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Abstract

Handling large databases with uniform storage access file systems requires

high-throughput networking systems, which incurs high cost in a large en-

vironment. While non-uniform storage access (NUSA) file systems federate

local storages of compute nodes, which are able to scale out with lower cost.

However, in this architecture, locality is quite important for effectively ac-

cessing files.

In this study, two scheduling algorithms–Data Aware Dispatch (DAD) and

Improved Data Aware Dispatch (IDAD) are proposed to effectively dispatch-

ing tasks for NUSA file systems by taking advantage of the locality.

These two approaches are implemented on the top of stock Torque sched-

uler and evaluated with three benchmarks: thput-gfpio, Readgf, and BLAST

benchmark. In the evaluation with thput-gfpio, the two data-aware ap-

proaches improved average read throughput from 448MB/s to about 7000MB/s.

The reason for this huge difference is unveiled with Readgf benchmark. Fi-

nally, In an evaluation of BLAST benchmark, scheduler integrated with DAD

and IDAD reduced the makespan for 29.88% and 33.52% in comparison with

stock Torque scheduler, respectively.
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Chapter 1

Introduction

Simulation technologies have become one of the most important branches

for scientific computations in energy physics, genomics, astronomy and other

fields. As the granularity of simulations increases, the demand for handling

larger datasets is growing accordingly.

The European X-ray project XFEL [1] generates 10 to 50 petabytes of

data per second, which requires its underlying file system to handle data at

petabytes scale. As the performance of sensors improves and granularity of

sampling data increases, this number grows exponentially.

Obviously, data of this scale is not able to fit in the main memory of com-

puters. Access to external storage devices such as HDD, SSD and ioDrive is

a necessity. However, the access performance of these devices is significantly

slower than that of main memory. Therefore, the I/O access to these devices

is usually the bottleneck of the entire computing system. Such challenge

is met by distributed file systems that bundle multiple storage devices and

achieves a high I/O performance through simultaneous access.

There are numbers of well-known distributed file systems such as GPFS [2],

Lustre [3], pNFS [4], Gfarm [5], and Google File System [6]. These file sys-

tems can be classified into two main categories in term of access pattern:

uniform storage access file system and non-uniform storage access file sys-

tems. In a former file system, all accesses to the storage devices have to

go through the network, thus the access cost is nearly identical. while in a

latter storage access file system, clients can access the data both on local
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and remote storage, where the accesses to local storage are considered more

effective. This characteristic is referred as data locality or data affinity.

In addition, in a large-scale computing environment where a distributed

file system is often deployed, it is rare for a single computing job to occupy

all of the computing resources. More often, multiple jobs are executed in

parallel, where a task scheduler is often employed to control the usage of

hardware resources such as the CPU cycles, memory, and disk space. There

are some widely deployed batch schedulers such as Sun Grid Engine [7],

Torque [8], PBS Pro [9], LSF [10], and Slurm [11]. These schedulers are well

suited for uniform storage access file systems. However, they do not consider

data placement of underlying file systems, and thus are unable to exploit the

data locality, resulting in poor performance on non-uniform storage access

file systems.

Jobs can be classified into interactive jobs and batch (or non-interactive)

jobs. In an interactive job, a user enters individual commands to be processed

immediately, whereas in a batch job, a sequence of programs listed in a file

is executed unattended. In this study, the main subjects are batch jobs as

they are the mainstream in scientific computations.

The objective of this study is to propose a scheduling approach for non-

uniform storage access file systems, which exploit the data locality to improve

the performance. Here, two approaches named Data-Aware Dispatch and

Improved Data-Aware Dispatch are proposed and implemented on an open

source scheduler called Torque.

The contributions of this study are listed as follows:

• Existing algorithms for batch queueing systems either are unaware of

data placement or try to improve the locality under the restriction

of HDFS prerequisites. While in this work, I proposed two unique

approaches for task dispatching in batch queueing systems that improve

data locality without the prerequisites of HDFS.

• Two designs of data-driven scheduling algorithms, Data-Aware Dis-

patch (DAD) and Improved Data Aware Dispatch (IDAD), are pro-

posed. DAD employs a global parameter to strike a balance between

CPU load and locality, and IDAD enables a per-task parameter setting

instead global one, and thus is more adaptive to different types of tasks.
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• DAD and IDAD implementations on the Torque scheduler with Gfarm

are presented along with an adaptation of Delay Scheduling [12].

• The Score of IDAD, a parameter to select the best execution node, is

evaluated with Readgf and BLAST benchmark to show its effectiveness.

• Evaluations of schedulers integrated with DAD and IDAD using three

benchmarks in comparison with stock Torque scheduler are also de-

scribed and shows noticeable improvement.

The rest of this thesis is organized as follows. Chapter 2 provides an

overview of file system classification in relation to scheduling and a brief

summary of schedulers. Then, two designs of data-aware approaches are

described in Chapter 3, followed by their implementation in Chapter 4 and

evaluation in Chapter 5. Chapter 6 introduces previous research related to

the present topic, and Chapter 7 provides some concluding remarks.
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Chapter 2

Background and Motivation

In this chapter, the background and the motivation for this study are de-

scribed. Section 2.1 introduces a classification of distributed file systems. In

addition, since this is a study for schedulers. The taxonomy of scheduler is

described in Section 2.2. Moreover, Gfarm file system and Torque scheduler

are used as the base of this study, therefore, they are described in detail

in Section 2.3 as the technical background. Finally, the study purpose is

described in Section 2.4.

2.1 The Uniformity of File Systems

storage

node

storage

node

storage

node

storage

node

storage

node

storage

node

….

….

Network

Compute 
Node ….

….

Network (SAN)

Compute 
Node

Compute 
Node

storagestorage storage

2
1

Figure 2.1: The architecture of uniform storage access file system and non-

uniform storage access file system
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Distributed file systems can be classified into two categories in terms of the

accessing pattern: uniform storage access file system and non-uniform storage

access file systems. GPFS, Lustre, pNFS and PVFS [13] require dedicated

storage nodes connected to compute nodes using a storage area network

(SAN). The performance in accessing files on such file systems can be con-

sidered ratherʠ uniformʡ because each access has to travel through the

network (Figure 2.1, left). However, this approach requires a high band-

width network between the compute and storage nodes, which could incur a

relatively high cost, especially for a large-scale cluster.

In contrast, non-uniform storage access (NUSA) file systems such as Gfarm

and Google File System, which federate local file systems on compute nodes,

have been proposed. In this type of file system, the access performance can

be consideredʠ non-uniformʡ because the compute node can now access

the files on its local drive (route 1 in Figure 2.1, left) as well as files on the

remote node through the network (route 2 in Figure 2.1, right).
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Figure 2.2: Performance variation of Gfarm

The difference in throughput between local and remote access may be
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significant in NUSA file systems. I have conducted an evaluation of Gfarm

file system with the thput-gfpio benchmark, which is a component included

in Gfarm and aims to evaluate I/O bandwidth. The result (Figure 2.2) shows

that local access dominates remote access in all chunk sizes.

2.2 Task Schedulers for Cluster

In a large-scale computing environment, it is rare for a single task to occupy

all computing resources. More often, multiple jobs are executed in parallel,

where a batch scheduler is often utilized to control the usage of hardware

resources. In this section, a brief introduction to scheduler is given, and the

Torque scheduler is described in detail as it is used as the base of this study.

In terms of architecture, schedulers can be divided into three categories:

monolithic, offer-based (or two-level), and shared-state schedulers. These

architectures are described below.

2.2.1 Monolithic Schedulers

Monolithic schedulers are the most common type of schedulers in high-

performance computing (HPC) environment. Some well-known monolithic

schedulers include Torque, PBS Pro, LSF, and Slurm, Platform Load Shar-

ing, Open Grid Scheduler [14] and Stock Scheduler for MapReduce in Hadoop

1.x [15]. A monolithic scheduler has a single process for controlling and mak-

ing scheduling decisions (e.g sge qmaster in Open Grid Scheduler, pbs server

in Torque, slurmctld in Slurm), as well as multiple daemons for monitor-

ing task execution (sge execd in Open Grid Scheduler, pbs mom in Torque,

slurmd in Slurm). In a monolithic scheduler, a centralized scheduling algo-

rithm is responsible for all jobs.

Utilizing one single algorithm for all of the jobs may not be ideal, espe-

cially in some commercial environment with heterogenous workloads. For

example, in Graviton, a cluster consists of 4000+ nodes in Yahoo Japan, has

deployed with Hadoop 2.X, where multiple types of jobs such as MapReduce,

HBase, PIG, and HIVE are executed concurrently. In such kind of clusters,

maintaining a monolithic scheduler means the scheduler has to be updated
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with new job logic every time a new job type is added, which increases the

complexity of implementation of the scheduler.

2.2.2 Offer-based schedulers

Offer-based schedulers that known as Two-level schedulers are designed to

tackle this problem by separating the resource allocation and task logic.

YARN [16] and Mesos [17] are the typical schedulers of this type. In an offer-

based schedulers, a centralized resource manager first allocates computing

resources to different application-specific schedulers (make an offer), and each

of those schedulers then makes their own task allocation based on its own

policies.

YARN scheduler is the default scheduler included in Hadoop 2.X. In a

typical YARN scheduler setting, there is one Resource Manager and Multiple

Node Managers. Resource manager resides on a server node, which is merely

responsible for allocating resources, while Node Managers are responsible for

managing an application-specific scheduler called Application Master and a

set of resource called Container. When a job is allocated, it will be assigned

an Application Master. Application Master will first negotiate with Resource

Manager to acquire Container(s). On success, it will ask Node Manager to

initiate the actual task.

Mesos scheduler is an open source platform for fine-grained resource shar-

ing between multiple diverse cluster computing frameworks. As an offer-

based scheduler, it works in a similar way to YARN: A Mesos master to

allocate the resource, multiple slaves to manage application-specific sched-

ulers called Framework.

The offer-based scheduler decoupled the resource allocation and task logic,

which offered more flexibility when adding new features. However, due to

the fact that the resource was allocated before the task allocation, the task-

specific scheduler now can only select best task placement from available

resources given by resource manager from the previous step, which may lead

to low resource utilization.
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2.2.3 Shared-state schedulers

Shared-state schedulers address the problem by allowing each application-

specific scheduler maintains its own cluster state as well as a centralized

shared-state cluster table. When an application-specific scheduler wants to

use some resources and update its own cluster state, it issues an concurrent

transaction to update the shared-state cluster table.

The most famous shared-state scheduler is Omega [18] scheduler intro-

duced by Google. Omega maintains a shared-state cluster table called Cell

State. Each application-specific scheduler maintains a local copy of Cell

State, which is utilized to making scheduling decisions. When the sched-

uler made a decision, it tries to update the shared Cell State atomically.

When there is a contention, one of the scheduler will succeed to get required

resource, and the rest will have to retry.

2.3 Torque Scheduler and Gfarm File System

In this section, the details of the Torque Resource Manager and Gfarm File

System are briefly summarized, the former being used as the basis for my

implementation, and the latter having certain key features utilized in the

proposed work.

2.3.1 Torque Scheduler

Torque scheduler is one of most accepted scheduler in HPC environment.

It is an open-source product derived from the original PBS project. By

default, it has an FCFS scheduler module called pbs sched. However, in

many production environments, pbs sched was substituted with Maui [19]

scheduler.

Torque scheduler is a typical monolithic scheduler. The main architecture

is shown in Fig 2.3. It consists of three main components, i.e., pbs server,

pbs sched, and pbs mom.

pbs mom resides on execution hosts, as is responsible for controlling

the job, transferring output, and collecting load information for the

8



pbs_server pbs_sched
Task queue

pbs_mompbs_mom

command

Tasks

….

Server

Execution 
host

Execution 
host

client

Task 
execution

Task 
execution

Figure 2.3: Architecture of Torque scheduler

pbs server.

pbs sched accepts commands from pbs server, maintains the latest infor-

mation on the execution hosts, and makes scheduling decisions which

will be sent back to pbs server.

pbs server is the central part of the entire system, accepts tasks from

clients, initiates scheduling on pbs sched, and monitors the jobs on

pbs mom.

In Torque, a task is first submitted to pbs server with qsub and queued.

At the same time, the pbs server will send a signal to pbs sched to initiate a

scheduling circle, in which pbs sched gets all details about jobs and execution

nodes from pbs sched, and then makes decisions on task allocation. Finally,

decisions are sent back pbs server and be carried out.
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2.3.2 Gfarm File System

The Gfarm file system is a globally distributed file system used to share

data and support distributed data-intensive computing. It is an open source

project maintained by The University of Tsukuba.

Instead of setting a dedicated storage node, it federates the local file sys-

tems of compute nodes, and manages them using a single namespace. The

Gfarm file system has multiple instances of gfsd as the storage daemons which

access the local file system, and a master-slave gfmd as the metadata dae-

mon, which manages the file metadata including the hierarchical namespace,

file properties, directory structure, and replica information.

Gfarm’s Namespace

File File File File

Compute 
Node

gfsd
libgfarm

Local 
Storage

Compute 
Node

gfsd
libgfarm

Local 
Storage

Compute 
Node

gfsd
libgfarm

Local 
Storage

network

….

Compute 
Node

gfsd
libgfarm

Local 
Storage

MetaData 
Sever

gfmd
libgfarm

File File FileFile
File FileFile

Figure 2.4: Basic structure of Gfarm

Gfarm file system is NUSA file system because each storage node can
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be utilized as compute node, and it can access its local storage using gfsd,

as well as its remote storage using gfsd on other nodes via the network (see

Figure 2.4). Gfarm does not divide one file into multiple nodes, but it achieves

a scalable performance by duplicating the replica in several nodes. Gfarm can

be accessed through the Command Line Interface (CLI), API, and FUSE [20]

through a plug-in called gfarm2fs.

Gfarm is designed in a way to maximize the locality. When opening a

file descriptor, the libgfarm will first communicate with metadata server and

acquire information, such as RTT, CPU load level, and available space on

a storage node, which will be used to select the most suitable storage node.

Normally, The node tries to open the file will be selected to maximize the

locality.

2.4 Motivation and Targeted System

Some of the well-known schedulers are shown in Figure 2.5. Google File

System (GFS) and HDFS [21] shown in the figure are the most widely de-

ployed NUSA file system which are the underlying file systems of MapReduce.

The JobTracker and YARN are the default schedulers for MapReduce 1 and

MapReduce 2, respectively. Since GFS and HDFS are NUSA file systems,

the locality is a crucial concern. However, schedulers and optimizations for

improving locality for such file systems are often based on unique character-

istics of MapReduce, which makes them inapplicable for NUSA file system

designed for batch queuing systems like Gfarm. For example, Delay Schedul-

ing, one of the most cited works for optimizing locality in MapReduce, is not

directly applied to Gfarm, because a clear definition of ’local’ node does not

hold true in that file system.

In addition, there are some widely deployed task schedulers in HPC en-

vironment which are batch queuing systems–Torque, PBS Pro, LSF, and

Slurm, etc. Most of these schedulers had only assumed local storage access

when they are designed. The main information they depend on is CPU load

and available memories.

Those schedulers are suitable for uniform storage access file systems mainly

because there is no need to consider the file location at the task dispatch.
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Figure 2.5: Target System

The access performance is nearly identical regardless of which compute node

the task is dispatched to.

However, such schedulers may not be ideal for a NUSA file system because

if a task is dispatched without consideration of the file placement, it might be

assigned to a node where the file cannot be accessed locally, thereby leading

to a drop in performance.

Moreover, some of schedulers like Mesos, Omega and Borg [22] are ca-

pable of handling workloads of both batch queueing systems and MapRe-

duce. However, they usually assume the prerequisites of MapReduce while

designing their approaches for improving the file locality. For instance, the

Mesos scheduler applied Delay Scheduling in their implementation while De-

lay Scheduling is not directly applicable to Gfarm.

In summary, to effectively execute tasks on NUSA file systems for batch

queueing systems, the data placement has to be taken into consideration and

local access should be exploited. There are many approaches for Hadoop/MapRe-

duce but they are not able to be applied to batch queuing systems directly.

The main purpose of this study is to propose a scheduling strategy for batch

queueing systems on the top of NUSA file systems that emphasize the ex-

12



ploitation of high-performance local access.
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Chapter 3

Design of Data-Aware

Scheduling

In this study, two designs of data-driven scheduling algorithms have been pro-

posed: Data-Aware Dispatch (DAD) introduces a parameter fileLocality to

indicate the cost of accessing data and a global parameter to strike a balance

between fileLocality and CPU load, and Improved Data-Aware Dispatch

(IDAD) enables a per-task parameter setting instead global one. In IDAD,

each task specifies a parameter called RDR that indicates the performance

degradation if the task is located on the remote node and thus is more adap-

tive to different types of tasks.

3.1 Prerequisites

Before proceeding to the algorithms, I would like to make prerequisites clear

in this section first. As we stated in Section 2.3, the Gfarm file system and

Torque scheduler are used in this study, some key features which affect the

design of algorithm will be summarized here.

Machine Specification

• The cluster is homogeneous, i.e. nodes in the cluster have similar specs,

and thus have similar performance.
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• The remote accesses between nodes have similar performance since the

network latency is quite small in HPC environment. For the simplicity

of the model, I assume the nodes in the cluster are connected to one

switch directly.

• The connection bandwidth between nodes are much slower than I/O

bandwidth of local storage, thus exploiting file locality is a crucial con-

cern.

File System

• The file system is POSIX compatible, which allows vast of existing

scientific applications to be executed.

• In the file system, a file is not divided into multiple chunks, instead, it

can be replicated and distributed to multiple storage nodes.

• In the file system, a storage node acts as a compute node at the same

time. When a task is dispatched to a compute node, local storage is

preferred.

Task Scheduler

• The scheduler is a monolithic or a shared-state scheduler. Hence it can

have the whole cluster view to make optimal task allocation among all

nodes in a cluster.

• Tasks scheduled by the scheduler are general-purpose, which means

they may refer to an arbitrary number of files.

3.2 Data-Aware Dispatch (DAD)

Most of the existing works have not assumed a NUSA file system as their

underlying system, therefore, they do not take file placement into considera-

tion, and thus are not suitable for NUSA file systems. Other works, especially

those of Hadoop, depend on some particular constraints, such as a fixed num-

ber of replicas or a fixed task size. However, these assumptions do not hold

true for some general purpose NUSA file systems such as Gfarm. In this
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section, Data-Aware Task Dispatch (DAD) [23] is proposed to exploit local

access regardless of those conditions.

3.2.1 File Locality and Score

The traditional scheduler takes the CPU load-average as the primary factor

when selecting a compute node for a specific task. In contrast, DAD in-

troduces fileLocality, a parameter that indicates the difficulty of accessing

the dataset and combines it with load-average as a comprehensive Score to

determine the most suitable node. These two parameters are described in

detail below.

fileLocality

The fileLocality(t, h), which indicates the difficulty of accessing the dataset

referenced by task t when it is dispatched to a specific compute node h, is

defined as follows:

fileLocality(t, h) =[

∑n
y=1 locality(fy, h)∑n

y=1 sizeof(fy)
+ 1]/2

locality(fi, h) =

⎧
⎨

⎩
−sizeof(fi) if on(fi, h)

sizeof(fi) other

(3.1)

where the locality(fi, h) is a value determined by the size of file fi and

whether compute node h has a replica of fi. If one of the replicas of fi
is on h, the cost of accessing it will be smaller, and therefore the file size

of fi will be subtracted to make the ”cost” smaller, and vice versa. The

fileLocality(t, h) is the normalized sum of the locality(fy, h) ranges [0, 1].

When calculating fileLocality, the total size of local files and remote file

are calculated respectively. Next, subtract the total size of local files from the

total size of remote files to get a preliminary fileLocality. Finally, formalize

this value to range [0, 1], which is the fileLocality.

For better understanding, an example of calculating fileLocality is given

in Figure 3.1. In this example, there is one task that accesses three files,

which are 30M, 40M, and 50M respectively. Also, there are four computing
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nodes, each has a part or all of the files required by the task. Equation 3.1

will be used to calculate the fileLocality of all four compute nodes.

Consider the leftmost node in Figure 3.1, it refers to one remote and two

local files. As you can see in the figure, the total size of remote and local

files are 40M and 80M respectively. Since the remote file has to be accessed

through the network, the size 40M is added to the cost. On the other hand,

the two local files can be accessed locally, therefore the total size of 80M will

be subtracted from the cost. In all, the preliminary fileLocality is -40M,

and the formalized fileLocality is 0.34.
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Figure 3.1: Calculating fileLocality

Score

The comprehensive Score can be calculated in advance using the fileLocality

as follows:

Score(t, h) =fileLocality(t, h)× β

+load(h)× (1− β) (0 ≤ β ≤ 1)
(3.2)
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The load (load-average) and fileLocality are unified into Score using pa-

rameter β. Here, β is a modifier used to adjust the strength of DAD. When

β = 1, the scheduler will ignore the CPU load at dispatch. Although there

should be a method for acquiring the optimal value of β, I only show the

effectiveness of this particular parameter at this stage.

Score can now be used to judge whether a host is desirable for a job

execution in the exact way in which the load-average is used in a CPU-

focused scheduler, with consideration of both the CPU load and the file

locality.

3.3 Improved Data-Aware Dispatch (IDAD)

DAD has a parameter β to strike a balance between fileLocality and CPU

load, yet β is quite difficult to calculate. Considering the fact that CPU load

does not have a major impact on execution time, a more data-centric ap-

proach called Improved Data-Aware Task Dispatch (IDAD) [24] is proposed

in this section.

3.3.1 Drawback of Data-Aware Dispatch

DAD worked fine in a simple experiment setting where all of the tasks have

a similar workload. However, problems arise when dealing with some real

applications, which are summarized as follows:

How to Determine β

In DAD, β is a key parameter for striking a balance between fileLocality and

CPU load. However, in real-world situations, tasks dispatched by a scheduler

may have quite different characteristics. Some tasks may be I/O-intensive

which requires β to be set to a value close to 1, while others could be CPU-

intensive and prefer smaller β values. Since β in Equation 3.2 is a global

parameter that affects all tasks dispatched by the scheduler, it is not easy to

determine a suitable β that works for all kinds of tasks.
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Figure 3.2: CPU impact on BLAST benchmark

Insignificant CPU Impact

A task scheduler has computing slots configured for each compute node,

which limits the number of tasks that specific node can run concurrently.

In a typical setting, the number of computing slots is smaller than that of

CPU cores, which means that the number of concurrent running tasks will

not exceed the number of cores on any specific compute node.

We evaluated the impact of CPU load on computing tasks by monitoring

the total running time of one set of blastn tasks with a different number of

Pi tasks running at the same time. The result is shown in Figure 3.2. As

you can see from the figure, the total execution time of blastn only slightly

increased as the number of Pi processes increases up to 15. However, it

increases dramatically when there are 16 Pi processes, as there are actually

17 processes including the blastn process.

The machine used in this evaluation has 16 cores, thus the CPU loads will

not significantly impact execution time if the number of concurrent running
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tasks is less than this. Therefore, considering CPU load could be beneficial

in terms of load balancing, but unlikely to reduce the task execution time.

3.3.2 Design of Improved Data-Aware Dispatch

A traditional scheduler takes the CPU load-average as the main standard

for load balancing. Just like DAD, IDAD also defines a Score for selecting

the best node at dispatch phase. In DAD, the only user-defined parameter

is β and it is a global parameter that affects all tasks scheduled. For precise

control of each task, I introduce a per-task parameter called Remote Degra-

dation Rate (RDR) to indicate the extent to which a task is data-intensive.

In addition, a parameter called RemotePortion is introduced to indicate the

portion of files that has to be accessed remotely.

RDR

Unlike the DAD, which utilizes a global parameter to control the effect of data

placement, the IDAD enables per-task parameter called Remote Degradation

Rate (RDR) to control scheduler in advance.

RDR is defined as follows:

RemoteDegradRate =
RemoteT ime(t)− LocalT ime(t)

LocalT ime(t)
(3.3)

where RemoteT ime(t) is the execution time when a task t runs on a remote

node. Likewise, LocalT ime(t) is the execution time when a task t runs on a

local node.

The range of RDR is [0,∞). When RemoteT ime(t) equals LocalT ime(t),

RDR is zero, which means for this specific task t, executing remotely or

locally does not affect execution time and therefore it is not a data-intensive

job. On the contrary, if the remote running time and local running time

differs greatly, the part RemoteT ime(t)−LocalT ime(t) will be much larger,

and thus lead to bigger RDR value.

The definition of RDR is quite important as it not only represents the

characteristic of jobs, but also show how such characteristic will affect real

execution time in the given environment.
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RemotePortion

IDAD uses RDR to characterize the job. RemotePortion, on the other hand,

represents the characteristic of file placement for the given job. This idea

is quite similar with fileLocality in DAD. The RemotePortion is defined as

follows:

RemotePortion(t, h) =

∑n
y=1 RemoteSizeof(fy, h)∑n

y=1 Sizeof(fy)

RemoteSizeof(fi, h) =

⎧
⎨

⎩
0 if on(fi, h)

sizeof(fi) other

(3.4)

where the RemoteSizeof(fi, h) is a value determined by the size of file fi
and whether compute node h has a replica of fi. Here, only the size of

remote the file will be counted, which means if replicas of fi is not on h,

its size will be counted. The sizeof(fy) is the file size of fy. In short, the
∑n

y=1 RemoteSizeof(fy, h) is the total size of files accessed remotely and
∑n

y=1 Sizeof(fy) is the total size of files accessed by the task.

Score

Finally, the Score(t, h) then can be defined as follow:

Score(t, h) = RDR(t)×RemotePortion(t, h) (3.5)

At the dispatch phase, when the scheduler tries to select the best node h

for task t, IDAD calculates the Score(t, h) for each available node h; and

the node with the lowest Score is chosen as the execution node. As you can

see in Equation 3.5, when the score is low, either the RDR is low or the

RemotePortion is low. The former means that the task is not that data-

intensive and does not require high-level locality, while the latter means that

compute node has the majority of the files needed by the task.

For better understanding, an example of calculating score in IDAD is

given in Figure 3.3. In this example, the setting is similar to the one in

the previous section with DAD, but it has an additional parameter–RDR.

Similarly, there is one task that accesses three files, which are 30M, 40M, and
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50M respectively. Also, there are four computing nodes, each has a part or

all of the files required by the task.

Consider the leftmost node in Figure 3.3, it has one 40M remote file, and

the total file size is 120M. Therefore, we can calculate the RemotePortion

of this node by Equation 3.4, which is 0.33. When the RDR of a task is 0,

according to Equation 3.5, all of the nodes have Score = 0 no matter what

RemotePortion they have. On the contrary, if the RDR of the task is 5,

then the Score will be 1.65 for the leftmost node.

Just like how Score works in DAD, the Score for IDAD will be used to

judge whether a host is desirable for a job execution.
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Figure 3.3: Calculating Score in IDAD

3.4 Delay Scheduling for Data-Aware Schedul-

ing and Local Threshold

Some task sequence may cause a serious problem in schedulers implemented

with DAD or IDAD. In this study, Delay Scheduling is applied to solve this
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problem. However, Delay Scheduling is designed for Hadoop/MapReduce

that has different assumptions from mine, therefore, an adaptation is re-

quired. Details on this issue are described below.

A A B B

BBBBAAAA

A A B B

BBBB
A

AAA

A A B B

BB

BB
AA

AA
A A B B

BBBB

AAAA

1 2

3 4
x x

x

Queued task, refers file x

Executing task, refers file x, on node with file y

Finished task

y

Figure 3.4: Task order causing performance degradation: after the first two

tasks executed locally (phase 2), the following two tasks will be dispatched

to the two available remote nodes. This situation also happens in phase 3.

Finally, half of the tasks have to access the file remotely

3.4.1 Delay Scheduling

I found that the order of the tasks might cause a drastic degradation in the

performance. An example of this is shown in Figure 3.4, where four task

requiring file A; and the other four, file B.

Because there are two nodes for each referenced file, the ideal case is for

each node to be dispatched with two local tasks. This can be achieved
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by the arranging tasks as AABBAABB. However, if the tasks come in the

order of AAAABBBB, after the first two tasks are dispatched (phase 2 in

Figure 3.4), the following two tasks will be dispatched to the two available

nodes remaining without a needed file. Finally, half of the tasks have to

access the file remotely, which will cause a significant drop in performance

for data-intensive tasks.

I applied Delay Scheduling (DS) to alleviate this issue. DS is a simple idea

for a scheduler to achieve locality in the Hadoop file system. In DS, when a

task is to be dispatched according to the scheduling policy but has no local

node, instead of being executed immediately, it waits for a few slots so that

it can be executed locally.

3.4.2 Local Threshold

DS is designed for MapReduce, where DS recognizes three locality level:

local, rack, and off switch. In another word, if a task waits long enough,

there will always be one or more local node.

However, in some NUSA file systems like Gfarm, a task may refer to more

than one dataset distributed in multiple compute nodes. Therefore, there

are cases where no node holds all data required and is 100% local to a task.

To solve this problem, in this study, I introduced the concept of local

threshold: tasks are classified by comparing the Score(t, h) and a local

threshold value. A node h is local to task t if Score(t, h) is smaller than

the local threshold lThreshold. Otherwise, h is considered remote.

3.5 By Queue Scheduling

Job array submission is a feature which allows a user to submit a large number

of tasks based on the same job script with different parameters. Consider

that Score is calculated based on file sets referenced by a task, submitting

a job array in which tasks referring the same datasets might cause excessive

scheduling overhead because DS has to handle tasks with the same Score,

which could be a waste of time. I solve this issue by submitting different job

arrays to different queues and dispatching tasks in each queue interleavely,
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Figure 3.5: Example of By Queue Scheduling (BQS): the scheduler has to

judge and skip four times before finding a local task without BQS. That

number is one with the BQS

and thus tasks referring to different files were processed in an interleaving

manner to avoid excess judgment.

A example of By Queue Scheduling is Given in Figure 3.5. In this example,

when a local task refers file B finishes, the scheduler will try to dispatch

another local job, which also refers file B to maximize the locality. If there is

only one queue, as you can see in the figure, the scheduler has to judge and

skip first four task because they all refer file A, and then find a local task.

On the other hand, if tasks refer to different file are submitted to different

queues, and scheduler process each queue in an inter-leaving manner, after

only one failure judge in Queue 1, a local task will be found for execution.
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Chapter 4

Implementation of Data-Aware

Scheduling

I implemented DAD and IDAD based on the stock Toque scheduler included

in Torque package and chose Gfarm as the underlying file system. In this

Chapter, some of the details of implementation are discussed.

4.1 Architecture
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Figure 4.1: Structure of Gfarm on Torque

The entire system consists of one server and multiple worker nodes. Each
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worker nodes has a gfsd and a pbs mom, which are storage access daemon

of Gfarm and task execution daemon of Torque, respectively. The server, on

the other hand, is responsible for controlling the entire system, where the

pbs server, pbs sched of Torque and metadata server, gfmd, are located.

The system is configured in a way that a task initiated by pbs mom is able

to access its local storage through gfsd on the same node. The two proposed

methods are implemented and integrated into the pbs sched, which is the

default scheduler module of Torque.

4.2 Modification on Torque

In this work, the main modifications are made to pbs sched, whereas pbs mom

remains completely untouched. In addition, the pbs server and qsub com-

mands are minimally changed to pass information regarding the referenced

data of a task. Figure 4.2 show the flow of information, from user to final

scheduling module.

  qsub

“-g file1,file2,file3…”

“-B 0.6”

!pbs_server
“file1,file2,file3…”

ATTR_fileUsed

0.6
ATTR_RDR

!pbs_sched
IDAD/DAD

“file1,file2,file3…”
0.6

Figure 4.2: The Flow of Job Information

Modification on Client Command

Both DAD and IDAD requires the information about file used by jobs, which

has to be specified by the user. As the command to submit a job, the qsub

are expanded with the ability to specify the file accessed and the Remote

Degradation Rate (RDR).

In stock Torque scheduler, a user can submit a batch file through the

following command:

qsub task.sh
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We expanded the system using the command-line option -g followed by a

comma-separated file list, allowing a user to specify a set of files through the

qsub command. Similarly, option -B is added to specify the RDR of a task

for IDAD.

For example, if we want to submit a task that accesses two files named

file1 and file2, and has RDR of 0.6, we can use the following command:

qsub -B 0.6 -g file1,file2 task.sh

Alternatively, the file referenced and RDR can be specified by writing

following directives in the batch script.

#!/bin/bash

#PBS -N ExampleJobName

#PBS -g file1,file2

#PBS -B 0.6

actual commands follows...

This information will be sent to pbs sched and stored in its data structure.

Modification on pbs server

pbs server is the controlling center of Torque, which receives jobs information

from qsub and stores them in its own data structure. In my implementation of

DAD/IDAD, two variables are added: ATTR fileUsed for storing file accessed

by the job, and ATTR RDR for storing the RDR of the job.

Modification on pbs sched

pbs sched is the scheduling module of Torque. Main modifications are made

here. When receiving signals from pbs server, the pbs sched will initiate a

scheduling cycle, where the latter communicate with the former and get all

of the information needed for making scheduling decisions.

Similar to pbs server, variables are added to store the newly added infor-

mation for file placement and RDR. This info will be used as the input for

DAD and IDAD, which will be described in detail below.
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4.3 Workflow of Scheduler Module

As the controlling center of Torque, The pbs server is responsible for initiat-

ing scheduling cycle in pbs sched by sending some specific signals which are

listed below:

StartNEW, TERM, CMD?

Y

Runnable Task t ?

N

Ask pbs_server to get 
information about  jobs and 

nodes

Call DAD/IDAD to get 
execution host h

Filter the job queue to find 
runnable job

End

N

Y

Tell pbs_server to
execute t on h

Figure 4.3: The workflow of Scheduler

1. SCH SCHEDULE CMD

Initiate a scheduling cycle on command

2. SCH SCHEDULE NEW

A new job is queued in pbs server

3. SCH SCHEDULE TERM

A Running job is terminated

4. SCH SCHEDULE FIRST

First scheduling cycle after pbs server is started.

In this implementation, when SCH SCHEDULE FIRST is received, the

scheduler will execute initialization process by allocating memory for hash
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tables that are used to store information acquired from the metadata server

of Gfarm.

When either the CMD, NEW, and TERM is received by the scheduler, it

initiates a new scheduling cycle. This process is shown in Figure 4.3. At

the beginning, the pbs sched will get all of the information, jobs’ and nodes’,

from pbs server, and filter the queue to find runnable jobs. Next, runnable

jobs are processed in FCFS manner by DAD or IDAD algorithm. As the

output, a selected execution host will be send back to pbs server.

4.4 Implementation Optimization

Communication Cost

DAD and IDAD need to know the files a job refers to and the nodes where

those files reside. The information regarding the replica is managed by the

meta-data server of Gfarm, i.e., gfmd. Therefore, the scheduler has to com-

municate with gfmd before making a decision.

Because only one file can be queried each time, a task refers to many files

requires to communicate with gfmd multiple times, which increases commu-

nication in the network and is quite time-consuming. We exploit a hash

table to store such information and reduce the amount of communication

with gfmd. Similarly, the file size is also hashed to avoid redundant commu-

nication.

Redundant Wait Time

An issue may arise when naively implementing Delay Scheduling for DAD

and IDAD on Gfarm. As stated before, the original Delay Scheduling was

designed for the Hadoop file system in which each task can always find a

node with all of the access files.

However, in Gfarm, a task can refer to multiple files, and each compute

node might hold only a small portion of such files and thus has large Score.

Therefore, it is possible that neither of the compute nodes satisfies the stan-

dard of ”local”. In this case, waiting for a local node would be a waste of

time. DAD will judge whether it is necessary for a job to wait for the next

30



available slot. If a job is not local to either of the compute nodes, it will not

be delayed.

31



4.5 Pseudocode of IDAD

Algorithm 1 Improved Data-Aware Dispatching

1: function getFileSize(filePath)

2: Communicate with gfmd and get file size of filePath, then store the

result to hash table;

3: end function

4: function getFileExist(filePath, nodeName)

5: if eHash[filePath+ nodeName] exits then

6: return eHash[filePath+ nodeName];

7: end if

8: found← false

9: repNode[]← nodes with replica, from gfmd

10: for node in repNode[] do

11: eHash[filePath+ repNode]← exists

12: if nodeName = node then

13: found← true

14: end if

15: end for

16: if found = false then

17: eHash[filePath+ nodeName]← notexists

18: end if

19: return eHash[filePath+ nodeName]

20: end function

21: function getRemotePortion(job, nodeName)

22: fileMisMatch, fileTotalSize← 0

23: for f in job.fileUsed[] do

24: size← getFileSize(f)

25: if getFileExist(f, nodeName)=FALSE then

26: fileMisMatch← fileMisMatch+ size

27: end if

28: fileTotalSize← fileTotalSize+ size

29: end for

30: return fileMisMatch/fileTotalSize

31: end function
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32: function ImpDataAwareDispatch(job)

33: lShold← local threshold;

34: wLimit← max delay time;

35: minScore← FLOAT MAX;

36: pNode, gNode← NULL; //possible and good node.

37: ifWait← false; //if need to wait for a good node

38: for each execution node h do

39: FileRemoteRate← getRemoteRate(job, h);

40: RDR← job.RDR;

41: Score← RDR× FileRemoteRate;

42: if h is not free ∧ Score < lShold then

43: ifWait← true;

44: end if

45: if h is free ∧ Score < minScore then

46: pNode← h;

47: minScore← Score;

48: if Score < lShold then

49: gNode← h;

50: end if

51: end if

52: end for

53: if pNode = NULL then

54: return NULL;

55: end if

56: if gNode ̸= NULL then

57: return gNode;

58: end if

59: if job.wT ime < wLimit ∧ ifWait = true then

60: job.wT ime++;

61: return NULL;

62: end if

63: return pNode;

64: end function
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Chapter 5

Performance Evaluation

The performance evaluation of DAD and IDAD will be described in this

chapter. There are two parts in this chapter: the evaluation of Score defined

by IDAD, and evaluation of schedulers integrated with DAD or IDAD as a

whole.

5.1 Test Environment

A cluster in The University of Tsukuba, consists of five nodes named Chris20

to Chris24, is used in this evaluation. Each node has 8GB × 8 Memory and

two NUMA nodes, which adds up to 64GB of Memory and 16 CPU cores

with hyper-threading disabled.

In addition, the nodes are connected to a switch (PowerConnect 6248)

through Gigabit Ethernet (1000BASE-T full duplex). Infiniband FDR 4x is

also available, but it does not match the prerequisite that the network speed

is much slower. Therefore it is not used in this experiment.

The storage device used in the experiment are four SAS HDD drives linked

to a RAID controller with 1G NVRAM, while RAID is disabled and each

drive works as a single device.

More details of software and hardware are listed in Table 5.1.
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Table 5.1: Test Enviroment

Hardware

CPU ɹ Intel Xeon E5-2665 (2.4GHz 20MCache 8Core) x2

HDD ɹ 146GB (6Gbps SAS 15,000rpm) x4

Memroy 64GB (8GB 1600MHz) x8

Network 1Gbps Ethernet

Software

OS CentOS release 6.8 (Final)

Gfarm ɹ 2.7.0

Torque ɹ 4.2.6.1

5.2 Evaluation of Score

In this section, the evaluation of Score defined by IDAD (Equation 3.5 in

Chapter 3) is described. This evaluation is quite important because it is

crucial to understand the case where a task access multiple files and they are

distributed on different nodes.

In this section, two benchmarks, Readgf and BLAST benchmark, are uti-

lized to evaluate the effectiveness of Score. Readgf is a micro benchmark

designed to profile the scheduling process, and BLAST benchmark is a very

important set of programs in bioinformatics to finds regions of similarity

between biological sequences.

5.2.1 Evaluation of Score with Readgf Benchmark

Readgf benchmark is a benchmark designed for profiling the task execution

behavior on Gfarm by recording the start time and execution length of each

task, and makespan of the entire job. The main workload is reading one or

multiple files on Gfarm, which can be specified with the following command:

readgf file1 1024 (access size in byte) file2 512 ....

In this experiment, one Readgf task that access four files of 512MB are

submitted to one compute node, and the number of remote files is altered
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Node

Readgf
Local Remote

Node

(a) Three Local and One Local Files

Node Node

Readgf
RemoteLocal

(b) One Local and Three Local Files

Figure 5.1: Readgf Setting for Score Evaluation

from one to four to generate different Score and the execution time of each

case is recorded accordingly. Figure 5.1a and Figure 5.1b show the situation

that one and three files are located in a remote node, respectively. In the

figure, the blue and red arrow are local and remote access.

Table 5.2: Calculation of Score with Readgf

Remote/Total Remote/Total Size (MB) RemotePortion Score

0/4 ɹ 0/2048 0 0

1/4 ɹ 512/2048 0.25 8.67

2/4 ɹ 1024/2048 0.5 17.34

3/4 ɹ 1536/2048 0.75 26.02

4/4 ɹ 2048/2048 1 34.69

First of all, the Score of each case is calculated in Table 5.2. Because four

files are same in size, the RemotePortion of each case is 0, 0.25, 0.5, 0.75, and

1 respectively. In addition, from the observed data, when all files are located

in local, the execution time is 0.49 second. While, when all files are located

in remote, the execution time goes up to 14.49 sec. Therefore, according to

the definition of RDR (Equation 3.3), the RDR of Readgf task in this test

environment is 34.69. In all, Scores can be acquired with Equation 3.5 and

listed in the Table.
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Figure 5.2: Score Evaluation with Readgf

I plotted the Score and execution time in Figure 5.2a. As you can see

from the figure, as the Score of a compute node increases, the task execution

time increases accordingly. These plotted points almost form a straight line,

which indicates the increase of execution time is quite proportional to that of
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Score. The reason is that this experiment runs in an ideal condition where

all four files are same in size, and sizes accessed by Readgf are identical as

well.

To evaluate the effectiveness of Score when only a part of a file is accessed,

I conducted another experiment in which the file size and placement are kept

the same with previous setting, but the sizes of accesses are altered. Instead

of accessing the whole 512 MB of files, Readgf only accesses a part of them

(100/512MB, 200/512MB, 300/512MB, and 400/512MB).

In this experiment, the RemotePortions are the same with previous one

because the file size and placement are not changed. However, since the sizes

of accesses are altered, the complete remote execution time and complete

local execution time have changed. In this case, they are 8.75 and 0.28

second, which means RDR is 30.47.

I ran this experiment two times with different sequence of placing files to

a remote node. Firstly, the files are moved to a remote node in ascending

order of their access portion size ( i.e., the file that 100MB is accessed is

moved to the remote node first). In the other setting, the files are moved in

descending order of their access portion size.

The result is shown in Figure 5.2b. One key difference when comparing

Figure 5.2a and Figure 5.2b is that the maximum execution time decreased

from 17.49 to 8.75. This is because in the former case, the total access size

is 2048MB (512MB × 4), while in the latter case, the total access size is

1000MB (100MB + 200MB + 300MB + 400MB).

In Figure 5.2b, the blue and red line indicates the case of ascending and

descending order, respectively. Since the file sizes are the same among four

files, each relocated remote file increases RemotePortion by 0.25, and thus

increases Score by 7.6175 (0.25 × 30.47). In the case of ascending order,

because the access portion of files relocated to remote is smaller at first, the

impact to execution time was not that significant in the beginning, which

results in the blue line similar to a convex function. On the contrary, In

descending case, the influential files are moved first, which result in the orange

line similar to a concave function.
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5.2.2 BLAST Benchmark

BLAST

Sequence similarity searching is one of the most important components in

bioinformatics. Basic Local Alignment Search Tool (BLAST) is an ”ap-

proach to rapid sequence comparison, directly approximates alignments that

optimize a measure of local similarity” [25]. It finds regions of similarity

between biological sequences. The program compares nucleotide or protein

sequences to sequence databases and calculates the statistical significance.

NCBI-BLAST+

BLAST+ [26] is a set of command-line applications to run BLAST. It is

released in 2009 and maintained by National Center for Biotechnology Infor-

mation (NCBI). Different functionalities of BLAST+ are organized by sepa-

rate programs such as blastn, blastp, tblastn, blastx, tblastx, etc. The main

components and their functionalities are summarized below in Table 5.3.

Table 5.3: Some Applications Included in BLAST+

Application Search Type

blastn Nucleotide queries to nucleotide databases

blastp Proteins queries to protein databases

blastx Translated nucleotide queries to protein databases

megablast Faster nucleotide queries to nucleotide databases

tblastx Translated nucleotide queries to Translated nucleotide

databases

tblastn Protein queries to translated nucleotide databases

BLAST benchmark

BLAST benchmark [27] is a benchmarking tool for evaluating the relative

performance of BLAST+ running on different hardware and different BLAST

implementations. It simulates typical workloads obtained from an analysis
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of several hundred thousand runs. This benchmark consists of four parts:

Databases, Queries, Tasks, and an Executing Shell.

The databases in the current version of BLAST benchmark is ”nt.01” and

”nr.01”, which are a subset of ”nt” and ”nr” database that accounts for more

than 80% of all searches in NCBI. ”nt.01” database is a nucleotide database

which contains 655,319 sequences and 3,670,101,299 letters in total. On the

other hand, ”nr.01” database is a protein database which contains 2,509,695

sequences and 856,437,321 letters.

The entire benchmark contains 100 blastn, 40 blastp, 24 blastx, 24 megablast,

10 tblasn, and 10 tblastx tasks. The execution logic of those tasks is described

in Makefile. A user can run entire benchmark by executing make. Alterna-

tively, one or more specific type(s) of applications can be evaluated separately

by specifying their name. For example, make blastn only executes blastn.

5.2.3 Evaluation of Score with BLAST Benchmark

BLAST benchmark contains multiple sub-benchmarks such as blastn, blastp,

and blastx, etc. In this experiment, the blastn have been chosen because it

is the most I/O-intensive application, which is ideal to show the effectiveness

of Score.

A blastn application fires a nucleotide query on a nucleotide database. In

the current version of BLAST benchmark, blastn utilizes ”nt.01” database

included in its package. ”nt.01” consists of ten files. They all starts with

”nt.01” but have different suffixes, in this study, these suffixes will be used

to specify the files. (e.g, nsq stands for database file ”nt.01.nsq” ).

In this experiment, I changed the database’s path to an FUSE-mounted

Gfarm directory by modifying the Makefile script of BLAST benchmark.

Afterward, I recorded the total execution time of all 100 blastn tasks with

one of the files in remote, while keeping all other files local. In this way, each

Score of a node without one particular file can be calculated. The result is

shown in Table 5.4. The result is sorted in descending order based on Score

of nodes.

In this table, the row ”nsq” in the means 1) that the score of a node without

”nt.01.nsq” is 5.2390, and 2) that when all 100 blastn tasks are executed on
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Table 5.4: blastn Execution Time on Node with Different Score

Remote File File Size Score of Nodes Time Difference (Sec)

nsq 878M 5.2390 877.84

nhr 108M 0.6417 12.96

nsd 23M 0.1337 0.00

nhd 11M 0.0656 0.00

nin 7.5M 0.0448 80.80

nnd 5.3M 0.0315 4.77

nog 2.5M 0.0149 0.00

nsi 535K 0.0031 0.01

nhi 256K 0.0015 0.00

nni 22K 0.0001 0.21

(All Remote) 1033M 6.1759 970.44

(All Local) N/A 0 0

this specific node, the execution time would be 877.84 sec longer than that

of an entirely local node. The nsq file is the main sequence database file,

which is largest and thus has the largest score.

It is conspicuous that when five files (nsd, nhd, nog, nsi, nhi) are placed

to a remote node, the execution time does not seem to be affected. I used

strace to track the file I/O behavior of a blastn task and found that these

files are not opened during the execution. The row ”nin” deserves more than

a passing notice because it only has Score of 0.0448 but affects the execution

time greatly. This is because nt.01.nin is index file of the database, and it

will be accessed multiple times during an analysis.

5.2.4 Analysis of Score Evaluations

In this section, Score defined in IDAD has been evaluated with two bench-

marks: Readgf and BLAST benchmark.

In the case of Readgf, the access pattern is close to the ideal condition

–the access is equal or proportional to the file size, and all files are accessed

41



only once. This setting makes Score quite accurate in representing the I/O

load of a task.

On the other hand, in the case of BLAST benchmark, a mixed-load real-

world application is utilized. Since one of the referenced files is quite large,

the Score will not be affected by other files greatly. Moreover, blastn ʟs

accesses to each file are imbalanced that some files are frequently accessed,

while other files are not even accessed a single time. The access sizes also

heavily depend on different queries. These facts make Score not that accurate

to represent the I/O loads sometimes.

Though not as accurate in Readgf benchmark, however, the Score mostly

reflects the I/O load in for most files, because it is fair to assume the largest

files specified by a user will likely to be accessed and thus affect the execution

time. If it is not the case, a user can just omit that file to get more accurate

Score.

Introducing per-file weight may be a solution for this issue. Allowing users

to specify the importance of each file individually may help scheduler make

better decision indeed. However, It would significantly increase the user cost.

Users from other disciplines may have difficulties in analyzing the access

pattern of their own applications. It is a trade-off between accuracy and

usability.

In all, under current constraints, I conclude that Score defined by IDAD

is effective to express the I/O cost of a task allocation.

5.3 Evaluation of Data-Aware Scheduling

In this section, a Torque scheduler integrated with DAD and IDAD module

will be evaluated. It will be compared with stock Torque scheduler using

three benchmarks: thput-gfpio, Readgf, and BLAST benchmark.

5.3.1 thput-gfpio

The thput-gfpio benchmark is included in the Gfarm file system package and

is used for evaluating the read, write, and copy performance of Gfarm. The

block size and access size can be specified. This benchmark is utilized to
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show the I/O throughput gain made by two data-aware algorithms.
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(b) Improved Data-Aware Dispatch

Figure 5.3: Evaluation result using thput-gfpio (Data-Aware)

In this experiment, 16 different 1 GB files were generated beforehand and

distributed evenly to four compute nodes. In addition, 16 thput-gfpio tasks

were submitted to read each file accordingly.
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(b) Stock Torque with task order rearranged

Figure 5.4: Evaluation result of thput-gfpio (Stock Torque)

The results of two data aware approaches are shown in Figure 5.3. Fig-

ure 5.3a and Figure 5.3b are the results of DAD and IDAD, respectively.

In these figures, each bar represents the read throughput of a task, and the

red line is the average throughput of all 16 tasks. As you can see in two
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figures, the results of two Data-Aware approaches have quite a similar re-

sult. This is because the workload of this benchmark is mainly reading files

on Gfarm file system, while DAD and IDAD are quite similar in handling

I/O-only workload. In summary, the average throughput of DAD and IDAD

are 7340.88MB/s and 7319.74MB/s respectively.

On the other hand, two results of stock Torque scheduler are shown in

Figure 5.4. In the first case (Figure 5.4a), only one task has relative high read

throughput, while in the other case (Figure 5.4a), the stock Toque scheduler

shows a similar result with two Data-Aware approaches. The reason for this

huge difference is explained blow:

As mentioned above, 16 files are made before the evaluation and distributed

evenly to four compute node. For ease of description, we name the 16 tasks

Task1 to Task16, which access 16 files named file01 to file16. In addition, we

assume the first node has file01 to file04, the second node has file05 to file08,

and so on. The setting is listed in Table 5.5.

Table 5.5: Evaluation Setting of thput-gfpio

Task File Accessed Location Task File Accessed Location

Task01 file01 Task05 file05

Task02 file02 Task06 file06

Task03 file03 Task07 file07

Task04 file04

node1

Task08 file08

node2

Task09 file09 Task13 file13

Task10 file10 Task14 file14

Task11 file11 Task15 file15

Task12 file12

node3

Task16 file16

node4

In the first case where throughput degraded greatly, tasks are submitted

in alphabetical order to read file1 to file16 accordingly (Task01, Task02, ...,

Task16). Since the stock scheduler is not aware of data placement, Task1

to Task4 will be executed on four different nodes first ( Task01 on node1,

Task02 on node2, Task03 on node3, Task04 on node4). i.e., four tasks that

access files on the same node will be executed at the same time. In this case,
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only one task can access the file locally (Task01 on node1). In addition, the

network bandwidth of the node with all four files (node1) will be shared by

other three tasks, which will significantly reduce the performance of both

local (Task01) and remote accesses (Task02, Task03, Task04). Hence, you

may notice that the performance of the only local task is also lower than that

in two Data-Aware approaches.

In the second case, tasks are submitted in a way that all four concurrently

running tasks are able to access file distributed in all four nodes (Task1,

Task5, Task9, Task13,..., Task4, Task8, Task12, Task16). When first four

task (Task1, Task5, Task9, Task13) are being executed, all tasks can perform

local access because that files accessed (file1, file5, file9, file13) are distributed

in four nodes.

The result in Figure 5.4b shows that with the proper task sequence, the

stock Torque scheduler may perform as well as two data-aware approaches.

However, such rearrangement of tasks is only practical in a simple test case.

On the other hand, two properly configured data-aware approaches are able

to perform well regardless of the task sequence.

5.3.2 Readgf

An increase in throughput performance can be clearly observed in the pre-

vious benchmark. However, the behavior of the tasks remained unknown.

The Readgf benchmark was developed to reveal detailed task scheduling in-

formation such as the start time, execution length, and makespan. The main

workload of Readgf is reading files on Gfarm.

The file placement setting in this evaluation is identical to that of thput-

gfpio benchmark: 16 different 1 GB files were made beforehand and dis-

tributed evenly to four compute nodes. In addition, 16 Readgf tasks were

submitted to read each file accordingly. The results are shown in Figure 5.5.

The two subfigures in Figure 5.5 are Gantt charts. In a Gantt chart, the

names of tasks are listed on the left of the y-axis and the x-axis is the time

elapsed since the start of the first task. Each task is represented by a bar; the

position and length of the bar reflect the start time, duration and end time

of the task. A longer bar means more time is consumed during execution,
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and thus less effective. On the other hand, shorter bar means less time, and

thus more effective.
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(b) Data-Aware Dispatch

Figure 5.5: Evaluation Results of Readgf

Since the workload of Readgf benchmark is reading files on Gfarm file
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system, the DAD and IDAD work in a similar way. Therefore, the Gantt

chart of IDAD is omitted here.

As shown in Figure 5.5a, using the stock Torque scheduler, only one of the

tasks has a significantly short bar, which means that the interval between the

start and end time was short and that the task was read efficiently from the

local node. All other tasks, on the other hand, have relatively long bars and

are less effective. Conversely, using DAD, as shown in Figure 5.5b, all of the

tasks had short lines, indicating that they performed efficient local accesses.

Another noticeable difference between stock Torque scheduler and DAD is

that the order of task execution is altered. X-axis in a Gantt chart is the

timing axis, therefore, the task sequence can be acquired by finding the left

side of bars, from left to right.

The stock Torque scheduler does not alter the task sequence, the starting

point (left side of bars) of tasks appears in exact same order to the sequence

of task submission. On the contrary, the DAD automatically altered the

execution order of tasks by applying delay scheduling, which guarantees local

access for tasks.
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Figure 5.6: Gantt Chart of Readgf with Re-ordered Task Sequence

I also tried to alter the task sequence manually, as I did in thput-gfpio, so
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that each task can perform the local access. The result is shown in Figure 5.6.

In this figure, the task order is changed to Task1, Task5, Task9, Task13...,

which has identical execution order with DAD. Therefore, the result is similar

to that of DAD.

5.3.3 BLAST Benchmark

I evaluated DAD and IDAD with BLAST benchmarks, comparing it with

stock Torque scheduler. BLAST benchmark has a single Makefile responsible

for controlling the task execution. However, such setting is not ideal for

executing BLAST benchmarks in parallel. Therefore I modified the way of

executing tasks of BLAST benchmark so that it will fit in a batch scheduler.

root

db queries

blastn blastp tblastn

… tblastn 
query files

blastp 
query files

blastn 
query files

database
files

Figure 5.7: Directory of BLAST Benchmark

Submitting BLAST Benchmark to Torque

In the original setting of BLAST benchmark, a Makefile is used to control the

task execution. It only provides parallelism on single node level by executing

make -j8, where the -j8 indicates that eight processes will be executed in

parallel. Obviously, it will not fit in a cluster with multiple nodes.

The Makefile consists of seven sections for each BLAST application: tblastx,

tblastn, blastx, blastn, blastp, megablast, and idx megablast. A typical

BLAST application searches databases using a query, which has the following

format:
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blastn -db DB_FILE -query QUERY_FILE

where the blastn is the application, which can be blastn, blastx, tblastx,

blastp, etc. DB FILE is the database required for a query, whereas QUERY FILE

describes the content of a query.

I changed the script so that the tasks in BLAST benchmark can be sub-

mitted to Torque scheduler. I will use an example to explain the script. A

script to submit blastn is listed as follow:

#!/bin/bash

#PBS -N BLAST

#PBS -q blastn

#PBS -g /db/nt.01.nhr,/db/nt.01.nni,/db/nt.01.nnd,

/db/nt.01.nsq,/db/nt.01.nin

#PBS -t 1-100

#PBS -B 6.18

file=`ls /home/risyomei/blastbenchmark/queries/blastn/

| head -n $PBS_ARRAYID | tail -n 1`

echo `date +%s%N`:starttime $file BLASTN$PBS_ARRAYID

`hostname --short`

blastn -db /work/risyomei/mnt/db/nt.01 -query

/home/risyomei/blastbenchmark/queries/blastn/$file

echo `date +%s%N`:endtime $file

The directiveʠ#PBSʡ indicates the parameter will be sent to Torque

scheduler. The parameters used in this script is listed in Table 5.6.

”-N” specifies the name of the job, which will be displayed in the sched-

uler and used to rename the output. ”-q” specifies the queue this task is

sent to. ”-g” is parameter added in this study, which specifies the files ac-

cessed by the task and will be used to calculate the fileLocality in DAD

and RemotePortion in IDAD. ”-B” is for RemoteDegradationRate, which is

a per-task parameter to show the extent to which a job is data-intensive.

Finally, the ”-t” stands for the number of subtasks of job array.
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Job arrays in Torque scheduler are an easy way to submit multiple similar

jobs. in the script,ʠ -t 1-100ʡindicates that 100 sub-tasks will be submitted

through this script, which corresponds the number of blastn tasks in BLAST

benchmark. Each sub-task submitted through job array will be assigned a

unique $PBS ARRAYID among all subtasks.

Table 5.6: Parameters Used in Script

Parameter Description

-N The name of job

-q Execution queue the task is sent to

-g Files accessed by the task

-B RemoteDegradationRate

-t Array job numbers

In the script, PBS ARRAYID is used to specify query file in the sub-task.

The following command finds the right query files in query directory: the

n th sub-task will execute the n th query in the right directory.

file=`ls /home/risyomei/blastbenchmark/queries/blastn/

| head -n $PBS_ARRAYID | tail -n 1`

In addition, theʠdateʡandʠhostnameʡcommand are used to output the

start and end time of the task, and the execution host of the task, respectively.

This information will eventually be used to plot a Gantt chart.

The different BLAST applications have quite different characteristics. There-

fore, I first executed different applications remotely and locally to see the time

difference between local and remote execution. This information is summa-

rized in Table 5.7.

I have chosen blastn and blastx for sub-benchmark because they refer to

different databases and are I/O-intensive jobs. Furthermore, the extent of

CPU intensity differs across the two sub-benchmarks.
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Table 5.7: Pre-Evaluation of BLAST Benchmark

Application Data Base Num. Remote Time Local Time RDR

blastn nt.01 100 1130.42 157.53 6.18

blastp nr.01 40 1204.08 797.46 0.51

blastx nr.01 24 926.70 746.52 0.24

megablast nt.01 24 537.58 290.78 0.85

tblastn nt.01 10 530.49 471.03 0.13

tblastx nt.01 10 2851.66 2780.74 0.03

Evaluation of DAD with BLAST Benchmark

In this evaluation, two types of databases are replicated two times and dis-

tributed to four nodes as shown in Figure 5.8. 100 blastn tasks and 10 blastx

task are sent to these nodes for execution. During the submission, tasks

of blastn and blastx are submitted to two different queues to avoid excess

judgment regarding the DS.

Since there is no viable way of calculating the optimal β at the moment,

I have evaluated DAD with different values of β and Delay to acquire the

best result.
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Figure 5.8: BLAST Benchmark Setting

The results are shown in Figure 5.9. As you can see from the figure, when

β < 0.6 or the Delay < 1, the performance of DAD degrades significantly.

This is because when β is smaller than 0.6, even the fileLocality calculated

from file placement is 1, The Score will be smaller than the default local

threshold defined in DAD, which disables Delay Scheduling. Similarly, if the
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Delay = 0, the Delay Scheduling will not work. Moreover, you may also

notice that when the delay is larger than two, there will be no significant

performance improvement.

In all, the best case for the DAD scheduler (β = 0.8, with a Delay of 1, as

indicated by the dark bar in Figure 5.9) had a total execution time of 169.039

sec, whereas the total execution time using the stock Torque scheduler was

241.93 sec. Hence, the DAD reduced the makespan by 30.13% in comparison

with stock Torque scheduler.
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Figure 5.9: Makespan Comparison of DAD with BLAST Benchmark

The Gantt chart of the stock Torque scheduler and the best case for DAD

are shown in Figure 5.10. Figure 5.10a is the result of stock Torque scheduler

and Figure 5.10b is the best case of DAD with β = 0.8, Delay = 1. In the

figure, the red and blue bar represent the task has performed local and remote

access respectively.

One obvious difference is that there is only one clear line for the Torque
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(a) Stock Torque Scheduler
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(b) Data-Aware Dispatch (β = 0.8, Delay = 1)

Figure 5.10: Gantt Chart of Stock Torque and DAD

scheduler, but two for DAD. This is because the stock Torque scheduler sees

two queues as one large queue, whereas DAD dispatches the task in each

queue once each time (top, blastx; bottom, blastn). Moreover, by counting

the blue bars in two graphs, the number of remote tasks with stock Torque

scheduler is 16, whereas that number is 2 with the best case of Data-Aware

Dispatch, which means the effectiveness of the file access is improved.
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(a) β = 0.4 and Delay = 1
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(b) β = 1 and Delay = 1

Figure 5.11: Gantt Chart of DAD (Delay fixed)

To see how β and Delay affect DAD, I fixed one parameter and changed

another. Firstly, I fixed the Delay to 1 and changed β to 0.4 and 1.0,

corresponding to the Figure 5.11a and Figure 5.11b, respectively. When the

β is set to 0.4, consider that the CPU load will not be high because only one

task is executed on each node, even the fileLocality is its maximum value–

1, the Score should still be smaller than the predefined lThreshold = 0.5.
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(a) β = 0.8 and Delay = 0
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(b) β = 0.8 and Delay = 3

Figure 5.12: Gantt Chart of DAD (β fixed)

Therefore, Delay Scheduling will unlikely to be initiated in this case, where

DAD finds the best node among available ones, but does not try to ensure it

is suitable for execution, and thus lead to bad performance.

On the other hand, when β is set to 1, the DAD shows a similar perfor-

mance as the best case of DAD. From the comparison between Figure 5.10b

and Figure 5.11b, the task order is identical between these two cases. This is
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mainly because the CPU load is not high enough influence the result because

only one task is executed on each node.

Next, when β is fixed to 0.8 and Delay is changed to zero and 3, the results

correspond to Figure 5.12a and Figure 5.12b, respectively. When Delay is

set to zero, DAD does not delay a task when no local nodes are available,

thereby incurring a long line on the chart and ending up with a longer total

execution time.

On the other hand, when Delay is set to 3, tasks have a greater chance to

be executed locally. As you can see from the graph, all of the blastn tasks

are executed locally. However, in this case, after blastn tasks finishes, the

remaining blastx tasks have no choice but run on remote nodes. In contrast,

in the best case, some longer tasks of blastx is executed earlier, resulting in

a shorter makespan.

Evaluation of IDAD with BLAST Benchmark

In the evaluation of IDAD with BLAST benchmark, I kept the setting same

with the previous benchmark. Therefore, the results from two evaluations

are comparable.

The blastn and blastx are used for this benchmark, and the file placement

of Database file is same with evaluation in DAD, which is shown in Figure 5.8.

Moreover, tasks of blastn and blastx are also submitted to two different

queues to avoid excess scheduling judgment.

According to Table 5.7, the RDRs of blastn and blastx are 6.18 and 0.24, re-

spectively. The RDR of blastn is quite large, which means the time difference

when blastn application is executed on remote and local node is significant.

On the other hand, the RDR of blastx is only 0.24, which is much smaller

when compared with its counterpart. Hence, in this evaluation, lThreshold

(local threshold) is set to 0.3 because I want to classify blastx as a CPU-

intensive job and blastn as an I/O-intensive job. In the following section,

lThreshold will be set to a large and then a small value to see how it affects

the result.

The makespans of IDAD with different Delay and the stock Torque sched-

uler are shown in Figure 5.13. Since the evaluation of DAD and IDAD share
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Figure 5.13: Makespan Comparison of IDAD with BLAST Benchmark

the same setting, the result of the best case of DAD (β = 0.8, Delay = 1)

is also plotted in this figure. ”All Local” in the figure is obtained under the

condition that all nodes hold all datasets required by the task, which means

whichever node the task is dispatched to, it will access files locally. There-

fore, it can be considered the lower bound for the evaluation. This lower

bound is not always reachable, since there simply may not be enough local

nodes for tasks.

In Figure 5.13, the best makespan using IDAD is 160.239 sec (Delay = 1),

whereas the stock Torque scheduler’s makespan is 241.061, which is a 33.53%

time reduction. When the Delay = 0, the IDAD performs as bad as stock

Torque scheduler because a task will be dispatched to a node with the lowest

Score, regardless of access cost. The makespan decreases significantly when

Delay is greater than zero. Interestingly, as the Delay increases from 1, the

makespan increases slightly. To clarify this situation, I plotted the Gantt

chart of IDAD (Delay = 1) and IDAD (Delay = 3) in Figure 5.14.

The Figure 5.14a and Figure 5.14b may look quite similar at first glance.

However, the number of remote tasks (i.e. blue bars) in these two cases are
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(a) IDAD (Delay = 1)
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(b) IDAD (Delay = 3)

Figure 5.14: Gantt Chart of DAD ( Delay = 1 vs Delay = 3)

different. Result of IDAD (Delay = 3) has significantly smaller number of

remote tasks because larger Delay value allows the task to wait for more free

slots when no local slot available, increasing its possibility of local execution.

In this test case, a significantly long blastx task is likely to finish at last, which

elongates the makespan. Therefore, it is ideal to start that long blastx task

earlier. The IDAD (Delay = 1) are not that strict in enforcing locality, which
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(a) lThreshold = 0.1 and Delay = 1
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(b) lThreshold = 7 and Delay = 1

Figure 5.15: Gantt Chart of IDAD (lThreshold = 7 and lThreshold = 0.1)

allows some of the blastx task start and end earlier. Hence, the influential

long task can be started and ended earlier, which leads to shorter makespan.

The situation is quite similar in the comparison between the best case of

DAD (Figure 5.10b) and IDAD (Figure 5.14a). In the best case of DAD, the

number of remote tasks is two, which is smaller than five of IDAD. However,

the IDAD still has shorter makespan, because it executed the last long task
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of blastx earlier.

In this evaluation, I set lThreshold = 0.3, which means blastx (RDR =

0.24) tasks will be seen as a local task even if all of its files reside on remote

nodes because RDR < lThreshold, and are thus more likely to be executed

than blastn (RDR = 6.18) tasks. Therefore, the final long task can finish

earlier, which leads to the reduction of makespan.

Next, I evaluated the effect of lThreshold by altering this value to 0.1 and

7 while keep other parameter settings. When lThreshold = 0.1, only local

nodes will be selected as execution nodes. On the contrary, if lThreshold = 7,

all nodes will be regarded as local nodes for both blastx and blastn.

The result of this evaluation is shown in Figure 5.15. When lThreshold =

0.1, almost all tasks in Figure 5.15a are executed locally. There are only

one remote task in this case, which means strong locality is enforced by the

scheduler. However, with all of the blastn task finished locally, the starting

time of trailing blastx tasks are postponed, which increased the makespan.

On the other hand, when lThreshold = 7, all nodes will be regarded as lo-

cal nodes. Therefore, when a task can not find a local node, it will be executed

remotely. This situation is quite similar to DAD or IDAD with Delay = 0.

This similarity can be confirmed by comparing the Figure 5.15b (IDAD,

lThreshold = 7) and Figure 5.12a. In this case, there are many remote tasks

whose performance is not that efficient, which will impact the makespan.
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Chapter 6

Related Work

Scheduling algorithms have been widely studied from various perspectives.

In this section, I focus on those works emphasizing file allocation. In the

following section, works on Hadoop/MapReduce and LSF Plugin are sum-

marized.

6.1 Schedulers for Hadoop/MapReduce

Hadoop/MapReduce has completely different computation model with the

one in batch queuing systems. In MapReduce, a task can access files on a

local worker, as well as its counterpart on a remote node, which makes it

an NUSA-based system despite the huge difference in computational models.

The default scheduler for Hadoop basically works as an FCFS scheduler.

The YARN scheduler is an upgraded version of the resource manager in

Hadoop2, and it recognizes three levels of locality: Node, Rack, and Off-

switch.

There are many works that aim to improve locality in Hadoop. The Work-

load Characteristic Oriented Scheduler [28] introduced the concept of Com-

pute Rate (CR) to denote the extent of CPU intensity of a job. It samples

some tasks from a job to acquire their CR and then adjusts its dispatch

strategy to improve job locality. [29] introduced the LART scheduler to

collocate reduce tasks with the maximum required data, and [30] proposed

a sampling-based approach to minimize transmission cost and maximize lo-
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cality for reduce tasks.

X. Wang et al. presented a locality and energy-aware scheduling method [31]

that takes advantage of file locality. They defined a method to calculate en-

ergy efficiency and tried to strike a balance between efficiency and locality.

The main purpose of this work is to control energy consumption, which is

quite different from my goal. Furthermore, this approach is based on the

assumption that each file has a fixed number of replicas. This is a basic

characteristic of MapReduce but does not hold true for other NUSA file

systems like Gfarm.

Delay Scheduling was designed to tackle the conflict between locality and

fairness. In DS, when a task should be running according to fairness policy

but fails to find a local slot, it waits for some local slots before it is executed

remotely. The authors argue that tasks are likely to run locally with little

compromise in fairness.

However, DS cannot be applied directly to an arbitrary system because it is

based on two assumptions: 1) each job has a nearly identical execution time

and will finish relatively quickly and 2) there will always be a local node with

all files that the job requires. Both assumptions might fail in other NUSA

file systems because the execution time of a task is highly unpredictable in a

batch queuing system and a task may access multiple data sets on different

nodes.

6.2 Data-Aware Scheduler for Grid and Dis-

tributed File System

In [32] and [33], Stork scheduler, a data-aware scheduler for a grid, was

proposed. Stork scheduler aims at moving data between file systems, but this

work is designed to manage data inside a namespace. W.Tang el [34] proposed

an approach to quantify data characteristics by calculating the compute-to-

I/O ratio. They argue that a task is more computationally expensive if it

has the same I/O size but a longer execution time. Based on this value, two

strategies (Best-fit or Greedy) are given.

MATRIX [35, 36] is a distributed scheduler that consists of multiple nodes;
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each node has an executor, a scheduler, and a metadata controller. MATRIX

classifies tasks into local and stealing-ready jobs based on the bandwidth a

task use if remotely executed. Each scheduler can steal stealing-ready jobs

from the queues of other schedulers.

In [37], a scheduling method for balancing workload when considering local-

ity, network state, and the current workload is presented. In this approach,

files are divided into multiple blocks of the same size and distributed and

replicated across the nodes. Because each block size is identical, the execu-

tion time and load impact of local and remote tasks can be determined. The

estimated execution time and load are then used to balance the workload.

Because certain NUSA file systems, such as Gfarm, do not divide files into

blocks, file sizes may differ from each other widely, and the execution time of

each task can therefore not be predicted prior to the execution, which makes

this an inapplicable approach.

6.3 Data-Aware Scheduling LSF Plugin for

Gfarm

The methods in [38] and [39] are the most relevant approaches that we are

currently aware of. The authors proposed two approaches to optimize the

creation of a replica: 1) a method for selecting the best node to create the

replica when considering the source, destination, and network loads, and 2)

a method for categorizing jobs to ensure that the time and performance will

not be wasted when creating the replica.

This work and theirs share some characteristics: 1) they are based on

Gfarm and take advantage of its effective local file access and 2) they use

resource managers to implement the approach. However, their work empha-

sizes the manipulation of replicas. Tasks are always dispatched to compute

nodes with the required file, and the workload is distributed by creating a

replica on a new host (such that a task can be dispatched to it).

The main defects of their work are that it fails to handle the case in which a

task references multiple files and those files are distributed in different nodes.

Both DAD and IDAD offer a method for handling this case. Moreover, the
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LSF Gfarm plugin lacks the ability to deal with a ”fake” data-intensive job,

which refers to a large dataset of which only a small part of it is accessed.

For example, both blastx and blastp refer to the same database, but blastx

is much more data-intensive. In IDAD, we use RDR to resolve this issue.
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Chapter 7

Conclusion

7.1 Summary

As the granularity of simulations increases, the demand for dealing larger

datasets is growing accordingly. Handling such databases with Uniform stor-

age access files requires high-throughput networking systems, which incurs

high cost in a large environment. Non-uniform storage access (NUSA) file

systems federate the local storages of compute nodes, which are able to scale

out with lower cost. The locality is quite important for accessing files effec-

tively in NUSA file systems.

In this study, two scheduling algorithms–Data Aware Dispatch (DAD) and

Improved Data Aware Dispatch (IDAD) are proposed for NUSA file systems

to take advantages of the locality.

In the first approach, DAD introduced a parameter called fileLocality to

calculate the cost of accessing files, combined it with CPU load in advance

into a comprehensive Score to dispatch tasks with the consideration for both

file access and CPU load.

In the second approach, IDAD introduced a per-task parameter called

RDR, which is calculated based on time difference when a task is executed

remotely and locally. The RDR is used to indicates the I/O intensity of the

task, which will be used to better control task behavior during task dispatch.

These two approaches are implemented on the top of stock Torque sched-

uler and evaluated with three benchmarks. The evaluation consists of two

66



parts: Score evaluation, and evaluation of scheduler as a whole.

In the evaluation of Score, Readgf and BLAST benchmark are used for

evaluation, which shows that the Score is able to express the cost of ac-

cessing files properly in normal cases. On the other hand, in the evalua-

tion of scheduler as a whole, thput-gfpio, Readgf, and BLAST benchmark

are used for evaluation. In the evaluation with thput-gfpio, the two data-

aware approaches improved average read throughput from 448MB/s to about

7000MB/s. The reason for this huge difference is unveiled with Readgf bench-

mark. In the evaluation of BLAST benchmark, DAD and IDAD reduced the

makespan for 29.88% and 33.52% in comparison with stock Torque algo-

rithms, respectively.

In this study, the DAD and IDAD are implemented only on Torque sched-

uler with Gfarm file system. However, they are not only applicable for Gfarm

but also for other POSIX-compliant file systems like PPFS [40], as long as

the scheduling module can acquire data placement and data size information

from the metadata server of the underlying file system.

7.2 Future Work

In DAD, a global parameter β is used to strike the balance between CPU

load and IO access. However, no viable method is given to calculate that

value. Machine Learning may be a candidate for calculating the optimal β

in this algorithm.

On the other hand, in IDAD, tasks with lower RDR are more likely to be

executed since they are more likely to satisfy the standard of ”local” in com-

parison with local threshold. It could be an issue when all of the low-RDR

tasks finish, then some of the high RDR tasks have to be executed remotely,

causing greater performance degradation. Obviously, a more adaptive algo-

rithm should be introduced to rearrange the task execution sequence in the

future.

In addition, prevention of human error is a major factor that benefits

accuracy of the algorithms. As the referenced files are specified by a user,

which eventually will be used to calculate the Score in DAD/IDAD, the

accuracy of the algorithms will be heavily affected if the files specified are
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not correct. In a practical environment, a user may specify a large number

of files but only some of them are actually accessed, just like the situation

of the IDAD Score evaluation with Blast benchmark. This is because the

mainstream users of Blast programs are from bioinformatics that have limited

knowledge of execution mechanism. They usually regard all of ten files of

the database as one integral part. Therefore, a feedback system should be

implemented to tell users about the accuracy of the files specified so that

they can define their file list properly for following executions.
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