
Studies on Generation of Software Test Cases by

Using Natural Language Processing

March ２０１７

Satoshi Masuda

Studies on Generation of Software Test Cases by

Using Natural Language Processing

Graduate School of Systems and Information Engineering

University of Tsukuba

March ２０１７

Satoshi Masuda

Abstract

Software supports our society such as e-mail, online banking system, internet
shopping, smartphone, and so on. We require high quality of software and
high speed of software development for changes in our businesses and activi-
ties. Software testing consumes about 40% of total software life cycle process.
However, software testing is not processes efficiently and effectively. Software
testing efficiency and effectiveness depends upon the creating test cases. En-
gineers create test cases from specification documents for software testing.
The creating test cases activities depend upon engineer’s skills. Hence, test
cases are often missed by human skills. In this paper, we focus on gener-
ation of test cases from specification documents by using natural language
processing.

Software testing often targets natural language specification documents.
Creating test cases depends on engineer skills, then automation of creating
test cases from natural language specification is important. Logics retrieval
is a required technique to automate creating test cases, because once logics
are retrieved we can transform them into decision tables and also create test
cases from the decision tables. Furthermore, Japanese language structure is
different from English. If we target Japanese natural language, a new tech-
nique is also required. We propose a Semantic Analysis Technique of Logics
Retrieval for Software Testing from Japanese Public Sector’s Specification
Documents. This technique is a new logics retrieval from harmonization be-
tween natural language processing technique and software testing. Applying
the analysis technique to total 25 files, 1,218 pages and a million double bytes
characters, the precision reached 0.93 to 0.97 and recall reached 0.65 to 0.79.

Decision table testing is a technique to develop test cases from descrip-
tions of conditions and actions in software specification documents. We pro-
pose, experiment and evaluate a semantic role labeling technique of condi-
tions and actions for automatic software test cases generation. Our approach
uses natural language processing to select sentences from the specification
based on syntactic similarity, and then to determine conditions and actions
through dependency and case analysis. We got experiment results that pre-
cision reached from 0.901 to 0.988, recall reached from 0.946 to 0.974 for
different style of descriptions, and the workload was reduced to one-sixth

i

of manual work. Our results on case studies show the effectiveness of our
technique.

Software testing has been one of the important area for software engineer-
ing to contribute high quality software. Decision table testing is a general
technique to develop test cases from information about conditions and actions
from software requirements. Extracting conditions and actions from require-
ments is the key for efficient decision table testing. We propose, experiment
upon, and evaluate the syntactic rules of conditions and actions for auto-
matic software test cases generation. Our approach uses natural language
processing to select sentences from the requirements on the basis of syntactic
similarity, and then to determine conditions and actions through dependency
and case analysis. Experiments revealed that F-measure reached from 0.70
to 0.77 for different style of descriptions. The results on case studies further
demonstrate the effectiveness of our technique.

In the early phases of the system development process, stakeholders ex-
change ideas and describe requirements in natural language. Requirements
described in natural language tend to be vague and include logical incon-
sistencies, whereas logical consistency is the key to raising the quality and
lowering the cost of system development. Hence, it is important to find logical
inconsistencies in the whole requirements at this early stage. In verification
and validation of the requirements, there are techniques to derive logical
formulas from natural language requirements and evaluate their inconsisten-
cies automatically. Users manually chunk the requirements by paragraphs.
However, paragraphs do not always represent logical chunks. There can be
only one logical chunk over some paragraphs on the other hand some logical
chunks in one paragraph. In this paper, we present a practical approach to
detecting logical inconsistencies by clustering technique in natural language
requirements. Software requirements specifications (SRSs) are the target
document type. We use k-means clustering to cluster chunks of requirements
and develop semantic role labeling rules to derive“conditions”and“actions”
as semantic roles from the requirements by using natural language process-
ing. We also construct an abstraction grammar to transform the conditions
and actions into logical formulas. By evaluating the logical formulas with in-
put data patterns, we can find logical inconsistencies. We implemented our
approach and conducted experiments on three case studies of requirements
written in natural English. The results indicate that our approach can find
logical inconsistencies.

We apply our technique to generation test case from Unified Modeling

ii

Language (UML). UML is the language of modeling from requirements for
software design. UML Testing Profile (UTP) is the definition of the mod-
eling test from requirements analysis for software testing. UTP has Test
Architecture, Test Behavior, Test Data, and Time Concepts as the test mod-
els. Requirements are described in natural language, and engineers who have
modeling skills then manually generate test models. Hence the generation
of test models depends upon the engineer’s skills, leaving the quality of test
models unstable. In this paper, we present automatic generation test models
from requirements in natural language by focusing on descriptions of test
cases in UTP test behavior. We develop three rules to generate test models
from requirements by using natural language processing techniques and ex-
periment with our approach on requirements in language that is considered
natural English. Our results in three case studies show the promise of our
approach.

We focused on generation of test cases rather than the skills and devel-
oped a method for the automatic generation of test cases by using our natural
language document analysis techniques which use text parsers for extract-
ing and complementing parameter values from documents. We applied the
method to Internet banking system maintenance projects and insurance sys-
tem maintenance projects. We discuss our method and techniques for auto-
matic generation of test cases and their use in these industry case studies.
Our document analysis tool helped automatically generate 95% of the re-
quired test cases from the design documents. The work of creating test cases
was reduced by 48% in our case studies.

iii

Contents

1 Introduction 1

2 Issues on generation software test cases from specifications
in natural language 7
2.1 Issues on specifications in natural language and generating test

cases . 7
2.2 Issues on detecting logical inconsistencies in specifications . . 13
2.3 Chapter Summary . 13

3 Semantic role labeling for generation test cases 15
3.1 Semantic Analysis Technique of Logics Retrieval for Software

Testing from Specification Documents 15
3.1.1 Background and Motivation 15
3.1.2 Semantic Analysis Technique of Logics Retrieval 17
3.1.3 Experiments . 22
3.1.4 Evaluations . 23

3.2 Semantic role labeling for automatic software test cases gen-
eration . 26
3.2.1 Applying Japanese Natural Language Processing Tech-

niques to Decision Table Testing 26
3.2.2 Semantic Role Labeling for Extracting Conditions and

Actions . 27
3.2.3 Experiments . 35
3.2.4 Evaluations . 45

3.3 Syntactic Rules of Extracting Test Cases from Software Re-
quirements . 47
3.3.1 Applying English Natural Language Processing Tech-

niques to Decision Table Testing 47

i

3.3.2 Syntactic Rules of Extracting Test Cases from Software
Requirements . 50

3.3.3 Experiments . 55
3.3.4 Evaluations . 60

3.4 Chapter Summary . 61

4 Detecting Logical Inconsistencies in Requirements 63
4.1 Detecting Logical Inconsistencies by Clustering Technique in

Natural Language Requirements 63
4.1.1 Detecting Logical Inconsistencies by Clustering Tech-

nique in Natural Language Requirements 63
4.1.2 Experiments . 74
4.1.3 Evaluations . 75

4.2 Chapter Summary . 78

5 Applications of our technique 80
5.1 Automatic Generation of UTP Models from Requirements in

Natural Language . 80
5.1.1 Background and Approach 80
5.1.2 Automatic Generation of UTP Models from Require-

ments . 84
5.1.3 Experiments . 86
5.1.4 Evaluations . 90

5.2 Automatic Generation of Test Cases Using Document Analysis
Techniques . 93
5.2.1 Motivations in Automated Creation of Software Test-

ing Cases . 93
5.2.2 Creating Test Cases by Using Document Analysis Tech-

niques . 94
5.2.3 Experiments . 99
5.2.4 Evaluations . 100

5.3 Chapter Summary . 102

6 Conclusion 104

Acknowledgements 107

References 108

ii

List of Figures

3.1 The analysis technique retrieves logics from specification doc-
uments . 16

3.2 A condition logic dependency 17
3.3 Steps to retrieve logics from sentences 18
3.4 Decision tabel definition [Ass86] 19
3.5 Flowchart of The analysis technique 21
3.6 Extracting conditions and actions 28
3.7 The dependencies in the base sentence 30
3.8 Dependency in the base sentence as parts 30
3.9 Syntax tree and subtrees on tree kernel 31
3.10 Dependency tree of an example sentence 34
3.11 Parse tree of “The system stores the new link.” 48
3.12 Syntactic rules of extracting test cases from software require-

ments . 49
3.13 Penn tree descriptions of the base sentence 51
3.14 Parse the base sentence . 52
3.15 Dependency in the base sentence as parts 53
3.16 Syntax tree and subtrees on tree kernel 53

4.1 Framework for detecting logical inconsistencies by clustering
technique in natural language requirements 64

4.2 Example . 64
4.3 Clustering natural language requirements from Figure. 3 in

[KMN+02] . 66
4.4 Example of semantic role labeling 70
4.5 Abstraction Grammar . 72

5.1 UTP definition overview . 81
5.2 Example UTP test cases for editing the figure in [FH14] . . . 82

iii

5.3 Parse tree of “The system stores the new link.” 83
5.4 Generation of UTP from requirement by editing the figure in

[OMG14] . 84
5.5 Automatic generation of UTP models from requirements in

natural language . 85
5.6 Parse tree of a generation rule 86
5.7 Automatic creating test cases by using document analysis tech-

niques . 95
5.8 Overview of automatic extracting parameters and values from

design documents . 96
5.9 Generation of parameter values flow 97

iv

List of Tables

3.1 Structure of Input Data Which is The Results of Japanese
Morphological Analysis and Dependency Analysis 19

3.2 Logic Mapping Into Decision Table Definition 19
3.3 Target Documents List . 24
3.4 Results The Analysis Technique Vs. Evaluation 25
3.5 Results of Recall and Precision 25
3.6 Comparing the syntactic similarity and software testing by

experts . 36
3.7 List of document type B . 37
3.8 The number of sentences in cases before and after syntactic

similarity pre-processing . 38
3.9 Counts of conditions and actions 40
3.10 Precision-Recall-F . 40
3.11 Top 10 Patterns of Document Type A 43
3.12 Top 10 Patterns of Document Type B 44
3.13 Comparing Precision and Recall with Manual Extraction of

Condition and Action . 45
3.14 Comparing Work Loads with Manual Extraction (minutes) . . 46
3.15 The dependencies in the base sentence 51
3.16 Comparing the syntactic similarity and software testing by

experts . 57
3.17 The number of sentences in cases before and after syntactic

similarity pre-processing . 57
3.18 Counts of conditions and actions 59
3.19 Precision-Recall-F . 59

4.1 Dependency Analysis . 67
4.2 CHART case study . 76
4.3 eNot case study . 76

v

4.4 WUT case study . 76

5.1 Requirements in CHART system [Adm03]. 88
5.2 Template for the Use Case in [FH14]. 89
5.3 Expert Evaluation of Results 91
5.4 Experiment Results . 91
5.5 Required time comparison (minutes) 91
5.6 Knowledge Pattern of Parameter Values 98
5.7 Example for Pattern of 4-digit Integer Parameter Values . . . 98
5.8 Example for Pattern of 6-digit Integer Parameter Values . . . 98
5.9 Creating Test Cases Activities Comparison 101
5.10 Workload Comparison of Test Case Generation 102

vi

Chapter 1

Introduction

Software supports our society such as e-mail, online banking system, inter-
net shopping, smartphone, and so on. We require high quality of software
and high speed of software development for changes in our businesses and
activities. Software life cycle process consists of requirement analysis, design,
implementation, testing and so on [708]. Software testing accounts for 40%
of total software life cycle process [IPA09]. Software testing is also activity of
getting better quality of software. However, software testing is not processes
efficiently and effectively [IPA09]. Activities of software testing consist of
planning, preparing, executing and reporting [715]. The preparing activity
of software testing includes creating test cases. Software testing efficiency
and effectiveness depends upon the creating test cases. Engineers create test
cases from specification documents for software testing. The creating test
cases activities depend upon engineer’s skills. Hence, test cases are often
missed by human skills. There are problems in creating test cases from spec-
ification documents. In this paper, we focus on generation of test cases from
specification documents by using natural language processing. We discuss
studies about:

• rules of creating test cases by using natural language processing at
section 3.1

• syntactic analysis as pre-processing as improvement creating test cases
for both Japanese and English specification documents at section 3.2
and 3.3

• detecting logical inconsistencies in natural language requirements as

1

further study at section 4.1

• as applications of our technique, creating test cases from UML (Uni-
fied Modeling Language) document at section 5.1 and combine our
technique and combinatorial testing at section 5.2

At first, we propose a semantic analysis technique of logics retrieval
for software testing from Japanese public sector’s specification documents.
Japanese language has some different structure from English language. This
technique is an approach to apply natural language processing to solve the
problems in creating test cases. Harmonization between natural language
processing techniques and software testing a key area to determine how we
direct to develop test cases. We think this is a design of test architecture.
This approach is categorized to the design of test architecture and also this
retrieval logics technique is one of the test requirement analysis.

Testing the application software which used in corporate activities is
important for the business of the companies that use them. Test cases
are generated from the software requirements or design documents related
to system testing and user acceptance testing. The requirements are de-
veloped and shared among stakeholders and are written in natural lan-
guages. Unfortunately, this means that test case generations in software
testing techniques[ISO15b] are depend too much upon the person doing the
testing having sufficient knowledge and skills to understand the natural lan-
guage requirements and generate test cases. Under these circumstances,
missing important test cases become an issue. One of the solutions to this
problem is to write requirements in formal languages, but it is quite difficult
for all stakeholders to fully understand the meanings of the requirements in
formal languages. Another solution is to analyze natural languages require-
ments mechanically, which is attractive because the mechanical analysis of
requirements does not depend upon personal knowledges or skills.

At second, we target software requirements written in Japanese. We focus
on the“conditions”and“actions”in decision table technique[ISO15b], and
propose syntactic rules of extracting test cases from software requirements by
using techniques of natural language processing and tree kernel techniques.
The pre-processing step of our rules is to construct knowledge of base sen-
tences that includes conditions and actions descriptions. We select sentences
from requirements by calculating the syntactic similarity [TIM02] between
each sentence in the requirements and the base sentences. Our rules target

2

natural language requirements, so the results may depend on the style of de-
scriptions. We therefore evaluate how our rules apply to other requirements
having different description styles. We then work on improving the accuracy
improvement of generating conditions and actions from the requirements.

Testing the application software which used in corporate activities is
important for the business of the companies that use them. Test cases
are generated from the software requirements or design documents related
to system testing and user acceptance testing. The requirements are de-
veloped and shared among stakeholders and are written in natural lan-
guages. Unfortunately, this means that test case generations in software
testing techniques[ISO15b] are depend too much upon the person doing the
testing having sufficient knowledge and skills to understand the natural lan-
guage requirements and generate test cases. Under these circumstances,
missing important test cases become an issue. One of the solutions to this
problem is to write requirements in formal languages, but it is quite difficult
for all stakeholders to fully understand the meanings of the requirements in
formal languages. Another solution is to analyze natural languages require-
ments mechanically, which is attractive because the mechanical analysis of
requirements does not depend upon personal knowledges or skills.

At third, we target software requirements written in English. We focus
on the “conditions” and “actions” in decision table technique[ISO15b],
and propose syntactic rules of extracting test cases from software require-
ments by using techniques of natural language processing and tree kernel
techniques. The pre-processing step of our rules is to construct knowledge of
base sentences that includes conditions and actions descriptions. We select
sentences from requirements by calculating the syntactic similarity between
each sentences in the requirements and the base sentences. Our rules target
natural language requirements, so the results may depend on the style of de-
scriptions. We therefore evaluate how our rules apply to other requirements
having different description styles. We then work on improving the accuracy
improvement of generating conditions and actions from the requirements.

At other point of view as forth, logical consistency is the key to raising
the quality and lowering the cost of system development. Although formal
languages like UML and SysML can be used to describe specifications of
documents, stake holders, in the early phases of the system development
process, use natural language to exchange ideas, design products, and define
requirements because natural language can describe their ideas better. Un-
der such circumstances, the descriptions of the requirements are likely to be

3

vague and inconsistent. Hence, it is important to find logical inconsistencies
at this early stage. Formal languages offer a number of techniques for eval-
uating the logical consistency of requirements. In verification and validation
of the requirements, there are techniques to derive logical formulas from nat-
ural language requirements and evaluate their inconsistencies automatically.
Here, there are a number of techniques to find logical inconsistencies in natu-
ral language requirements. For instance, a framework has been proposed for
handling inconsistencies in natural language requirements [GZ05] by using
a natural language parser to generate logical formulas. However, users still
have to determine how to chunk the requirements into pieces in which to
search for logical inconsistencies. For example, they may chunk paragraphs
into sentences. However, the logic of these sentences is not independent; that
is, in paragraphs written in natural language, logical aspects in one sentence
relate to logical aspects in other sentences. This situation suggested to us
that we should cluster chunks of requirements. At forth, we present a prac-
tical approach to detecting logical inconsistencies by clustering technique in
natural language requirements. Software requirements specifications (SRSs)
are the target document type. Functionality descriptions of SRS are the main
target descriptions. Our approach can be applied on other types of descrip-
tions, however, detecting logical inconsistency for functionality descriptions
is the more important. We developed semantic role labeling rules to derive
“conditions” and “actions” as semantic roles from requirements by using
natural language processing. We also constructed an abstraction grammar
to transform the conditions and actions into logical formulas. By evaluating
the logical formulas with input patterns, we can find logical inconsistencies.

We implemented a proof-of-concept prototype of our framework. We used
the natural language processing parser [MMM06] and conducted dependency
analysis on the natural language requirements. Semantic role labeling, ab-
straction grammar, and evaluation of logical formulas were implemented us-
ing our own methods developed using the natural language tool kit [Pro15].
We evaluated our prototype on three case studies:“a detailed system design
specification for the coordinated highways action response team (CHART)
mapping applications” [Adm03], “business requirements specifications of
legal notice publication (eNotification)” [fE12], and“comprehensive water-
shed management water use tracking (WUT) project software requirements
specification” [Dis04].

We have two applications as applying of our research. One is about ap-
plication for“Automatic Generation of UTP Models from Requirements in

4

Natural Language”. Model Driven Development (MDD) and Model Based
Testing (MBT) are solutions for software quality. Unified Modeling Lan-
guage (UML) is the language of modeling from requirements for software
design [OMG15]. UML Testing Profile (UTP) is the definition of the mod-
eling test from requirements analysis for software testing. UTP has test
architecture, test behavior, test data, and time concepts as the test mod-
els. The requirements are described in natural language. In current business
situations, UTP models are manually generated from requirements. Engi-
neers who have modeling skills then manually generate test models. Hence
the generation of test models depends upon the engineer’s skills, leaving the
quality of test models unstable. Automatic generation of UTP models from
requirements is a solution to this problem. We present our approach, Auto-
matic Generation of UTP Models from Requirements in Natural Language.
We performed experiments and evaluations with two case studies, and the
results show the promise of our approach.

We implemented a proof-of-concept prototype of our approach. We used
the English Natural Language Processing parser [DMM08] and dependency
analysis on natural language requirements. We developed our own tools using
the Python natural language tool kit.

We present automatic generation test models from requirements in nat-
ural language by focusing on test case descriptions in UTP test behavior.
We develop three rules to generate test models from requirements by using
natural language processing techniques and experiment with our approach
on requirements in language that is considered natural English. Our results
in three case studies show the promise of our approach.

We can use our approach to find vague requirements and provide feedback
in the early stages of the system development process. In addition, we will
construct new rules and grammar for requirements descriptions. We will
contribute to requirement engineering by developing new means to check
whether descriptions have vague or inconsistent requirements.

Another application is for “Automatic Generation of Test Cases Using
Document Analysis Techniques”. Software testing requires high test case cov-
erage [CDFP97] as software becomes large and complex [CKI88]. Currently
test cases are most often created manually, so test case coverage depends
upon each individual skill [CDPP96]. In software maintenance, software test-
ing consumes 55% of the total software maintenance work [IPA09],[RAF+10].
The problem is how to reduce software testing work while still insuring high
quality of software. Some solutions involve software execution automation

5

tools [CGP+06],[SB10], outsourcing the testing tasks at lower labor rates.
Such solutions still depend upon each individual skill in testing software. In
contrast, we focused on generation of test cases than the skills and developed
a method for the automatic generation of test cases by using our natural lan-
guage document analysis techniques which use text parsers for extracting and
complementing parameter values from documents. We applied the method to
Internet banking system maintenance projects and insurance system main-
tenance projects. In this paper, we discuss our method and techniques for
automatic generation of test cases and their use in these industry case studies.

The method targets functional testing for Web application systems. The
method uses text parsers to identify parameter values for pairwise testing
by using our document analysis tool for the design documents with bound-
ary analysis and defects analysis, thus avoiding the dependencies upon indi-
vidual skills. The document analysis tool uses natural language processing
which is a technique for modeling the logic of the documents and testing
the analysis [NTIM11],[NT11],[SPTN10],[TSN+07]. We discuss case studies
that demonstrate the method of automatic generation of test cases using
document analysis techniques.

6

Chapter 2

Issues on generation software
test cases from specifications in
natural language

2.1 Issues on specifications in natural language

and generating test cases

Many researchers already tried to apply natural language processing to soft-
ware development and/or software testing [TN99, KY02]. A related work
[Sne07] presented testing against natural language requirements. The ap-
proach was to analyze requirements and extract test cases from them. The
paper illustrated the approach on an industrial application. The paper did
not mention about techniques of natural language processing and the target
language is English.

One of other related works [SHE89] presented software development pro-
cess from natural language specification. That was an approach to solve
problems about natural language specification by the process which was de-
fined as“design”and“elaborate”. The approach was not to try automatic
generation f test cases by using techniques natural language processing. A na-
tional standard [CB98] recommend practice for software requirements specifi-
cations. The standard describes consideration for producing a good software
requirements specification, parts of them and provide templates. Another
related work [KKS08] presented measurement of level of quality control ac-
tivities in software development. The ambiguity definition was described in

7

the paper. When we target natural language requirements, these two papers
are very effective at the point of view, how requirements should be described
and how measure them.

About decision table testing, a related work [UMT13] presented an ef-
ficient software testing method by decision table verification. That was to
verify logics between documents and source codes by comparing each of deci-
sion tables which were extracting from documents and codes. They targeted
the document was described formal language.

We target Japanese natural language in one of our technique, then we sur-
veyed language research papers. A related work [Kun73] presented differences
between Japanese language and English language like as words dependency
differences, syntax trees tend to deep on left side and so on.

A related work [Fuk88] presented deriving the differences between English
and Japanese on a case study in parametric syntax. That was a model
of solution the differences between English and Japanese language toward
universal grammar. These papers are very essential to establish Japanese
natural language processing.

However, we don’t focus on the differences Japanese language, because
Japanese natural language processing technique has already solved the dif-
ferences in their Japanese morphometric analysis and/or statistical analysis.
We focus on applying the results of Japanese natural language processing
into software testing.

When we target Japanese language, a related work [TKN93] presented re-
trieve logical structure from Japanese legal documents. Another work [Kat07]
also proposed legal engineering [KNS08] and researched them. In legal docu-
ments, a related work [Shh12] proposed methodology for designing trustwor-
thy social system by Japanese legal document analysis. These Japanese legal
document analyses are helpful for our problem. The big difference between
them and us is that they target legal documents which are described more
formal than system requirement documents. Legal documents are written by
efficient experts who have licenses, not to have ambiguity, comprehensive-
ness, consistency and so on. System specification documents are written by
many people who are not language specialist.

Based on these related works, we propose our semantic analysis technique
of logics retrieval for Japanese system specification documents.

There are various problems when it comes to using NLP to extract con-
ditions and actions for decision table testing. A related work [MIH+15] pro-
posed a technique to generate logical relation as “If (CS) is (CE), (AS) is

8

(AE).” from a natural language requirement by using NLP. This analysis
technique retrieves logics, namely, a condition stub (CS), condition entry
(CE), action stub (AS) and action entry (AE), from each sentences in re-
quirements specifications. In this technique, however, only one condition
and action are generated, not multiple ones. Another approach of extracting
conditions and actions is to translate Japanese natural language into logical
formula. A related work in this approach demonstrated tool of automatic
translation from Japanese natural language into well-formed formulas on an
extended predicate logic [TKI12]. This work, however, there are issues that
dictionary and translation map between sentences and logical formula are
required. Therefore, we put this issue as future work.

We propose our rules to differentiate the deep cases, by surface cases
and dependencies that are generated by natural language processing. There
are sometimes illogical or vague sentences contained in natural language re-
quirements in industrial examples. For these sentences, we select sentences
from the requirements by calculating the structural similarity between each
sentences in the requirements and the base sentences. Sentences that define
software functions are sometimes listed in the requirements. There are tech-
niques for multiple sentences analysis and contextual analysis[MWM+11]. In
this paper, we target on a sentence one by one.

The related work of NLP in software testing has also been discussed. The
semantic analysis technique of logics retrieval for software testing from spec-
ification documents is a logics retrieval technique derived from harmoniza-
tion between a natural language processing technique and software testing
[MIH+15]. Natural language processing and consistency checking are essen-
tial parts of requirement engineering. A formal consistency check of speci-
fications has been written in natural language [AS12]. This “requirement
consistency maintenance framework” produces consistent representations.
The first part is an automatic translation from the natural language describ-
ing the functionalities to a formal logic with an abstraction of time.

Natural language processing and consistency checking are essential parts
of requirement engineering. A related work presented a formal consistency
check of specifications written in natural language [YCC15]. This“require-
ment consistency maintenance framework” produces consistent representa-
tions. The first part is an automatic translation from the natural language
describing the functionalities to formal logic with an abstraction of time. It
extends pure syntactic parsing by adding semantic reasoning and support
for partitioning input and output variables. The second part uses synthesis

9

techniques to determine if the requirements are consistent in terms of real-
izability [YCC15]. Our framework differs from the work [YCC15] as follows:
it creates abstraction logic by transforming propositional logic not only time
constraints, it uses input data patterns to find logical inconsistencies and per-
form semantic role labeling. It uses a SAT solver to check the validity and
consistency of the logical constraints [HPSS06]. The validity and consistency
are really two ways of looking at the same thing and each may be described
in terms of syntax or semantics [BHvM09]. It uses combinatorial testing
to deal with large numbers of data patterns. Combinatorial Testing (CT)
can detect failures triggered by interactions of parameters in the software
under test (SUT) with a covering array test suite generated by some sam-
pling mechanisms [NL11]. There is a method for creating test patterns using
pairwise selection from the parameter values. The method uses a knowledge
base for identifying pair-wise parameter values by using document analysis,
boundary analysis and defects analysis [MMT13].

It was described a way to change natural sentences into logical expres-
sions and devised a tool for English [Bos08]. A related work [MIH+15] used
natural-language processing to identify the logical pattern“If (A) is (B), (C)
is (D)”in sentences, but did not identify conditions or actions. There are also
linguistic studies on use cases [SPKB09] and test case generation [WPG+15].
The related work [Sne07] made test cases from requirements described in
natural language. This study showed how to interpret specifications as de-
scriptions of inputs and outputs. It didn’t include any morphological anal-
ysis or syntactic analysis/analyses using natural language processing. IEEE
830 recommends practices for software requirements specifications [CB98],
[ISO15b]. The standard describes the considerations that go into producing
a good software requirements specification and provides templates. A re-
lated work [KKS08] presented a way of measuring the level of quality control
in software development. They defined the notion of ambiguity. A related
work [UMT13] presented an efficient software testing method that verifies
the logical consistency of the document and source code by comparing deci-
sion tables created from them. They targeted documents written in formal
language, not natural language.

Various research and industry related works are discussed. We can sum-
marize them by from which artifacts, (e.g., requirements in natural language,
UML, use cases, etc.) to generate which artifacts (class diagrams, test cases,
etc.), automatically or manually.

An approach to generate test cases from use cases describes a com-

10

plete process to generate test cases from use cases for web applications.
This process also resolves the shortcomings detected in existing approaches
[GEMT06]. Automatic test case generation from UML models is a novel
approach for generating test cases from UML design diagrams [MFIMA11].
They consider the use case and sequence diagram in our test case generation
scheme. Our approach consists of transforming a UML use case diagram into
a graph called a use case diagram graph (UDG) and a sequence diagram into
a graph called a sequence diagram graph (SDG) and then integrating UDG
and SDG to form the System Testing Graph (STG) [MFIMA11].

A survey discusses the test case generation from the UML state machine
diagram. It discusses a comparative study of the test case generation tech-
niques from the UML state machine diagram that has been done. That study
is an attempt to discover works that have already been done in this field and
to realize various aspects of UML state machines that have been considered
for generating test cases [SM07]. A related work which targets requirements
in natural language is the automatic generation of system test cases from use
case specifications [KSKD13]. They develop Use Case Modeling for System
Tests Generation (UMTG), an approach that automatically generates exe-
cutable system test cases from use case specifications and a domain model,
the latter including a class diagram and constraints [MFIMA11].

Fundamental research about NLP in model driven development has been
conducted. UML and UTP are discussed in model driven development
(MDD) and model based testing (MBT). An assist system designed to au-
tomatically translate text-based specifications into formal models has been
proposed [MOASHL09]. An idea for model driven engineering based on nat-
ural language processing has been developed and applied in some case stud-
ies. In the requirement engineering research area, a methodology combining
models and controlled natural language has been discussed. The methodol-
ogy combines the advantages of model-based and NL-based documentation
by means of a bidirectional multi-step model transformation between both
documentation formats. They illustrate the approach by means of an auto-
motive example, explain the particular steps of the model transformation,
and present performance results [AS12].

There is research about the transformation of natural language require-
ments to UML class diagrams. There is an industrial software test case study
using UTP [BSBV13]. The case study is transforming from the requirements
statements to an intermediary frame-based structured representation using
dependency analysis of requirements statements and the grammatical knowl-

11

edge of Patterns. The knowledge stored in the frame-based structured repre-
sentation is used to derive class diagrams using a rule-based algorithm. Their
approach has generated similar class diagrams as reported in earlier works on
the basis of linguistic analysis with either annotation or manual intervention
[SSB15].

NLP in software testing has been also discussed. The semantic analysis
technique of logics retrieval for software testing from specification documents
is a logics retrieval technique derived from harmonization between a natural
language processing technique and software testing [MIH+15]. Natural lan-
guage processing and consistency checking are essential parts of requirement
engineering. A formal consistency check of specifications has been written in
natural language [AS12]. This“requirement consistency maintenance frame-
work” produces consistent representations. The first part is an automatic
translation from the natural language describing the functionalities to formal
logic with an abstraction of time.

It extends pure syntactic parsing by adding semantic reasoning and sup-
port for partitioning input and output variables. The second part uses syn-
thesis techniques to determine if the requirements are consistent in terms of
being realizable. Our approach differs from as follows [AS12]: it creates ab-
straction logic by transforming propositional logic, not only time constraints;
it uses input data patterns to find logical inconsistencies and perform seman-
tic role labeling. It uses a SAT solver to check the validity and consistency
of the logical constraints. The validity and consistency are really two ways
of looking at the same thing, and each may be described in terms of syntax
or semantics.
　Natural language processing and checking consistency are essential in

requirement engineering. A related work [YCC15] present formal consistency
checking over specifications in natural languages. The paper present: a re-
quirement consistency maintenance framework to produce consistent repre-
sentations. The first part is the automatic translation from natural languages
describing functionalities to formal logic with an abstraction of time. It ex-
tends pure syntactic parsing by adding semantic reasoning and the support
of partitioning input and output variables. The second part is the use of
synthesis techniques to examine if the requirements are consistent in terms
of realizability [YCC15]. This paper presents the differences from the work
[YCC15] as follows, abstraction logic by transforming propositional logic not
only time constraints, using input data patterns to find logical inconsistency
and semantic role labeling.

12

　　

2.2 Issues on detecting logical inconsistencies

in specifications

SAT solver is a solution for checking logical constraint [HPSS06]. SAT solves
about validity and consistency. The validity and consistency are really two
ways of looking at the same thing and each may be described in terms of
syntax or semantics [BHvM09]. Combinatorial testing is the solution for
data patterns. Combinatorial Testing (CT) can detect failures triggered by
interactions of parameters in the Software Under Test (SUT) with a covering
array test suite generated by some sampling mechanisms [NL11]. There is a
method of creating testing pattern for Pair-wise method by using knowledge
of parameter values. The method uses knowledge base for identifying pair-
wise parameter values by using document analysis to specification documents,
boundary analysis and defects analysis [MMT13].

The work [MIH+15] shows the logic to which is ”If (A) is (B), (C) is (D).”
from a sentence by natural-language processing, but the condition and actions
are not identified. There is also linguistic work for use cases [SPKB09] and
test case generation [WPG+15]. There is a related work for the study which
makes test case from a described required specification by a natural language
[Sne07]. The approach which defines classification of how to interpret the
specification such as which is description of output or which is description
of input as key words. There aren’t a morphological analysis and syntactic
analysis using analysis technology of natural-language processing, and this
can think there are few generalities. There are other related works. Another
work offers the way to change from a natural sentence to a logical expression
and tool BOXER in English [Bos08].

2.3 Chapter Summary

We raise issues about applying natural language processing to generation of
software test cases by referring related works as follows:

• Not generation test cases but only definition a methodology of testing
process even by using natural processing.

13

• Translation to logical formula from Japanese natural language is not
available.

• No rules are existing to extract information of test cases from specifi-
cation documents in natural language.

• Logical inconsistencies exists in specification documents which are de-
velop by stakeholders.

These issues are not solved related works. That is motivation for us to study
about generation of software test cases by using natural language processing.
Our study can apply to check logical inconsistency on specification docu-
ments. We discuss

• rules of creating test cases by using natural language processing at
section 3.1

• syntactic analysis as pre-processing as improvement creating test cases
for both Japanese and English specification documents at section 3.2
and 3.3

• detecting logical inconsistencies in natural language requirements as
further study at section 4.1

• as applications of our technique, creating test cases from UML (Uni-
fied Modeling Language) document at section 5.1 and combine our
technique and combinatorial testing at section 5.2

14

Chapter 3

Semantic role labeling for
generation test cases

3.1 Semantic Analysis Technique of Logics Re-

trieval for Software Testing from Specifi-

cation Documents

3.1.1 Background and Motivation

Formal languages like as UML, SysML are proposed to describe specification
of documents. It is already known the techniques of retrieval logics from
the documents described these formal languages like as model based test-
ing. However, in the IT industry, especially enterprise system like as back
office system, these formal languages are not popular. Stakeholders often use
their natural language to exchange their idea, business processes, business
rules and other specifications and describe the specifications into documents
by their natural language. Under this situation, it has been proposed an
approach to apply natural language requirements into system and accep-
tance testing [Sne07]. This approach is to apply their original processing
rules which don’t use natural language processing standard techniques like as
morphological analysis and structural analysis. Thinking about reuse the re-
search results of natural language processing, it is required another technique
which is according with standard natural language processing techniques. In
this section, we propose a semantic analysis technique of logics retrieval for
software testing from Japanese public sector’s specification documents as

15

Semantic Analysis Technique of
Logics Retrieval

Specification
documents

Natural
language

processing

Logics
retrieval

logic
logic

logic
logic

logic
logic

logic

Specification
documentsSpecification
documents

Figure 3.1: The analysis technique retrieves logics from specification docu-
ments

figure 3.1.
The research between software testing from specification documents and

Japanese natural language processing is insufficient. The work [Sne07] ap-
proach is for English language. There are still high demands of IT services
including software testing in Japan. Japanese GDP is third of the world
and IT businesses are still growing on Japanese language. Then there are
opportunities for applying Japanese natural language processing to system
development and test. As people know there are differences between Japanese
language and English about character, structure and grammar. There has
been software development process from natural language process [SHE89].
This is not software testing point of view.

The analysis technique retrieves logics from each sentences in specifica-
tion documents as condition stub (CS), condition entry (CE), action stub
(AS) and action entry (AE). These logic elements come from decision table
definition [Ass86]. The logic can be described as (3.1).

If(CS)is(CE), (AS)is(AE). (3.1)

We define rules and algorithm for logics retrieval. In further research, if
we set more rules, the recall ratio will grow up. In this paper, we target
the Japanese public sector’s specification documents. The reasons are the
business size of Japanese public sector’s system development and test reached
2.2 billion Japanese yen that was about 20% of total Japanese IT services
market [Kis03], and we can get the specification documents of them from the
internet.

16

(A)ga
((A))

(C)ha
((C))

(D)dearu
is (D)

(B)nobaai
(if .. is (b))

Figure 3.2: A condition logic dependency

3.1.2 Semantic Analysis Technique of Logics Retrieval

We discuss the analysis technique. First of all, we use sample specification
sentence (a) and explain the analysis technique intuitively. When we have a
sentence (a), let us follow for retrieving logics steps from the sentence. The
sentence (a) shows (a)-1 Japanese sentence described by alphabet characters
and (a)-2 English sentence which means as same as the Japanese sentence
for both languages.

(a) Sample specification sentence 1. Japanese: Miraini betsuno detaga
haitteitabaai, sono jitennno tyokuzennwo shuuryoubitosurukoto.

2. English: If another data exists in a future field, set a date just before
the data as end date.

The objective of the analysis technique is to retrieve a logic as figure 3.2
from this sentence. Figure 3.2 shows a structure of logic as “if (A) is (B)
then (C) is (D)” in English, and “(A) ga (B) nobaai (C) ha (D) dearu”
in Japanese. This logic describes the branch logic of specification. Branch
logics are important for test cases. When we retrieve the branch condition,
we can put each branch elements into decision table elements and transform
into test cases.

Table 3.1 shows a result of Japanese natural language processing tech-
niques which includes morphological analysis and dependency analysis for
sample sentence. By using this result

Figure 3.3 shows the steps to retrieve the logic from sentences as follows:

• Require: Sentences have been morphological analyzed and dependency
parsed as Table 3.1.

• Step 1: Search (B) words by keyword pattern matching. In this paper
we set a rule that (B) Words have “baai” in Japanese which means
“if” in English.

17

miraini
(future field)

detaga
(data)

haitteitabaai
(if exist)

sono
(the)

jitennno
(a date)

tyokuzennwo
(just before)

shuuryoubitosurukoto.
(set as end date)

betsuno
(another)

miraini
(future field)

detaga
(data)

haitteitabaai
(if exist)

sono
(the)

jitennno
(a date)

tyokuzennwo
(just before)

shuuryoubitosurukoto.
(set as end date)

betsuno
(another)

Require:

Step 1:

miraini
(future field)

detaga
(data)

haitteitabaai
(if exist)

sono
(the)

jitennno
(a date)

tyokuzennwo
(just before)

shuuryoubitosurukoto.
(set as end date)

betsuno
(another)

Step 2:

miraini
(future field)

detaga
(data)

haitteitabaai
(if exist)

sono
(the)

jitennno
(a date)

tyokuzennwo
(just before)

shuuryoubitosurukoto.
(set as end date)

betsuno
(another)

Step 3:

miraini
(future field)

detaga
(data)

haitteitabaai
(if exist)

sono
(the)

jitennno
(a date)

tyokuzennwo
(just before)

betsuno
(another)

Step 4:

Keyword Search

(B)

(B) (D)

(B) (D)(A)

shuuryoubitosurukoto.
(set as end date)

(B) (D)(A) (C)

Dependency Search

Dependency Search

Dependency Search

Sentences have been morphological
analyzed and dependency analyzed.

Figure 3.3: Steps to retrieve logics from sentences

• Step 2: Search (D) words which (B) depend on.

• Step 3: Search nearest (C) word which depends on (D)

– Nearest word has strongest dependency with the target word.

• Step 4: Search nearest (A) word which depend on (B)

– As same as step 3, nearest word has strongest dependency with
the target word.

Then we can get the condition logic from the sentence as“if (A) is (B),
(C) is (D)”. The definition of decision table [Ass86] is as Figure 3.4.

Once we retrieve a condition logic, we can map the logic into decision
table as Table 3.2.

18

Table 3.1: Structure of Input Data Which is The Results of Japanese Mor-
phological Analysis and Dependency Analysis

i Pm(i) [Japanese (English)] Depm(i)

1 miraini (future field) 4
2 betsuno (another) 3
3 detaga (data) 4
4 haitteitabaai (if exist) 8
5 sono (the) 6
6 jitenno (a date) 7
7 tyokuzennwo (just before) 8
8 shuuryoubitosurukoto (sets end date) T

Condition stub Condition entry

Action stub Action entry

Stub Entry

Condition

Action

Figure 3.4: Decision tabel definition [Ass86]

Table 3.2: Logic Mapping Into Decision Table Definition
Condition stub
(A)

Condition entry
(B)

Action stub
(C)

Action entry
(D)

19

Decision tables are used in many decision support domains, such as busi-
ness decision supporting systems, software engineering or system analysis (or
evaluation). Decision tables are a simple and important powerful tool to pro-
vide reasoning in a compact form [TM07]. After then, we define the analysis
technique formally as follows:

• All target documents are DAll.

• Each sentences are D1, D1, …Dm.

– DAll = { D1, D1, …Dm }

• Dependency structure of phrase P which come from morphological anal-
ysis and dependency paring.

– Dm = { Pm(1), Pm(2), …Pm(n) }
– Dependency patterns of Dm are { Depm(1), Depm(2), …Depm(n-

1) }. Depm(i) is phrase number which the phrase Pm(i) depends
on.

• K is the set of key words which search for condition words

– K = { K1, K2, …Kl }
– In this paper, K=K1=”baai”(if).

• Terminal symbol of sentences is T.

• According with decision table definition, condition logic descriptions
are:

– Condition stub is CS

– Condition entry is CE

– Action is AS

– Action entry is AE

• Formulas of retrieving condition logic are:

– FI(K, Pm(i)). Pm(i) is the first phrase which includes K. This
Pm(i) is defined as CE.

20

FI(K,Pm(i))

DE(CE,
Pm(i))

NDA(AE,
Pm(i))

NDC(CE,
Pm(i))

for each Dm

Logic Retrieval

Figure 3.5: Flowchart of The analysis technique

– DE(CE, Pm(i)). Pm(i) is phrase which CE has dependency on,
and end of phrases. This Pm(i) is defined as AE.

– NDA(AE, Pm(i)). Pm(i) is the nearest phrase which has depen-
dency on AE. This Pm(i) is defined as AS.

– NDC(CE, Pm(i)). Pm(i) is the nearest phrase which has depen-
dency on CE. This Pm(i) is defined as CS.

Flowchart of the analysis technique is as Figure 3.5.

21

3.1.3 Experiments

We experimented the analysis technique by creating algorithm, developing
programs and applying Japanese specification documents. Algorithm 1 shows
how to retrieve condition logic from documents. We have implemented the
analysis technique algorithm on Perl program. We also used Japanese mor-
phological analysis and dependency analysis. The analysis technique is inde-
pendent from the technique and tools of morphological analysis and depen-
dency analysis.

Algorithm 1 The analysis technique algorithm

Require: Input: documents which have been morphological analyzed and
dependency parsed

Ensure:
1: for all Dm do
2: for all Pm(i) do
3: if Pm(i) = K1 then
4: CEi = i
5: Pm(i) = CE
6: if Pm(Depm(i)) ∈ Dm and Pm(Depm(i)) ∈ T then
7: AEi = i
8: Pm(Depm(i)) = AE
9: end if
10: end if
11: end for
12: for all Pm(i) do
13: if Depm(i) = CEi and max(i) then
14: Pm(Depm(i)) = AS
15: end if
16: if Depm(i) = AEi and max(i) then
17: Pm(Depm(i)) = CS
18: end if
19: end for
20: end for

　
Table 3.1 shows the structure of input data which is results of morpho-

logical and dependency analysis. The i is assigned number for each words,

22

Pm(i) is phrase of the results of morphological analysis, and Depm(i) is the
results of dependency analysis. Table 3.3 shows the document list of this
experiment. The documents are opened to public on the Internet. The doc-
uments come from almost Japanese government and cities as public sector.
Japanese government order their software and systems to public in order for
IT services company can bid the order. Then the documents are system
specification documents that IT services company can estimate the function
and calculate their costs. In this experiments, we grouped documents from
A to F. We use the group A and B to initial experiment to verify our analysis
technique and tuning it. Once we fixed the analysis technique algorithm and
Perl program, we applied the program from group C to F.

Software testing experts who has 20 years software testing experience
evaluate the results of the analysis technique. The points of evaluation are
if they retrieve logics manually they compare the analysis technique results
and their manual ones by comprehensiveness, correctness of phrases, and can
be transform into decision table. Table 3.4 shows the results of the analysis
technique versus evaluation by positive and negative. For example, when the
analysis technique retrieves condition logic and software testing experts the
logic is good, then the retrieval logic is count for positive-positive. Another
example, when the analysis technique excludes a sentence but software test-
ing experts the logic evaluate the sentences must be retrieved, then the logic
is count for negative-positive.

Table 3.5 shows the results of experiments using recall and precision fac-
tors. The recall and precision are calculated by equitation (2) and (3) using
(a) to (c) on table 3.5. As table 3.5 shows, the precision reached 0.93 to
0.97 and recall reached 0.65 to 0.79. That means the analysis technique can
retrieve condition logic.

Precision =
(a)

((a) + (b))
(3.2)

Recall =
(a)

((a) + (c))
(3.3)

3.1.4 Evaluations

We observe about reasons of negative evaluation of the results as (b), (c)
and (d). In case (b), the analysis technique is positive and evaluation is

23

Table 3.3: Target Documents List

Document
Groups

Pages Characters
(Double
Bytes)

File Size
(Bytes)

Create
date

A 93 74559 1702400 2010/9/16
A 17 3283 4555776 2014/3/18
A 14 9502 60416 2008/6/1
A 15 11182 51712 2014/7/1
A 76 63908 1008129 2003/3/1
B 10 6825 50688 2014/6/1
B 2 779 97280 2007/11/14
B 22 14560 499712 2008/4/1
B 17 11211 54272 2006/9/1
B 19 6844 79360 2010/5/1
B 9 7844 140800 2014/1/1
C 157 152568 1995521 2012/11/1
C 56 55738 609407 2005/7/1
C 73 70167 2775933 2011/7/6
D 11 9060 37888 2012/4/1
D 41 38527 653312 2012/4/1
D 327 296451 6210032 2012/4/1
E 25 20364 880640 2009/12/2
E 8 6717 77312 2012/4/1
E 7 9852 313871 2014/4/1
E 10 8035 72192 2013/5/1
F 10 4419 90624 2011/10/1
F 8 5012 10223 2013/4/1
F 173 188919 1172389 2007/4/1
F 18 26466 618214 2013/4/1

24

Table 3.4: Results The Analysis Technique Vs. Evaluation

The analysis technique Positive Negative
Evaluation Positive (a) Negative (b) Positive (c) Negative (d)

A 31 1 15 2
B 15 1 4 3
C 43 2 17 4
D 62 5 33 21
E 35 1 19 6
F 107 8 40 26

Table 3.5: Results of Recall and Precision

Document Groups A B C D E F

Precision 0.97 0.94 0.96 0.93 0.97 0.93
Recall 0.67 0.79 0.72 0.65 0.65 0.73

negative. When there are parentheses, alphabet and other special characters
in phrases which have dependency to CE, the morphological analysis engine
may determine the characters are individual phrases. In this case, if the logic
is retrieved the phrases has not understandable. They are just parentheses
characters. In the case (c) that the analysis technique negative and evalua-
tion positive, there are some reasons. First, morphological analysis did not
analyze it as expected. For example, when there is a comma“,” just before
CE the phrase including condition keywords, the analysis engine determines
there are no dependency to the CE. Second example is also a morphologi-
cal analysis. When next phrase of CE is a gerund (in English -ing noun),
the analysis engine determines CE depends on the gerund as a verb that
is not collect dependency. Japanese morphological analysis and dependency
analysis depends on which method they implement the analysis engines.

The analysis technique can use any engine if they derive phrases from
sentences and output the dependency among phrases. The (c) categorized
sentences are compound sentences, complex sentences, listing sentences and
so on. Current algorithm ignores with these kind of sentences because the
condition phrase dependency cannot be determined. In the case of (d) that
the analysis technique results negative and evaluation also results negative.
The sentences categorized in this (d) are original descriptions are incorrect.

25

The (d) cases are candidates for our future works to feedback of manual
description on specification documents. When experts didn’t understand the
logics of the sentences, it must be something incorrect in the sentences. Then
it is important for us to investigate (d) case for future work.

3.2 Semantic role labeling for automatic soft-

ware test cases generation

3.2.1 Applying Japanese Natural Language Processing
Techniques to Decision Table Testing

(a) Decision Table Testing Technique

Decision tables consists of conditions and actions. The conditions and ac-
tions are deep cases of the requirements in the natural language processing.
In this paper, we propose our rules to differentiate the deep cases from surface
cases and to identify the dependencies that are generated by natural language
processing. Decision table testing uses a model of the logical relationships
between conditions and actions for the test item [ISO15a] in the form of a de-
cision table[ISO15b]. Generating appropriate conditions and actions for this
decision table testing technique, it depends largely upon personal knowledges
and skills to generate conditions and actions. Our approach is to generate
conditions and actions mechanically by natural languages processing. Mul-
tiple conditions and actions mean there are a lot of restrictions, for example,
if a condition has a particular value, another condition or action must have
that some particular value. Generating such restrictions is required to access
other domain knowledge. As this generation is outside of scope of this paper,
it remains topic of future research.

(b) Natural Language Processing

Natural language processing (NLP) techniques include parsing, morphologi-
cal analysis, and so on and are used in the analysis of software requirements.
There are four steps in NLP:

1. Morphological analysis: This is to parse a sentence to words and tag
their parts-of-speech.

26

2. Dependency analysis: This is to determine dependencies of the words
that have been parsed as the result of morphological analysis.

3. Semantic analysis: This is to determine the semantics of the words and
phrases.

4. Context analysis: This is to perform analysis over multiple sentences.

The relationship between words is called case and there are surface case
and deep case. Surface case is determined by syntactic and deep case is
determined by semantic. When a sentence has a case between noun phrase
and verb phrase, it is semantic role labeling to determine which case [Oku10].

A related work [TTMM10] demonstrated their technique that they de-
termined semantic role from thesaurus of predicate argument structure for
Japanese verbs. In this chapter, our semantic role labeling is determine the
cases are“action”or“condition” in decision table testing technique when
a sentence has a case between noun phrase and verb phrase. For examples,
Japanese surface case has“wo-case”,“ga-case”. Both cases represent objec-
tive cases. Our semantic role labeling is to determine the cases are“action”
or “condition” by dependency and evaluation rules of the dependency.

3.2.2 Semantic Role Labeling for Extracting Condi-
tions and Actions

(a) Overview of the Extracting

Figure 3.6 shows our syntactic rules of extracting test cases from software
requirements. As the first step, it calculates syntactic similarity between
base sentence structure and each sentences in the requirements. Sentences are
selected as suitable for extracting conditions and actions. The accuracy of the
extraction is raised by this selection. The base sentence structure means parts
and dependencies of the sentence. There are two types of sentences, suitable
and not suitable for extracting conditions and actions. Suitable sentences
progress go to the next step and non-suitable ones are sent back to the
requirements developers. This selection process is useful for the developers to
improve the descriptions. As the second step, it extracts such as conditions
and actions from the results of dependency analysis and case analysis as
shown in Figure 3.6.

27

Word Word Word Word Word

Root

Clause

Word Word

Clause

Word Word

Clause

Word

Root

Clause

Word Word

Clause

Word Word

Clause

Word

Step2: Semantic role labeling of conditions and actions

Word Word Word Word Word

Word Word Word Word Word
Word Word Word Word Word

Word Word Word Word

Requirements sentences

Base sentences knowledges

Pre-Processing:
syntactic similarity is to select suitable
sentences

Step1: Natural language processing
•Morphological and dependency analysis
•Determine clauses to root

•Determine semantic roles by the rules

ActionsConditionsConditions

Actions

Word Word Word Word Word

Syntactic
similarity

Word Word…

Word Word Word Word Word
Word Word Word Word Word

Step1

Step 2

Feedback to developers

Figure 3.6: Extracting conditions and actions

28

(b) Syntactic Similarity

The objective of this syntactic similarity is to select suitable sentences for
extracting conditions and actions by comparing base sentence structure and
each sentences in requirements. In this paper, we use the base sentence as
“If the age is more than 20, the entrance fee 1000 yen will be displayed.”(「年
齢が２０歳以上の場合、入場料１０００円を表示する。」in Japanese) as an
example. This sentence is suitable sentence for extracting conditions as “If
the age is more than 20,”and actions as“the entrance fee 1000 yen will be
displayed.”Figure 3.7 shows the base sentence. The base sentence knowledge
is a collection of the base sentences. The knowledge is described in a tree
structure consisting of parts and their dependencies that have conditions and
actions. In this paper, we define the base sentence is as Figure 3.8. BNF
descriptions of the base sentence are as follows:

<base sentence>::=

(

(<common noun><case-marking particle>)

(<numeral><noun counter word><noun suffix><particles>)

(<adverbial noun><comma>)

)

(

(<Sa-hen noun>)

(<common noun>)

(<numeral><noun counter word><case-marking particle>)

)

(<Sa-hen noun><Sa-hen verb><period>)

Sentences that are similar to the base sentence, such as “If the number
is more than ten, the charge will be three dollars.”, can be selected by
calculating the syntactic similarity between them.

We use tree kernel technique[CMB11] to calculate syntactic similarity.
Tree kernel is a well-known technique to calculate the similarity of a syntax

29

The age is
���

more than twenty
���	��

if
��

the entrance

fee
�

1000 yen
������

will be displayed
�����

Figure 3.7: The dependencies in the base sentence

(< numeral >
< noun counter word >
< case-marking particle >)

(< common noun>)

(<common noun>
<case-marking particle>)

(<numeral>< noun counter word >
<noun suffix><case-marking particle >)

(< adverbial noun >< comma >)

(<Sa-hen noun>)

(< Sa-hen noun >< Sa-hen verb>< period >)

Figure 3.8: Dependency in the base sentence as parts

30

b

d

c

a a, b, c, d,

b

a

c

a

b c

a

d

c

a

b

d

c

a

d

c
, , , , ,

Syntax Tree Partial Tree

Figure 3.9: Syntax tree and subtrees on tree kernel

tree. Figure 3.9 shows how we calculate the numbers of subtrees between
the syntax trees by separating subtrees from the syntax tree [TIM02]. The
formula 3.4 shows the cosine similarity that is used to calculate inner products
in their tree kernels [CMB11] [OW13].

cos θ =
k(Ti, T j)√

k(Ti, T i)k(Tj, T j)
(3.4)

Ti,Tj are syntax trees. k is kernel of them. θ is an angle of Ti, Tj .

(c) Extraction of Conditions and Actions

We assume that requirements are described semi-formally in order to share
the requirements information in the stakeholders. Examples of requirements
descriptions are given below.

•“If the number of stocks got below the criteria, we order the products.”
(「在庫量が設定値を下回った場合発注を行う．」in Japanese)

•“If bookings are conflict, error messages are displayed.”(「重複予約が発
生した場合，その内容をエラーメッセージとして表示する．」in Japanese
)

These sentences of requirements have phrases which depend upon ter-
minal phrase as “If ～, then ～.”Phrases in a sentence depend upon the
following phrase except phrases which depend upon terminal phrase [ZO95].

31

Hence, there are relations between phrases depending upon terminal phrase
and the terminal phrase. In this paper, we define that action meanings are
action phrases and the others are condition phrases in phrases which depend
upon terminal phrase. These relations are extracted from the results of case
analysis by natural language processing. In the results of cases analysis, we
label ga-case and wo-case in Japanese grammar have “action” meanings
by the definition of their case. We also label wo-case as “action” in test
cases even if wo-case do not have action meaning when wo-cases depend upon
transitive verb.

The case analysis method [KKed] describe there are “continuous cases”
and“in-phrase cases”The“continuous cases”are results of cases analysis for
modifier of a non-inflectable words. The“in-phrase cases”are determined to
compound noun except head basic phrases. Therefore, we label“continuous
cases” and “in-phrase cases” as action, because they depends upon the
terminal phrase. We label the other cases as condition.

Semantic role labeling for extracting conditions and actions is defined as
follows:

• S is the sentence.

• i is the number of each words parsed from S.

• m(i) is a word parsed from S.

• T is the number of root of S.

• m(T) is the root of S.

• D(i) is the word number of m(i) depending on a word.

• C(i) is the case information of m(i) depending on a word.

• B(i) is a clause constructed from all words depending on m(i) as the
clause ending word.

• Cn indicates“conditions” and Ac indicates“actions” as attributes
of B.

• R is a set of extracting test case rules.

– Ra is the subset of action labeling rules.

32

∗ Ra1: Terminal phrases.

∗ Ra2: The cases are wo-case, ga-case, continuous case, in-
phrase case as action.

– Rc is the complementary subset of condition labeling rules.

∗ Rc1:not Ra.

Algorithm 2 shows the algorithm of extracting conditions and actions.

Algorithm 2 Algorithm of extraction conditions and actions

Input: results of morphological, syntactic and semantic analysis
1: Search terminal phrase m(T)
2: Search phrases m(i):D(i)=T which depend upon m(T)
3: for all m(i):D(i)=T
4: Create phrases B(i) which have m(i) as a terminal phrase.
5: if C(i) include Ra
6: then B(i) are labeled “action”
7: else B(i) are labeled “condition”
8: end if
9: end for

Figure 3.10 shows an example of extracting conditions and actions.
An example (1)：

•“When life insurance contracts are executed renewal or to add more op-
tions after January 1st 2012 even if the contracts are performed before
December 31 2011, the new law category of tax deduction is applied to
the whole contracts after the date of renewal.”
(「平成 23年 12月 31日以前に締結した契約であっても，平成 24年 1月
1日以後に更新・特約中途付加などを行った場合は，異動日以後，契約全
体に対して新制度の控除区分が適用されます」in Japanese) (Editing
based on [NTAed])

There are four cases and phrases which depend upon the terminal phrase
“is applied” in this example sentence by the results of morphological and
syntactic analysis in Japanese. The phrase “When” has not-yet case, the
phrase“after” has non-yet-case, the phrase“to” has complex predicative
modifier, and the phrase“category”has ga-case. By labeling rule Rc1，Ra1,

33

Figure 3.10: Dependency tree of an example sentence

34

Ra2, the three phrases including“When”,“after”and“to”are labeled as
condition. The two phrase including“category”and“is applied”are labeled
as action. We label condition and action same as an example sentence.

3.2.3 Experiments

(a) Implementation

We implemented for a proof-of-concept prototype of our approach. We used
a Japanese natural language processing parser [KK] and dependency analysis
on natural language requirements. We used tree kernel algorithm [TIM02]
for comparing syntactic similarity. We developed our own tools using the
Python natural language tool kit [Pro15] for the extracting test cases and
evaluating the results.

Our technique does not depend upon a specific implementation of natural
language processing. The results of dependency and case analysis, however,
sometimes different by their dictionary of language and analysis algorithm.
We will future work about experiments and evaluation for the differences.

We experimented with two cases: one that has no with syntactic similarity
pre-processing step and one that does. We define the threshold of selection
sentences by syntactic similarity pre-processing as 0.30 from the typical value
in NLP Table 3.6 shows the validity this threshold by comparing the syntactic
similarity and software testing results by experts.

We examined two writing styles of documents as our experiments. One of
the writing style of documents is use case description for system design doc-
uments. This type includes 871 sentences. We call this use case description
type documents is document type A1. Another writing style of documents
is functional description on procurement documents in public sector as fire
station system design document [YCed]. This type of documents are avail-
able on the internet. This type includes 711 sentences. We call this use case
description type documents is document type B. Table 3.7 shows a list of the
document type B.

Examples of sentences in each type of documents is as follows:

• Example sentences of document type A:

– “The system get files specified by users and open attachment

1Documents type A is not published due to their confidentiality

35

Table 3.6: Comparing the syntactic similarity and software testing by experts

Requirements sentences examples Experts
results

Syntactic
Simi-
larity

If the age is more than 20, the entrance fee 1000 yen will be
displayed. (年齢が２０歳以上の場合、入場料１０００円を表
示する)。

OK 1.000

If the number is more than 10, the delivery fee 500 yen will
be charged. (個数が１０個以上の場合、配送料５００円を徴
収する)。

OK 1.000

If the logon user is not in the target company, the system
display that the user is not valid. (ログオン・ユーザーが対
象会社ではない場合、システムは、対象ユーザーではない旨
を表示する。)

OK 0.594

If the user is more than 20 years old and female, the fee 500
yen will be displayed. (年齢が２０歳以上で女性の場合、５
００円を表示する。)

OK 0.563

Users login and input intranet id and password. (ユーザー
は、ログインし、イントラネットＩＤおよびパスワードを入
力する。)

OK 0.500

If the delivery date is within 3 days, the additional fee 800
yen will be charged and other workers will be arranged. (納
期が３日未満の場合、追加料８００円を徴収し、係員が手配
をする。)

OK 0.313

If the person is replaced at that time, user will use “Maint-
Person” and need to change the person who issue it. (その
際に担当が代わる場合は、「担当メンテ」を使用し、発行の担
当者名を変更する必要あり。

NG 0.292

Display a list of patients information who are processed in the
day (doctors mainly use them in their examination room). (
当日受付確認処理された患者情報一覧を表示すること (主に医
師が診察室で使用する)。

NG 0.271

Manage schedule (ordered time, accepted time, blood sam-
pling time, etc.). (時間管理が出来ること (オーダー時間、受
付時間、採血時間等)

NG 0.200

When it terminates with nothing execution→ Termination.
(何もせずに終わる場合→終了。)

NG 0.125

36

Table 3.7: List of document type B
Title of document (in Japanese) Author (in Japanese)

System operation manual of hiring management system (求人情報管理システム操
作マニュアル)

JS Izumo, Shimane prefecture (JS
出雲島根県)

System design document of fire station operation support system (消防業務支援シ
ステム基本設計書)

Yokohama city (横浜市)

Specification of vaccination management system development entrustment (予防接
種業務支援システム開発業務委託仕様書)

Yokohama city (横浜市健康福祉
局健康安全課)

Specification of Kyoto city municipal hospital information system (京都市立病院総
合情報システム仕様書)

Kyoto city municipal hospital (京
都市立病院)

Specification of Kyoto prefecture municipal library (tentative) information system
(京都府立新総合資料館（仮称）統合情報システム 図書系システム機能要求仕様書)

Kyoto prefecture (京都府)

Attachment1: System design overview document of pension management system
v1.0 (別紙 1 年金業務システム 基本設計書 第 1.0版 概要)

Ministry of health, labor and wel-
fare (厚生労働省)

Specification of criminal information web system development (ＷＥＢ公開型犯罪情
報システム開発等業務仕様書)

Hiroshima prefecture police de-
partment (広島県警察本部)

Specification of Kofu city community support system (甲府市地域包括支援センター
支援システム仕様書)

Kofu city (甲府市)

Specification of Kochi prefecture municipal library and Kochi city municipal library
information management system development entrustment (高知県立図書館・高知
市民図書館新図書館情報システム等基本設計委託業務仕様書)

Kochi prefecture and Kochi city
(高知県と高知市)

Specification of new library information management system development entrust-
ment (新図書館情報システム構築等委託業務仕様書)

Kochi prefecture and Kochi city
(高知県と高知市)

Specification of Kochi city building evaluation system (RFP) (高知市家屋評価シス
テム仕様書 (RFP))

Finance department, Kochi city
(高知市財務部資産税課)

Specification of nutrition management system software (『栄養管理システムソフト
ウェア一式』仕様書)

National rehabilitation center for
persons of disables(国立障害者リ
ハビリテーションセンター)

Requirement definitions of Saga city school attendance support system (佐賀市　学
齢簿・就学援助システム開発要件定義書)

Saga city (佐賀市)

Requirement definitions of middle area of Saga city community support system (佐
賀中部広域連合地域包括支援センターシステム要件定義書)

Union of middle area of Saga city
(佐賀中部広域連合)

Specification (draft) of development and transition for national-owned property in-
formation management system (国有財産総合情報管理システムに係る設計・開発及
び移行業務 一式 仕様書（案）)

Financial bureau, Ministry of fi-
nance (財務省理財局管理課)

System design document of Yamagata prefecture cooperate system (山梨県共同シ
ステム基本設計書)

Office union of Yamagata prefec-
ture municipality (山梨県市町村
総合事務組合)

Specification of Akita prefecture municipal hospital financial and accounting system
development entrustment (地方独立行政法人市立秋田総合病院財務会計システム構
築業務委託仕様書

Akita city welfare and health de-
partment (秋田市福祉保健部病院
法人移行準備室)

Specification of Matsue city water supply and sewage system development require-
ment (松江市上下水道局水道施設管理マッピングシステム構築業務要求仕様書

Matsue city water supply and
sewage system bureau (松江市上
下水道局)

Specification (common) of Yaizu city information system integration (焼津市内部情
報系システム整備事業　要求仕様書（共通）)

Yaizu city (焼津市)

Specification of Statistical first-aid management system (救急統計管理システム仕
様書)

Fire department, Fuefuki city (笛
吹市消防本部)

System design document of common reception system (汎用受付システム基本設計
書)

Shimane prefecture (島根県)

Work of OSS open laboratory system development and integration (first step) (OSS
オープン・ラボ システム開発・構築作業 (第 1次強化))

Information promotion agency
(独立行政法人情報処理推進機構)

Specification of stroke brain images transfer system (脳卒中遠隔画像伝送システム
仕様書)

Cooperation of Noto city stroke
(能登脳卒中地域連携協議会)

37

Table 3.8: The number of sentences in cases before and after syntactic simi-
larity pre-processing

syntactic similarity pre-processing Document type A Document type B　
Before 871 711
After 844 667

files.”「システムは，申請者の指定したファイルを取得し，添付資
料を開く．」

– “If the number of input items is not correct, the system display
that the number is not correct. ”「入力された項目数が正しくな
い場合，システムは，項目数が正しくない旨を表示する．」

• Example sentences of document type B:

– “If the system have not been processed more than the configured
duration time, the user will be logged out (automatic log out func-
tion)”「あらかじめ設定した時間以上システムが操作されていない
と判断される場合は，当該利用者を自動的にログアウトすること
(自動ログアウト機能)．」

–“(In case of requests and required to add the number to the list of
mandatory for management)Company list will be extracted and
displayed”「(依頼に基づく場合、管理上必須一覧の項目に番号が
追加されることが必要な場合等)会社等一覧表を抽出，出力する．」

3.8 shows number of sentences before and after syntactic similarity pre-
processing for both type A and B.

(b) Precision and Recall

A decision table testing expert evaluated the results of labeling for conditions
and actions. True Positive (TP) refers to clauses that the expert evaluated as
having conditions that are labeled as conditions by our rules and to clauses
that the expert evaluated as having actions that are labeled as actions by our
rules. False Positive (FP) refers to clauses that the expert did not evaluate
as having conditions but that are labeled as conditions by our rules and to
clauses that the expert did not evaluate as having actions but that are labeled
as actions by our rules. False Negative (FN) refers to clauses that the expert

38

evaluated as conditions but that are not labeled as conditions by our rules
and to clauses that the expert evaluated as having actions but that are not
labeled as actions by our rules. True Positive (TP) refers to clauses that the
expert evaluated as having conditions that are labeled both conditions and
actions by our rules. False Positive (FP) refers to clauses that the expert
evaluated as having actions that are labeled both conditions and actions by
our rules.

We count each number of evaluation results. Equations (3.5)，(3.6)，and
(3.7) show Precision(P)，Recall(R) and F-Measure(F)．The evaluation does
not include the sentences that are not selected by syntactic pre-processing.

Precision =
TP

(TP + FP)
(3.5)

Recall =
TP

(TP + FN)
(3.6)

F = 2× Precision× Recall

(Precision+Recall)
(3.7)

Table 3.9 and 3.10 shows the evaluation results. In the case of“Before”
syntactic similarity pre-processing, the precision results ranged from 0.888 to
0.985, the recall results from 0.944 to 0.973, and the F results from 0.923 to
0.964.

A related work [TNY10] has the precision results 0.815, recall results
0.946 on Japanese use case descriptions. Our technique results more than
the related work. The related work [TNY10] is as same as our technique on
extracting condition and action from documents in natural language. The
related work is different from our technique about labeling rules on condition
and action. Labeling rules of the related work are position of words for the
keyword as“if”. Labeling rules of our technique are from dependency and
case analysis. These labeling rules of our technique are new comparing the
related work.

In the case of“After”, the precision results ranged from 0.901 to 0.988,
the recall results from 0.946 to 0.974, and the F results from 0.930 to 0.970.
Each maximum precision with syntactic similarity pre-processing was better
than that with no pre-processing. The after precision of extracting condition
in with syntactic similarity preprocessing on document type B is better than
before. We will discuss the reason on the evaluation subsection.

39

Table 3.9: Counts of conditions and actions

Pre-process Document
type

Counts of conditions Counts of actions

TP FP FN TP FP FN

Before
A 1,545 102 43 1,634 25 96
B 1,113 140 47 1,215 19 72

After
A 1,489 99 39 1,614 20 92
B 1,039 114 43 1,187 18 56

Table 3.10: Precision-Recall-F

Pre-process Document
type

Counts of conditions Counts of actions

Precision Recall F Precision Recall F

Before
A 0.938 0.973 0.955 0.985 0.945 0.964
B 0.888 0.959 0.923 0.985 0.944 0.964

After
A 0.938 0.974 0.956 0.988 0.946 0.966
B 0.901 0.960 0.930 0.985 0.955 0.970

(c) Pre-processing by Syntactic Similarity

In this paper, we define the syntactic similarity as cosine similarity by inner
products on a tree kernel and the threshold as 0.30 from typical values and
our studies on example sentences. For the results of the syntactic similarity
pre-processing, Table 3.8 shows the numbers of target sentences selected
from 871 to 844 in document type A, from 711 to 667 in document type.
The ratio of numbers of non-selected sentences is 3.1% in document type
A, 6.2% in document type B. The objective of this syntactic similarity is to
select suitable sentences for extracting conditions and actions by comparing
base sentence structure and each sentence in the requirements. Table 3.10
shows that syntactic similarity pre-processing delivered equal or better results
of precision, recall, and F compared to no syntactic pre-processing. The

40

precision of document type B achieves 0.901 with the pre-processing than
0.888 at before the pre-processing. These results clearly demonstrate the
potential of our approach. As for the threshold, if the value of the threshold
is defined as greater than 0.30, more suitable requirements sentences for
labeling conditions and actions are selected. The precision will be raised
along with the results of the more suitable requirements sentences. However,
the number of selected requirements sentences will be less than before. The
coverage of requirements sentences will be down at the results of less number
of requirements sentences. The requirements sentence that are not selected
can be returned to the developer to be updated with information about
syntactic similarity. This feedback can raise the coverage of requirements
sentences.

(d) Document Type in the Experiment

The results of our technique seem to depend upon the difference between
writing styles of documents. We compare and evaluate the difference between
type A and B by describing a phrase pattern with case of terminal phrase as
follows:

<phrase pattern>::=(<case of terminal phrase>)
| {(<case of terminal phrase>)}<terminal phrase>
The phrase patterns are automatically generated from the results of our
technique. For an example, figure 3.10 shows that the first phrase is not-yet-
case、the second phrase is non-case, the third phrase is complex predicative
modifier, the fourth phrase is ga-case and terminal phrase. The pattern
is described as <not-yet-case><non-case><complex predicative modifier><ga-
case><terminal phrase>.

Table 3.11 shows top 10 patterns of document type A. Table 3.12 shows
top 10 patterns of document type B.

In document type A, it is the most pattern“<predicative modifier><not-
yet-case><wo-case><terminal phrase>”This patter’s shows a sentence “If
～, ～ do ～ to ～”. An example sentence is “If system cannot get the
company information, system display the error message”. There are 177 sen-
tences and account for 20.4% in document type A. Top 10 patterns account
for 61.8%.

We discuss about extracting conditions and actions related with the
phrase patterns by using “If system cannot get the company information,
system display the error message”in document type A. This sentence has

41

case information as that “If system cannot get the company information”
has predicative modifier, “system” has not-yet-case, “the error message”
has wo-case and“display” has terminal phrase. Our technique label condi-
tion on the phrases: “If system cannot get the company information” and
“system”, also label action on“the error message”and“display”. Software
testing experts evaluate these labeling are correct.

In document type B, it is the most pattern “<not-yet-case><predicative
case><terminal phrase>”This patter’s shows a sentence“—～ is ～”. The
“is” is the terminal phrase in this pattern. An example sentence is“System
is completed”. There are 88 sentences and account for 12.6% in document
type B. Top 10 patterns account for 39.3%.

We discuss about extracting conditions and actions related with the 10th
pattern as “<predicative modifier> <de-case> <predicative case> <terminal
phrase>” by using “If comments exist in comment item, a system step is
register submissions automatically by putting acceptance information.” in
document type B. This sentence has case information as that“If comments
exist in comment item” has predicative modifier, “by putting acceptance
information” has de-case,“register submissions automatically ” has pred-
icative case and “is” has terminal phrase. Our technique label condition
on the phrases: “If comments exist in comment item” and “by putting
acceptance information”, also label action on “register submissions auto-
matically ” and“is”. Software testing experts evaluate these labeling are
correct.

The document type A has 157 phase patterns and 177 sentences at the
top pattern. The document type B has 276 phase patterns and 86 sentences
at the top pattern. The document type B has more variety of writing style
than the document type A when the variety is defined by the number of
phase patterns. The results may be take for granted because the document
type B consist of 711 sentences in 23 systems documents and the document
type A consist of 871 sentences in 1 system documents. Table 3.10 shows
our technique promise effectiveness for variety of writing styles with high
precision and recall.

42

Table 3.11: Top 10 Patterns of Document Type A

Document
type

Phrase pattern Number PercentageCumulative
Per-
cent.

A

<predicative modifier>
<not-yet-case> <wo-case>
<terminal phrase>

177 20.4% 20.4%

<not-yet-case> <wo-case>
<terminal phrase>

95 10.9% 31.3%

<not-yet-case> <predicative
modifier> <wo-case>
<terminal phrase>

80 9.2% 40.6%

<predicative modifier> <wo-
case> <terminal phrase>

58 6.7% 47.2%

<predicative modifier>
<not-yet-case> <predicative
modifier> <wo-case>
<terminal phrase>

43 5.0% 52.2%

<wo-case> <terminal
phrase>

23 2.6% 54.8%

<wo-case> <predicative
case> <terminal phrase>

18 2.1% 56.9%

<not-yet-case> <kara-
case> <wo-case> <terminal
phrase>

18 2.1% 59.0%

<predicative case>
<terminal phrase>

12 1.4% 60.4%

<not-yet-case> <ni-case>
<wo-case> <terminal
phrase>

12 1.4% 61.8%

43

Table 3.12: Top 10 Patterns of Document Type B

Document
type

Phrase pattern Number PercentageCumulative
Per-
cent.

B

<not-yet-case> <predicative
case> <terminal phrase>

88 12.6% 12.6%

<predicative modi-
fier> <predicative case>
<terminal phrase>

70 10.0% 22.6%

<predicative modifier>
<not-yet-case> <predicative
case> <terminal phrase>

21 3.0% 25.6%

<predicative modifier> <wo-
case> <terminal phrase>

18 2.6% 28.1%

<not-yet-case> <wo-case>
<terminal phrase>

18 2.6% 30.7%

<no-case> <in-phrase>
<terminal phrase>

17 2.4% 33.1%

<predicative case>
<terminal phrase>

13 1.9% 35.0%

<ga-case> <predicative
case> <terminal phrase>

12 1.7% 36.7%

<not-yet-case> <predicative
modifier> <wo-case>
<terminal phrase>

9 1.3% 38.0%

<predicative modifier> <de-
case> <predicative case>
<terminal phrase>

9 1.3% 39.3%

44

Table 3.13: Comparing Precision and Recall with Manual Extraction of Con-
dition and Action

Precision Recall F　

Manual extraction
Manual extraction 1 1.000 0.756 0.861
Manual extraction 2 1.000 0.393 0.564

Our technique Average 0.949 0.955 0.952

(e) Comparing manual extraction

We discuss precision and recall by comparing manual extraction of condition
and action. The base case is a related work [YMT15] as manual extrac-
tion. On an experiment in the manual extraction, they extracted 59 from 78
requirements which shall be extracted. We call this result is manual extrac-
tion 1. On another experiment in the manual extraction, they extracted 22
from 59 requirements which shall be extracted. We call this result is manual
extraction 2. These manual extractions include condition and action to be
extracted. Table 3.13 shows Precision，Recall，F-Measure of the manual
extraction and our technique. Our technique achieves higher Recall and F-
Measure more than the manual extraction, and lower Precision. We discuss
about this result on evaluation section.

We compare the work loads of manual extraction and our technique.
We execute our experiments on a personal computer which has 2.60GHz
CPU, 8GB memory, Japanese natural language processing tool [KK] with
implementing script language. In the manual extraction, an engineer who
has 20 years experiences about software development and testing, executed
to extract condition and action from documents. We compare work loads for
extraction of condition and action. We compare between manual extraction
and step 1 to step 2 on our technique. Table 3.14 shows the results of
workloads of manual extraction and our technique. Our technique achieves
one six duration time than manual extraction.

3.2.4 Evaluations

We confirm the results promise our technique achieve higher precision and
recall than the related work. We also confirm the result promise the syn-
tactic similarity pre-processing has effectiveness for variety of writing styles
as document type B. Test cases are often required almost 100% coverage for

45

Table 3.14: Comparing Work Loads with Manual Extraction (minutes)

Manual Extraction Our technique 　
Document type A B A B

Step 1.Natural language processing
240 210

42 36
Step 2.Extracting condition and action 1 1

functions to be tested in industry actual project. In this paper, when we
target system test and/or user acceptance test, the results of precision and
recall shows effectiveness of our technique in industry actual project.

We evaluate precision and recall on difference of writing styles. The
document type A is formalized with the project writing rules as use case de-
scription. The writing style is compatible with our technique. The document
type A, for example, has a sentence as“If the logon user is not in the target
company, the system display that the user is not valid. ”Conditions and
actions are written clearly in the sentence. Our technique labeled condition
on “If the logon user is not in the target company” and “the system”,
and action on “display that the user is not valid”.

We confirm the results promise our technique achieve higher precision
and recall on document type B than the related work [TNY10]. We evaluate
the precision of condition extraction on document type B before syntactic
similarity pre-processing. The main reason is extracting action predicative
as condition. The example sentence is “If the system have not been pro-
cessed more than the configured duration time, the user will be logged out
(automatic log out function)”. This sentence has brackets. Our technique
may label this bracket phrase as action and the other phrases as condition.

We can make precision and recall better by applying syntactic similarity
pre-processing to these writing style sentences. The sentences are not suitable
for test cases that results below the criteria of syntactic similarity. It is useful
for engineers in actual works to get feedbacks about the sentences which are
not suitable for test cases.

We compared phrase patterns by using our technique. The comparing
method may apply to calculate variety of descriptions in requirement en-
gineering. We can apply the comparing results to feedback to description
rules.

Comparing manual extraction, our technique achieve higher recall, F-
measure, but lower precision. The precision of manual extraction is 1.000.

46

The precision is the result of extracting from small number of functions.
We need to evaluate quality of manual extraction, however, the rules of
manual extraction can be future rules on our technique. We confirmed one
six workloads than manual extraction for extracting condition and action.
This workloads reduction can be a motivation for automatic generation of
test cases.

The future work is to apply our technique to listing sentences. Specifica-
tion documents often have listing sentences such as definition of functions.
One of the approach is to involve implicit relation analysis to our technique.
Another future work is to how we define constraints between condition and
action. The approach of this future work is to involve logical formula trans-
formation [TKI12] and dictionary development.

3.3 Syntactic Rules of Extracting Test Cases

from Software Requirements

3.3.1 Applying English Natural Language Processing
Techniques to Decision Table Testing

(a) Decision Table Testing Technique

Decision tables consists of conditions and actions. The conditions and ac-
tions are deep cases of the requirements in the natural language processing.
In this paper, we propose our rules to differentiate the deep cases from surface
cases and to identify the dependencies that are generated by natural language
processing. Decision table testing uses a model of the logical relationships
between conditions and actions for the test item in the form of a decision
table[ISO15b]. Generating appropriate conditions and actions for this de-
cision table testing technique, it depends largely upon personal knowledges
and skills to generate conditions and actions. Our approach is to generate
conditions and actions mechanically by natural languages processing. Mul-
tiple conditions and actions mean there are a lot of restrictions, for example,
if a condition has a particular value, another condition or action must have
that some particular value. Generating such restrictions is required to access
other domain knowledge. As this generation is outside of scope of this paper,
it remains topic of future research.

47

ROOT

S

NP

DT

The

NN

system

VP

VBZ

stores

NP

DT

the

JJ

new

NN

link.

Figure 3.11: Parse tree of “The system stores the new link.”

(b) Natural Language Processing

Natural language processing (NLP) techniques include parsing, morphologi-
cal analysis, and so on and are used in the analysis of software requirements.
There are four steps in NLP:

1. Morphological analysis: This is to parse a sentence to words and tag
their parts-of-speech.

2. Dependency analysis: This is to determine dependencies of the words
that have been parsed as the result of morphological analysis.

3. Semantic analysis: This is to determine the semantics of the words and
phrases.

4. Context analysis: This is to perform analysis over multiple sentences.

Figure 3.11 shows the results of morphological and dependency analyses
of “The system stores the new link” as a tree. For example, the sentence
consists of NP and VP, and NP consists of DT and NN. S: sentence, NP:
noun phrase, VP: verb phrase, NN: noun, VBZ: verb behavior, and so on.

48

Word Word Word Word Word

Root

Clause

Word Word

Clause

Word Word

Clause

Word

Root

Clause

Word Word

Clause

Word Word

Clause

Word

Step2: Semantic role labeling of conditions and actions

Word Word Word Word Word

Word Word Word Word Word
Word Word Word Word Word

Word Word Word Word

Requirements sentences

Base sentences knowledges

Pre-Processing:
syntactic similarity is to select suitable
sentences

Step1: Natural language processing
•Morphological and dependency analysis
•Determine clauses to root

•Determine semantic roles by the rules

ActionsConditionsConditions

Actions

Word Word Word Word Word

Syntactic
similarity

Word Word…

Word Word Word Word Word
Word Word Word Word Word

Step1

Step 2

Feedback to developers

Figure 3.12: Syntactic rules of extracting test cases from software require-
ments

49

3.3.2 Syntactic Rules of Extracting Test Cases from
Software Requirements

(a) Overview of the Syntactic Rules of Extraction

Figure 3.12 shows our syntactic rules of extracting test cases from software
requirements. As the first step, it calculates syntactic similarity between
base sentence structure and each sentences in the requirements. Sentences are
selected as suitable for extracting conditions and actions. The accuracy of the
extraction is raised by this selection. The base sentence structure means parts
and dependencies of the sentence. There are two types of sentences, suitable
and not suitable for extracting conditions and actions. Suitable sentences
progress go to the next step and non-suitable ones are sent back to the
requirements developers. This selection process is useful for the developers to
improve the descriptions. As the second step, it extracts such as conditions
and actions from the results of dependency analysis and case analysis as
shown in Figure 3.12.

(b) Syntactic Similarity

The objective of this syntactic similarity is to select suitable sentences for
extracting conditions and actions by comparing base sentence structure and
each sentences in requirements. In this paper, we use the base sentence as
“If the age is more than twelve, the fee will be five dollars.” as an example.
This sentence is suitable sentence for extracting conditions as“If the age is
more than twelve,”and actions as“the fee will be five dollars.”. Figure 3.14
shows the base sentence and Table 3.15 shows the dependency in the base
sentence. The base sentence knowledge is a collection of the base sentences.
The knowledge is described in a tree structure consisting of parts and their
dependencies that have conditions and actions. In this paper, we define the
base sentence is as Figure 3.15. Penn tree descriptions of the base sentence
are as Figure 3.13.

Sentences that are similar to the base sentence, such as “If the number
is more than ten, the charge will be three dollars.”, can be selected by
calculating the syntactic similarity between them.

We use tree kernel technique[CMB11] to calculate syntactic similarity.
Tree kernel is a well-known technique to calculate the similarity of a syntax
tree. Figure 3.16 shows how we calculate the numbers of subtrees between
the syntax trees by separating subtrees from the syntax tree, The formula 3.8

50

<Base sentence structure>::=
(ROOT
(S
(SBAR (IN If)
(S
(NP (DT the) (NN age))
(VP (VBZ is)
(NP
(QP (JJR more) (IN than) (CD twelve))))))

(, ,)
(NP (DT the) (NN fee))
(VP (MD will)
(VP (VB be)
(NP (CD five) (NNS dollars))))

(. .)))

Figure 3.13: Penn tree descriptions of the base sentence

Table 3.15: The dependencies in the base sentence

From To

IN (if) CD (twelve)
DT (the) NN (age)
NN (age) CD (twelve)
VBZ (is) CD (twelve)
JJR (more) IN (than)
IN (than) CD (twelve)
CD (twelve) NNS (dollars)
DT (the) NN (fee)
NN (fee) NNS (dollars)
MD (will) NNS (dollars)
VB (be) NNS (dollars)
CD (five) NNS (dollars)
NNS (dollars) ROOT

51

ROOT

S

SBAR

IN

If

S

NP

DT

the

NN

age

VP

VBZ

is

NP

QP

JJR

more

IN

than

CD

twelve

,

,

NP

DT

the

NN

fee

VP

MD

will

VP

VB

be

NP

CD

five

NNS

dollars

.

.

Figure 3.14: Parse the base sentence

52

ROOT

NNS

CD VB MD NN

DT

CD

IN

JJR

VBZ NN

DT

IN

Figure 3.15: Dependency in the base sentence as parts

b

d

c

a a, b, c, d,

b

a

c

a

b c

a

d

c

a

b

d

c

a

d

c
, , , , ,

Syntax Tree Partial Tree

Figure 3.16: Syntax tree and subtrees on tree kernel

shows the cosine similarity that is used to calculate inner products in their
tree kernels.

cos θ =
k(Ti, T j)√

k(Ti, T i)k(Tj, T j)
(3.8)

Ti,Tj are syntax trees. k is kernel of them. θ is an angle of Ti, Tj .

(c) Extraction of Conditions and Actions

We assume requirements are described formally to some extent for sharing
information among stakeholders. Examples of requirements descriptions are

53

given below. These sentences have clauses that depend upon the root word.
The meanings of dependency types are defined in [DMM08] as follows:

• prep: prepositional modifier. The prepositional modifier of a verb,
adjective, or noun is any prepositional phrase that serves to modify the
meaning of the verb, adjective, noun, or even another preposition.

• cop: copula. A copula is the relation between the complement of a
copular verb and a copular verb.

• dobj: direct object. The direct object of a VP is the noun phrase which
is the (accusative) object of the verb.

• nsubj: nominal subject. A nominal subject is a noun phrase which is
the syntactic subject of a clause.

• nsubjpass: passive nominal subject. A passive nominal subject is a
noun phrase that is the syntactic subject of a passive clause.

• aux: auxiliary. An auxiliary of a clause is a non-main verb of the clause.

• auxpass: passive auxiliary. A passive auxiliary of a clause is a non-main
verb of the clause that contains the passive information.

• neg: negation modifier. The negation modifier is the relation between
a negation word and the word it modifies.

• root: root. The root grammatical relation points to the root of the
sentence.

The root is defined in [DMM08] as “The root grammatical relation points
to the root of the sentence”. In other words, the root is the main word
in a sentence. In this paper, we define clauses that have condition words
that are dependent upon a root word as condition clauses, and clauses that
have action words that are dependent upon a root word as action clauses.
Both condition and action clauses are labeled on the basis of the results of
dependency analysis in NLP. The extraction rules are that when dependency
types are one of“prep”,“cop”,“dobj”,“nsubj”,“nsubjpass”,“aux”,
“auxpass”, “neg”, or “root”, the words are labeled “action”.

The extracting test case is defined as follows:

• S is the sentence.

54

• i is the number of each words parsed from S.
• m(i) is a word parsed from S.
• T is the number of root of S.
• m(T) is the root of S.
• D(i) is the word number of m(i) depending on a word.
• C(i) is the case information of m(i) depending on a word.
• B(i) is a clause constructed from all words depending on m(i) as the
clause ending word.
• Cn indicates“conditions” and Ac indicates“actions” as attributes
of B.
• R is a set of extracting test case rules.

– Ra is the subset of action labeling rules.

• Ra1: C(i) is one of“prep”,“cop”,“dobj”,“nsubj”,“nsubjpass”,
“aux”, “auxpass”, “neg”, “root”.

– Rc is the complementary subset of condition labeling rules.

• Rc1:not Ra1

The algorithm 3 shows the algorithm of extracting test cases.

Algorithm 3 Extracting test cases algorithm

Require: Input: Results of parsing, dependency analysis
Ensure:
1: Search ROOT word
2: Search m(i) in case D(i)=T
3: for all F door all m(i):D(i)=T
4: construct B(i) with m(i) as the clause ending word
5: label B(i) as “actions” in the case of C(i) ⊆ Ra
6: label B(i) as “conditions” in the case of C(i) ⊆ Rc
7: end for

3.3.3 Experiments

(a) Implementations

We implemented for a proof-of-concept prototype of our approach. We used
an English natural language processing parser [MMM06] and dependency

55

analysis on natural language requirements. We developed our own tools
using the Python natural language tool kit [Pro15] for the extracting test
cases and evaluating the results. We experimented the prototype on three
case studies of natural language requirements.

• CHART: The purpose of this design document is to provide implemen-
tation details that form the basis for the software coding. The details
presented in this design fit within the high level approach documented
in the high level design document [Adm03]. We used sections 2-1, 2-2
and 2-3 describing general system functionalities.

• eNotification: The purpose of this document is to define the electronic
transmission of a data exchange involving between a party that has to
get a legally required notice, e.g., a public procurement notice, pub-
lished by a journal or newspaper [fE12]. We used section 5-1-1 of the
business requirements statements.

• WUT: The Water Use Tracking (WUT) System’s system requirements
specifications is a collection of artifacts that were developed separately
during the implementation phase of the project [Dis04]. We used the
functional requirements section (4-1-1-1) of the document.

We experimented with two cases: one that has no with syntactic similarity
pre-processing step and one that does. We define the threshold of selection
sentences by syntactic similarity pre-processing as 0.30 from the typical value
in NLP[NDM11][SNK14].

Table 3.16 shows the validity this threshold by comparing the syntactic
similarity and software testing results by experts.

We examined three case studies of natural language requirements. Table
3.17 shows the number of sentences in two cases: one that does not have a
syntactic similarity pre-processing step and one that does.

(b) Precision and Recall

A decision table testing expert evaluated the results of labeling for conditions
and actions. True Positive (TP) refers to clauses that the expert evaluated as
having conditions that are labeled as conditions by our rules and to clauses
that the expert evaluated as having actions that are labeled as actions by our
rules. False Positive (FP) refers to clauses that the expert did not evaluate

56

Table 3.16: Comparing the syntactic similarity and software testing by ex-
perts

Requirements sentences examples Experts
results

Syntactic
Simi-
larity

If the age is more than twelve, the fee will be five dollars. OK 1.00
If the age is less than eighteen, the charge will be ten
dollars.

OK 0.94

The map will be generated with the background map
layers in the same fashion as the Intranet map.

OK 0.46

If the cmd parameter is ViewEvents, the mapping ap-
plication initializes to “Zoom in” mode and displays
the event list in the “data” frame.

OK 0.32

When a user selects one theme for display, the map
frame sends the request to server to retrieve the back-
ground map.

NG 0.27

The Publisher informs the submitter, that publication
is refused, if the notice is not eligible for publication for
reasons.

NG 0.21

Requests from a client may go to different servers, caus-
ing the session information to be inconsistent.

NG 0.20

The Notice Summary may contain a reference to the
regulation the notice applies to.

NG 0.19

Table 3.17: The number of sentences in cases before and after syntactic
similarity pre-processing

Syntactic Pre-process CHART eNOT WUT　
Before 204 144 110
After 166 123 91

57

as having conditions but that are labeled as conditions by our rules and to
clauses that the expert did not evaluate as having actions but that are labeled
as actions by our rules. False Negative (FN) refers to clauses that the expert
evaluated as conditions but that are not labeled as conditions by our rules
and to clauses that the expert evaluated as having actions but that are not
labeled as actions by our rules. True Positive (TP) refers to clauses that the
expert evaluated as having conditions that are labeled both conditions and
actions by our rules. False Positive (FP) refers to clauses that the expert
evaluated as having actions that are labeled both conditions and actions by
our rules.

We count each number of evaluation results. Equations (3.9)，(3.10)，and
(3.11) show Precision(P)，Recall(R) and F-Measure(F)．The evaluation does
not include the sentences that are not selected by syntactic pre-processing.

Precision =
TP

(TP + FP)
(3.9)

Recall =
TP

(TP + FN)
(3.10)

F = 2× Precision× Recall

(Precision+Recall)
(3.11)

Table 3.18 and 3.19 shows the evaluation results. In the case of“before”
syntactic similarity pre-processing, the precision results ranged from 0.73 to
0.85, the recall results from 0.56 to 0.67, and the F results from 0.67 to 0.72.

In the case of“after”, the precision results ranged from 0.73 to 0.87, the
recall results from 0.58 to 0.73, and the F results from 0.70 to 0.77. Each
maximum precision with syntactic similarity pre-processing was better than
that with no pre-processing.

(c) Pre-processing by Syntactic Similarity

In this paper, we define the syntactic similarity as cosine similarity by inner
products on a tree kernel and the threshold as 0.30 from typical values and

58

Table 3.18: Counts of conditions and actions

Pre-
process

Requirements Counts of conditions Counts of actions

TP FP FN TP FP FN

No
CHART 61 11 48 57 14 40
eNotification 16 6 9 16 6 9
WUT 14 4 7 14 4 7

Yes
CHART 48 7 35 46 10 30
eNotification 14 3 5 14 5 6
WUT 10 2 4 10 3 4

Table 3.19: Precision-Recall-F

Pre-
process

Requirements “Condition” “Action”

Precision Recall F Precision Recall F

Yes
CHART 0.85 0.56 0.67 0.80 0.59 0.68
eNotification 0.73 0.64 0.68 0.73 0.64 0.68
WUT 0.78 0.67 0.72 0.78 0.67 0.72

Yes CHART 0.87 0.58 0.70 0.82 0.61 0.70
eNotification 0.82 0.73 0.77 0.73 0.69 0.71
WUT 0.83 0.71 0.77 0.75 0.71 0.73

59

our studies on example sentences. For the results of the syntactic similarity
pre-processing, Table 3.17 shows the numbers of target sentences selected
from 204 to 166 in CHART, from 144 to 123 in eNotification, and from
110 to 91 in WUT. The ratio of numbers of non-selected sentences is 19%
in CHART, 15% in eNotification, and 17% in WUT. The objective of this
syntactic similarity is to select suitable sentences for extracting conditions
and actions by comparing base sentence structure and each sentence in the
requirements. Table 3.19 shows that syntactic similarity pre-processing de-
livered equal or better results of precision, recall, and F compared to no
syntactic pre-processing. These results clearly demonstrate the potential of
our approach. As for the threshold, if the value of the threshold is defined
as greater than 0.30, more suitable requirements sentences for labeling con-
ditions and actions are selected. The precision will be raised along with the
results of the more suitable requirements sentences. However, the number
of selected requirements sentences will be less than before. The coverage of
requirements sentences will be down at the results of less number of require-
ments sentences. The requirements sentence that are not selected can be
returned to the developer to be updated with information about syntactic
similarity. This feedback can raise the coverage of requirements sentences.

3.3.4 Evaluations

Our approach achieved F results ranging from 0.70 to 0.77, as shown in Table
3.19. Ideally, test cases from the requirements may be required to have 100%
coverage of the functions in order to be tested. In this paper, however, our
approach is useful when we target system testing or user acceptance testing.

Our approach can also be applied to several description types of require-
ments. We tested our approach with three requirements documents, CHART,
eNotification, and WUT, each of which have different description types. Each
of their F values was from 0.70 to 0.77, which demonstrates that our frame-
work can be applied for each type.

Table 3.17 shows the numbers of target sentences selected from 204 to 166
in CHART, from 144 to 123 in eNotification, and from 110 to 91 in WUT.
The ratio of the numbers of non-selected sentences is 19% in CHART, 15%
in eNotification, and 17% in WUT. These results show that our approach
can be applied to several different description types of requirements. They
also show that it is difficult to extract conditions and actions from 15% to
19% of the requirements. Conditions and actions descriptions are function

60

descriptions in the requirements. Therefore, from 15% to 19% of the require-
ments descriptions should be improved from the functions descriptions point
of view. These results also demonstrate the potential of our approach.

The threshold of syntactic similarity is defined as 0.30 in this paper. We
confirmed that this threshold is valid by checking our example sentences,
as shown in Table 3.16. Table 3.19 also shows the results of precision, re-
call, and F after syntactic similarity pre-processing. The F value of each of
them ranged from 0.70 to 0.77. These results also show the potential of our
approach.

3.4 Chapter Summary

We proposed the analysis technique, a semantic analysis technique of logics
retrieval for software testing from Japanese public sector’s specification doc-
uments concept, technique and presented the results of experiments. The
result was that the precision reached 0.93 to 0.97 and recall reached 0.65 to
0.79. That showed the analysis technique worked for retrieving condition log-
ics. We confirmed the analysis technique could retrieve logics from Japanese
natural language specification documents. When we target to retrieve condi-
tion logics, the number of keywords for conditions limited. Then the analysis
technique works for retrieval conditions from specification documents.

This result is the starting point to research about harmonization between
natural language processing and software testing. The related work [Mat12]
also proposed the benefits of retrieving logics from specification documents
into decision tables and surveyed the opportunities of the future of decision
table. The analysis technique can detect logic ambiguity of specification
documents and feedback measurements for document quality. The measure-
ments of specification documents are proposed by a related work [KKS08] as
quality metrics, for examples, document defect density, document reusability
and so on. The analysis technique can feedback to how we write manually
specification documents precisely. The more correct we can describe logic
on specification documents in advance, the less workload to fix of incorrect
logic.

Decision table testing is a technique to develop test cases from descrip-
tions of conditions and actions in software specification documents. For
Japanese language, propose, experiment and evaluate a semantic role labeling
technique of conditions and actions for automatic software test cases gener-

61

ation. Our approach uses natural language processing to select sentences
from the specification based on syntactic similarity, and then to determine
conditions and actions through dependency and case analysis. We got ex-
periment results higher precision and recall for different style of descriptions,
and the workload was reduced to one-sixth of manual work. Our results on
case studies show the effectiveness of our technique. We will research about
feedback for engineer to write documents easier understand by improving our
technique.

For English language, we proposed, experimented, and evaluated a tech-
nique for extracting the conditions and actions of test cases for automatic
software test case generation. Our approach uses natural language processing
to select sentences from the specifications on the basis of syntactic similarity
and then determines the conditions and actions through dependency and case
analysis. Experimental results showed that F-measure reached from 0.70 to
0.77 for different styles of description. Our results on case studies demon-
strate the effectiveness of our technique. For our future work, we will extend
our approach to give feedback to developers so that they can improve their
requirements descriptions.

62

Chapter 4

Detecting Logical
Inconsistencies in Requirements

4.1 Detecting Logical Inconsistencies by Clus-

tering Technique in Natural Language Re-

quirements

4.1.1 Detecting Logical Inconsistencies by Clustering
Technique in Natural Language Requirements

(a) An example for illustrating the approach

In this section, we present a practical approach to detecting logical inconsis-
tencies by clustering technique in natural language requirements (See Figure
4.1).

Figure 4.2 presents an example that we will use to discuss our approach.

The example requirement, REQ-ex, is: “If the programs start at the
same time, the program listed first in the menu has priority.”

The results of the parsing and dependency analysis are that “has” is
the root word. The root is defined in [DMM08] as “The root grammatical
relation points to the root of the sentence”. In other words, root is a main
word in the sentence. Continuing the example results of the parsing and
dependency analysis, “start” depends on “has”(root), and “programs”
and “time” depend on “start”. The word, “programs” is substantive

63

Natural language*
requirements

NLP*Parser

Semantic*role
labeling

Logic*
abstraction

chunks*logical*
formulas

Evaluate
logical*formulas

Checked*logical*
inconsistency

Labeling*
rules

Abstraction
grammar

Cluster
requirements

Figure 4.1: Framework for detecting logical inconsistencies by clustering tech-
nique in natural language requirements

Example requiremnt:
“ If the programs start at the same time,

the program listed first in the menu has priority. ”
Parsing and dependency apalysis:

“(If) (the programs) (start) (at the same time),
ROOT

(the program listed first in the menu) (has) (priority).”
Semantic role labeling:

condition action
Logical abstraction:

substantive complement ROOT
transform into propositional logic:

P1 & P2 -> P3
transform equivalent proposition logic:

-P1 | -P2 | P3
Evaluate logical formulas by input data patterns:

Patterns P1 P2 P3 Results of (-P1|-P2|P3)
1 True True True TRUE
2 True False True TRUE
3 True True False FALSE
4 True False False TRUE
5 False True True TRUE
6 False False True TRUE
7 False True False TRUE
8 False False False TRUE

Figure 4.2: Example

64

according to our logical abstraction grammar, and hence, “programs” is a
propositional variable of the clause that can be represented as, for example,
P1. The word,“time” is a complement according to our logical abstraction
grammar; accordingly, “time” is a propositional variable, represented as
P2, for example. The word, “has” is the root of the sentence; accordingly,
“has”is also a propositional variable, represented as P3, for example. Logical
abstraction grammar comes from the definitions of the meaning of the type
of dependency in the parser [DMM08]. Here we get the logical formula: P1
& P2 → P3. “&”,“|”, and“→”mean“and”,“or”, and“imply”.
To evaluate this logical formula, it is first translated by negation into -P1
| -P2 | P3. The symbol “-” means “not”, and P1, P2 and P3 take
values of true or false. In order to evaluate the negated logical formula, we
input data patterns shown in Figure 4.2. The results of the evaluation reveal
a logical inconsistency: pattern 3, i.e., P1=True, P2=True and P3=False,
returns false (-P1 | -P2 | P3).

(b) Clustering natural language requirements

We use the k-means clustering algorithm to cluster chunks of natural lan-
guage requirements. Figure 4.3 illustrates k-means clustering and clustering
paragraphs. k-means clustering is to partition n data points into k clusters
[KMN+02] and also is used to cluster natural languages. When a paragraph
of requirements is defined as a data in k-means clustering, each clusters can
be determined by similarity between the paragraphs at the results of k-means
clustering. Paragraphs are candidate chunks, because the ordinary writing
style is to separate different topics into paragraphs, sections. There are vague
separations of paragraphs in requirements. Then we focus on similarity be-
tween paragraphs by automatic calculation such as k-means clustering.

For instances, figure 4.3 illustrates when we apply k-means to paragraphs
from paragraph 1.1.1 to 2.1.4, we can get from cluster 1 to cluster 4 each
similarities by k-means algorithm. In this case, Sub A-1 and Sub A-2 have
similarity of their descriptions as cluster 1. Then the scope of detecting
logical inconsistency the cluster 1 is more suitable than scopes of Sub A-1
and Sub A-2. Other paragraphs are also clustered into each cluster from 2
to 4. In this example, there are four scopes of detecting logical consistency.

65

Paragraph Clustering
1.1 Requirement A

1.1.1 Sub A-1
1.1.2 Sub A-2

2.1 Requirement B
2.1.1 Sub B-1
2.1.2 Sub B-2
2.1.3 Sub B-3
2.1.4 Sub B-4

k-means Clustering

Cluster 1

Cluster 2

Cluster 3

Cluster 4

k

n data points

clusters

Figure 4.3: Clustering natural language requirements from Figure. 3 in
[KMN+02]

(c) Parsing and dependency analysis

A natural language processing (NLP) parser assigns numbers to the words
and punctuation in the natural language requirements. For example, REQ-
ex is parsed into“If-1 the-2 programs-3 start-4 at-5 the-6 same-7

time-8 ,-9 the-10 program-11 listed-12 first-13 in-14 the-15 menu-16

has-17 priority-18 .-19”. Here, integers are joined to each word or punc-
tuation mark with a hyphen.

The NLP parser also analyzes the dependencies among the words. Table
4.1 shows the results of the dependency analysis of the example. Each parser
defines a set of dependency types. We used the NLP parser [DMDS+14].

The meanings of dependency types are defined in [DMM08] as follows:

• prep: prepositional modifier. A prepositional modifier of a verb, ad-
jective, or noun is any prepositional phrase that serves to modify the
meaning of the verb, adjective, noun, or even another preposition.

• cop: copula. A copula is the relation between the complement of a
copular verb and the copular verb.

• dobj: direct object. The direct object of a VP is the noun phrase which
is the (accusative) object of the verb.

66

Table 4.1: Dependency Analysis

Dependency Type(*1) From To

root ROOT-0 has-17
mark start-4 If-1
det programs-3 the-2
nsubj start-4 programs-3
advcl has-17 start-4
case time-8 at-5
det time-8 the-6
amod time-8 same-7
nmod start-4 time-8
det program-11 the-10
nsubj has-17 program-11
acl program-11 listed-12
advmod listed-12 first-13
case menu-16 in-14
det menu-16 the-15
nmod listed-12 menu-16
dobj has-17 priority-18

• nsubj: nominal subject. A nominal subject is a noun phrase which is
the syntactic subject of a clause.

• nsubjpass: passive nominal subject. A passive nominal subject is a
noun phrase which is the syntactic subject of a passive clause.

• aux: auxiliary. An auxiliary of a clause is a non-main verb of the clause.

• auxpass: passive auxiliary. A passive auxiliary of a clause is a non-main
verb of the clause which contains the passive information.

• neg: negation modifier. The negation modifier is the relation between
a negation word and the word it modifies.

• root: root. The root grammatical relation points to the root of the
sentence.

67

(d) Semantic Role Labeling

The purpose of semantic role labeling in this paper is to label “actions”
and “conditions” in a sentence. Even though requirements are written in
natural language, the style of their descriptions will likely be formalized to
some extent. Requirements are used to inform stakeholders or force him/her
to act in accordance with them. Hence, their descriptions consist of condition
sub clauses and action sub clauses, for example, “If (a) is (b), then (c) is
(d)”, where clauses (a) to (d) represent words and phrases. At this point,
we label the requirements with semantic roles. The labeling is defined as
follows:

• S is a sentence.

• i is a number of each words parsed from S .

• m(i) is a word parsed from S .

• T is the number of root of S .

• m(T) is the root of S .

• D(i) is the word number of m(i) depending on.

• C(i) is the type description of m(i) depending on.

• B(i) is a clause constructed from all words depending on m(i) as the
clause ending word.

• Cn indicates“conditions” and Ac indicates“actions” as attributes
of B.

• R is a set of semantic role labeling rules.

– Ra is the subset of action labeling rules.

• Ra1: C(i) is one of“prep”,“cop”,“dobj”,“nsubj”,“nsubjpass”,
“aux”, “auxpass”, “neg”, “ROOT”.

– Rc is the complementary subset of condition labeling rules.

• Rc1:not Ra1

68

Algorithm 4 Semantic role labeling algorithm

Require: Input: Results of parsing, dependency analysis Output: “ac-
tions” and “conditions” clauses

Ensure:
1: Search ROOT word
2: Search m(i) in case D(i)=T
3: for all F door all m(i):D(i)=T
4: construct B(i) with m(i) as the clause ending word
5: label B(i) as “actions” in the case of C(i) ⊆ Ra
6: label B(i) as “conditions” in the case of C(i) ⊆ Rc
7: end for

These definitions are used to interpret the requirements that have been
parsed and whose dependencies have been analyzed as in Table 4.1. Algo-
rithm 4 shows the semantic role labeling algorithm. The first step is to search
for the root word. The next step is to search for all the words that depend
on the root word. Clauses are constructed from the dependencies on the
root word, and are labeled according to the “actions” and “conditions”
rules. The rules depend on the language and the requirements. We have
constructed ones for English and Japanese. Moreover, each language has
its own natural language parser and dependency types. Ra1 is a rule that
when dependency types are one of “prep”, “cop”, “dobj”, “nsubj”,
“nsubjpass”,“aux”,“auxpass”,“neg”, and“ROOT” the words are
labeled “action”.

All of the dependency types identify semantic label as actions when their
dependence is on the root word. On the other hand, an adverbial clause
modifier, i.e., “advcl” is a typical dependency type for labels identified as
conditions. An adverbial clause modifier of a VP or S is a clause modifying
the verb [DMM08]. The output consists of clauses labeled as“actions”and
“conditions”.

Figure 4.4 shows how the example requirement is assigned semantic role
labels. The results of the parsing and dependency analysis is that“has” is
m(T), the root word. The words,“priority”,“program”and“start”have
dependency to“has”. For instance, the type of dependency from“priority”
to“has”is“dobj”; thus,“priority”is determined as part of the action from
rule Ra1. “program” and all of its dependent words are also determined
as part of the action from Ra1. The word, “start”, is not determined as

69

1-If2-the

3-programs

4-start

5-at

6-the

7-same 8-time

10-the

11-program12-listed

13-first
14-in

15-the 16-menu

17-has
18-priority

advcl (has-17 , start-4)

nsubj (has-17 , program-11)

dobj (has-17 , priority-18)

“Conditions” role label

“Actions” role labels

Figure 4.4: Example of semantic role labeling

part of Ra1; thus, it is determined as part of the condition from rule Rc1.

(e) Abstraction Grammar of the Structured English

Figure 4.5 lists the abstraction grammar of the structured English. The
highlighted characteristics of this grammar are as follows: action and con-
dition sub clauses, root word, and propositional variables. By applying this
grammar, requirements can be translated into logical abstractions. A similar
grammar is proposed in [YCC15]. It supports present, future and passive
tenses with correct syntax according to English grammar. In this paper, we
focus on action and condition sub clauses first. After action and condition
sub clauses are determined, propositional variables are determined in the
root word, substantive, and complement. The root word is determined by
dependency analysis and is defined as a propositional variable representing

70

the action clause. First-order logic is one way to translate natural language
into logical formulas, and some translation techniques use first order logic;
however, their results are too complex for the purpose of finding logical in-
consistencies. In first order logic translation, every word is translated into a
function. By contrast, proposition logic is sufficient for finding logical incon-
sistencies. That is why we choose to use propositional variables and logic.
A substantive is defined as a propositional variable representing substantive
phrases in the condition sub clause. The complement is defined as a proposi-
tional variable representing complement phrases in the condition sub clause.
Propositional logic formulas are then defined using these variables. Note the
current grammar only supports “if” and “when” subordinators, and the
case studies’ requirements only have these subordinators.

The grammar was constructed from the description style of the require-
ments in the same way as the semantic role labeling. Requirements are formal
at some level. They are used to inform stakeholders and force them to act
accordingly. Hence, their style consists of condition sub clauses and action
sub clauses.

Now let us show how the grammar works in more detail by using the
sample sentence as an example. The sentence consists of two sub clauses,
“If the programs start at the same time” and “the program listed first in
the menu has priority” The root word “has” is identified by dependency
analysis. The clause “the program listed first in the menu has priority”
is an action subclause, and the root word “has” is identified as a propo-
sitional variable. The other clause has the subordinator “if”; this clause
is identified as a condition subclause. The condition subclause is divided up
into (subordinator).(clause) and (subject).(predicate) as the abstract gram-
mar description. Finally, the subject is translated into substantives, and
the word “programs” is identified as a propositional variable representing
propositional logic. In the same way, the word “time” is identified as a
propositional variable representing propositional logic.

(f) Evaluate logical formulas

Logical formulas are generated by using the abstraction grammar, for exam-
ple, P & Q → R and S | Q & T → U. In order to evaluate all logical formulas
to find inconsistencies, the logical formulas are translated into their negation
and the product of the negations is taken, for example, (-P | -Q | R) & (-S
& -Q | -T | U). In this example, the propositional variables are P, Q, R, S,

71

sentence ::= (action_subclause,)�.(, condition_subclause)�
action_subclause ::= clauses. (ROOT(proposional variable))
condtion_subclause ::= subclause
subclause ::= (subordinator).(clauses)
clauses ::= (clause).[, (conjunction).(clause)]
clause ::= (subject).(predicate)
subject ::= substantives
substantives ::= (substantive).[(conjunction).(substantives)]
substantive ::= propositional variable
predicates ::= [modality].predicate
predicate ::= verb | (be).participle | (be).(complement)
participle ::= (verb).(ed) | (verb).(ing)
complement ::= propositional variable
modality ::= shall |should |will |would |can |could |must
subordinator ::= if | when
conjunction ::= and | or

Figure 4.5: Abstraction Grammar

72

T and U. Q appears in each formula. Then, patterns of TRUE or FALSE for
all propositional variables are generated as input data of logical formulas to
check whole logical formulas. If the result of some pattern is false, there are
logical inconsistencies in the particular data patterns and the requirements
sentence is considered inconsistent.

We used combinatorial testing to create input data patterns for evalua-
tion of the logical formulas. The SAT solver is a program for checking logical
constraints [HPSS06],[ES04],[HPS05]. The solver checks validity and consis-
tency. Validity and consistency are really two ways of looking at the same
thing and each may be described in terms of syntax or semantics [BHvM09].
SAT also has semantic versions of validity and consistency that are defined in
terms of the concept of structure [BHvM09]. However, it only checks satisfi-
ability as to whether there is at least one data pattern that solves the logical
formula. That means it is insufficient for our objective of finding logical
inconsistencies in data patterns and raising a false flag on all of the logical
formulas. We must also evaluate the logical formulas using all combinations
of input data patterns or by using combinatorial testing.

(g) Input data patterns

We evaluated the logical formulas by using combinatorial testing (CT) in-
stead of checking all patterns of variables because the number of patterns is
so large. Given n propositional variables, the number of patterns is 2 to the
n-th power. For example, there are 85 propositional variables in section 2.2
of the CHART case study. The number of these variables combinations is
282, i.e., 4.8∗1024. This is not a practical number of data patterns in which to
find logical inconsistencies using the present computer resources. CT is the
solution for this problem. CT can detect failures triggered by interactions of
parameters in the software under test (SUT) with a covering array test suite
generated by some sampling mechanism. CT has the following characteris-
tics [NL11]: (1) it creates test cases by selecting values for parameters and by
combining these values to form a covering array; (2) it uses a covering array
as the test suite; (3) not every parameter of SUT can trigger a fault, and
some faults can be exposed by testing interactions among a small number of
parameters; (4) being a specification-based testing technique, CT requires no
knowledge about the implementation of SUT; (5) tests can be automatically
generated, which is a key to CT gaining in popularity. Characteristic (3) is
not suitable for our framework. That is, even if the results of evaluation for

73

logical formulas have no inconsistency by using data which CT produced,
that is not a proof of no inconsistency. Thus, we only use CT as a way of
creating input data patterns and finding inconsistencies, not as a means of
guaranteeing there are none. Our approach uses pairwise selection [NL11]
which is a CT technique.

4.1.2 Experiments

We implemented for a proof-of-concept prototype of our framework. We used
the Natural Language Processing parser [MMM06] and dependency analy-
sis on natural language requirements. We developed our own tools using
the Python natural language tool kit [Pro15] for the semantic role labeling,
abstraction grammar, and evaluation of the logical formulas.

We experimented the prototype on three case studies of natural language
requirements.

• CHART: The purpose of this design document is to provide implemen-
tation details that form the basis for the software coding. The details
presented in this design fit within the high level approach documented
in the high level design document [Adm03]. We used sections 2-1, 2-2
and 2-3 describing general system functionalities.

• eNotification: The purpose of this document is to define the electronic
transmission of data exchanged between a party that has to get a legally
required notice, e.g. a public procurement notice, published by a jour-
nal or newspaper [fE12]. We used section 5-1-1 of the business require-
ments statements.

• WUT: The Water Use Tracking (WUT) System’s system requirements
specifications is a collection of artifacts that were developed separately
during the implementation phase of the project [Dis04]. We used the
functional requirements section (4-1-1-1).

The experiments used two types of chunk: paragraph one chunked by para-
graph number and clustered one chunked by the k-means algorithm. In order
to compare the effects of varying number of paragraphs and number of clus-
ters, we set different numbers of paragraphs on the number of clusters. We
set the number of clusters in each case study to two and got the following
clusters:

74

• CHART cluster 1 (C1) includes sections 2-1 and 2-2-1, and cluster 2
(C2) includes sections 2-2-2 to 2-3.

• eNotification (eNot) C1 includes functions numbering from 1 to 19,
whereas C2 includes those from 20 to 28.

• WUT C1 includes functions 1 to 6, C2 includes functions 7 to 10.

Table 4.2 shows the chunked-by-paragraph results and the chunked-by-
clustering results in case study CHART. The columns show the number of
each artifact’s instances. Table 4.3 shows the chunked-by-paragraph results
and the chunked-by-clustering results in case study eNotification (eNot). Ta-
ble 4.4 shows the chunked-by-paragraph results and the chunked-by-clustering
results in case study WUT.

The number of requirements is the number of sentences used in the ex-
periments. Each requirement is transformed into logical formulas and propo-
sitional variables. The following is an example of a requirement and corre-
sponding logical formula in the CHART C1 case study: Requirement: “If
a layer is due for update, the client’s browser will initiate remote scripting
request to retrieve a new VML layer and replace the current layer.”Logical
formula: (-layer — -update — initiate) The words“layer”,“update”and
“initiate”are just representative words of the propositional logic transformed
from the requirements, as in Figure 4.2. This formula is to be evaluated with
input data patterns. For example, when the input data pattern is true, true
and false, the logical formula is false.

The data input patterns were created by CT selection of true and false for
each propositional variable. After evaluating the logical formulas by using
these input data patterns, we calculated the inconsistency hit ratio (number
of inconsistencies divided by number of input patterns).

4.1.3 Evaluations

The inconsistency hit ratios in Tables 4.2 show that our clustering approach
could find more logical inconsistencies than paragraph chunking in the CHART
case study. Our clustering approach found 19 total inconsistencies for which
the inconsistency hit ratio was 0.719. By contrast, the chunked-by-paragraph

1Patterns (pairwise)
2Number of inconsistencies calculated from number of input patterns

75

Table 4.2: CHART case study

Paragraphs Clustering
2-1 2-2 2-3 C1 C2

Number of requirements 43 70 10 96 27
Number of logical formulas 33 85 18 95 41
Number of proposit. variables 43 82 13 106 32
Number of input patterns1 8 8 8 16 8
Number of inconsistencies 4 4 4 15 4
Total number of inconsistencies 12 19
Inconsistency hit ratio2 0.583 0.719

Table 4.3: eNot case study

Paragraphs Clustering
C1 C2

Number of requirements 46 37 9
Number of logical formulas 36 33 8
Number of proposit. variables 55 46 9
Number of input patterns1 8 8 8
Number of inconsistencies 4 4 3
Total number of inconsistencies 4 7
Inconsistency hit ratio2 0.500 0.438

Table 4.4: WUT case study

Paragraphs Clustering
C1 C2

Number of requirements 99 90 9
Number of logical formulas 83 78 12
Number of proposit. variables 64 56 8
Number of input patterns1 8 8 4
Number of inconsistencies 4 4 2
Total number of inconsistencies 4 6
Inconsistency hit ratio2 0.500 0.500

76

approach found 12 total inconsistencies from a total of 24 data inputs, for
which the inconsistency hit ratio was 0.583. Table 4.3 shows the eNotification
case study. Our clustering approach found 7 total inconsistencies more than 4
total inconsistencies by chunked-by-paragraph. The eNotification case study
had an inconsistency hit ratio of 0.438 chunked by clustering and 0.500 for
chunked by paragraph. Table 4.4 shows the WUT case study. Our clustering
approach found 6 total inconsistencies more than 4 total inconsistencies by
chunked-by-paragraph. The WUT case study had an inconsistency hit ratio
of 0.500 for both chunked by paragraph and chunked by clustering.

The clustering approach found more total numbers of logical inconsis-
tencies in all case studies. Even when it has fewer chunks than paragraph
approach in CHART case study, the clustering approach found more num-
bers of logical inconsistencies. These results promise for usefulness of our
approach in detecting logical inconsistencies.

Each case study has its own sentence style. CHART has a paragraph style,
and its sentences have subjects and predicates. The function requirements
are described in a number of sentences. eNotification has a list style: each
function requirement is described in one sentence. WUT has an imperative
style; its function description sentences do not have subjects but do have
predicates. The number of propositional variables is an indication of the
difference between these sentence styles. In CHART and eNotification, the
propositional variables outnumber the requirements. In WUT, however, the
number of propositional variables is smaller than the number of requirements.

Even though the requirements consisted of only dozens of sentences, there
were a huge number of propositional variable combinations. For an example,
CHART C1 has 2106, i.e., 8.1∗1031, combinations of variables. In the require-
ments, stakeholders describe their desires in terms of scenarios that cover up
a huge amount of the total logic. Underneath them are vast arrays of logical
combinations. To find logical inconsistencies from the vast arrays of logical
combinations, our approach uses pairwise selection and the SAT solver to
create a feasible amount of input data. When we tried only pairwise (true,
false) selection on each propositional variable, the evaluations were mostly
false because the logical formulas were so complex. Thus we used the SAT
solver to select“base” input data patterns with which the logical formulas
produce true. After that, we used pairwise selection on the base patterns.

In order to reproduce the experiments according with our framework de-
scribed, we discuss tools, steps and execution time. We used Minisat which
is one of state-of-the-art SAT solver [ES04], [VAF10]. We used Stanford NLP

77

parser [DMM08], [DMDS+14] for parsing sentences in requirements. We im-
plemented semantic role labeling, abstraction grammar, and evaluation of
logical formulas by Python with the natural language tool kit [Pro15]. We
used Minisat for SAT solver, Allpairs for pairwise tool [Bac16] in creating
feasible amount of input data. The execution time of each programs from
seconds to minutes. We implemented as we mentioned, however, some of in-
consistency checking processes have manual execution, e.g. copy files, start
programs, etc. Then, total time of checking process depends on case studies.
Total time of checking was about one hour at maximum so far.

In the experiments, we fixed the number of clusters created by the k-
means clustering, because we wanted to compare the number of paragraphs
of requirements and number of clusters of requirements. There is another
clustering algorithm that calculate the number of clusters automatically like
as x-means. The x-means is an extending k-means and has a new algorithm
that quickly estimates k [PM00]. When this kind of automatic clustering
algorithm cluster chunks of requirements by results of morphological and
dependency analysis of them, our framework would be able to use it.

There is another framework for handling inconsistencies in natural lan-
guage requirements [GZ05]; like ours, it uses an NLP parser and transforms
requirements into logical formulas. The difference is that framework does not
use chunks of requirements and transforms sentences into first order logic in
order to find logical inconsistencies. Our approach clusters chunks of require-
ments and uses propositional logic. We will discuss the other related work
in the next section.

4.2 Chapter Summary

We presented a practical approach to detecting logical inconsistencies by
clustering technique in natural language requirements. The method uses k-
means clustering to cluster chunks of the requirements and labeling rules to
derive“conditions”and“actions”as semantic roles from the requirements
by using natural language processing. We also constructed an abstraction
grammar to transform the conditions and actions into logical formulas. By
evaluating the logical formulas with input data patterns, we can find logical
inconsistencies. We experimented with this approach on three case studies
of requirements written in natural English. The results indicate that our
approach can find logical inconsistencies.

78

In the future, we will use our framework to find vague requirements and
provide feedback in early stage of the system development process. In addi-
tion, we will construct new rules and grammar for requirements descriptions.
We will contribute to requirement engineering by developing new means to
check whether descriptions have vague or inconsistent requirements.

79

Chapter 5

Applications of our technique

5.1 Automatic Generation of UTP Models

from Requirements in Natural Language

5.1.1 Background and Approach

(a) UML Testing Profile

The UTP is a standardized language based on OMG’s UML. UML is for
designing, visualizing, specifying, analyzing, constructing, and documenting
the artifacts commonly used. UTP is required for various testing approaches,
in particular model-based testing (MBT) approaches. MBT specifications ex-
pressed with the UML Testing Profile are independent to any methodology,
domain, or type of system [SSB15]. MBT is a software testing approach by
using techniques and methodologies in Model Driven Development (MDD).
Requirements are transferred into models by using UML on MDD. Require-
ments are also transferred into UTP models by using UTP. Modeling can
contribute to show all the necessary functions, share the design of software,
and reduce the ambiguity of design descriptions. Hence, UML and UTP are
used to design, develop, and test mission critical software.

Figure 5.1 shows the structure in UTP. In [WPG+15], UTP is made as
follows:

• Domain-independent test modeling

– Test basis

80

Test Architecture
•System Under Test
•Test Component
etc.

Test Behavior
•Test Case
•Time-related Concepts
etc.

Test Data
•Data Partition
•Data Pool
etc.

Test Management
•Test Planning and
Scheduling

etc.

Figure 5.1: UTP definition overview

– Test specifications

• Test case specifications

– Abstract/concrete vs. logical/technical

• Test data specifications

• Test deployment

• Test result visualization

• Combination with other profiles

Figure 5.2 shows UTP test cases [FH14] as an example of test case spec-
ifications from the requirements ”Users click the link as LinkNew.jsp” in
natural language. The data of the sequence diagram in the UTP test cases
consist of classes, actions and attributes, and the order of actions [OMG14].
In figure 5.2, the class is ”Users”. At activity 01 in figure 5.2, the action is
”click”, and the attributes are ”link” and ”LinkNew.jsp”.

(b) Natural Language Processing

NLP Techniques include parsing, morphological analysis, and so on. NLP
techniques are used in the analysis of software documents. There are four
steps in NLP:

81

Users System

click(“link”,”LinkNew.jsp”)

SetField(“name”,”TestLink”)

SetField(“URL”,”www.testlink.com”)

SetField(“Description”,”A test link”)

click(“button”,”insert”)

Activity 01

Activity 03

Figure 5.2: Example UTP test cases for editing the figure in [FH14]

1. Morphological analysis: This is to parse a sentence to words and tag
their parts-of-speech.

2. Dependency analysis: This is to determine dependencies of the words
that have been parsed as the results of morphological analysis.

3. Semantic analysis: This is to determine the semantics of the words and
phrases.

4. Context analysis: This is to perform analysis over multiple sentences.

Figure 5.3 shows the results of morphological analysis and dependency
analysis of “The system stores the new link” as a tree. For example, the
sentence consists of NP and VP, and NP consists of DT and NN. S: sentence,
NP: noun phrase, VP: verb phrase, NN: noun, VBZ: verb behavior, and so
on.

82

The system stores the new link.

DT NN VBZ DT JJ NN

NP

NP VP

S

Figure 5.3: Parse tree of “The system stores the new link.”

(c) Approach

We present our approach, Automatic Generation of UTP Models from Re-
quirements in Natural Language as shown figure 5.4.

When we define the following:

• S are sentences of the requirements in natural languages,

• U(cl, ac, ar) are activities of the sequence diagram in UTP test cases
which consist of classes (cl), actions (ac), and attributes (at), and

• G are generation rules from S (requirements) into U (classes, actions,
and attributes).

Our approach is to define G in equation (5.1).

U(cl, ac, at) = G× S (5.1)

Our approach is to develop the generation rules on the basis of class
generation rules from requirements [KSKD13] as a related work.

83

Requirements
in natural language

UML
models

interprets

derive

System Code
Derivation

System (Under Test)

UTP
models

interprets

derive

Test Code
Generation

Test Execution

System
Development
Engineer

requirements, use cases,
interfaces, type definitions

Test
Engineer

Automatic
Generation

Figure 5.4: Generation of UTP from requirement by editing the figure in
[OMG14]

5.1.2 Automatic Generation of UTP Models from Re-
quirements

(a) Overview

Figure 5.5 shows a flow of the automatic generation of UTP from require-
ments in natural language. From the first step of the flow, we get parsed
text, parts-of-speech, and dependency from requirements by using natural
language processing techniques. In the next steps, we generate UTP models
from them by applying rules of generation.

(b) Rules of Generation

In related work [FH14], the data of class diagrams are generated from re-
quirements by using natural language processing. The rules are that classes
be generated from noun words, that the class attributes be generated from
the adjectives of the noun words, and that the class actions be generated
from the verbs of the noun words. When we generate the UTP models, the
definition of the class diagrams is the same as the related work. We then
can reuse the rules in our generation technique. In UTP models, however,

84

Figure 5.5: Automatic generation of UTP models from requirements in nat-
ural language

messages of the sequences are necessary. In order to get messages of the
sequences, it is necessary to get actions between the classes. We develop new
rules to get action information between classes. The approach toward the
rules is that the verb between the names of classes is the actions between the
classes.

UTP model generation rules are:

• Rule #1: Class generation rule

a. Subject is generated to class

b. Verb is generated to action

c. Complement is argument

d. Structure of text as tree bank expression as (5.2). The asterisk
in the parenthesis means any part-of-speech. When there are re-
quirements texts, which have this structure,

∗ NN1 is generated to class

∗ VBZ is generated to action

85

 * (subject) * (verb) * (adjective) *
cardinality:
[0..] [1..] [0..] [1..] [0..] [1..] [0..]

 * NN1 * VBZ * NN2 *

NP

NP VP

S

Figure 5.6: Parse tree of a generation rule

∗ NN2 is generated to attribute

S(NP ((∗)(NN1)(∗))V P (V BZ)(NP ((∗)(NN2)(∗))) (5.2)

• Rule #2: Messages between classes generation rule

a. When NN1 and NN2 have already been determined as classes,
VBZ is the message from NN1 to NN2

• Rule #3: Order of sequence is equal to order of description in the
requirements

Figure 5.6 shows parsed tree of (5.2).

5.1.3 Experiments

(a) Implementation

We implemented a proof-of-concept prototype of our approach. We used
the English Natural Language Processing parser [DMM08] and dependency

86

Algorithm 5 Generation of UTP models from requirements in natural lan-
guage
Require: Input: documents which have been morphologically analyzed and dependency

parsed
PT: Parsed Tree in requirements
R1: Generation rule #1
RS: Generation rule #1 structure of text as pattern
R2: Generation rule #2

Ensure:
1: for all PT do
2: mat← return(searchRSforallPT)
3: if mat == TRUE then
4: mat2← return(searchNNforallPTbyR1)
5: if mat2 == TRUE then
6: determine state and store the NN as ”subject” (NN1)
7: mat3← return(searchVBZforallPTbyR1)
8: if mat3 == TRUE then
9: determine the VBZ as ”verb”
10: mat4← return(searchNNforallPTbyR1)
11: if mat4 == TRUE then
12: determine and store the NN as ”adjective”(NN2)
13: end if
14: end if
15: end if
16: end if
17: end for
18: for all PT do
19: mat← return(searchRSforallPT)
20: if mat == TRUE then
21: mat2← return(searchNNforallPTbyR1)
22: if mat2 == TRUE then
23: determine and store the NN as ”subject”(NN1)
24: mat5← return(searchtheNNinNN1andNN2byR2)
25: if mat5 == TRUE then
26: mat3← return(searchVBZforallPTbyR1)
27: if mat3 == TRUE then
28: mat4← return(searchNNforallPTbyR1)
29: if mat4 == TRUE then
30: mat6← return(searchtheNNinNN1andNN2byR2)
31: if mat4 == TRUE then
32: determine the VBZ is ”message”
33: end if
34: end if
35: end if
36: end if
37: end if
38: end if
39: end for

87

Table 5.1: Requirements in CHART system [Adm03].
SEQ# Requirements of the section 2-1 in [Adm03].

1: The Listener provides a conduit between the CHART II application and the
Mapping software.

2: The Listener detects CHART II CORBA events and writes the appropriate
data to the Mapping database as events come in.

3: The existing Listener, called the CHARTWeb Listener, already listens for
CORBA events from CHART II pertaining to Traffic Events, DMSs, and
TSSs.

4: They also have a ”lollipop” interface icon extending up from them, as some-
times the grey does not show up in printed copies.

5: The class diagram shows a threesome of classes for each of the object types
to be handled.

6: The Module is the top-level class for each object type.
7: The Module sets up the PushReceiver class to receive CORBA events from

the CHART II Event Service pertaining to the appropriate object type, and
upon receipt of these CORBA events the PushReceiver calls the appropriate
helper methods of the DatabaseHelper to make the appropriate updates to
the web database.

8: Each resource has a unique ID by which it is referred to in future CORBA
Events.

9: Note that resources are not routinely deleted when a resource departs the
scene; the Departure TimeStamp will be updated and the record will be left
intact.

10: When a traffic event is finally deleted, its associated resources will be deleted
as well.

11: The message indication will indicate only whether there is a non-default
message on the HAR or not.

12: It will not provide an indication of what the message is, since it is an audio
message.

13: This is because of the non-guaranteed nature of CORBA events, which raises
the possibility that the local database may get out of synch with the CHART
II database.

14: A refresh for a particular class of objects will be completed in one database
transaction, so that in the likely case that nothing has changed, there will
be no ”flicker” of activity detectable through the web database.

15: Event processing for all object types will be made more robust, in that if
a CORBA Event is received pertaining to an update for a device or traffic
event that does not exist in the Web database, the Listener will attempt to
actively collect the missing item data from the appropriate CHART II service
and then proceed with the update if necessary.

88

Table 5.2: Template for the Use Case in [FH14].

Name UC-01. Add new link

Main sequence 1. The user selects the option: add a new link.

2. The system selects the“top”category and
shows the form to introduce the information
of a link (SR-02).

3. The user introduces information of the new
link and presses the insert button.

4. The system stores the new link.

Errors and alterna-
tives

4. If the link name or URL link is empty, the
system shows an error message and asks for
the value again.

Post condition The new link is stored into the system.

analysis [DMDS+14] on natural language requirements. We developed our
own tools using the Python natural language tool kit [Pro15] in accordance
with the algorithm 5.

(b) Experiments

We evaluate our prototype in two case studies:

• Requirements: ”UC-01. Add new link” [GEMT06]. Table 5.2 shows
the requirements. We call this case study GEN.

• Section 2-1 of requirements: ”a detailed system design specification
for the coordinated highways action response team (CHART) mapping
applications” [Adm03]. Table 5.1 shows the requirements. We call this
case study CHART.

GEN is a template use case in related work [GEMT06]. CHART is the
requirements of the coordinated highways action response team.

We also evaluate the required time to generate UTP models from require-
ments in natural language. We compare a manual approach to our automatic
approach. The manual approach is executed by a software testing expert who
has 21 year’s experience in software development and testing. The automatic
approach is executed by the proof-of-concept prototype of our approach.

89

5.1.4 Evaluations

We have evaluated the results of the automatically generated UTP models
by software testing experts’ reviews. The evaluation methods for each class,
action, and attribute are as follows:

• If the experiments generate classes, actions, and attributes, and the
experts review results that shall be generated, the evaluation is True
Positive (TP).

• If the experiments generate classes, actions, and attributes, and the
experts review results that shall not be generated, the evaluation is
False Positive (FP).

• If the experiments do not generate classes, actions, and attributes, and
the experts review results that shall be generated, the evaluation is
False Negative (FN).

We count the number of TP, FP, and FN. We calculate Precision, Recall,
and F-measure as (5.3)，(5.4)，and (5.5).

Precision =
TP

(TP + FP)
(5.3)

Recall =
TP

(TP + FN)
(5.4)

F −Measure = 2× Precision× Recall

(Precision+Recall)
(5.5)

Table 5.3 shows the expert’s evaluation of the results of the GEN and
CHART case studies. Table 5.4 shows the experiment results of the GEN
and CHART case studies.

Comparing minimum values of precision and recall at GEN and CHART
experiments, the values at GEN are greater than the values at CHART. The
requirements of GEN are originally described for engineers to derive UTP
models manually, so this result shows that our automatic UTP models gen-
eration technique can re-produce people’s derivations work. As a result of
CHART experiments, it is also greater than or equal to 0.75, except for the
values of attributes in rule #1. This also shows promise for our technique.
The reason for 0.56 of rule #1 about attributes during the CHART exper-
iments is the difference in the text tree between structures as an equation

90

Table 5.3: Expert Evaluation of Results
Case
study

Number
of gen-
erated

False
Positive

False
Nega-
tive

GEN
Rule #1

Class 4 0 1
Action 3 1 1
Attribute 3 1 1

Rule
#2

Message 1 0 0

CHART
Rule #1

Class 13 3 3
Action 12 4 4
Attribute 9 7 7

Rule
#2

Message 6 2 1

Table 5.4: Experiment Results
Case
study

Precision Recall F-
Measure

GEN
Rule #1

Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule
#2

Message 1.00 1.00 1.00

CHART
Rule #1

Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule
#2

Message 1.00 1.00 1.00

Table 5.5: Required time comparison (minutes)
Activities Manual Our approach

GEN CHART GEN CHART

Requirements analysis 28 62 1 1
UTP models deriving 8 33 1 1
Total 36 95 2 2
Reduction 94.4% 97.9%

91

(5.2) and CHART’s text structure. Attributes of UTP models should be gen-
erated from NN2 in our generation rule; however, there are more complex
structures such as multiple NP in CHART’s requirements. Another reason is
due to the writing style of the case study. The sentences are simply written
as subject (NP) and verb (VP) and are continued with more conditions and
actions for other information in the sentences.

Our approach is more effective for simple sentences in the requirements.
Expression 5.2 is based on a simple sentence. Our approach is also effective
for compound sentences. Compound sentences consist of two or more simple
sentences with coordinating conjunctions; for example, and, or, but, and so
on. Compound sentences have the same structure as simple sentences. We
can apply our approach to each simple sentence in compound sentences. It
is, however, difficult to apply our approach to complex sentences. Complex
sentences consist of two or more simple sentences with subordinating con-
junctions; for example, when, if, while, and so on. In complex sentences,
the subject, verb, or compliment is missing from each of the simple sen-
tences. Complex sentences do not have the same structure as simple sen-
tences. Therefore, it is difficult to apply rule #1 of our approach to complex
sentences.

Table 5.5 shows comparison results between the manual approach and our
approach in required time to generate UTP models. Activities of generation
UTMP models were divided into requirements analysis and derived UTP
models. Experiment environments have a 2.60 GHz CPU, 8GB memory, and
use a natural language tool kit [Pro15]. The manual approach is executed by a
software testing expert who has 21 years experiences in software development
and testing. Our approach reduces time from 94.4% to 97.9% corresponding
with the manual generation of UTP models. This required time does not
include the implementation time of our approach. The implementation time
is not continuous work. We therefore ignore the implementation time in this
evaluation. The results of the required time reduction show the effectiveness
of our approach.

We determined that our technique could generate UTP models automat-
ically from requirements in natural language with improvements in the text
tree. As for future research, we will develop more generation rules and apply
more actual industry case studies.

92

5.2 Automatic Generation of Test Cases Us-

ing Document Analysis Techniques

5.2.1 Motivations in Automated Creation of Software
Testing Cases

Software testing verifies and validates software as being consistencies with
the requirements and design specifications. Effective software testing can
improve software quality, but it is expensive. As software becomes larger and
complex, the costs of software testing can rise exponentially. While both the
time for delivery and the work of software maintenance are must be reduced,
one key is to improve the efficiency of a software testing. The activities of
software testing consist of designing, refining and executing test cases [Uet13].
The activities of testing design and refinement are both important, because
they impact the effectiveness and efficiency of software testing. Test cases
are created during the test design work, so if too few test cases are created,
then the functions of the software are not tested sufficiently and the defects
will remain undetected in the software [Uet13].

In this paper, we target functional tests of Web application in software
maintenance for the automatic generation of test cases using document analy-
sis technique. Currently, test cases are usually created in three steps. Testing
engineers (S1) read the specifications manually, (S2) identify the input pa-
rameters and values for the Web screens input parameters, and (S3) apply
specialized techniques such as boundary analysis using their expert knowl-
edge. The quality and coverage of the resulting test cases depends upon the
skills of the testing engineers, leading to these potential problems [MMT13]:
* Improper understanding of the specifications. Misreading or overlooked
documents, basically due to human errors can result in some parameters and
values for the test cases being not properly identified. * Missing parameters
and values. In design documents, the types of the parameters are described
as character strings, numerical values, dates and so on. Testing engineers cre-
ate test values of the parameters by using their own knowledge. * Insufficient
combinatorial test cases. It is difficult to manually create combinatorial test
cases, again depending upon individual skills in understanding the required
test coverage. 　These kinds of problems motivate automatic generation of
software test cases.

93

5.2.2 Creating Test Cases by Using Document Analy-
sis Techniques

　 In this section, we discuss about our method to address these problems,
reducing the need to depend upon individual skills and using document anal-
ysis techniques instead.

(a) Overview

　Figure 5.7 shows our approach to automatic generation of test cases from
the design documents. The document analysis tool reads and analyzes the
design documents. Examples of design documents include data specifications
for screens, screens design specifications, and event process specifications.
By using text parsers to analyze the documents, the analysis tool can output
parameters and values with boundary analysis, event conditions, events and
expected results. Then our pairwise testing tool uses the parameters and
values to create combinatorial test cases [STBF11]. We applied our method
to Japanese documents in this paper.

The document analysis tool divides its results for the test cases into two
parts. The first part is the test data and conditions and the second part is
the expected results. The test data and conditions consist of parameters and
values, event conditions and events. The expected results are the expected
results of execution with the test data and conditions and are described at
the bottom of the test cases matrix.

(b) Problems in automatic generation of test cases from docu-
ments

　 In document-based automatic test case generation, we have two prob-
lems: (P1) How to automatically extract the parameter values, such as test
conditions and test values, from document set; (P2) How to infer the test
conditions and test data that are not explicitly described. The descriptions
in the documents have different formats in each project and usually contain
natural language descriptions for which information extraction is not easy.
So we need flexible information extraction techniques to extract the param-
eter values from the documents. In addition, the target documents do not
explicitly mention all of the required parameter values. This is because such
documents are not intended to describe how to test the system. The informa-

94

Screen
Specs

Screen
Data

Specs

#1 #2 ---
-

#n #n
+1

#n
+2

-

#m

Test data
and
conditions

Pa
ra

m
s

/
va

lu
es

- - - - �

�

�

�

co
nd

iti
o

ns

�

� �

� �

� �

�

ev
en

ts

�

�

�

� �

�

�

�

Expected
results

Ex
pe

ct
ed

re

su
lts

�

�

�

� - - - -

Event
lists

Documents

Pair-
wiseIntegration test cases matrix

Develop by
Doc Analyze

Tool

Develop by
pair-wise tool

Boundary
Analysis

Figure 5.7: Automatic creating test cases by using document analysis tech-
niques

95

Extract parameters, values,
dependencies and constraints

Generation of parameter
values

Tailor-made parser
or extractor

Knowledge base
Pre-defined parameter values

! Parameters and values
! Conditions
! Events

Target documents

Figure 5.8: Overview of automatic extracting parameters and values from
design documents

tion that is not described explicitly needs to be complemented or extracted
by knowledge about testing and about the systems under test. The extracted
information needs to be automatically integrated into the test cases. This
also requires special knowledge, such as how to combine parameters and val-
ues, which must be derived from the system under test. For these problems,
we identify technologies and mechanism that support the automation in each
test case generation phase, such as text parser and knowledge for extracting
test values.
　 This figure is an overview of the automatic extraction of parameters

and values from the design documents:
As shown in Figure 5.8, there are two main phases corresponding to the

above two problems facing automatic test case generation. We discuss each
phase next two sub sections:

96

Figure 5.9: Generation of parameter values flow

(c) Generation of Parameter Values

　Figure 5.9 shows the generation of parameter values flow. We need a flex-
ible generation of parameter values to support various kinds of documents
and description formats. Recent document analysis and parsing techniques
[NTIM11],[INT12] support such flexible information extraction. Document
modeling and format checking [NTIM11] support the information extraction
for various user-defined document-structures and our text parsers combina-
tion system [INT12] makes it easy to create various information extraction
parsers at the text description level. For examples, by using the system
[INT12] and combining some formal or natural language parsers, we can
flexibly create text parsers that extract the parameters, conditions, values
and some dependencies from the text descriptions in target documents. 　

The knowledge of information which is used for identification candidates
of parameter values is information that accumulated the results of the bound-
ary analysis pattern from the attributes of the factor in description of speci-
fications. In this paper, we use information which is the results from identify
parameter values by patterning the attributes information according with
patterns in table 5.6.
　Document analysis tool identify parameter values by suing boundary

analysis and apply predefined values from the results of analysis about the

97

Table 5.6: Knowledge Pattern of Parameter Values

Pattern No. Pattern of parameter values

A1 Character or numeric
A2 Maximum number of characters
A3 Double bytes characters or not
A4 Single byte character or not

Table 5.7: Example for Pattern of 4-digit Integer Parameter Values

Pattern No. Pattern of
parameter
values

Objectives of testing

B1 -1 To test error process for negative values
B2 0 To test error process for zero values
B3 1 and 9999 To test normal process for 4-digit integer
B4 10000 To test error process for 5-digit integer

Table 5.8: Example for Pattern of 6-digit Integer Parameter Values

Pattern No. Pattern of
parameter
values

Objectives of testing

C1 ABCDEFG To test 7-digit characters
C2 ABCDEF To test 6-digit characters
C3 ABCDE To test 5-digit characters
C4 アイウエオ To test 5-digit double bytes Katakana
C5 123 To test numeric

98

attributes pattern, such as a character string, a numerical value and length,
and a digit number, and so on. This enables not to depend on individual
skill, the parameter values can be identified a level of coverage and used for
test cases. Comparing create test cases by manually, this way makes test
cases have better quality and more efficient in creation of test cases.

For examples about predefined values in the case of the attribute of the
integer of 4-digit, by an experienced person’s knowledge, parameter values
are created by the patterns showed in table 5.7. The pattern number from
B1 to B4 come from the results of boundary analysis and B5 comes from the
knowledge of problem information. The document analysis tool creates the
predefined values according with the attributes of values.

Another example about predefined vales in the case of the attribute of the
character string of 6 digits, by using the knowledge of experienced person the
predefined parameter values are created in a similar manner as table 5.8. The
pattern number from C1 to C4 come from the results of boundary analysis
and C5 and C6 comes from the knowledge of problem information.

(d) Problems in automatic generation of test cases from docu-
ments

In the last step, the pairwise testing tool creates combinatorial test cases from
the identified parameters and values. So we can create the combinatorial
pairwise test cases not depending upon individual skill. The test cases have
a level of quality as high as pairwise combination, and the work of generation
test cases are reduced by using the tool.

Each technique in our method is known techniques, such as text parser,
boundary analysis, pairwise testing and so on. Our method is, however,
unique for combining of them to create test cases automatically from design
documents. Our method also solves the problems which are miss-reading of
the documents, lacks of identification of parameter values, and insufficient
of a combination test cases. Comparing manual test cases as ideal test case
[INT12], our document analysis tool helped automatically generate 95% of
the required test cases from the design documents.

5.2.3 Experiments

We applied our method to testing for Web applications in internet banking
system and insurance system. The case studies are functional testing by

99

inputting test data from Web screens. The Web application documents are
Web screens parameter specifications which describe attributes of parameter
on Web screens input data, Web screens design documents which describe
screens layout and precondition of events, and an event lists which describe
the post processes of the events by clicking the buttons. In order to compare
activities and work between manual way of creating test cases and our method
way of automatic generation of test cases, each activity of creating testing
cases are listed in Table 5.9. The list of activities shows activity number,
name of activities, breakdown activities and comparing manual way and our
method.

We applied our method to the following four case studies:

• Case 1: The generation test cases from an Internet Banking system
project.

• Case 2: The generation test cases from another Internet Banking sys-
tem project.

• Case 3: The generation test cases from Insurance system the input data
of a batch job.

• Case 4: The generation test cases from Insurance system the screens
of Web application

　 Table 5.10 shows the results of work. Each of case studies is compared
between manual way and our method. The work in the generation test cases
by our method was reduced from 23% to 48%. So our method improved work
of generation test cases about twice as much as manual way.

5.2.4 Evaluations

　We devised a method of automatic generation of test cases by using doc-
ument analysis technique and applied the method to several case studies.
The work for the generation of test cases was reduced by up to 48%. We
demonstrated that our new method improved the effectiveness creating test

1About the workload of the case 3 and 4, the work of manual method is from interviews
and the work of our method are calculated out on paper

2The case 3 did not have event description of a button, a link, etc. for batch input
data.

3M(h): Manual results(hours), O(h): Our method results(hours)

100

Table 5.9: Creating Test Cases Activities Comparison

Act No. Activities Break down
activities

Manual way Our method

1-1 Create test
data and
variation

Analyze docu-
ment

Analyze man-
ually

Analyze by
tools

1-2 Create test
data

Identify man-
ually

Identify by
tools

1-3 Create param-
eter values

Create manu-
ally

Create by
tools

2-1 Identify pre-
conditions

Analyze docu-
ment

Analyze man-
ually

Analyze by
tools

2-2 Identify pre-
conditions

Identify man-
ually

Identify by
tools

3-1 Identify event
conditions

Analyze docu-
ment

Analyze man-
ually

Analyze by
tools

3-2 Identify event
conditions

Identify man-
ually

Identify by
tools

4-1 Create test
cases

Create test
cases which
verify condi-
tions

Create manu-
ally

Create test
cases by tools.

4-2 Create combi-
natorial test
cases.

Create manu-
ally

Create by
pairwise tools

5 Review test
cases

Review test
cases

Review manu-
ally

Review manu-
ally

101

Table 5.10: Workload Comparison of Test Case Generation

Case1 Case2 Case31 Case41

No. M(h)3 O(h)3 M(h) O(h) M(h) O(h) M(h) O(h)

1-1 5 1 5 1 2 1 1 1
1-2 12 1 5 1 3 1 2 1
1-3 10 4 10 3 4 2 2 1
2-1 5 1 5 1 2 1 1 1
2-2 13 5 15 4 6 3 3 2
3-1 8 1 5 1 -2 -2 1 1
3-2 15 5 15 4 -2 -2 3 2
4-1 62 42 60 50 10 8 4 4
4-2 38 20 40 30 10 7 4 3
5 15 15 10 10 3 3 1 1

Tot. 183 95 170 105 40 26 22 17
Reduction of work 48% 38% 35% 23%

cases and also studied how we could apply our method to actual cases. If
we can automate the review of the test cases, then the improvement will be
larger. In the actual case studies, all of the design documents were not for-
malized according to the document standards, because the participants had
been allowed to freely describe their design specifications. Notwithstanding,
our text parser was able to read their document and create up to 95% of the
required test cases for satisfactory testing.

5.3 Chapter Summary

In this chapter, I discuss two applications of our technique. We presented
automatic generation test models from requirements in natural language by
focusing on descriptions of test cases in UTP test behavior. We developed
three rules to generate test models from requirements by using natural lan-
guage processing techniques and experimented with our approach on require-
ments in language that is considered natural English. Our results for three
case studies show the promise of our approach.

We will use our approach to find vague requirements and provide feedback
in the early stage of the system development process. In addition, we will
construct new rules and grammar for requirements descriptions. We will

102

contribute to requirement engineering by developing new means to check
whether descriptions have vague or inconsistent requirements.

In this paper, we discussed a method of automatic generation testing
cases by using document analysis techniques. We also discussed four case
studies which demonstrated the efficiency of our approach in creating high-
coverage test cases by using the document analysis tool. The method targets
functional testing of the interaction screens for Web application systems. The
method uses text parsers that identify input parameters and their acceptable
values by using document analysis on the design documents, thus avoiding
dependencies upon individual skills.

There are still some problems with how we extract the information from
the design documents. Future work includes applying on other actual cases
in order to get learn how we can configure the text parsers for natural lan-
guages. We are also studying and developing document models of the design
documents to help formalize the documents. We will use our framework to
find vague requirements and provide feedback in early stage of the system
development process. In addition, we will construct new rules and grammar
for requirements descriptions. We will contribute to requirement engineer-
ing by developing new means to check whether descriptions have vague or
inconsistent requirements.

103

Chapter 6

Conclusion

We discussed studies about:

• rules of creating test cases by using natural language processing at
section 3.1

• syntactic analysis as pre-processing as improvement creating test cases
for both Japanese and English specification documents at section 3.2
and 3.3

• detecting logical inconsistencies in natural language requirements as
further study at section 4.1

• as applications of our technique, creating test cases from UML (Uni-
fied Modeling Language) document at section 5.1 and combine our
technique and combinatorial testing at section 5.2

We proposed the analysis technique, a semantic analysis technique of log-
ics retrieval for software testing from Japanese public sector’s specification
documents concept, technique and presented the results of experiments. The
result was that the precision reached 0.93 to 0.97 and recall reached 0.65 to
0.79. That showed the analysis technique worked for retrieving condition log-
ics. We confirmed the analysis technique could retrieve logics from Japanese
natural language specification documents. When we target to retrieve condi-
tion logics, the number of keywords for conditions limited. Then the analysis
technique works for retrieval conditions from specification documents.

This result is the starting point to research about harmonization between
natural language processing and software testing. Matsuodani2012 [Mat12]

104

also proposed the benefits of retrieving logics from specification documents
into decision tables and surveyed the opportunities of the future of decision
table. The analysis technique can detect logic ambiguity of specification doc-
uments and feedback measurements for document quality. The measurements
of specification documents are proposed by Kim2008 as quality metrics, for
examples, document defect density, document reusability and so on. The
analysis technique can feedback to how we write manually specification doc-
uments precisely. The more correct we can describe logic on specification
documents in advance, the less workload to fix of incorrect logic.

Decision table testing is a technique to develop test cases from descrip-
tions of conditions and actions in software specification documents. We pro-
pose, experiment and evaluate a semantic role labeling technique of condi-
tions and actions for automatic software test cases generation. Our approach
uses natural language processing to select sentences from the specification
based on syntactic similarity, and then to determine conditions and actions
through dependency and case analysis. We got experiment results higher
precision and recall for different style of descriptions, and the workload was
reduced to one-sixth of manual work. Our results on case studies show the
effectiveness of our technique. We will research about feedback for engineer
to write documents easier understand by improving our technique.

We proposed, experimented upon, and evaluated a technique for extract-
ing the conditions and actions of test cases for automatic software test case
generation. Our approach uses natural language processing to select sen-
tences from the specifications on the basis of syntactic similarity and then
determines the conditions and actions through dependency and case analy-
sis. Experimental results showed that F-measure reached from 0.70 to 0.77
for different styles of description. Our results on case studies demonstrate
the effectiveness of our technique. For our future work, we will extend our
approach to give feedback to developers so that they can improve their re-
quirements descriptions.

We presented a practical approach to detecting logical inconsistencies by
clustering technique in natural language requirements. The method uses k-
means clustering to cluster chunks of the requirements and labeling rules to
derive“conditions”and“actions”as semantic roles from the requirements
by using natural language processing. We also constructed an abstraction
grammar to transform the conditions and actions into logical formulas. By
evaluating the logical formulas with input data patterns, we can find logical
inconsistencies. We experimented with this approach on three case studies

105

of requirements written in natural English. The results indicate that our
approach can find logical inconsistencies.

We presented automatic generation test models from requirements in nat-
ural language by focusing on descriptions of test cases in UTP test behavior.
We developed three rules to generate test models from requirements by using
natural language processing techniques and experimented with our approach
on requirements in language that is considered natural English. Our results
for three case studies show the promise of our approach.

We will use our approach to find vague requirements and provide feedback
in the early stage of the system development process. In addition, we will
construct new rules and grammar for requirements descriptions. We will
contribute to requirement engineering by developing new means to check
whether descriptions have vague or inconsistent requirements.

In this paper, we discussed a method of automatic generation testing
cases by using document analysis techniques. We also discussed four case
studies which demonstrated the efficiency of our approach in creating high-
coverage test cases by using the document analysis tool. The method targets
functional testing of the interaction screens for Web application systems. The
method uses text parsers that identify input parameters and their acceptable
values by using document analysis on the design documents, thus avoiding
dependencies upon individual skills.

There are still some problems with how we extract the information from
the design documents. Future work includes applying on other actual cases
in order to get learn how we can configure the text parsers for natural lan-
guages. We are also studying and developing document models of the design
documents to help formalize the documents. We will use our framework to
find vague requirements and provide feedback in early stage of the system
development process. In addition, we will construct new rules and grammar
for requirements descriptions. We will contribute to requirement engineer-
ing by developing new means to check whether descriptions have vague or
inconsistent requirements.

106

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof.
Kazuhiko Tsuda for the continuous support of my Ph.D study and related
research, for his patience, motivation, and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis.

I would like to thank the rest of my thesis committee: Prof. Kenichi
Yoshida, Prof. Setsuya Kurahashi, Assoc. Prof. Kazuki Katagishi, and As-
soc. Prof. Chika Yoshida for their insightful comments and encouragement,
but also for the hard question which incented me to widen my research from
various perspectives.

My heartfelt appreciation to Dr. Tohru Matsuodani for letting me in this
research and sincere encouragement.

I gratefully acknowledge the work of past and present members of our
laboratory and I would like to thank my working company for my study
support, which I am working for.

Last but not the least, I would like to thank my family for supporting me
spiritually throughout writing this thesis and my life in general.

107

References

[708] ISO/IEC JTC 1/SC 7. Iso/iec 12207:2008 systems and soft-
ware engineering – software life cycle processes. ISO/IEC JTC
1/SC 7, 2008.

[715] ISO/IEC/IEEE JTC 1/SC 7. Software and systems en-
gineering ― software testing ― part 2:test processes.
ISO/IEC/IEEE JTC 1/SC 7, 2015.

[Adm03] Maryland State Highway Administration. Detailed sys-
tem design specification for the coordinated highways
action response team (chart) mapping applications.
http://www.chart.state.md.us/, 2003.

[AS12] M. Aggarwal and S. Sabharwal. Test case generation from uml
state machine diagram: A survey. In Computer and Commu-
nication Technology (ICCCT), 2012 Third International Con-
ference on, pp. 133–140, Nov 2012.

[Ass86] Japan Industry Standard Association. Jis x 0125-1986 decision
table. Japan Industry Standards, 1986.

[Bac16] James Bach. Allpairs test case generation tool (version 1.2.1).
2016.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook
of satisfiability, Vol. 185. ios press, 2009.

[Bos08] Johan Bos. Wide-coverage semantic analysis with boxer. In
Proceedings of the 2008 Conference on Semantics in Text Pro-
cessing, pp. 277–286. Association for Computational Linguis-
tics, 2008.

108

[BSBV13] A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos. The
omg uml testing profile in use–an industrial case study for the
future internet testing. In Software Maintenance and Reengi-
neering (CSMR), 2013 17th European Conference on, pp. 457–
460, March 2013.

[CB98] IEEE Computer Society. Software Engineering Standards
Committee and IEEE-SA Standards Board. Ieee recom-
mended practice for software requirements specifications. In-
stitute of Electrical and Electronics Engineers, 1998.

[CDFP97] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.
The aetg system: an approach to testing based on combina-
torial design. IEEE Transactions on Software Engineering,
Vol. 23, No. 7, pp. 437–444, Jul 1997.

[CDPP96] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The
combinatorial design approach to automatic test generation.
IEEE Software, Vol. 13, No. 5, pp. 83–88, Sep 1996.

[CGP+06] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L.
Dill, and Dawson R. Engler. Exe: Automatically generat-
ing inputs of death. In Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS ’06,
pp. 322–335, New York, NY, USA, 2006. ACM.

[CKI88] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the
software design process for large systems. Commun. ACM,
Vol. 31, No. 11, pp. 1268–1287, November 1988.

[CMB11] Danilo Croce, Alessandro Moschitti, and Roberto Basili.
Structured lexical similarity via convolution kernels on de-
pendency trees. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, EMNLP ’11,
pp. 1034–1046, Stroudsburg, PA, USA, 2011. Association for
Computational Linguistics.

[Dis04] Southwest Florida Water Management District. Compre-
hensive watershed management water use tracking project

109

software requirements specification. http://open.sjrwmd.com,
2004.

[DMDS+14] Marie-Catherine De Marneffe, Timothy Dozat, Natalia Sil-
veira, Katri Haverinen, Filip Ginter, Joakim Nivre, and
Christopher D Manning. Universal stanford dependencies: A
cross-linguistic typology. In Proceedings of LREC, pp. 4585–
4592, 2014.

[DMM08] Marie-Catherine De Marneffe and Christopher D Manning.
Stanford typed dependencies manual. Technical report, Tech-
nical report, Stanford University, 2008.

[ES04] Niklas Een and Niklas Sorensson. An extensible sat-solver. In
Theory and applications of satisfiability testing, pp. 502–518.
Springer, 2004.

[fE12] The United Nations Economic Commission for Europe. Busi-
ness requirements specifications of legal notice publication.
http://www1.unece.org, 2012.

[FH14] Markus Fockel and Jorg Holtmann. A requirements engineer-
ing methodology combining models and controlled natural lan-
guage. In Model-Driven Requirements Engineering Workshop
(MoDRE), 2014 IEEE 4th International, pp. 67–76. IEEE,
2014.

[Fuk88] Naoki Fukui. Deriving the differences between english and
japanese: A case study in parametric syntax. English Lin-
guistics, Vol. 5, No. 0, pp. 249–270, 1988.

[GEMT06] Javier Jesus Gutierrez, Maria Jose Escalona, Manuel Mejias,
and Jesus Torres. An approach to generate test cases from
use cases. In Proceedings of the 6th international conference
on Web engineering, pp. 113–114. ACM, 2006.

[GZ05] Vincenzo Gervasi and Didar Zowghi. Reasoning about in-
consistencies in natural language requirements. ACM Trans-
actions on Software Engineering and Methodology (TOSEM),
Vol. 14, No. 3, pp. 277–330, 2005.

110

[HPS05] Brahim Hnich, Steven Prestwich, and Evgeny Selensky.
Constraint-based approaches to the covering test problem. In
Recent Advances in Constraints, pp. 172–186. Springer, 2005.

[HPSS06] Brahim Hnich, Steven D Prestwich, Evgeny Selensky, and Bar-
bara M Smith. Constraint models for the covering test prob-
lem. Constraints, Vol. 11, No. 2-3, pp. 199–219, 2006.

[INT12] F. Iwama, T. Nakamura, and H. Takeuchi. Constructing
parser for industrial software specifications containing formal
and natural language description. In 2012 34th International
Conference on Software Engineering (ICSE), pp. 1012–1021,
June 2012.

[IPA09] IPA.METI. Report of industry actual survey for embedded
software in 2009. 2009. in Japanese.

[ISO15a] ISO/IEC/IEEE. Software and systems engineering― software
testing ― part 1:concepts and definitions. ISO/IEC/IEEE
JTC 1/SC 7, pp. 70–72, 2015.

[ISO15b] ISO/IEC/IEEE. Software and systems engineering― software
testing ― part 4:test techniques. ISO/IEC/IEEE JTC 1/SC
7, pp. 70–72, 2015.

[Kat07] Takuya Katayama. Legal engineering-an engineering approach
to laws in e-society age. Procedure of the 1st Intl. Workshop
on JURISIN, 2007.

[Kis03] Shuhei Kishimoto. Government procurement system and it
system -who the raised or it general constructor. Finance,
Vol. 38, No. 12, pp. 37–47, 2003.

[KK] Sadao Kurohashi and Daisuke Kawahara. Resources for nat-
ural language. in Japanese.

[KKS08] CJ Kim, S-M Kim, and K-W Song. Measurement of level
of quality control activities in software development [quality
control scorecards]. In Convergence and Hybrid Information
Technology, 2008. ICHIT’08. International Conference on, pp.
763–770. IEEE, 2008.

111

[KKed] Sadao Kurohashi and Daisuke Kawahara. Feature list given
by knp. 2016 Accessed. in Japanese.

[KMN+02] Tapas Kanungo, David MMount, Nathan S Netanyahu, Chris-
tine D Piatko, Ruth Silverman, and Angela Y Wu. An efficient
k-means clustering algorithm: Analysis and implementation.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, Vol. 24, No. 7, pp. 881–892, 2002.

[KNS08] Yusuke Kimura, Makoto Nakamura, and Akira Shimazu.
Trasnformation logical expression from legal documents which
have listing and references. Assocaiton for natural Language
Processing, Vol. 14th Annual Conference, pp. 612–615, 2008.

[KSKD13] Oliver Keszocze, Mathias Soeken, Eugen Kuksa, and Rolf
Drechsler. Lips: An ide for model driven engineering based
on natural language processing. In Natural Language Analysis
in Software Engineering (NaturaLiSE), 2013 1st International
Workshop on, pp. 31–38. IEEE, 2013.

[Kun73] Susumu Kuno. The structure of the japanese language. Cam-
bridge, MA:MIT Press., 1973.

[KY02] Taku Kudoh and Matsumoto Yuhji. Japanese dependency
analysis using cascaded chunking. Journal of Information Pro-
cessing Society of Japan, Vol. 43, No. 6, pp. 1834–1842, 2002.

[Mat12] Tohru Matsuodani. Application of decision table to software
logic with designing and testing. in Reliability Enginerring
Association of Japan, Vol. 34, No. 6, pp. 397–404, 2012.

[MFIMA11] Wendland Marc Florian, Schieferdecker Ina, Schacher Markus,
and Metzger Armin. Uml testing profile tutorial. MBT User
Conference, 2011.

[MIH+15] Satoshi Masuda, Futoshi Iwama, Nobuhiro Hosokawa, Tohru
Matsuodani, and Kazuhiko Tsuda. Semantic analysis tech-
nique of logics retrieval for software testing from specification
documents. In Software Testing, Verification and Validation
Workshops (ICSTW), 2015 IEEE Eighth International Con-
ference on, pp. 1–6. IEEE, 2015.

112

[MMM06] M. Marneffe, B. Maccartney, and C. Manning. Generating
typed dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC-2006), Genoa, Italy, May
2006. European Language Resources Association (ELRA).
ACL Anthology Identifier: L06-1260.

[MMT13] Satoshi Masuda, Tohru Matsuodani, and Kazuhiko Tsuda. A
method of creating testing pattern for pair-wise method by
using knowledge of parameter values. Procedia Computer Sci-
ence, Vol. 22, pp. 521–528, 2013.

[MOASHL09] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-
Lhadj. A survey of model-driven testing techniques. In Qual-
ity Software, 2009. QSIC ’09. 9th International Conference
on, pp. 167–172, Aug 2009.

[MWM+11] Junta Mizuno, Yotaro Watanabe, Kohji Murakami, Kentaro
Inui, Yuji Matsumoto, et al. Organizing agreeing and conflict-
ing opinions based on semantic relation recognition. Journal
of Information Processing, Vol. 52, No. 12, pp. 3408–3422,
2011. in Japanese.

[NDM11] Tuan Doc Nguen, Bollegara Danushika, and Ishizuka Mitsuru.
Exploiting relational similarity between entity pairs for la-
tent relational search. Information Processing Society Japan,
Vol. 52, No. 4, pp. 1–13, 2011.

[NL11] Changhai Nie and Hareton Leung. A survey of combinatorial
testing. ACM Comput. Surv., Vol. 43, No. 2, pp. 11:1–11:29,
February 2011.

[NT11] T. Nakamura and H. Takeuchi. Document quality verification
tool. ProVision, Vol. 69, pp. 78–79, 2011. In Japanese.

[NTAed] National-Tax-Agency. No.1140 life insurance deduction. 2015
Accessed. in Japanese.

[NTIM11] T. Nakamura, H. Takeuchi, F. Iwama, and K. Mizuno. En-
abling analysis and measurement of conventional software de-
velopment documents using project-specific formalism. In

113

2011 Joint Conference of the 21st International Workshop on
Software Measurement and the 6th International Conference
on Software Process and Product Measurement, pp. 48–54,
Nov 2011.

[Oku10] Manabu Okumura. Basic of Natural Language Processing.
CORONA PUBLISHING CO.,LTD., 2010. in Japanese.

[OMG14] OMG. Uml testing profile version 1.2. 2014.

[OMG15] OMG. Unified modeling language version 2.5. 2015.

[OW13] Yusuke Oda and Shigeru Wakabayashi. Method of similarity
quantification between program codes. Jounal of Kobe City
College of Technology, Vol. 51, pp. 103–108, 2013. in Japanese.

[PM00] Dan Pelleg and Andrew W. Moore. X-means: Extending k-
means with efficient estimation of the number of clusters. In
Proceedings of the Seventeenth International Conference on
Machine Learning, ICML ’00, pp. 727–734, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[Pro15] NLTK Project. Natural language toolkit.
http://www.nltk.org/, 2015.

[RAF+10] D Reifer, J Allen, B Fersch, B Hitchings, J Judy, W Rosa, and
D Saltojanes. Total cost of software maintenance workshop.
approved for public release, review by AMRDEC, public affair
office, FN4344, at”http://”csse. usc. edul csse/.. ISoftware%
20maintenance, Vol. 20, , 2010.

[SB10] M. Sharma and S. C. B. Automatic generation of test suites
from decision table - theory and implementation. In 2010 Fifth
International Conference on Software Engineering Advances,
pp. 459–464, Aug 2010.

[SHE89] Motoshi Saeki, Hisayuki Horai, and Hajime Enomoto. Soft-
ware development process from natural language specification.
In Proceedings of the 11th international conference on Soft-
ware engineering, pp. 64–73. ACM, 1989.

114

[Shh12] Akira Shhimazu. Legal engineering: Methodology for design-
ing trustworthy social systems -legal document analysis-. IE-
ICE Foundamentals Review, Vol. 5, pp. 320–328, 2012.

[SM07] M. Sarma and R. Mall. Automatic test case generation from
uml models. In Information Technology, (ICIT 2007). 10th
International Conference on, pp. 196–201, Dec 2007.

[Sne07] Harry M Sneed. Testing against natural language require-
ments. In Quality Software, 2007. QSIC’07. Seventh Interna-
tional Conference on, pp. 380–387. IEEE, 2007.

[SNK14] Takase Sho, Okazaki Naoki, and Inui Kentaro. Clustering of
relation pattern by a method of high speed similarity calcula-
tion. The Association for Natural Language Processing Annual
Conference, Vol. 20, No. 4, pp. 1–4, 2014.

[SPKB09] Avik Sinha, Amit Paradkar, Palani Kumanan, and Branimir
Boguraev. A linguistic analysis engine for natural language use
case description and its application to dependability analysis
in industrial use cases. In Dependable Systems & Networks,
2009. DSN’09. IEEE/IFIP International Conference on, pp.
327–336. IEEE, 2009.

[SPTN10] A. Sinha, A. Paradkar, H. Takeuchi, and T. Nakamura. Ex-
tending automated analysis of natural language use cases to
other languages. In 2010 18th IEEE International Require-
ments Engineering Conference, pp. 364–369, Sept 2010.

[SSB15] R. Sharma, P.K. Srivastava, and K.K. Biswas. From natural
language requirements to uml class diagrams. In Artificial In-
telligence for Requirements Engineering (AIRE), 2015 IEEE
Second International Workshop on, pp. 1–8, Aug 2015.

[STBF11] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary
decision diagrams for combinatorial test design. In Proceedings
of the 2011 International Symposium on Software Testing and
Analysis, ISSTA ’11, pp. 254–264, New York, NY, USA, 2011.
ACM.

115

[TIM02] Tetsuro Takahashi, Kentaro Inui, and Yuji Matsumoto. Meth-
ods for estimating syntactic similarity. Information Processing
Society of Japan Natural Language Processing, Vol. NL-150-7,
, 2002. in Japanese.

[TKI12] Shunsuke Takayanagi, Atsushi Kamijo, and Tsutomu
Ishikawa. Translator from japanese sentences to well-formed
formulas on an extended predicate logic:conv. Transactions of
the Japanese Society for Artificial Intelligence, Vol. 27, No. 5,
pp. 271–280, 2012. in Japanese.

[TKN93] Kikuo Tanaka, Ichiro Kawazoe, and Hajime Narita. Standard
structure of legal provisions - for the leagal knowledge pro-
cessing by natural language -. Information Processing Society
of Japan Natural Language Processing, Vol. 93, No. 79, pp.
79–86, 1993.

[TM07] Yan Tang and Robert Meersman. On constructing semantic
decision tables. In Database and Expert Systems Applications,
pp. 34–44. Springer, 2007.

[TN99] Kazuhiko Tsuda and Masami Nakamura. The extraction
method of the word meaning class. In Knowledge-Based In-
telligent Information Engineering Systems, 1999. Third Inter-
national Conference, pp. 534–537. IEEE, 1999.

[TNY10] Hironori Takeuchi, Taiga Nakamura, and Takahira Yam-
aguchi. Use case analysis using text analytics. Technical re-
port of IEICE. KBSE, Vol. 110, No. 305, pp. 55–60, 2010. in
Japanese.

[TSN+07] H. Takeuchi, L. V. Subramaniam, T. Nasukawa, S. Roy, and
S. Balakrishnan. A conversation-mining system for gathering
insights to improve agent productivity. In The 9th IEEE In-
ternational Conference on E-Commerce Technology and The
4th IEEE International Conference on Enterprise Computing,
E-Commerce and E-Services (CEC-EEE 2007), pp. 465–468,
July 2007.

116

[TTMM10] Koichi Takeuchi, Suguru Tsuchiya, Masato Moriya, and Yuuki
Moriyasu. Construction of argument structure analyzer to-
ward searching same situations and actions. IEICE technical
report. Natural language understanding and models of commu-
nication, pp. 1–6, 2010. in Japanese.

[Uet13] Keiji Uetsuki. Research about a design technique of software
testing by using decision table. University of Tsukuba, pp.
1–6, 2013. in Japanese.

[UMT13] Keiji Uetsuki, Tohru Matsuodani, and Kazuhiko Tsuda. An
efficient software testing method by decision table verification.
International Journal of Computer Applications in Technol-
ogy, Vol. 46, No. 1, pp. 54–64, 2013.

[VAF10] Bernardo C. Vieira, Fabŕıcio V. Andrade, and Antônio O. Fer-
nandes. A modular cnf-based sat solver. In Proceedings of the
23rd Symposium on Integrated Circuits and System Design,
SBCCI ’10, pp. 198–203, New York, NY, USA, 2010. ACM.

[WPG+15] Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel Briand,
and Zohaib Iqbal. Automatic generation of system test cases
from use case specifications. In Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, ISSTA
2015, pp. 385–396, New York, NY, USA, 2015. ACM.

[YCC15] Rongjie Yan, Chih-Hong Cheng, and Yesheng Chai. Formal
consistency checking over specifications in natural languages.
In Proceedings of the 2015 Design, Automation & Test in Eu-
rope Conference & Exhibition, pp. 1677–1682. EDA Consor-
tium, 2015.

[YCed] Yokohama-City. System design document of fire station sup-
port system. 2014 Accessed. in Japanese.

[YMT15] Tsuyoshi Yumoto, Tohru Matsuodani, and Kazuhiko Tsuda.
A study on an approach for analysing test basis using i/o test
data patterns. In Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International
Conference on, pp. 1–6. IEEE, 2015.

117

[ZO95] Yujie Zhang and Kazuhiko Ozeki. Statistical property of dis-
tance between modifier and modified phrases and its applica-
tion to dependency analysis of japanese sentences. IEICE tech-
nical report. Natural language understanding and models of
communication, Vol. 95, No. 429, pp. 61–68, 1995. in Japanese.

118

