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Abstract

This thesis deal with copositive programming. A symmetric matrix A is said to be

copositive if the quadratic form takes no negative value on the nonnegative orthant

and the set of copositive matrices is called the copositive cone. Copositive pro-

graming leads to equivalent reformulation of NP-hard combinatorial and quadratic

optimization. This makes copositive programming NP-hard itself and unfortunately

it is known that even checking whether a given matrix belongs to the copositive

cone is co-NP-complete. This thesis devotes particular attention to findinig desir-

able subconesMn to providing practical algorithms for testing copositivity. A new

type of subcones Mn is devised for which one can detect whether a given matrix

belongs to one of them by solving linear optimization problems with O(n) variables

and O(n2) constraints. An LP-based algorithm using these subcones is also pro-

vided. The properties of the subcones are investigated in more detail, especially in

terms of their convex hulls. Second, they swarch for subcones of COPn. From these

observations, a new basis, the semidefinite basis (SD basis), is introduced; it is a

basis of the space Sn consisting of n(n+1)/2 symmetric semidefinite matrices. Using

the SD basis two other new types of subcones are devised for which the detection

can be done by solving linear optimization problems with O(n2) variables and O(n2)

constraints. As we will show in Corollary 3.2.6, these subcones are larger than the

subcones of the first type and inherit their nice properties. Numerical experiments

are conducted to evaluate the efficiency of these subcones for testing copositivity.
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Chapter 1

Introduction

An optimization problem is defined as an objective function to maximize and the

constraints that it will be maximized over. There are many applications of optimiza-

tion in economics, electrical engineering, computational finance, control engineering,

management science, etc. Optimization problems can be divided into two classes

by whether their variables are continuous or discrete, i.e., the class of continuous

optimization problems and the class of combinatorial optimization problmes. Most

basic continuous optimization problem is to minimize a linear function with linear

constraints, the so-called linear optimization problem. It is formulated as

Minimize ⟨c, x⟩
subject to Ax = b

x ∈ Rn
+

where A ∈ Rm×n, b ∈ Rm,c ∈ Rn and Rn
+ is the n-dimensional nonegative orthant,

Rn
+ := {x ∈ Rn | x ≥ 0}.

In 1947, Dantzig[19] formulated general linear programming and developed the sim-

plex method to solve its problems. The simplex method starts at a vertex of a

polytope corresponding to the feasible region and moves to an adjacent vertex to

reduce the objective value until it reaches a vertex of an optimal solution. It is

known that the algorithm works very well in practice for linear optimization prob-

lems. However, Klee and Minty[41] introduced an example for which the simplex
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method takes an exponential number of iterations. They proved that the simplex

method with the most negative reduced cost pivot rule visits all 2n − 1 vertices

of the problem. It was shown that the linear programming problem is solvable in

polynomial time by using Khachiyan’s[40] ellipsoid method, but it is too slow to be

of practical interest. In 1984, Karmarkar[39] introduced a new algorithm, called the

interior-point method, to solve linear programming problems in polynomial time;

this method is efficient in practice. The simplex method moves on the polytope

of the feasible region, while the interior point method goes through the interior of

the polytope. After Karmarkar’s interior point method, a large number of stud-

ies on interior point methods appeared. Among these methods, Kojima, Mizuno,

and Yoshise[42] developed the primal dual interior point method; this method has

wide usage for soving linear optimization problems and conic optimization problems,

which are generalizations of linear programming as described below.

As generalizations of linear optimization problems, conic optimization problems have

attracted much attention in the field of continuous optimization. A set Kn is called a

cone if for any X ∈ Kn and for any α ≥ 0, αX belongs to Kn. A conic optimization

problem consists of a linear objective function to minimize over the intersection of an

affine subspace and proper cone Kn, where a cone K is called a proper cone if it has

nonempty interior and is closed convex, and pointed. Nesterov and Nemirocskii[47]

introduced the conic optimization of the form:

Minimize ⟨c, x⟩
subject to ⟨ai, x⟩ = bi (i = 1, . . .m)

x ∈ Kn

where ⟨a, b⟩ denotes the inner product of a and b. They showed theory of polynomial

time interior point algorithm for a conic optimization problem. A typical conic

optimization problem is positive semidefinite programming in which the variable

matrices are in the positive semidefinite cone. It is formulated as

Minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi (i = 1, . . .m)

X ∈ S+
n

where ⟨A,B⟩ = Tr(ATB) =
∑n

i=1

∑n
j=1AijBij denotes the inner product on the
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space of n dimensional symmetric matrices Sn. S+
n is the positive semidefinite cone

defined by

S+
n = {X ∈ Sn | dTXd ≥ 0 for all x ∈ Rn}

Alizadeh[2] showed that the primal dual interior point method for linear program-

ming can be extended to positive semidefinite programming. Since then, many soft-

ware packages have veen developed, e.g., SDPA[53], SeDuMi[52] and SDPT3[54].

Positive semidefinite programming has many applications in which an approxima-

tion to an NP-hard combinatorial optimization is sought. Here, we review the MAX-

CUT and the Lov́asz ϑ-function as important applications of positive semidefinite

programming for combinatorial optimization problems.

1.1 MAX-CUT

The MAX-CUT is an NP-hard combinatorial optimization problem. Let G be an

undirected graph with node set V = 1, . . . , n and edge set E. Let wij = wji ≥ 0 be

the weight on edge (i, j) ∈ E. The MAX-CUT problem is to determine a subset S

of V in such a way that the sum of the weights wij of edges (i, j) such that i ∈ S

and j ∈ V \ S is maximized.

We can formulate the MAX-CUT problem as an integer programming as follows.

Let us assign a variable xi to each vertex of E and define xi = 1 for j ∈ S and

xj = −1 for j ∈ V \ S. The MAX-CUT problem is modeled as

Maximize 1
2

∑
i<j wij(1− xixj)

subject to xi ∈ {−1, 1}, (i = 1, . . . n)
(1.1)

Any feasible solution of (1.1) is obviously a cut, and (1− xixj) is 0 if vertices i and

j are in the same subset of E, and 2 otherwise. (1.1) can be equivalently translated

as

Maximize 1
2

(∑
i<j wij − ⟨W,X⟩

)
subject to xi ∈ {−1, 1}, (i = 1, . . . n)

X = xxT

(1.2)
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Note that xi ∈ {−1, 1} (i = 1, . . . n) are equivalent to Xii = 1 (i = 1, . . . n) and

X = xxT is equivalent to X ∈ S+
n and rank(X) = 1. We can obtain the following

relaxation problem of (1.2) by removing the rank-1 restriction.

Maximize 1
2

(∑
i<j wij − ⟨W,X⟩

)
subject to Xii = 1, (i = 1, . . . n)

X ∈ S+
n

(1.3)

Goemans and Williamson[30] first used (1.3) to formulate an approximation algo-

rithm that produces a MAX-CUT solution that is within a factor of 0.878 of the

optimal value of (1.1).

1.2 Lov́asz ϑ-function

The Lov́asz ϑ-function ϑ(G) of a graph G, as introduced by Lov́asz[43], is given as

the optimal value of the following positive semidefinite programming problem;

Maximize eTXe

subject to Xij = 0, (i ̸= j , (i, j) ∈ E)

Tr(X) = 1

X ∈ S+
n

(1.4)

with e denoting the all-ones vector. The ϑ-function plays an important role in

relation with the clique number and chromatic number of a graph G = (V,E). A

subset S ⊆ V is called a clique if there is an edge for any vertices i, j ∈ S, while the

cardinality of the maximum clique of G is called the clique number and is denoted

by ω(G). The chromatic number of G, denoted by χ(G), is the minimum number

of colors to color all vertices so that any two adjacent vertices have different colors.

The relationship between these three numbers, called the sandwich theorem is

ω(G) ≤ ϑ(Ḡ) ≤ χ(G)

where Ḡ denotes the complement graph of G. Thus, the Lov́asz ϑ-function of Ḡ gives

an upper bound and a lower bound of the clique number and chromatic number of

G.
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1.3 Copositive programming

More recently, the copositive cone COPn and the completely positive cone CPn have

attracted much attention in the field of conic optimization as generalization of pos-

itive semidefinite programming. A symmetric matrix is copositive if the quadratic

form is nonegative on the nonnegative orthant,

COPn =
{
X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn

+

}
where Rn

+ is the set of n−dimensional nonnegative vectors. Its dual cone CPn is

defined as

CPn = conv
({

xxT | x ∈ Rn
+

})
The copositive cone and the completely positive cone also have a close relationship

with combinatorial optimization problems and (not necessarily convex) quadratic

optimization problems. As we previously mentioned, the Lov́asz ϑ-function of Ḡ

gives an upper and a lower bound of the clique number and chromatic number of G,

while these problems can be equivalently reformulated as copositive programming

problems. The standard quadratic problem, the stable set problem, the quadratic

assignment problem, and certain graph-partitioning problems can also be equiva-

lently reformulated as copositive problems. More generally, Burer[18] showed that

the optimal value of every quadratic problem with linear and binary constraints

can be equivalently reformulated as a copositive programming problem. However,

the equivalence makes copositive programming NP-hard, and unfortunately, it is

known that even checking whether a given matrix belongs to the copositive cone

is co-NP-complete[46]. Copositivity first arose in 1950s, and numerous conditions

for copositivity have been proposed[5, 9, 10, 37, 59]. Most of them require checking

principal submatrices, and they are only of use when the number of dimensions is

small. However, Bundfuss and Dür[16] proposed a radically new algorithm to test

copositivity. This algorithm requires investigating the nonnegativity of a quadratic

form over the standard simplex and iteratively divides up the standard simplex

into smaller and smaller parts to indicate the copositivity of a matrix. After the

introduction of the algorithm, researchers developed numerical algorithm to test

copositivity; most of them follow somewhat related ideas. Sponsel, Bundfuss and
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Dür[55] proposed improved versions of the algorithm. The algorithms use tractable

subconesMn of the copositive cone COPn for detecting copositivity. As described

in Chapter 4, they require one to check whether a A ∈ Mn or not repeatedly over

simplicial partitions. The desirable properties of the subcones Mn ⊆ COPn used

by these algorithms can be summarized as follows:

P1 For any given n× n symmetric matrix A ∈ Sn, we can check whether A ∈Mn

within a reasonable computation time, and

P2 Mn is a subset of the copositive cone COPn that at least includes the n × n

nonnegative cone Nn and contains as many elements COPn as possible.

1.4 Contribution and structure of this thesis

This thesis devotes particular attention to findinig desirable subconesMn satisfying

the above properties P1 and P2 and to providing practical algorithms for testing

copositivity. A new type of subconesMn is devised for which one can detect whether

a given matrix belongs to one of them by solving linear optimization problems

with O(n) variables and O(n2) constraints. An LP-based algorithm using these

subcones is also provided. The properties of the subcones are investigated in more

detail, especially in terms of their convex hulls. Second, they swarch for subcones of

COPn that have properties P1 and P2. From these observations, a new basis, the

semidefinite basis (SD basis), is introduced; it is a basis of the space Sn consisting

of n(n + 1)/2 symmetric semidefinite matrices. Using the SD basis two other new

types of subcones are devised for which the detection can be done by solving linear

optimization problems with O(n2) variables and O(n2) constraints. As we will show

in Corollary 3.2.6, these subcones are larger than the subcones of the first type and

inherit their nice properties. Numerical experiments are conduced to evaluate the

efficiency of these subbcones for testing copositivity.

The remainder of this thesis is structured as follows. In Chapter 2, we review the

copositive cone and completely positive cone and describe their properties. As we

previously mentioned, there is a close relationship between copositive programming
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and combinatorial and quadratic optimization problems. In Chapter 3, we show

several tractable subcones of COPn having properties P1 and P2.

These studies were motivated by the desire to develop efficient algorithms for testing

copositivity. However, as we will see in Chapter 3, all of the subcones appearing in

this paper are merely contained in the Minkowski sum S+
n +Nn ⊆ COPn of the n×n

positive semidefinite cone Sn and n× n nonnegative cone Nn. In light of this fact,

in Chapter 4, we review numerical experiments in which the new subcones are used

for identifying the given matrices A ∈ S+
n + Nn. Chapter 4 describes experiments

for testing the copositivity of matrices arising from the maximum clique problems.

The results of these experiments show that the new subcones are quite promising

not only for identification of A ∈ S+
n +Nn, but also for testing copositivity. Chapter

5 is devoted to concluding remarks.
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Chapter 2

Copositive cone and completely

positive cone

2.1 Theoretical properties

In this section, we study theoretical properties of copositive cone. As we mentioned

in Chapter 1, the copositive cone and completely positive cone are defined as

COPn =
{
X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn

+

}
CPn = conv

({
xxT | x ∈ Rn

+

})
We define the dual cone K∗

n of a cone Kn ⊆ Sn by

K∗
n = {X ∈ Sn | ⟨X, Y ⟩ ≥ 0 for all Y ∈ Kn}

We define the nonnegative cone denoted by Nn.

Nn := {X ∈ Sn | xij ≥ 0 for all i, j ∈ {1, 2, . . . , n}}

All of the above cones are proper (see Section 1.6 of [7] where the proper cone is

called a full cone), and we can easily see from the definitions that the following

inclusions hold:

COPn ⊇ S+
n ⊇ S+

n ∩Nn ⊇ CPn. (2.1)
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It is known that the following proposition holds by defining an inner product between

X and Y as

⟨X, Y ⟩ := Tr (Y TX). (2.2)

Proposition 2.1.1 (Properties of the copositive cone). (i) The dual cone of the copos-

itive cone COPn with respect to the inner product (2.2) is the completely pos-

itive cone CPn and vice versa (see p.57 of [6] and Theorem 2.3 of [7]).

(ii) If n ≤ 4 then COPn = S+
n +Nn (see [22] and Proposition 1.23 of [7]).

(iii) The dual cone of the doubly nonnegative cone S+
n ∩Nn with respect to the inner

product (2.2) is the Minkowski sum S+
n +Nn of the positive semidefinite cone

S+
n and the nonnegative cone Nn and vice versa (see Remark 2.1.2).

Remark 2.1.2. Proposition 2.1.1, (iii): The equality (S+
n ∩ Nn)

∗ = cl (S+
n + Nn)

follows from a well-known result that (K1 ∩K2)
∗ = cl (K1+K2) holds for any closed

convex cones K1 and K2 (see, e.g., p.11 of [27] or Corollary 2.2 of [6]. The closedness

of the set S+
n + Nn follows from a result in [51]. See also Proposition 4.1 of [60]

where the authors showed the property in a little more general framework.

The following inclusions follow from (2.1) and the above proposition

COPn ⊇ S+
n +Nn ⊇ S+

n ⊇ S+
n ∩Nn ⊇ CPn (2.3)

and specially, if n ≤ 4 then we have

COPn = S+
n +Nn ⊇ S+

n ⊇ S+
n ∩Nn = CPn. (2.4)

An example that S+
5 +N5 ̸= COP5 is the so-called Horn-matrix[32]

H =



1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1
−1 1 1 −1 1


.
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For x ∈ Rn
+,

xTHx = (x1 − x2 + x3 + x4 − x5)
2 + 4x2x4 + 4x3(x5 − x4)

= (x1 − x2 + x3 − x4 + x5)
2 + 4x2x5 + 4x1(x4 − x5).

If x5 ≥ x4, by the first expression, xTHx is nonnegative. If x5 ≤ x4, second

expression shows the nonnegativity of xTHx. Hall and Newman proved that H

is extremal for COP5 therefore H /∈ S+
n +Nn.

Note that the four cones, COPn, CPn, S+
n ∩ Nn and S+

n +Nn lack the self-duality

and hence are not symmetric. Since about 2000, there have been many studies

conducted on the above four cones as a new research direction in the field of conic

optimization [11, 12, 21, 56, 48, 16, 49, 18, 35, 17, 60, 55, 44], and they are called

studies on copositive programming [11].

A growing research interest in the field is to provide efficient algorithms to determine

whether a given matrix belongs to COPn (or CPn, or S+
n +Nn). It is known that the

problem of testing copositivity, i.e., deciding A ∈ COPn or not, is co-NP-complete

[46, 24].

2.2 relationship between copositive cone and quadratic

or combinatorial optimization

2.2.1 Standard quadratic optimization

Bomze et al. formulated an NP-hard problem called the standard quadratic opti-

mization as a copositive programming problem. The standard quadratic problem

has a quadratic objective function and nonnegative variable vector satisfies one lin-

ear constraint

Minimize xTAx

subject to eTx = 1

x ∈ Rn
+

11



where e denotes the all-ones vector and A ∈ Sn. A is not necessarily positive

semidefinite i.e. the objective function is not necessarily convex. The objective

function xTAx transforms to ⟨A, xxT ⟩ and eTx = 1 to ⟨E, xxT ⟩ = 1 with E = eeT

The problem reformulated as

Minimize ⟨A,X⟩
subject to ⟨E,X⟩ = 1

X = xxT

x ∈ Rn
+

We get a relaxation problem by replacing X = xxT with X ∈ CPn as

Minimize ⟨A,X⟩
subject to ⟨E,X⟩ = 1

X ∈ CPn.

Bomze et al. showed the extremal points of the feasible set of the problem are

exactly the rank-one matrices X = xxT . The objective function is linear so there is

an optimal solution at an extremal points of the feasible set. Hence, The problem

is not relaxation but an exact reformulation.

2.2.2 Clique number and stability number

The clique problem also can be reformulated as copositive programming. A subset

of vertices of an undirected graph G called clique if there is an edge for any pare of

vertices of the set. The clique number of a graph G, denoted ω(G), is the number of

vertices in a maximum clique of G. Motzking and Staus showed that 1
ω(G)

is given

as the optimal value of the following optimization problem:

1
ω(G)

= Minimize xT (E − AG)x

subject to eTx = 1

x ∈ Rn
+.
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This problem is a standard quadratic optimization problem and we can equivalently

reformulated as a completely positive optimization problem:

1
ω(G)

= Minimize ⟨E − AG, X⟩
subject to ⟨E,X⟩ = 1

X ∈ CPn.

(2.5)

It is well-known that taking the dual problem of (2.5), we get a copositive formulation

of the clique problem[11].

1
ω(G)

= Maximize γ

subject to γ(E − AG)− E ∈ COPn.
(2.6)

The problem (2.6) can be reformulated as

ω(G) = Minimize γ

subject to γ(E − AG)− E ∈ COPn.
(2.7)

Since ω(G) is a natural number, we only have to whether γ(E−AG)−E ∈ COPn or

not at most n times to determine the clique number of G by using this formulation.

The stability number of a graph also can be reformulated as a copositive optimization

problem. A subset S ⊆ V is called a stable set if there is no edge for any vertices

i, j ∈ S, while the cardinality of the maximum stable set of G is called the stability

number and is denoted by α(G). Here, α(G) = ω(Ḡ), we can get the stability

number of G by solving (2.7) for Ḡ However using somewhat different approach, De

Klerk and Pasechnik[21] showed that the stability number of a graph G is given as

the optimal value of the following optimization problem:

α(G) = Maximize xTEx

subject to eTx = 1

x ∈ Rn
+.

2.2.3 Fractional Quadratic optimization

We consider fractional quadratic optimization. Let A be a n × n matrix. Assume

that A the quadratic form xTAx does not take zeros over Rn
+ \ {0} . Preisig[50]
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showed that the following optimization problem to maximize the quotient of two

quadratic forms over standard simplex

Minimize
xTQx

xTAx
subject to eTx = 1

x ∈ Rn
+.

can be equivalently reformulated as

Minimize xTQx

subject to xTAx = 1

x ∈ Rn
+.

. (2.8)

We get a relaxation problem by replacing X = xxT with X ∈ CPn as

Minimize ⟨Q,X⟩
subject to ⟨A,X⟩ = 1

X ∈ CPn.

. (2.9)

It can be proved that (2.8) and (2.9) are equivalent by using similar argument as

used for standard quadratic optimization. Consider an optimal solution of one of

these two problems. We can easily construct a feasible solution of the other problem

which takes same objective value. More generally, Amaral, Bomze, and Júdice [4]

consider the following constrained fractional quadratic problem.

Minimize
xTCx+ 2cTx+ γ

xTBx+ 2bTx+ β

subject to Ax = a

x ∈ Rn
+.

(2.10)

with assumption that there are 0 < δ < η < +∞ such that the denominator of the

objective function of (2.10) belongs to [δ, η] for all feasible solutions. (2.10) can be

reformulated as

Minimize
zT C̄z

xT B̄x
subject to zT Āz = 0

z1 = 1

z ∈ Rn+1
+ .

(2.11)
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by introducing

Ā =

 aTa −aTA
−ATa ATA

 , B̄ =

 β bT

b B

 , C̄ =

 γ cT

c C

 .

(2.11) is equivalent to the following problem by replacing zzT = Z

Minimize
⟨C̄, Z⟩
⟨B̄, Z⟩

subject to Z11 = 1

⟨Ā, Z⟩ = 0

rank(Z) = 1

Z ∈ CPn.

Amaral, Bomze, and Júdice [4] showed that the constraint rank(Z) = 1 can equiv-

alently be removed under some assumptions.

2.2.4 Quadratic optimization with 0-1 variables

More generally, Burer showed the optimal value of every quadratic problem with

linear and binary constraints can be reformulated as completely positive problem.

He dealt with a quadratic problem of the form

Minimize xTQx+ 2cTx

subject to aTi x = bi (i = 1, . . . ,m)

x ∈ Rn
+

xj ∈ {0, 1} (j ∈ B)

(2.12)

where B ⊆ {1, . . . , n}. We assume that the feasible set of (2.12) is not empty. This

problem include many optimization problems such as standard quadratic problems,

quadratic assignment problems. The following completely positive problem can be

seen as a relaxation problem of (2.12) by relaxing the rank-1 constraint X = xxT to
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X ∈ CPn.

Minimize ⟨Q,X⟩+ 2cTx

subject to aTi x = bi (i = 1, . . . ,m)

aTi Xai = b2i (i = 1, . . . ,m)

xj = Xjj (j ∈ B)1 xT

x X

 ∈ CPn.

(2.13)

Burer[18] showed that these two formulations are equivalent.
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Chapter 3

Some tools for approximation

In this section, we introduce a basis of the set Sn of n× n symmetric matrices and

subcones of the copositive cone by using it.

3.1 Subcones of copositive cone

We review the subcones of copsitive cone.

The problem of testing copositivity, i.e., deciding whether a given symmetric matrix

A is in the cone COPn or not, is co-NP-complete [46, 23, 24]. On the other hand,

the problem of testing whether or not A ∈ S+
n + Nn can be solved by solving the

following doubly nonnegative program (which can be expressed as a semidefinite

program)

Minimize ⟨A,X⟩
subject to ⟨In, X⟩ = 1,

X ∈ S+
n ∩Nn

where In denotes the n×n identity matrix. Thus, the set S+
n +Nn is a rather large

and tractable convex subcone of COPn. However, solving the doubly nonnegative

problem takes an awful lot of time [55, 60] and does not make for a practical im-

plementation. To overcome this drawback, more easily tractable subcones of the

copositive cone have been proposed.
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For any given matrix A ∈ Sn, we denote

N(A)ij :=

 Aij Aij > 0 and i ̸= j

0 otherwise
and S(A) := A−N(A). (3.1)

In [55], the authors defined the following set

Hn := {A ∈ Sn | S(A) ∈ S+
n }. (3.2)

Note that A = S(A) + N(A) ∈ S+
n + Nn if A ∈ Hn. Also, for any A ∈ Nn,

S(A) becomes a nonnegative diagonal matrix and hence Nn ⊆ Hn. The detection

whether A ∈ Hn is easy and can be done by checking positivity of Aij(i ̸= j) and by

a Cholesky factorization of S(A) (cf. Algorithm 4.2.4 in [31]). Thus, by the inclusion

relation (2.3), we see that the set Hn satisfies the desirable properties P1 and P2

ofMn. However, S(A) is not necessarily positive semidefinite even if A ∈ S+
n +Nn

or A ∈ S+
n . The following theorem summarizes several properties of the set Hn.

Theorem 3.1.1 ([28] and Theorem 4.2 of [55]). Hn is a convex cone and Nn ⊆
Hn ⊆ S+

n +Nn. If n ≥ 3, these inclusions are strict and S+
n ̸⊆ Hn. For n = 2, we

have Hn = S+
n ∪Nn = S+

n +Nn = COPn.

To prove convexity of Hn, we first show the following lemma.

Lemma 3.1.2 (Lemma 4.3 of [55]). Denote by Zn the class of all real square matrices

whose off-diagonal entries are nonpositive.

Zn = {A ∈ Sn | Aij ≤ 0 for any i ̸= j}.

Let A,B ∈ Zn with B ≥ A. If A is positive semidefinite, then B is also positive

semidefinite.

Proof. Let A,B ∈ Zn with B ≥ A. The proof is based on contradiction. We assume

A ∈ S+
n and B /∈ S+

n . There exist x ∈ Rn such that xTBx is negative by the

definition of S+
n . We define x̄ as follows

x̄i :=

 −xi xi < 0

xi otherwise
(3.3)
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Clearly, x̄ ∈ Rn
+. bijx̄ix̄j ≤ bijxixj holds since B ∈ Zn then the following inequality

holds,

x̄TBx̄ ≤ xTBx < 0.

By B ≥ A and the nonnegativity of x̄ , x̄TAx̄ ≤ x̄TBx̄ < 0 holds but it contradict

to positive semidefiniteness of A. It follows that B is positive semidefinite.

Now we prove Theorem3.1.1.

Proof. It is obvious that Hn is a cone and inclusions Nn ⊆ Hn ⊆ S+
n +Nn from the

definition. For n ≥ 3 both enclusions are strict, since

A =

 1 −1
−1 1

 ∈ H2 but A /∈ N2

and

B =


1 −1 1

−1 1 −1
1 −1 1

 .

Then B ∈ S+
3 . However,

S(B) = B −N(B) =


1 −1 1

−1 1 −1
1 −1 1

−


0 0 1

0 0 0

1 0 0

 =


1 −1 0

−1 1 −1
0 −1 1

 ̸∈ S+
3 .

For A ∈ Sn, there are the following two cases:

S(A) =


 a11 0

0 a22

 (a12 > 0)

A (otherwise).

In the first case, A ∈ H2 if and only if a11, a22 ≥ 0 which means A ∈ N2. In

the second case, A ∈ H2 if and only if A ∈ S+
2 . It follows that for n = 2, Hn =

S+
n ∪Nn = S+

n +Nn = COPn.

Finally, we show convexity ofHn. Consider A,B ∈ Hn, we have to prove A+B ∈ Hn.

S(A) and S(B) belong to S+
n by the definition of Hn, and hence S(A)+S(B) ∈ S+

n .
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By the construction, we have S(A + B) ≥ S(A) + S(B) then S(A + B) ∈ S+
n by

Lemma 3.1.2. It follows that Hn is convex.

The construction of the set Hn is based on the idea of “nonnegativity-checking first

and positive semidefiniteness-checking second.” Now, we provide an alternative

choice of Mn based on the idea of “positive semidefiniteness-checking first and

nonnegativity-checking second.”

For a given symmetric matrix A ∈ Sn, let P be an orthonormal matrix and Λ =

Diag (λ1, λ2, . . . , λn) be a diagonal matrix satisfying

A = PΛP T . (3.4)

We are interested in decomposing A into a semidefinite matrix and a nonnegative

matrix according to the form A = PΛP T . By introducing another diagonal matrix

Ω = Diag (ω1, ω2, . . . , ωn), consider the following decomposition:

A = P (Λ− Ω)P T + PΩP T (3.5)

If Λ − Ω ∈ Nn, i.e., λi ≥ ωi (i = 1, 2, . . . , n) hold, then the matrix P (Λ − Ω)P T is

positive semidefinite. Thus, if we can find a suitable diagonal matrix Ω satisfying

λi ≥ ωi (i = 1, 2, . . . , n), [PΩP T ]ij ≥ 0 (i, j = 1, 2, . . . , n, i ≤ j) (3.6)

then (3.5) and (2.3) imply

A = P (Λ− Ω)P T + PΩP T ∈ S+
n +Nn ⊆ COPn. (3.7)

We can determine whether such a matrix exists or not by solving the following linear

optimization problem with variables ωi (i = 1, 2, . . . , n) and α:

(LP)P,Λ

Maximize α

subject to ωi ≤ λi (i = 1, 2, . . . , n)

[PΩP T ]i,j =
∑n

k=1 ωkpikpjk ≥ α (i, j = 1, 2, . . . , n, i ≤ j)

(3.8)

Note that (LP)P,Λ has the feasible solution at which ωi = λi (i = 1, 2, . . . , n) and

α = minij

∑n
k=1 λkpikpjk and hence has an optimal solution with optimal value
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α∗(P,Λ). If α∗(P,Λ) ≥ 0 then there exists a matrix Ω for which the decomposition

(3.6) holds. Based on these observations, we provide another alternate Gsn ofMn as

follows:

Gsn := {A ∈ Sn | α∗(P,Λ) ≥ 0 for some orthonormal matrix P satisfying (3.4) }.
(3.9)

As stated above, if α∗(P,Λ) ≥ 0 for a given decomposition A = PΛP T then we can

determine A ∈ Gsn. In this case, we just need to compute a matrix decomposition

and to solve a linear optimization problem with n + 1 variables and O(n2) con-

straints which implies that it is rather practical to use the set Gsn as an alternate of

Mn Suppose that A ∈ Sn has n different eigenvalues. Then the possible orthonor-

mal matrices P = [p1, p2, · · · , pn] are identifiable except for permutation and sign

inversion of {p1, p2, · · · , pn} and by the representation

A =
n∑

i=1

λipip
T
i

of (3.4), we see that the problem (LP)P,Λ is unique for any possible P . In this

case, α∗(P,Λ) < 0 with a specific P implies A ̸∈ Gsn. However, otherwise (i.e., an

eigenspace of A has at least dimension 2), α∗(P,Λ) < 0 with a specific P does not

necessarily guarantee that A ̸∈ Gsn. So we cannot say that the set Gsn satisfies the

desirable property P1 ofMn. However, as we see in Theorem 3.1.3 below, Gsn may

satisfy the other desirable property P2.

Let us introduce other new sets Gan and Ĝsn which are closely related to the set Gsn
and they might be useful to clarify some theoretical properties or to improve our

algorithm:

Gan := {A ∈ Sn | α∗(P,Λ) ≥ 0 for any orthonormal matrix P satisfying (3.4) },
(3.10)

Ĝsn := {A ∈ Sn | α∗(P,Λ) ≥ 0 for some arbitrary matrix P satisfying (3.4) }.
(3.11)

Note that if (3.6) holds for any arbitrary (not necessarily orthonormal) matrix P

then (3.7) also holds, which implies the following inclusions:

Gan ⊆ Gsn ⊆ Ĝsn ⊆ S+
n +Nn. (3.12)
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More precisely, the sets Gsn, Gan and Ĝsn have the following properties.

Theorem 3.1.3. The sets Gsn, Gan and Ĝsn are cones and

S+
n ∪Nn ⊆ Gan ⊆ Gsn = com(S+

n +Nn) ⊆ Ĝsn ⊆ S+
n +Nn ⊆ COPn

where the set com(S+
n +Nn) is defined by

com(S+
n +Nn) := {S +N | S ∈ S+

n , N ∈ Nn, S and N commute}.

For n = 2, we have

S+
n ∪Nn = Gan = Gsn = com(S+

n +Nn) = Ĝsn = S+
n +Nn = COPn.

Proof. We assume that A ∈ Sn is diagonalized as in (3.4) throughout the proof.

Suppose that the associated linear optimization problem (LP)P,Λ has an optimal

solution (ω∗, α∗) := (ω∗
1, . . . , ω

∗
n, α

∗). Then for any β ≥ 0, βA is diagonalized as

in βA = P (βΛ)P T and (βω∗, βα∗) is an optimal solution of the associated linear

optimization problem (LP)P,βΛ. This implies that βA ∈ Gsn (respectively βA ∈ Gan,
respectively βA ∈ Ĝsn) if A ∈ Gsn (respectively A ∈ Gan, respectively A ∈ Ĝsn) and

hence Gsn, Gan and Ĝsn are cones.

We have already seen that (3.12) holds. So it is sufficient to show that (i) S+
n ∪Nn ⊆

Gan and (ii) Gsn = com(S+
n +Nn).

(i) S+
n ∪ Nn ⊆ Gan: Let us show that Nn ⊆ Gan and S+

n ⊆ Gan, respectively. Suppose

that A ∈ Nn. Then for all P the problem (LP)P,Λ has a feasible solution where

(ω, α) = (λ1, . . . , λn, 0) which implies that A ∈ Gan. Suppose that A ∈ S+
n , i.e., λi ≥

0 (i = 1, 2, . . . , n). Then for all P the problem (LP)P,Λ has a feasible solution where

(ω, α) = (0, . . . , 0, 0) which implies that A ∈ Gan. Thus we have shown S+
n ∪Nn ⊆ Gan.

(ii) Gsn = com(S+
n +Nn): The inclusion Gsn ⊆ com(S+

n +Nn) follows from the construc-

tion of the set Gsn as in (3.9) and (3.8). The converse inclusion Gsn ⊇ com(S+
n +Nn)

is also true since if A ∈ com(S+
n + Nn) then there exist an orthonormal matrix P

and diagonal matrices Θ = Diag (θ1, θ2, . . . , θn) and Ω = Diag (ω1, ω2, . . . , ωn) such

that

A = PΘP T + PΩP T , PΘP T ∈ S+
n , PΩP T ∈ Nn
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(see Theorem 1.3.12 of [34]) which implies that θi ≥ 0 (i = 1, 2, . . . , n) and that the

problem (LP)P,Λ with Λ = Θ + Ω has a nonnegative objective value at a solution

(ω, α) where α = mini,j{[PΩP T ]ij} ≥ 0.

The results for n = 2 follow from Theorem 3.1.1.

As we have seen in Theorem 3.1.1, Nn ⊆ Hn but S+
n ̸⊆ Hn for n ≥ 3. Theorem 3.1.3

suggests that the set Gsn might be better than the set Hn in the sense of the desirable

property (P2) of Mn. The following examples show some contrasts between Hn,

Gsn and Gan.

Example 3.1.4. Consider

A =


1 1 1

1 2 −1
1 −1 2

 .

Then, by the definition (3.1),

S(A) = A−N(A) =


1 1 1

1 2 −1
1 −1 2

−


0 1 1

1 0 0

1 0 0

 =


1 0 0

0 2 −1
0 −1 2

 ∈ S+
3

which implies that A ∈ H3. Moreover,

N(A)S(A) = S(A)N(A) =


0 1 1

1 0 0

1 0 0


which implies that A = S(A) + N(A) ∈ com(S+

3 + N3), and by Theorem 3.1.3,

A ∈ Gs3 holds. Thus H3 ∩ Gs3 ̸= ∅.

Example 3.1.5 (cf. Proof of Theorem 4.2 in [55]). Consider

A =


1 −1 1

−1 1 −1
1 −1 1

 .
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Then A ∈ S+
3 and by Theorem 3.1.3, we see that A ∈ Gs3. However,

S(A) = A−N(A) =


1 −1 1

−1 1 −1
1 −1 1

−


0 0 1

0 0 0

1 0 0

 =


1 −1 0

−1 1 −1
0 −1 1

 ̸∈ S+
3

which implies that A ̸∈ H3. Thus Gs3 \ H3 ̸= ∅.

Example 3.1.6. Consider

A =


1 −1 1

−1 1 1

1 1 1


and let

S =


1 −1 0

−1 1 0

0 0 0

 and N = A− S =


0 0 1

0 0 1

1 1 1

 .

Then S ∈ S+
3 , N ∈ N3 and

SN = NS =


0 0 0

0 0 0

0 0 0

 .

holds which implies that A ∈ com(S+
3 +N3) ⊆ Gs3. Moreover, if we set

P :=


1√
3

1√
14

5√
42

1√
3
− 3√

14
− 1√

42

− 1√
3
− 2√

14
4√
42

 ,Λ :=


−1 0 0

0 2 0

0 0 2


then P and Λ satisfy (3.4) and the corresponding problem (LP)P,Λ is given as follows:

Maximize α

subject to ω1 ≤ −1, ω2 ≤ 2, ω3 ≤ 2

ω1


1
3

1
3
−1

3

1
3

1
3
−1

3

−1
3
−1

3
1
3

+ ω2


1
14
− 3

14
−1

7

− 3
14

9
14

3
7

−1
7

3
7

2
7

+ ω3


25
42
− 5

42
10
21

− 5
42

1
42
− 2

21

10
21
− 2

21
8
21

 ≥ αE.

By solving this problem, we know that α∗(P,Λ) < 0. Thus the matrix A lies on Gs3
but not on Ga3 . Thus Gs3 \ Ga3 ̸= ∅.
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Figure 3.1 draws those examples and (ii) of Theorem 3.1.3. Moreover, Figure 3.2

follows from (vii) of Theorem 3.1.3 and the convexity of the sets Nn, Sn and Hn

(see Theorem 3.1.1).

Figure 3.1: The inclusion relations among the subcones of COP I

Figure 3.2: The inclusion relations among the subcones of COPn II

3.2 SDbasis and sub cones of copositive cone

We improve the subcone Gsn in terms of P2. For a given matrix A of (3.4), the linear

optimization problem (LP)P,Λ in (3.8) can be solved in order to find a nonnegative
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matrix that is a linear combination

n∑
i=1

ωipip
T
i

of n linearly independent positive semidefinite matrices pip
T
i ∈ S+

n (i = 1, 2, . . . , n).

This is done by decomposing A ∈ Sn into two parts:

A =
n∑

i=1

(λi − ωi)pip
T
i +

n∑
i=1

ωipip
T
i (3.13)

such that the first part
n∑

i=1

(λi − ωi)pip
T
i

is positive semidefinite. If we have a large number of linearly independent positive

semidefinite matrices, there is a higher chance of finding a nonnegative matrix by

enlarging the feasible region of (LP)P,Λ. In fact, we will show that we can easily

find a basis of Sn consisting of n(n + 1)/2 semidefinite matrices from a given n

orthonormal vectors pi ∈ Rn (i = 1, 2, . . . , n).

Definition 3.2.1 (Semidefinite basis type I). For a given set of n-dimensional

orthonormal vectors pi ∈ Rn(i = 1, 2, . . . , n), define the map Π+ : Rn×Rn → S+
n by

Π+(pi, pj) :=
1

4
(pi + pj)(pi + pj)

T . (3.14)

We call the set

B+(p1, p2, . . . , pn) := {Π+(pi, pj) | 1 ≤ i ≤ j ≤ n} (3.15)

a semidefinite basis type I induced by pi ∈ Rn(i = 1, 2, . . . , n).

From (3.14) and the fact that pi are orthonormal, we obtain the following:

Π+(pi, pj)pk =


pk if i = j = k

1
4
(pi + pj) if i ̸= j and (i = k or j = k)

0 otherwise

(3.16)

The following theorem is the reason why we call the set B+(p1, p2, . . . , pn) a semidef-

inite basis.
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Theorem 3.2.2. Let pi ∈ Rn(i = 1, 2, . . . , n) be n-dimensional orthonormal vectors.

Then the semidefinite basis B+(p1, p2, . . . , pn) defined by Definition 3.2.1 is a basis

of the set Sn of n× n symmetric matrices.

Proof. For k = 1, 2, . . . , n, we will show that the set

B+(p1, p2, · · · , pk) := {Π+(pi, pj) | 1 ≤ i ≤ j ≤ k}.

is linearly independent using mathematical induction on k. It is clear that B+(p1) =
{p1pT1 } is linearly independent. Suppose that B+(p1, p2, · · · , pk−1) is linearly inde-

pendent and that the following equation holds for αij ∈ R (1 ≤ i ≤ j ≤ k).∑
1≤i≤j≤k

αijΠ+(pi, pj) = 0.

By multiplying both sides of the equation with the vector pk, we get

0 =
∑

1≤i≤j≤k

αijΠ+(pi, pj)pk =
k∑

i=1

αiiΠ+(pi, pi)pk +
∑

1≤i<j≤k

αijΠ+(pi, pj)pk

= αkkpk +
k−1∑
i=1

αik

4
(pi + pk) (by (3.16))

=

(
αkk +

k−1∑
i=1

αik

4

)
pk +

k−1∑
i=1

αik

4
pi = 0 (3.17)

Since pi (i = 1, 2, . . . , k) are orthonormal and linearly independent, the above equa-

tion implies

αik = 0 (i = 1, 2, . . . , k − 1) and hence αkk = 0. (3.18)

Therefore, we have

0 =
∑

1≤i≤j≤k

αijΠ+(pi, pj) =
∑

1≤i≤j≤k−1

αijΠ+(pi, pj)

and the induction hypothesis ensures that

αij = 0 (1 ≤ i ≤ j ≤ k − 1). (3.19)

It follows from (3.18) and (3.19) that B+(p1, p2, · · · , pk) := {Π+(pi, pj) | 1 ≤ i ≤ j ≤
k} is linearly independent, which completes the proof.
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A variant of the semidefinite basis type I is as follows.

Definition 3.2.3 (Semidefinite basis type II). For a given set of n-dimensional

orthonormal vectors pi ∈ Rn(i = 1, 2, . . . , n), define the map Π+ : Rn×Rn → S+
n by

Π−(pi, pj) :=
1

4
(pi − pj)(pi − pj)

T . (3.20)

We call the set

B−(p1, p2, · · · , pn) := {Π+(pi, pi) | 1 ≤ i ≤ n} ∪ {Π−(pi, pj) | 1 ≤ i < j ≤ n} (3.21)

a semidefinite basis type II induced by pi ∈ Rn(i = 1, 2, . . . , n).

Similarly to the map Π+(pi, pj), it follows from (3.20) and the orthonormality of pi

that

Π−(pi, pj)pk =

 1
4
(pi − pj) if i ̸= j and (i = k or j = k)

0 otherwise
(3.22)

Using the above relations, we obtain the following theorem as a variant of Theorem

3.2.2.

Theorem 3.2.4. Let pi ∈ Rn(i = 1, 2, . . . , n) be n-dimensional orthonormal vectors.

Then the semidefinite basis B−(p1, p2, · · · , pn) defined by Definition 3.2.3 is a basis

of the set Sn of n× n symmetric matrices.

Proof. The proof is almost the same as that of Theorem 3.2.2. The only difference

is that equation (3.17) turns out to be

0 =
k∑

i=1

αiiΠ+(pi, pi)pk +
∑

1≤i<j≤k

αijΠ−(pi, pj)pk

= αkkpk +
k−1∑
i=1

αik

4
(pi − pk) (by (3.22))

=

(
αkk −

k−1∑
i=1

αik

4

)
pk +

k−1∑
i=1

αik

4
pi = 0.
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Remark 3.2.5 (Difference between the SDP bases and the Peirce decomposition in

Jordan algebra). It should be noted that both of the semidefinite bases B+(p1, p2, · · · , pn)
and B−(p1, p2, · · · , pn) are different from the bases obtained by the Peirce decompo-

sition associated with the idempotent C =
∑n

i=1 pip
T
i in Jordan algebra (cf. Example

11.15 of [3] and Chapter IV of [29]). To see this, consider the following simple

example with n = 2. Let

p1 =

 1

0

 , p2 =

 0

1

 .

Then the semidefinite bases defined by Definitions 3.2.1 and 3.2.3 are

B+(p1, p2) =


1 0

0 0

 ,

0 0

0 1

 ,

1/4 1/4

1/4 1/4

 ⊆ S+
n ,

B−(p1, p2) =


1 0

0 0

 ,

0 0

0 1

 ,

 1/4 −1/4
−1/4 1/4

 ⊆ S+
n

respectively. On the other hand, the Peirce space associated with the idempotent

C = p1p
T
1 + p2p

T
2 is given by

E1(C) =


α 0

0 0

 | α ∈ R


E2(C) =


0 0

0 α

 | α ∈ R


E12(C) =


0 α

α 0

 | α ∈ R


and this leads to the basis,

1 0

0 0

 ,

0 0

0 1

 ,

0 1

1 0

 ̸⊆ S+
n

Figure 3.3 shows S+
2 and SDbasis B+(p1, p2) of Remark 3.2.5. The semidefinite cone

for n = 2 is representable as

S+
2 =


a c

c b

 | a ≥ 0, b ≥ 0, ab− c2 ≥ 0

 .
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Figure 3.3: The semidefinite cone and B+(p1, p2) for n = 2

The cone in Figure 3.3 is S+
2 and vectors shows B+(p1, p2).

Using the map Π+ in (3.14), the linear optimization problem (LP)P,Λ in (3.8) can

be equivalently written as

(LP)P,Λ

∣∣∣∣∣∣∣∣∣∣∣

Maximize α

subject to ωii ≤ λi (i = 1, 2, . . . , n)[
n∑

k=1

ωkkΠ+(pk, pk)

]
ij

≥ α (1 ≤ i ≤ j ≤ n).

The problem (LP)P,Λ is based on the decomposition (3.13). Starting with (3.13),

the matrix A can be decomposed using Π+(pi, pj) in (3.14) and Π−(pi, pj) in (3.20)
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as

A =
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

=
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

+
∑

1≤i<j≤n

(−ω+
ij)Π+(pi, pj) +

∑
1≤i<j≤n

ω+
ijΠ+(pi, pj) (3.23)

=
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

+
∑

1≤i<j≤n

(−ω+
ij)Π+(pi, pj) +

∑
1≤i<j≤n

ω+
ijΠ+(pi, pj)

+
∑

1≤i<j≤n

(−ω−
ij)Π−(pi, pj) +

∑
1≤i<j≤n

ω−
ijΠ+(pi, pj). (3.24)

On the basis of the decomposition (3.23) and (3.24), we devise the following two

linear optimization problems as extensions of (LP)P,Λ:

(LP)+P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α

subject to ω+
ii ≤ λi (i = 1, 2, . . . , n)

ω+
ij ≤ 0 (1 ≤ i < j ≤ n)[ ∑
1≤k≤l≤n

ω+
klΠ+(pk, pl)

]
ij

≥ α (1 ≤ i ≤ j ≤ n)

(3.25)

(LP)±P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α

subject to ω+
ii ≤ λi (i = 1, 2, . . . , n)

ω+
ij ≤ 0, ω−

ij ≤ 0 (1 ≤ i < j ≤ n)[ ∑
1≤k≤l≤n

ω+
klΠ+(pk, pl) +

∑
1≤k<l≤n

ω−
klΠ−(pk, pl)

]
ij

≥ α (1 ≤ i ≤ j ≤ n)

(3.26)

Problem (LP)+P,Λ has n(n+1)/2+1 variables and n(n+1) constraints, and problem

(LP)±P,Λ has n2 + 1 variables and n(3n + 1)/2 constraints (see Table 3.1). Since

[PΩP T ]ij in (3.8) is given by [
∑n

k=1 ωkkΠ+(pk, pk)]ij, we can prove that both linear

optimization problems (LP)+P,Λ and (LP)±P,Λ are feasible and bounded by making

arguments similar to the one for (LP)P,Λ. Thus, (LP)
+
P,Λ and (LP)±P,Λ have optimal

solutions with corresponding optimal values α+
∗ (P,Λ) and α±

∗ (P,Λ).
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If the optimal value α+
∗ (P,Λ) of (LP)

+
P,Λ is nonnegative, then, by rearranging (3.23),

the optimal solution ω+∗
ij (1 ≤ i ≤ j ≤ n) can be made to give the following

decomposition:

A =

[
n∑

i=1

(λi − ω+∗
ii )Π+(pi, pi) +

∑
1≤i<j≤n

(−ω+∗
ij )Π+(pi, pj)

]
+

[ ∑
1≤i≤j≤n

ω+∗
ij Π+(pi, pj)

]
∈ Sn

n+Nn.

In the same way, if the optimal value α±
∗ (P,Λ) of (LP)±P,Λis nonnegative, then, by

rearranging (3.24), the optimal solution ω+∗
ij (1 ≤ i ≤ j ≤ n), ω−∗

ij (1 ≤ i < j ≤ n)

can be made to give the following decomposition:

A =

[
n∑

i=1

(λi − ω+∗
ii )Π+(pi, pi) +

∑
1≤i<j≤n

(−ω+∗
ij )Π+(pi, pj) +

∑
1≤i<j≤n

(−ω−∗
ij )Π−(pi, pj)

]

+

[ ∑
1≤i≤j≤n

ω+∗
ij Π+(pi, pj) +

∑
1≤i<j≤n

ω−∗
ij Π−(pi, pj)

]
∈ Sn

n +Nn.

On the basis of the above observations, we can define new subcones of Sn
n +Nn in

a similar manner as (3.9):

F+s
n := {A ∈ Sn | α+

∗ (P,Λ) ≥ 0 for some orthonormal matrix P satisfying (3.4) },

F+a
n := {A ∈ Sn | α+

∗ (P,Λ) ≥ 0 for any orthonormal matrix P satisfying (3.4) },

F̂+s
n := {A ∈ Sn | α+

∗ (P,Λ) ≥ 0 for some arbitrary matrix P satisfying (3.4) },

F±s
n := {A ∈ Sn | α±

∗ (P,Λ) ≥ 0 for some orthonormal matrix P satisfying (3.4) },

F±a
n := {A ∈ Sn | α±

∗ (P,Λ) ≥ 0 for any orthonormal matrix P satisfying (3.4) },

F̂±s
n := {A ∈ Sn | α±

∗ (P,Λ) ≥ 0 for some arbitrary matrix P satisfying (3.4) }
(3.27)

where α+
∗ (P,Λ) and α±

∗ (P,Λ) are optimal values of (LP)+P,Λ and (LP)±P,Λ, respectively.

From the construction of problems (LP)P,Λ, (LP)
+
P,Λ and (LP)±P,Λ, we can easily see

that

Gsn ⊆ F+s
n ⊆ F±s

n , Gan ⊆ F+a
n ⊆ F±a

n , Ĝ+s
n ⊆ F̂+s

n ⊆ F̂±s
n

hold. The following corollary follows from (v)-(vii) of Theorem 3.1.3 and the above

inclusions.
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Corollary 3.2.6. (i)

S+
n ∪Nn ⊆ Gan ⊆ Gsn = com(S+

n +Nn) ⊆ Ĝsn ⊆ S+
n +Nn

⊆ ⊆ ⊆

S+
n ∪Nn ⊆ F+a

n ⊆ F+s
n ⊆ F̂+s

n ⊆ S+
n +Nn

⊆ ⊆ ⊆
S+
n ∪Nn ⊆ F±a

n ⊆ F±s
n ⊆ F̂±s

n ⊆ S+
n +Nn

(ii) If n = 2, then each of the sets F+a
n , F+s

n , F̂+s
n , F±a

n , F±s
n and F̂±s

n coincides

with S+
n +Nn.

(iii) The convex hull of each of the sets F+a
n , F+s

n , F̂+s
n , F±a

n , F±s
n and F̂±s

n is

S+
n +Nn.

The following table summarizes the sizes of LPs (3.8), (3.25), and (3.26) that we

have to solve in order to identify, respectively, A ∈ Gsn (or A ∈ Ĝsn), A ∈ F+s
n (or

A ∈ F̂ s
n) and A ∈ F±s

n (or A ∈ F̂ s
n).

Table 3.1: Sizes of LPs for identification

Identification A ∈ Gsn (or A ∈ Ĝsn) A ∈ F+s
n (or A ∈ F̂+s

n ) A ∈ F±s
n (or A ∈ F̂±s

n )

# of variables n+ 1 n(n+ 1)/2 + 1 n2 + 1

# of constraints n(n+ 3)/2 n(n+ 1) n(3n+ 1)/2

We generated random instances of A ∈ S+
n + Nn based on the method described

in Section 2 of [14]. For an n × n matrix B with entries independently drawn

from a standard normal distribution, we obtained a random positive semidefinite

matrix S = BBT . An n × n random nonnegative matrix N was constructed using

N = C − cminIn with C = F + F T for a random matrix F with entries uniformly

distributed in [0, 1] and cmin being the minimal diagonal entry of C. We set A =

S +N ∈ S+
n +Nn. The construction was designed so as to maintain nonnegativity

of N while increasing the chance that S +N would be indefinite and thereby avoid

instances that are too easy.
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For each instance A ∈ S+
n +Nn, we checked whether A ∈ Gsn (A ∈ F+s

n and A ∈ F±s
n )

by solving (LP)P,Λ in (3.8) ( (LP)+P,Λ in (3.25) and (LP)±P,Λ in (3.26)), where P and

Λ were obtained using the MATLAB command “[P,Λ] = eig(A).”

Table 3.2 shows the number of matrices that were identified as A ∈ Gsn (A ∈ F+s
n

and A ∈ F±s
n ) and the average CPU time, where 1000 matrices were generated for

each n. The table yields the following observations:

• All of the matrices were identified as A ∈ S+
n +Nn by checking A ∈ F±s

n . The

result is comparable to the one in Section 2 of [14].

• For any n, the number of identified matrices increases in the order of the set

inclusion relation: Gsn ⊆ F+s
n ⊆ F±s

n .

• For the sets Gsn and F+s
n , the number of identified matrices decreases as the

size of n increases.

• Comparing the results for F+s
n and F±s

n , the average CPU time is approxi-

mately proportional to the number of identified matrices.

Table 3.2: Results of identification of A ∈ S+
n +Nn: 1000 matrices were generated

for each n

Gsn F+s
n F±s

n

n # of A Ave. time(s) # of A Ave. time(s) # of A Ave. time(s)

10 247 4.707 856 8.322 1000 11.003

20 20 12.860 719 120.779 1000 221.889

50 0 2373.744 440 22345.511 1000 50091.542
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Chapter 4

LP based algorithms for checking

copositivity

In this section, we investigate the effect of using the sets F+s
n , F̂+s

n , F±s
n and F̂±s

n

for testing whether a given matrix A is copositive by using Sponsel, Bundfuss and

Dür’s algorithm [55].

4.1 Outline of the algorithms

By defining the standard simplex ∆S by ∆S = {x ∈ Rn
+ | eTx = 1}, we can see that

a given n× n symmetric matrix A is copositive if and only if

xTAx ≥ 0 for all x ∈ ∆S

(see Lemma 1 of [16]). A family of simplices P = {∆1, . . . ,∆m} is called a simplicial

partition of ∆ if it satisfies

∆ =
m∪
i=1

∆i and int(∆i) ∩ int(∆j) ̸= ∅ for all i ̸= j.

Such a partition can be generated by successively bisecting simplices in the partition.

For a given simplex ∆ = conv{v1, . . . , vn}, consider the midpoint vn+1 = 1
2
(vi +

vj) of the edge [vi, vj]. Then the subdivision ∆1 = {v1, . . . , vi−1, vn+1, vi+1, . . . , vn}
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and ∆2 = {v1, . . . , vj−1, vn+1, vj+1, . . . , vn} of ∆ satisfies the above conditions for

simplicial partitions. See [33] for a detailed description of simplicial partitions.

Denote the set of vertices of partition P by

V (P) = {v | v is a vertex of some ∆ ∈ P}.

Each simplex ∆ is determined by its vertices and can be represented by a matrix

V∆ whose columns are these vertices. Note that V∆ is nonsingular and unique up to

a permutation of its columns, which does not affect the argument [55]. Define the

set of all matrices corresponding to simplices in partition P as

M(P) = {V∆ : ∆ ∈ P}.

The “fineness” of a partition P is quantified by the maximum diameter of a simplex

in P , denoted by

δ(P) = max
∆∈P

max
u,v∈∆

||u− v||. (4.1)

The above notation was used to show the following necessary and sufficient con-

ditions for copositivity in [55]. The first theorem gives a sufficient condition for

copositivity.

Theorem 4.1.1 (Theorem 2.1 of [55]). If A ∈ Sn satisfies

V TAV ∈ COPn for all V ∈M(P)

then A is copositive. Hence, for anyMn ⊆ COPn, if A ∈ Sn satisfies

V TAV ∈Mn for all V ∈M(P),

then A is also copositive.

The above theorem implies that by choosingMn = Nn (see (2.3)), A is copositive

if V T
∆AV∆ ∈ Nn holds for any ∆ ∈ P .

Theorem 4.1.2 (Theorem 2.2 of [55]). Let A ∈ Sn be strictly copositive, i.e., A ∈
int (COPn). Then there exists ε > 0 such that for all partitions P of ∆S with

δ(P) < ε, we have

V TAV ∈ Nn for all V ∈M(P).

36



The above theorem ensures that if A is strictly copositive (i.e., A ∈ int (COPn)) then

the copositivity of A (i.e., A ∈ COPn) can be detected in finitely many iterations

of an algorithm employing a subdivision rule with δ(P) → 0. A similar result can

be obtained for the case A ̸∈ COPn, as follows.

Lemma 4.1.3 (Lemma 2.3 of [55]). The following two statements are equivalent.

1. A /∈ COPn

2. There is an ε > 0 such that for any partition P with δ(P) < ε, there exists a

vertex v ∈ V (P) such that vTAv < 0

The following algorithm, in [55], is based on the above three results.

Algorithm 1 Sponsel, Bundfuss and Dür’s algorithm to test copositivity
Input: A ∈ Sn,Mn ⊆ COPn

Output: “A is copositive” or “A is not copositive”

1: P ← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P ;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: return “A is not copositive”;

6: end if

7: if V T
∆AV∆ ∈Mn then

8: P ← P \ {∆};
9: else

10: Partition ∆ into ∆ = ∆1 ∪∆2;

11: P ← P \ {∆} ∪ {∆1,∆2};
12: end if

13: end while

14: Return “A is copositive”;

As we have already observed, Theorem 4.1.2 and Lemma 4.1.3 imply the following

corollary.
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Corollary 4.1.4. 1. If A is strictly copositive, i.e., A ∈ int (COPn), then Algo-

rithm 1 terminates finitely, returning “A is copositive.”

2. If A is not copositive, i.e., A ̸∈ COPn then Algorithm 1 terminates finitely,

returning “A is not copositive.”

At Line 8, Algorithm 1 removes the simplex that was determined at Line 7 to be

in no further need of exploration by Theorem 4.1.1. The accuracy and speed of the

determination influence the total computational time and depend on the choice of

the setMn ⊆ COPn.

In this section, we investigate the effect of using the sets Hn in (3.2), Gsn in (??),

and F+s
n and F±s

n in (3.27) as the setMn in the above algorithm.

Note that if we choose Mn = Gsn (respectively, Mn = F+s
n , Mn = F±s

n ), we can

improve Algorithm 1 by incorporating the set M̂n = Ĝsn (respctively, M̂n = F̂+s
n ,

M̂n = F̂±s
n ), as proposed in [57].

The details of the added steps are as follows. Suppose that we have a diagonalization

of the form (3.4).

At Line 7, we need to solve an additional LP but do not need to diagonalize V T
∆AV∆.

Let P and Λ be matrices satisfying (3.4). Then the matrix V T
∆P can be used to

diagonalize V T
∆AV∆, i.e.,,

V T
∆AV∆ = V T

∆ (PΛP T )V∆ = (V T
∆P )Λ(V T

∆P )T

while V T
∆P is not necessarily orthonormal. Thus, we can test V T

∆AV∆ ∈ M̂n by

solving the corresponding LP, i.e., (LP)V T
∆ P,Λ ifMn = Gsn, (LP)

+
V T
∆ P,Λ ifMn = F+s

n

and (LP)±V T
∆ P,Λ ifMn = F±s

n .

If V T
∆AV∆ ∈ M̂n is not detected at Line 7, we can check whether V T

∆AV∆ ∈ Mn

at Line 10. Similarly to Algorithm 1.2 (where the set Mn is used at Line 7 of

Algorithm 1), we can diagonalize V T
∆AV∆ as V T

∆AV∆ = PΛP T with an orthonormal

matrix P and a diagonal matrix Λ and solve the LP.

At Line 15, we do not need to diagonalize V T
∆pAV∆p or to solve any more LPs. Let

ω∗ ∈ Rn be an optimal solution of the corresponding LP obtained at Line 7 and let
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Algorithm 2 Improved version of Algorithm 1

Input: A ∈ Sn,Mn ⊆ M̂n ⊆ COPn

Output: “A is copositive” or “A is not copositive”

1: P ← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P ;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: Return “A is not copositive”;

6: end if

7: if V T
∆AV∆ ∈ M̂n then

8: P ← P \ {∆};
9: else

10: if V T
∆AV∆ ∈Mn then

11: P ← P \ {∆};
12: else

13: Partition ∆ into ∆ = ∆1 ∪∆2, and set ∆̂← {∆1,∆2};
14: for p = 1, 2 do

15: if V T
∆pAV∆p ∈ M̂n then

16: ∆̂← ∆̂ \ {∆p};
17: end if

18: end for

19: P ← P \ {∆} ∪ ∆̂;

20: end if

21: end if

22: end while

23: return “A is copositive”;
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Ω∗ := Diag (ω∗). Then the feasibility of ω∗ implies the positive semidefiniteness of

the matrix V T
∆pP (Λ− Ω∗)P TV∆p . Thus, if V T

∆pPΩ∗P TV∆p ∈ Nn, we see that

V T
∆pAV∆p = V T

∆pP (Λ− Ω∗)P TV∆p + V T
∆pPΩ∗P TV∆p ∈ S+

n +Nn

and that V T
∆pAV∆p ∈ M̂n.

4.2 Numerical results

We implemented Algorithms 1 and 2 in MATLAB R2015a on a 3.07GHz Core i7

machine with 12 GB of RAM, using Gurobi 6.5 for solving LPs.

As test instances, we used the following matrix,

Bγ := γ(E − AG)− E (4.2)

where E ∈ Sn is the matrix whose elements are all ones and the matrix AG ∈ Sn is

the adjacency matrix of a given undirected graph G with n nodes. The matrix Bγ

comes from the maximum clique problem. The maximum clique problem is to find

a clique (complete subgraph) of maximum cardinality in G. It has been shown (in

[21]) that the maximum cardinality, the so-called clique number ω(G), is equal to

the optimal value of

ω(G) = min{γ ∈ N | Bγ ∈ COPn}.

Thus, the clique number can be found by checking the copositivity of Bγ for at most

γ = n, n− 1, . . . , 1.

Figure 4.1 on page 43 shows the instances of G that were used in [55]. We know the

clique numbers of G8 and G12 are ω(G8) = 3 and ω(G12) = 4, respectively.

The aim of the implementation is to explore the differences in behavior when using

Hn, Gsn, F+s
n , F̂+s

n , F±s
n or F̂±s

n as the set Mn rather than to compute the clique

number efficiently. Hence, the experiment examined Bγ for various values of γ at

intervals of 0.1 around the value ω(G) (see Tables 4.1 and 4.2 on page 44).
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As already mentioned, α∗(P,Λ) < 0 (α+
∗ (P,Λ) < 0 and α±

∗ (P,Λ) < 0) with a specific

P does not necessarily guarantee that A ̸∈ Gsn or A ̸∈ Ĝsn (A ̸∈ F+s
n or A ̸∈ F̂+s

n ,

A ̸∈ F±s
n or A ̸∈ F̂±s

n ). Thus, it not strictly accurate to say that we can use those

sets for Mn, and the algorithms may miss some of the ∆’s that could otherwise

have been removed. However, although this may have some effect on speed, it does

not affect the termination of the algorithm, as it is guaranteed by the subdivision

rule satisfying δ(P)→ 0, where δ(P) is defined by (4.1).

Tables 4.1 and 4.2 show the numerical results for G8 and G12, respectively. Both

tables compare the results of the following five algorithms:

Algorithm 1.1: Algorithm 1 withMn = Hn.

Algorithm 2.1: Algorithm 2 withMn = Gsn and M̂n = Ĝsn.

Algorithm 1.2: Algorithm 1 withMn = F+s
n .

Algorithm 2.2: Algorithm 2 withMn = F+s
n and M̂n = F̂+s

n .

Algorithm 2.3: Algorithm 2 withMn = F±s
n and M̂n = F̂±s

n .

The symbol “−” means that the algorithm did not terminate within 6 hours. The

reason for the long computation time may come from the fact that for each graph

G, the matrix Bγ lies on the boundary of the copositive cone COPn when γ = ω(G)

(ω(G8) = 3 and ω(G12) = 4).

We can draw the following implications from the results in Table 4.2 on page 45 for

the larger graph G12 (similar implications can be drawn from Tables 4.1):

• At any γ ≥ 5.2, Algorithms 2.1, 1,2, 2.2, 2.3 and 1.3 terminate in one

iteration, and the execution times of Algorithms 1,2, 2.2 and 2.3 are much

shorter than those of Algorithms 1.1 or 1.3.

• The lower bound of γ for which the algorithm terminates in one iteration and

the one for which the algorithm terminates in 6 hours decrease in going from

Algorithm 1.2 to Algorithm 3.1. The reason may be that, as shown in

Corollary 3.2.6, the set inclusion relation Gn ⊆ F+s
n ⊆ F±s

n ⊆ S+
n +Nn holds.
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• Table 3.1 on page 33 summarizes the sizes of the LPs for identification. The

results here imply that the computational times for solving an LP have the

following magnitude relationship for any n ≥ 3:

Algorithm 2.1 < Algorithm 1.2 < Algorithm 2.2 < Algorithm 2.3.

On the other hand, the set inclusion relation Gn ⊆ F+s
n ⊆ F±s

n and the con-

struction of Algorithms 1 and 2 imply that the detection abilities of the al-

gorithms also follow the relationship described above and that the number of

iterations has the reverse relationship for any γs in Table 4.2:

Algorithm 2.1 > Algorithm 1.2 > Algorithm 2.2 > Algorithm 2.3.

It seems that the order of the number of iterations has a stronger influence

on the total computational time than the order of the computational time for

solving an LP.

• At each γ ∈ [4.1, 4.9], the number of iterations of Algorithm 2.3 is much

larger than one hundred times those of Algorithm 1.3. This means that the

total computational time of Algorithm 2.3 is longer than that of Algorithm

1.3 at each γ ∈ [4.1, 4.9], while Algorithm 1.3 solves a semidefinite program

of size O(n2) at each iteration.

• At each γ < 4, the algorithms show no significant differences in terms of

the number of iterations. The reason may be that they all work to find a

v ∈ V ({∆}) such that vT (γ(E − AG) − E)v < 0, while their computational

time depends on the choice of simplex refinement strategy.

In view of the above observations, we conclude that Algorithm 2.3 with the choices

Mn = F±s
n and M̂n = F̂±s

n might be a way to check the copositivity of a given

matrix A when A is strictly copositive.

The above results contrast with those of Bomze and Eichfelder in [14], where the

authors show the number of iterations required by their algorithm for testing coposi-

tivity of matrices of the form (4.2). On the contrary to the first observation described
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above, their algorithm terminates with few iterations when γ < ω(G), i.e., the cor-

responding matrix is not copositive, and it requires a huge number of iterations

otherwise.

It should be noted that Table 4.1 shows an interesting result concerning the non-

convexity of the set Gsn, while we know that conv (Gsn) = Sn+Nn (see Theorem 3.1.3).

Let us look at the result at γ = 4.0 of Algorithm 2.1. The multiple iterations at

γ = 4.0 imply that we could not find B4.0 ∈ Gsn at the first iteration for a certain

orthonormal matrix P satisfying (3.4). Recall that the matrix Bγ is given by (4.2).

It follows from E −AG ∈ Nn ⊆ Gsn and from the result at γ = 3.5 in Table 4.1 that

0.5(E − AG) ∈ Gsn and B3,5 = 3.5(E − AG)− E ∈ Gsn.

Thus, the fact that we could not determine whether the matrix

B4.0 = 4.0(E − AG)− E = 0.5(E − AG) +B3.5

lies in the set Gsn suggests that the set Gsn = com(Sn +Nn) is not convex.

Moreover, the numerical results suggest that F±s
n and S+

n + Nn are different. It

appear that F±s
n is not convex since it is known that conv(S+

n ∪Nn) = S+
n +Nn and

inclusion relationship of these cones (Corollary 3.2.6).

Figure 4.1: The graphs G8 with ω(G8) = 3 (left) and G12 with ω(G12) = 4 (right).
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Chapter 5

Concluding remarks

In this thesis, we studied the copositive cone and the completely positive cone.

These cones have close relationships between combinatorial or quadratic optimiza-

tion problems. However, solving copositive or completely positive programming is

NP-hard and unfortunately it is known that even checking whether a given matrix

belongs to the copositive cone is co-NP-complete. We investigated the properties

of several tractable subcones of COPn and summarized the results (as Figures 3.1

and 3.2). We also devised new subcones of COPn by introducing the semidefinite

basis (SD basis) defined as in Definitions 3.2.1 and 3.2.3. We conducted numerical

experiments using those subcones for identification of given matrices A ∈ S+
n +Nn

and for testing the copositivity of matrices arising from the maximum clique prob-

lems. We have to solve LPs with O(n2) variables and O(n2) constraints in order to

detect whether a given matrix belongs to those cones, and the computational cost is

substantial. However, the numerical results shown in Tables 3.2, 4.1, and 4.2 show

that the new subcones are promising not only for identification of A ∈ S+
n +Nn but

also for testing copositivity.

Recently, Ahmadi, Dash and Hall [1] developed algorithms for inner approximating

the cone of positive semidefinite matrices, wherein they focused on the set Dn ⊆ S+
n

of n× n diagonal dominant matrices. Let Un,k be the set of vectors in Rn that have
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at most k nonzero components, each equal to ±1, and define

Un,k := {uuT | u ∈ Un,k}.

Then, as the authors indicate, the following theorem has already been proven.

Theorem 5.0.1 (Theorem 3.1 of [1], Barker and Carlson [8]).

Dn = cone(Un,k) :=


|Un,k|∑
i=1

αiUi | Ui ∈ Un,k, αi ≥ 0 (i = 1, . . . , |Un,k|)


From the above theorem, we can see that for the SDP bases B+(p1, p2, · · · , pn) in

(3.15), B−(p1, p2, · · · , pn) in (3.21) and n-dimensional unit vectors e1, e2, · · · , en, the
following set inclusion relation holds:

B+(e1, e2, · · · , en) ∪ B−(e1, e2, · · · , en) ⊆ Dn = cone(Un,k).

These sets should be investigated in the future.
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