∥0 weakly

monotonically increases as T increases. In addition, it is obvious that ∥x̂∥0 ≤ ∥x∥0
because ∥x̂∥0 is minimized under the constraints that also holds for x, so ∥x∥0 is an

upperbound of ∥x̂T∥0. Therefore, ∥x̂T∥0 moves to ∥x∥0, and the adaptation of the

pool-size converges as T increases.

6.5 Experimental results

The performance of the proposed method was evaluated by simulation. In particular, the

averaged probability of correct estimation was computed over 100 trials as a function

of T , for N = 150. N elements were generated independently for each trial. In this

simulation, x̂ = x was considered to be the correct case. The proposed method was

compared with the non-adaptive conventional method [2] . To evaluate the robustness

to the difference in the number of positive elements, K, the simulation was conducted

for two cases: K = 2 and K = 6. The optimal pool-size for K = 2, i.e. g = 50, that for

K = 4, i.e. g = 30, and that for K = 6, i.e. g = 21, were calculated by simulation in

advance and were used in the non-adaptive conventional method. The original version

of the information gain, (6.10), and the revised version, (6.14), were then compared. α

was set to 1.0.

First, the performance of the proposed method in the case of no noise was computed.

Figure 6.1 shows the probability of exact recovery in the case of K = 2, and Figure 6.2

shows that in the case of K = 6. NON-ADAPT means the non-adaptive conventional

method [2], ADAPT means the proposed method maximizing (6.10), and REVISED-

ADAPT means the proposed method maximizing (6.14). In both cases, the proposed
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Figure 6.1: Probability of exact recovery in noiseless case as a function of number of

tests, T . N = 150, K = 2.

method, namely, REVISED-ADAPT, is better than the non-adaptive method in the

worst cases, and the performance of the proposed method is near the level of that using

the optimal pool-size. These results indicate that the proposed method can effectively

control pool-size. Figure 6.2 shows that the performance of the ADAPT is low. This

result indicates that ADAPT is degraded by the estimation error.

The performance of the proposed method in the noisy case was simulated next. In

the simulation, noise with i.i.d 5% probability of flipping each bit of y was added. Figure

6.3 shows the probability of exact recovery in the case of K = 2, and Figure 6.4 shows

that in the case of K = 6. NON-ADAPT means the non-adaptive conventional method

[2], ADAPT means the proposed method maximizing (6.10), and REVISED-ADAPT

means the proposed method maximizing (6.14). According to these results, the proposed

method (REVISED-ADAPT) is better than the non-adaptive method in the worst case,

and the performance of the proposed method is near the level of that using the optimal

pool-size. These results indicate that the proposed method can effectively control the

pool-size even under noisy conditions.
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Figure 6.2: Probability of exact recovery in noiseless case as a function of number of

tests, T . N = 150, K = 6.

6.6 Conclusion

A new method for solving the adaptive group-testing problem was proposed. The pro-

posed method controls pool-size adaptively by using information gain calculated from

the ℓ0 norm of the estimated solution. Moreover, to improve the robustness to the esti-

mation error, smoothing of the information gain in consideration of the estimation error

is applied. An experimental simulation showed that the proposed method outperforms

the conventional method even when the number of positive elements is varied and the

number of positive elements is unknown.
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Figure 6.3: Probability of exact recovery in noisy case as a function of number of tests,

T . N = 150, K = 2, and 5% noise was added.

80



�

���

���

���

���

���

���

��	

��


���

�

� �� ��� ���

�
��
�
��
�
��
�
	


��
��
�
��


�
��

��������	�
��
�

����������	
��
�

����������	
����

����������	
����

�������������

�����

Figure 6.4: Probability of exact recovery in noisy case as a function of number of tests

T . N = 150, K = 6, and 5% noise was added.
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Chapter 7

Adaptive Boolean compressive

sensing by using multi-armed bandit

7.1 Introduction

In Chapter 6, an algorithm of adaptive Boolean compressive sensing is introduced. The

method proposed in Chapter 6 optimizes the pool-size by maximizing the expected infor-

mation gain, and this optimization can be regarded as a greedy algorithm. The greedy

algorithm has no guarantee of convergence that the group-size becomes close to the opti-

mal one after sufficient tests because the temporary estimate may include an estimation

error. To solve this problem, an extended version of the method is proposed here. Based

on the multi-armed bandit, the proposed method controls the pool-size adaptively. The

information gain of the greedy method explained in Chapter 6 is rewritten as the re-

ward of the multi-armed bandit, and the multi-armed bandit is introduced into adaptive

Boolean compressive sensing. Experimental results indicate that the correct rate of ex-

act recovery of the proposed method converges to 1 fast without prior knowledge about

the number of positive elements and that the proposed method outperforms the non-

adaptive method [2] and the conventional greedy method explained in Chapter 6 in the

case that the number of positive elements is large.
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7.2 Problem statement

The problem statement is the same as Chapter 6. N is the number of elements, of

which a subset of size K is positive. The N elements are unknown and are written as

x = [x1, x2, · · · , xN ]T . xn = 1 indicates that the n-th element is positive, and xn = 0

indicates that the n-th element is negative. T tests, where T < N , are then performed.

The mixing matrix A is a T×N binary matrix. The element of the t-th row and the n-th

column of A is given as at,n, where at,n = 1 indicates that the n-th element is mixed into

the pool of the t-th test, and at,n = 0 indicates that the n-th element is not mixed into

the pool of the t-th test. The observed signal of each test, t, is a single Boolean value,

yt ∈ {0, 1}. yt is obtained by taking the Boolean sum of {xn|at,n = 1}. For convenience,

y = [y1, y2, · · · , yT ]T is written. The vector notation

y = Ax (7.1)

is used in the following. The observation with noise is represented by

y = (A ∨ x) ⊗ v, (7.2)

where v is the Boolean vector of errors, and ⊗ means the XOR operation. The problem

of group-testing is to estimate unknown vector x from given A and y.

Similarly to Chapter 6, the simple-random-sampling-design is used for design of A.

Non-adaptive group-testing such as the conventional Malioutov’s method [2] has the

problem that the optimal pool-size largely depends on K although K is unknown. To

solve this problem, the present study thus focuses on adaptive group-testing. In addi-

tion, because the simple-random-sampling-design is assumed, control of g is focused on.

Therefore, the next mixing vector after the T -th test aT+1 is determined by the following

random trial:

Pr [aT+1] =


1/

 N

g

 if ∥aT+1∥0 = g,

0 otherwise,

(7.3)

where g is determined by

g = FT (A,y) , (7.4)

and FT is a function of A and y. In Section 7.4, a new function FT is proposed.
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7.3 Boolean compressive sensing for group-testing

Malioutov and Malyutov [2] proposed a conversion of group-testing into compressive sens-

ing through a linear-programming relaxation. This method is the basis of our method,

which is explained in this section.

Equation (7.1) is not a linear equation in a real vector space but a Boolean equation.

However, it is shown in [2] that (7.1) can be replaced with a closely related linear formu-

lation: 1 ≤ AIx, and 0 = AIx, where I = {t|yt = 1} is the set of the tests that obtain

positive results, and J = {t|yt = 0} is the set of the tests that obtain negative results.

A linear-programming formulation is therefore given as

min
x,ξ

{∑
n

xn + α
∑
t

ξt

}
subject to 0 ≤ x ≤ 1, 0 ≤ ξI ≤ 1, 0 ≤ ξJ ,

AIx + ξI ≥ 1, AJx = ξJ , (7.5)

where ξ = [ξ1, · · · , ξT ] is the vector composed of the slack variables for preventing degra-

dation in the case that the test-results y include noise, and α is the regularization

parameter that balances the noise tolerance and the sparsity of the solution.

7.4 Proposed method

The proposed method for controlling the pool-size g in adaptive Boolean compressive

sensing is described as follows.

Here, similarly to Chapter 6, expected information gain of the next (T + 1)-th test

is introduced as

IT+1(g | ∥x∥0 = K) = γINEG + (1 − γ)IPOS, (7.6)

where IT+1(g | ∥x∥0 = K) is the expected information gain corresponding to the pool-size

g given ∥x∥0 = K, γ is the probability that the result of the (T + 1)-th test is negative,

INEG is the information gain of the negative test, and IPOS is the information gain of

the positive test. The negative test means that all the elements of the pool are negative,
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so γ is given by

γ =

 N −K

g


 N

g

 . (7.7)

The negative test gives the information that all the elements of the pool are negative, so

INEG is the sum of the current entropy of the g elements of the pool; therefore, INEG

is given by

INEG = g {−r log r − (1 − r) log(1 − r)} , (7.8)

where r = K/N is the probability that each element is positive. The positive test gives

the information that there is at least one positive element in the pool; therefore, IPOS

is given as

IPOS = {−rg log rg − (1 − rg) log(1 − rg)} . (7.9)

The temporary estimate of x, x̂, is obtained by using T tests, and the greedy method

of Chapter 6 optimizes g by maximizing IT+1(g | ∥x∥0 = K) in (7.6) based on ∥x̂∥0.

However, x̂ may include an estimation error because x̂ is only a temporary result based

on a small number of tests. The greedy method for controlling g is degraded by the

estimation error, so the greedy method has no guarantee that g becomes close to the

optimal pool-size after sufficient tests. To solve the problem, the multi-armed bandit

approach is introduced into the greedy method here. The multi-armed bandit was intro-

duced by Robbins [103]. The multi-armed bandit is a method for solving the trade-off

between to gain new knowledge by exploring an environment and to exploit a current

reliable knowledge [104]. There are several approaches for the multi-armed bandit. One

of the approaches that have a guarantee that the selection of actions converges to the

optimal one after sufficient plays is Upper-Confidence-Bounds (UCB) algorithm [105].

Here, the multi-armed bandit problem is defined by a random variable R(t) ∈ [0, 1] for

t ≥ 1, where R(t) is called a “reward” and is yielded from the i-th machine selected at

each t-th play. R(t) at each play is independent and identically distributed following an

unknown expected value µi. UCB algorithm selects the next machine to play based on

the sequence of past plays and obtained rewards. At (T + 1)-th play, UCB algorithm
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selects the i-th machine such that the following function fi(T + 1) is maximized:

fi(T + 1) = µ̄i(T + 1) + c

√
2 log T

Ti

, (7.10)

where µ̄i(T + 1) is the average of R(t) obtained from the i-th machine, and Ti is the

number of times that the i-th machine has been selected, and c is a constant positive

value. Then the regret after T -th play is defined by

E

[
µ∗T −

T∑
t

R(t)

]
, (7.11)

where µ∗ = maxi µi. Auer et al. [105] showed that the regret at the T -th play is bounded

by:

8

[ ∑
i:µi<µ∗

log T

∆i

]
+

(
1 +

π2

3

)∑
i

∆i, (7.12)

where ∆i = µ∗ − µi. Here, to introduce UCB algorithm into the conventional pool-size

control method, the reward R(t) is replaced by the information gain, and the index of

machine i is interpreted as the pool-size g. Equation (2.3) is converted to:

fg(T + 1) = µ̄g(T + 1) + c

√
2 log T

Tg

, (7.13)

where µ̄g(T + 1) is the average of the information gain obtained by the pool-size g, and

Tg is the number of times that the pool-size g has been selected. µ̄g(T + 1) is calculated

by

µ̄g(T + 1) =
1

Tg

(
|Ig|IPOS + |Jg|INEG

)
, (7.14)

where Ig is the set of the tests that obtain positive results by the pool-size g, and Jg is

the set of the tests that obtain negative results by the pool-size g, and so |Ig|+ |Jg| = Tg.

Here, to make the range of reward-values to [0, 1], IPOS and INEG are normalized by

maximum. In addition, to accelerate the convergence, the predicted information gain

µ̂g(T + 1) is introduced:

µ̂g(T + 1) =
∑
K

p(∥x∥0 = K | ∥x̂∥0)IT+1(g | ∥x∥0 = K), (7.15)

where p(∥x∥0 = K | ∥x̂∥0) is the conditional probability of ∥x∥0 = K given the estimated

number of the positive elements ∥x̂∥0. Here, to make the range of reward-values to [0, 1],
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IT+1(g | ∥x∥0 = K) is normalized by maximum. p(∥x∥0 = K | ∥x̂∥0) is modeled by the

following probability distribution function of the binomial distribution:

p (∥x∥0 = K | ∥x̂∥0)

=

 N

∥x̂∥0

[K
N

]∥x̂∥0 [
1 − K

N

]N−∥x̂∥0
. (7.16)

Then, fg(T + 1) is redefined as:

fg(T + 1) = (1 − βT )µ̄g(T + 1) + βT µ̂g(T + 1) + c

√
2 log T

Tg

, (7.17)

where β is a constant parameter (0 < β < 1). The proposed method selects the pool-size

g such that (7.17) is maximized. In (7.17), when T is small, the first term of the right

hand side is near 0, and the second term and the third term are dominant. Especially, the

third term has a tendency to prefer the pool-size whose Tg is small and explores various

pool-sizes. In the middle phase, the second term predicts the optimal pool-size and

accelerates the convergence. As T increases, the second term becomes near 0, and the

first term and the third term are dominant, that is, (7.17) becomes close to the original

UCB. Therefore, as (7.12), the regret grows at least logarithmically, and the optimal

pool-size is achieved at T → ∞. From the above, it is expected that the UCB-based

proposed method has fast convergence and the guarantee that the group-size becomes

close to the optimal one after sufficient tests.

7.5 Experimental results

We evaluated the performance of the proposed method by simulation. We computed

the averaged probability of the correct estimation over 100 trials as a function of T ,

for N = 150. The N elements were generated independently for each trial. In this

experiment, we considered the case of x̂ = x as correct. We compared the non-adaptive

method [2], the conventional greedy maximization of (7.6) (proposed in Chapter 6), and

the UCB-based proposed method. In order to evaluate the robustness to the difference

of the number of the positive elements K, we conducted the experiment in the case of

K = 2 and that of K = 6. Also, we calculated the optimal pool-size for K = 2, i.e.

g = 50, that for K = 4, i.e. g = 30, and that for K = 6, i.e. g = 21 by simulation. In
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Figure 7.1: Probability of exact recovery in the noiseless case as a function of the number

of tests T . NON-ADAPT means the non-adaptive method [2], PROPOSED means the

UCB-based proposed method, and GREEDY means the conventional greedy maximiza-

tion of (7.6) proposed in Chapter 6. N = 150, K = 2.

the non-adaptive method, these fixed optimal pool-sizes were used. In the conventional

greedy method and the proposed method, the adaptively-determined pool-size was used.

α was set to 1.0.

First, we computed the performance in the case of no noise. Figure 7.1 shows the case

of K = 2, and Fig. 7.2 shows the case of K = 6. In both cases, the convergence of the

proposed method was faster than that of the worst cases of the non-adaptive method,

and the correct rate after convergence was 1. The convergence speed of the proposed

method was on the same level with the optimal pool-size. Also, as Fig. 7.2 shows, in

the case that K was 6, the convergence of the proposed method was faster than that of

the conventional greedy method. The results in Fig. 7.2 indicate that the exploration

of the multi-armed bandit works well in the case that K is large. These results indicate

that the control of the pool-size of the proposed method is effective.

Second, we computed the performance in the noisy case. We added noise with i.i.d
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Figure 7.2: Probability of exact recovery in the noiseless case as a function of the number

of tests T . NON-ADAPT means the non-adaptive method [2], PROPOSED means the

UCB-based proposed method, and GREEDY means the conventional greedy maximiza-

tion of (7.6) proposed in Chapter 6. N = 150, K = 6.

5% probability of flipping each bit of y. Figure 7.3 shows the case of K = 2, and Fig. 7.4

shows the case of K = 6. Also, in these results, the convergence of the proposed method

was faster than that of the worst cases of the non-adaptive method, and the correct rate

after convergence was 1. The convergence speed of the proposed method was on the

same level with the optimal pool-size. Also, as Fig. 7.4 shows, in the case that K was 6,

the convergence of the proposed method was faster than that of the conventional greedy

method. The results in Fig. 7.4 indicate that the exploration of the multi-armed bandit

works well in the case that K is large under noisy conditions. These results indicate

that the control of the pool-size of the proposed method is effective even under noisy

conditions.

Finally, we checked the number of false positives and that of false negatives. The

false positives are defined as the elements that are actually negative but were identified

as positive. The false negatives are defined as the elements that are actually positive
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Figure 7.3: Probability of exact recovery in the noisy case as a function of the number

of tests T . NON-ADAPT means the non-adaptive method [2], PROPOSED means the

UCB-based proposed method, and GREEDY means the conventional greedy maximiza-

tion of (7.6) proposed in Chapter 6. N = 150, K = 2.

but were identified as negative. In this experiment, the number of positive elements K

was set to 6 and noise with i.i.d 5% was added. Figure 7.5 shows the average number of

false positives, and Fig. 7.6 shows the average number of false negatives. In the case of

the UCB-based method, both false positives and false negatives were reduced faster than

the greedy one. These results indicate that the UCB-based method has effectiveness for

both false positives and false negatives.

7.6 Conclusion

A new method for solving adaptive Boolean compressive sensing was proposed. To

achieve the guarantee that the group-size becomes close to the optimal one after sufficient

tests, based on the multi-armed bandit, the proposed method controls the pool-size

adaptively. The information gain of the conventional greedy method was rewritten as
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Figure 7.4: Probability of exact recovery in the noisy case as a function of the number

of tests T . NON-ADAPT means the non-adaptive method [2], PROPOSED means the

UCB-based proposed method, and GREEDY means the conventional greedy maximiza-

tion of (7.6) proposed in Chapter 6. N = 150, K = 6.

the reward of the multi-armed bandit, and the multi-armed bandit was introduced into

adaptive Boolean compressive sensing. In an experimental evaluation of the method,

it was shown that the correct rate of exact recovery of the proposed method converges

to 1 fast without prior knowledge about the number of positive elements and that the

proposed method outperforms the non-adaptive method and the conventional greedy

method in the case that the number of positive elements is large.
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Figure 7.5: Average number of false positives as a function of the number of tests T .

NON-ADAPT means the non-adaptive method [2], PROPOSED means the UCB-based

proposed method, and GREEDY means the conventional greedy maximization of (7.6)

proposed in Chapter 6. N = 150, K = 6.
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Figure 7.6: Average number of false negatives as a function of the number of tests T .

NON-ADAPT means the non-adaptive method [2], PROPOSED means the UCB-based

proposed method, and GREEDY means the conventional greedy maximization of (7.6)

proposed in Chapter 6. N = 150, K = 6.
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Chapter 8

Improvement of robustness to

change of positive elements in

Boolean compressive sensing

8.1 Introduction

In the previous chapters, adaptive Boolean compressive sensing was proposed for achiev-

ing the robustness to the difference of the number of positive elements. However, both

these adaptive approaches and the conventional non-adaptive ones assume that positive

elements does not change in the middle of tests, and the estimation performance is de-

graded in the case that positive elements change because the results of the tests before

a change-point are inconsistent with those of the tests after the change-point. Also, in

the application for location estimation of substances, the locations of substances change

in the middle of tests.

To improve the robustness to change of positive elements, a method for group-testing

is proposed here. The proposed method detects the latest change-point of positive el-

ements, and it finds positive elements by using only the results of the tests after the

change-point. To detect the change-point, the proposed method makes use of the fact

that the distribution of the results depends on the number of positive elements. Ex-

perimental simulation indicates that the proposed method outperforms the conventional

method [2] on the condition that positive elements change in the middle of tests.
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8.2 Problem statement

Most parts of the problem statement are the same as Chapter 6. N is the number of

elements, of which a subset of size K is positive. The N elements are unknown and are

written as x = [x1, x2, · · · , xN ]T . xn = 1 indicates that the n-th element is positive, and

xn = 0 indicates that the n-th element is negative. T tests, where T < N , are then

performed. The mixing matrix A is a T ×N binary matrix. The element of the t-th row

and the n-th column of A is given as at,n, where at,n = 1 indicates that the n-th element

is mixed into the pool of the t-th test, and at,n = 0 indicates that the n-th element is

not mixed into the pool of the t-th test. The observed signal of each test, t, is a single

Boolean value, yt ∈ {0, 1}. yt is obtained by taking the Boolean sum of {xn|at,n = 1}.

For convenience, y = [y1, y2, · · · , yT ]T is written. The vector notation

y = Ax (8.1)

is used in the following. The observation with noise is represented by

y = (A ∨ x) ⊗ v, (8.2)

where v is the Boolean vector of errors, and ⊗ means the XOR operation. The problem

of group-testing is to estimate unknown vector x from given A and y. Similarly to

Chapter 6, the simple-random-sampling-design is used for design of A.

In a number of applications such as location estimation of substances, the unknown

vector x may change in the middle of tests, particularly, x may change at an occasional

time-point, in other words, a “change-point”. One of the problems of group-testing is

that, on the condition that the unknown vector x changes at the change-point, the ele-

ments of y corresponding to the tests before the change-point are inconsistent with those

corresponding to the tests after the change-point, and x can not be estimated accurately.

The present study thus focuses on an method of the improvement of robustness to change

of x. Here, we assume that all the tests have a particular order relation of the time t,

and x can be rewritten as x(t) considering change of x(t). The task is to estimate the

current unknown vector x(T ) from A and y.
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8.3 Proposed method

The conventional method assumes that x does not change by time, so the current x,

i.e. x(T ), can not be estimated accurately. To improve the robustness to change of

x(t), the proposed method detects the latest change-point c(T ), and estimates x(T )

using only the results of only the tests after c(T ). Here, c(T ) is defined as t such that

x(t − 1) ̸= x(t), and x(t) = x(t + 1) = · · · = x(T ). To detect the change-point c(T ),

the proposed method performs a likelihood ratio test as follows:

P (H1|yt, · · · , yT )

P (H0|yt, · · · , yT )
=

1 − P (H0|yt, · · · , yT )

P (H0|yt, · · · , yT )
> θ, (8.3)

where H0 is the hypothesis that there is no change-point in the tests of τ = t · · ·T , H1 is

the hypothesis that there is a change-point in the tests of τ = t · · ·T , and θ is a threshold

parameter. P (H0|yt, · · · , yT ) can be rewritten as:

P (H0|yt, · · · , yT )

∝ P (H0, yt, · · · , yT )

= P (x(t) = · · · = x(T ), yt, ..., yT )

≤ P (∥x(t)∥0 = · · · = ∥x(T )∥0, yt, ..., yT ). (8.4)

In the application of location estimation of substances, not only the combination of

positive elements but also the number of positive elements changes at most change-

points because change of x is caused by substance diffusion. Therefore, we approximate

(8.4) as follows:

P (x(t) = · · · = x(T ), yt, ..., yT )

≈ P (∥x(t)∥0 = · · · = ∥x(T )∥0, yt, ..., yT )

(8.5)
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Based on the approximation of (8.5), the proposed method can make use of the fact that

the distribution of y depends on ∥x(t)∥0. (8.5) is converted as follows:

P (∥x(t)∥0 = · · · = ∥x(T )∥0, yt, ..., yT )

=
∑
K

P (∥x(t)∥0 = · · · = ∥x(T )∥0 = K, yt, ..., yT )

=
∑
K

T∏
τ=t

P (∥x(τ)∥0 = K)

×
T∏

τ=t

P (yτ | ∥x(τ)∥0 = K). (8.6)

Here, we can assume that P (∥x(τ)∥0 = K) is a sparse prior distribution, for example,

the Poisson distribution P (∥x(τ)∥0 = K) = λKe−λ

K!
, where λ is the parameter of the

distribution. Furthermore, P (yτ | ∥x(τ)∥0 = K) can be estimated by summation of

yτ , Y (τ) =
∑τ+F

f=τ−F yf , which is the sufficient statistics of the Bernoulli distribution, as

follows:

P (yτ | ∥x(τ)∥0 = K)

=

1 −

(
1 − K

N

∑N
n=1 aτn
N

)N


Y (τ)

×


(

1 − K

N

∑N
n=1 aτn
N

)N


2F+1−Y (τ)

, (8.7)

where F is the frame size for summation of yτ . Thus, each time the result of the test is

obtained, the proposed method calculates (8.7), (8.6), and (8.4), and it evaluates (8.3)

of each t, and it regards the latest test satisfying (8.3) as the latest change-point c(T ).

Finally, we rewrite the linear-programming formulation (6.9) as follows:

min
x,ξ

∑
n

xn + α
T∑

t=c(T )

ξt


subject to 0 ≤ x ≤ 1, 0 ≤ ξIc ≤ 1, 0 ≤ ξJc

,

AIcx + ξIc ≥ 1, AJcx = ξJc
, (8.8)

where c is the latest change-point, and Ic = {t|yt = 1, c(T ) < t} is the set of the tests

that obtain positive results after c(T ), and Jc = {t|yt = 0, c(T ) < t} is the set of the

tests that obtain negative resultss after c(T ). By calculating (8.8), the proposed method

estimate the x(T ).
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8.4 Experimental results

The performance of the proposed method was evaluated by simulation. In particular, the

averaged probability of correct estimation was computed over 100 trials as a function

of T , for N = 150. N elements were generated independently for each trial. In this

simulation, the probability p of the Bernoulli random design of A was 0.333, noise with

i.i.d 3% probability of flipping each bit of y was added, λ was 1.5, F was 15, and α was

1.0. The proposed method was compared with the conventional method [2]. To evaluate

the robustness to change of the unknown vector x(t), the simulation was conducted for

three cases:

Case1 ∥x(t)∥0 changed from 0 to 2.

Case2 ∥x(t)∥0 changed from 1 to 4.

Case3 ∥x(t)∥0 changed from 4 to 1.

In all the cases, the change-point, c was 100. As for the conventional method, the latest

20, 50, 100, and all the T tests were used. As for the proposed method, at each test,

c(T ) was estimated, and the latest (T − c(T )) tests were used.

The performance of the proposed method in the case of no noise was computed.

Figure 8.1 shows the probability of exact recovery in Case1, Figure 8.2 shows that in

Case2, and Figure 8.3 shows that in Case3. “20 TESTS”, “50 TESTS”, “100 TESTS”,

and “ALL TESTS” mean respectively the case that the latest 20 tests were used, the

case that the latest 50 tests were used, the case that the latest 100 tests were used, and

the case that all the tests were used in the conventional method [2]. “PROPOSED”

means the proposed method.

First, these results show that the probability of exact recovery of “ALL TESTS” did

not increase along with the increase of number of tests after the change-point c = 100.

This indicates that the case that all the tests were used in the conventional method is not

robust to change of positive elements. In all the cases, the probability of exact recovery

of the proposed method, i.e. “PROPOSED”, converged to 1. In contrast, that of “20

TESTS” in Case1, that of “50 TESTS” in Case2, and that of “50 TESTS” in Case3

converged to a value lower than 1. These results represent that the fixed numbers of the
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Figure 8.1: Probability of exact recovery as a function of number of tests, T , in the case

that ∥x(t)∥0 changed from 0 to 2. N = 150, the change-point c was 100, and 3% noise

was added.

tests that were used were too small in these cases. In all the cases, the probability of

exact recovery of “100 TESTS” converged to 1, however, the speed of the convergence

was slower than that of the proposed method. These results represent that the fixed

number of the tests that were used was too large in these cases. Thus, it is indicated

that the proposed method is robust to change of positive elements.

8.5 Conclusion

A new method for solving the group-testing problem is proposed. To improve the ro-

bustness to the condition that positive elements change in the middle tests, the proposed

method detects the latest change-point of positive elements, and it finds positive elements

by using only the results of the tests after the change-point. To detect the change-point,

the proposed method makes use of the fact that the distribution of the results depends on

the number of positive elements. An experimental simulation showed that the proposed

method outperforms the conventional method on the condition that positive elements
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Figure 8.2: Probability of exact recovery as a function of number of tests, T , in the case

that ∥x(t)∥0 changed from 1 to 4. N = 150, the change-point c was 100, and 3% noise

was added.

change in the middle tests.
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Figure 8.3: Probability of exact recovery as a function of number of tests, T , in the case

that ∥x(t)∥0 changed from 4 to 1. N = 150, the change-point c was 100, and 3% noise

was added.

102



Chapter 9

Conclusions

9.1 Summary

In this study, for improving the detection-accuracy of the gate-type-system and the

localization-speed of the large-area-monitoring-type-system, methods of sparsity-aware

chemical signal processing were developed. In Chapter 3, for a walkthrough portal

explosives-detection system, a signal-separation-method based on PLCA with a sparsity

assumption was proposed. In an experimental evaluation, it was shown that the separa-

tion performance is high and that the proposed method can work in real time on GPU.

In Chapter 4, an ICA-based acceleration of the signal-separation-method was proposed,

and experimental results indicated that the proposed method can work in real time

even on CPU. In Chapter 5, for reducing the uncertainty to improve the robustness, a

signal-separation-method using an attenuation model was proposed. In an experimental

evaluation, it was shown that the proposed method improves not only the robustness of

separation but also the detection-accuracy. In Chapter 6, for the large-area-monitoring-

type, a compressive sensing-based approach using a sparsity assumption was proposed

to speed up localization of chemicals, and, especially, to achieve the robustness to the

difference of the number of the positions of chemicals, adaptive Boolean compressive

sensing was proposed. In Chapter 7, to improve the robustness to estimation errors, an

extension of the adaptive Boolean compressive sensing into a multi-armed bandit algo-

rithm was proposed, and the effectiveness was shown in simulation results. In Chapter

8, to improve the robustness to change of the location of chemicals, a combination of
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change-point detection and the adaptive Boolean compressive sensing was proposed, and

the effectiveness was shown in simulation results.

9.2 Remained problems and future works

In this dissertation, methods for improving the detection-accuracy of the gate-type-

chemicals-detection-system were proposed. As explained in Chapter 2, signal processing

for chemicals detection consists of pre-processing including separation, classification in-

cluding detection, and quantification, and we focused on the improvement of separation

in pre-processing because the noise problem is the most significant for practical use in real

environments. However, not only in pre-processing, but also in detection and quantifi-

cation, there is still room for improvement. There is a probability that an improvement

of detection or quantification will further boost detection-accuracy.

In this dissertation, methods for accelerating the localization-speed of large-area-

monitoring-type-system were proposed. Toward the practical use of localization of chem-

icals, things remain to be done. First, the group-size is determined by the proposed

methods, whereas which samples should be selected can not be determined, and the

proposed methods are based on a simple random sampling. If a way in which samples

should be selected is found, the localization-speed will be more accelerated. Therefore,

a way in which samples should be selected should be studied in the future. Second, in

this dissertation, the measurement was modeled as group-testing, and the noise was also

modeled as a random bit-flip independent on the mixing matrix like the conventional

group-testing. However, in real cases, it can be predicted that the noise-level will depend

on the number of ON-ducts, i.e. the group-size because the larger the number of ON-

ducts, the lower the concentration of a target substance drawn into the detector. Thus,

in the future, more precise modeling of the measurement needs to be studied. Finally,

it is the most important to evaluate the proposed approach in a real environment in the

future.
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9.3 Concluding remarks

In recent years, the threat of such terrorism has become a serious problem. In this

study, for preventing terrorist attacks with hazardous chemicals at train stations, air-

ports, sports stadium, etc., signal processing techniques for systems that detects the

hazardous chemicals were proposed. Especially, we studied methods for making the

gate-type and the large-area-monitoring-type into practical use through the improve-

ment of the detection-accuracy and the localization-speed respectively. This study was

inspired by successes of sparsity-aware signal processing in many other areas than chemo-

metrics, and we proposed methods of sparsity-aware signal processing for improving the

detection-accuracy and the localization-speed. In this dissertation, first, to improve the

detection-accuracy of the gate-type-system, a signal-separation-method based on a spar-

sity assumption was proposed. We showed that the proposed method improves not only

the separation-performance but also the detection-accuracy. Also, it was shown that an

online version of the proposed method can run in real time. Second, to speed-up localiza-

tion of the large-area-monitoring-type-system, we proposed a compressive sensing-based

approach that reduces the number of observations by using the sparsity assumption.

Especially, to achieve the robustness to the difference of the number of the positions of

chemicals, an idea of adaptive Boolean compressive sensing was proposed. In addition,

to improve the robustness to estimation errors, a method based on the multi-armed ban-

dit was applied; and to improve the robustness to change of the location of chemicals,

a combination of change-point detection and the proposed method was applied; and

simulation results showed that each proposed method has effectiveness.
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