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Abstract 

Graphene is a two-dimensional (2D) crystalline form of carbon with a honeycomb lattice 

structure. It is the fundamental structure of layered bulk graphite and some nanocarbon materials, 

such as carbon nanotubes. The successful isolation of graphene has greatly influenced the 

nanocarbon research and has opened a new field of layered 2D materials. Recently, interactions of 

graphene with metal atoms and clusters have been studied aiming to control the local properties of 

graphene for applications in electrocatalysts and nanoelectronic devices. Alternatively, placing 

metal clusters on graphene could lead to the formation of novel low-dimensional nanostructures. 

Using transmission electron microscopy (TEM), we can directly monitor metal-graphene 

interactions without the effects of bulk substrate. Atomic-resolution imaging of individual atoms 

in graphene lattice has become available, due to the recent development in graphene synthesis and 

spatial resolution improvement brought by correcting aberrations of electron microscope lens. 

This thesis investigates structure and interaction dynamics of metal atoms with graphene by 

atomic-resolution TEM. Previous studies reported that most metal atoms, which strongly 

interacted with graphene, promoted etching of graphene under electron irradiation. This 

phenomenon is generally detrimental for the fabrication of graphene-based nanoelectronic devices; 

on the other hand, it offers a promising method of graphene pattering and of producing graphene 

nanoribbons. Defects or impurity-doping in graphene is sometimes beneficial for chemical and 

electrochemical fields, where they can offer active sites for catalysis. It is therefore essential to 

visualize defect structure of graphene interacting with different chemical elements. Based on our 

results, we propose that binding energy of metal-C bonds is one of the key factors whether metal 

atoms can promote structural changes in graphene. 

In this thesis, we investigate noble metals, Cu, Pt and Au, because they are promising elements 

for single-atom catalysis. Cu is known to be the best catalyst for graphene growth, and therefore 

is expected to catalyze the growth or modification of other carbon nanostructures. Indeed, we 

found that substitutional Cu atoms promote reconstruction of single-layer graphene, which had 

been not reported for other metals. During observation, we heated the sample at 150–300 °C to 

reduce hydrocarbon contamination. In general, thermal energy is a decisive factor of natural 

movements. However, we found that the energy required for the observed transformations was 

significantly higher than the energy arising from in situ heating at the aforementioned temperatures, 



v 

 

so that we conclude that the transformations were not induced by sample heating but by electron 

irradiation. We operated microscope at a low accelerating voltage of 80 kV to reduce knock-on 

damage of graphene, yet the incident electrons can transfer some of their energy to C atoms, which 

is sufficient to modify graphene structure in the presence of Cu atoms. Furthermore, we found that 

Cu, Pt and Au atoms at graphene edges behave differently: Cu atoms mend graphene edges, Pt 

atoms etch them, while Au atoms diffuse away from defects rather than affect the graphene 

structure. Our results suggest that doping different metals in graphene lattice or at graphene edges, 

combined with high-energy electron beam irradiation, allows us to control the graphene sheet 

morphology. 

In addition to the above-mentioned phenomena, we observed self-assembly of two low-

dimensional structures, namely, metal-terminated carbynes (monoatomic linear carbon chains) 

and one-atom-thick 2D copper oxide with a square lattice. In the formation of these novel 

nanostructures, graphene acted as a support membrane, an ultimate thin film for the visualization 

of materials by TEM. Defects or dopant metal atoms in graphene play an important role in 

providing nucleation sites. A great advantage of the observed formation is that metal-terminated 

carbyne chains and 2D copper oxide clusters are built up from single atoms: such a bottom-up 

approach offers the possibility to synthesize desired nanostructures in parallel rather than in 

sequentially. 

In summary, we report two fundamental phenomena promoted by metal atoms interacting with 

graphene, using aberration-corrected TEM operated at 80 kV. The first phenomenon shows various 

structural changes in graphene lattice that were induced by a simultaneous presence of 

substitutional metal atoms and electron beam irradiation. The second reported phenomenon is the 

self-assembly of novel low-dimensional structures supported by graphene. Both phenomena are 

assisted by electron irradiation, which affects light C atoms much more than heavy metal atoms. 

The 80 keV electron beam irradiation offers energy required to induce the structural 

transformations in graphene. It also promoted migration of source atoms to create novel low-

dimensional materials. Our results provide fundamental insight into the structure of graphene with 

metal atoms, and offer a promising method of producing nanostructures for a variety of potential 

applications.  
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Introduction 

The first section (1-1) introduces general and historical background of electron microscopy 

investigations of graphene followed by discussion of objectives of this thesis. The second section 

(1-2) summarizes relevant previous research that influenced our research. The outline of the thesis 

are concisely described in the last section (1-3). 

1-1  Characterization of graphene by electron microscopy 

The first subsection describes historical background of graphene research, followed by 

discussion of the importance of electron microscopy and its recent development. Then we examine 

the energy scale of electron-beam-induced transformations, since the effect of electron beam 

irradiation on graphene with noble metal atoms is the most important physics basis for our research. 

The last subsection is a motivation and objective of our research. For simplicity, technical methods 

of imaging and sample preparation are explained in Chapter 2, so that this section would make 

readers understand the essence of this thesis. 

1-1-1  Background 

Graphene is, strictly speaking, one-atom-thick 2D crystalline form of carbon with a honeycomb 

structure. It was first prepared by Geim and Novoselov via exfoliation from bulk graphite in 2004 

(Figure 1-1, [1]). In their own words “Graphene is a rapidly rising star on the horizon of materials 

science and condensed-matter physics” [2]. Graphene has attracted tremendous attention since 

2004, resulting in a Nobel Prize in Physics in 2010 for Geim and Novoselov. As shown in Figure 

1-1(e), one-atom-thick single-layer graphene is the fundamental structure of some other forms of 

carbon, such as layered bulk graphite and one-dimensional carbon nanotube (CNT), which is a 

rolled graphene sheet [3]; it is also related to the zero-dimensional spherical carbon molecules, 

fullerenes [4]. CNTs and fullerenes have been discovered and intensively studied in the 1980–

1990s. The interest to them has gradually declined in the 2000s, but has been reinvigorated by the 
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successful isolation of graphene. In turn, the vast amount of results obtained on CNTs and 

fullerenes did support and accelerate the graphene research. In this way, graphene has quickly 

advanced in the nanocarbon field. 

The number of researchers has been increasing year by year, because graphene is a promising 

material for a variety of novel applications: such as nanoelectronic devices [1], [5]–[10], 

transparent electrodes [11]–[14], support membrane for nanocatalysts [15]–[27], gas sensors [28], 

[29] and so on. Furthermore, a variety of 2D materials have been found from their bulk layered 

counterparts in the same way as graphene: single-layer 2D materials can maintain its structure 

because of strong covalent bonding within a layer, whereas the weak van der Waals forces acting 

between the layers allow the separation of the material into 2D sheets. Recently 2D materials 

without layered bulk counterparts have also been found, as described in Chapter 6). 

Figure 1-1 Graphene isolation and its structure 

Exfoliated graphene images observed by (a) optical microscopy and (b) atomic force microscopy (AFM). 

(c), (d) Scanning electron microscopy (SEM) image and corresponding schematic of a graphene-based 

nanoelectronic device. (e) Schematic relation between the 2D graphene sheet and other carbon materials: 

graphene can be wrapped up into zero-dimensional (0D) fullerene, rolled into one-dimensional (1D) CNT 

or stacked into three-dimensional (3D) graphite. (a), (c) and (d) are reproduced from Ref. [1], (b) is from 

Ref. [30] and (e) is from Ref. [2]. 
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The enthusiasm for graphene resulted in the remarkably rapid progress in research of graphene 

and other low-dimensional materials. Nevertheless, graphene-based electronic devices or catalysts 

are still far from practical application, mostly because methods to obtain desirable forms of 

graphene are not established yet. For example, the properties of graphene-based nanoelectronic 

devices are strongly affected by structural defects of graphene (i.e. grain boundaries, impurities, 

vacancies or dislocations). Alternatively, nanocarbon materials were etched or destroyed by the 

catalytic activity of metal nanoparticles upon heating in hydrogen or oxygen gas atmosphere. In 

general, defects decrease mechanical strength and electrical conductivity (Figure 1-2(a), refs. [31], 

[32]). On the other hand, defects may open new research areas. First, some specific grain 

boundaries can improve electrical properties of graphene (Fig. 1-2(b), refs. [8], [9], [33]). Second, 

nano-engineered graphene forms, such as graphene nanoribbons [34]–[38] and graphene quantum 

dots [39]–[41], are promising materials because of their variable and versatile properties that 

depend on the material size and edge structure (Figs. 1-2 (c) and (d)). Third, nano-scale pores 

(nanopores) in graphene can be utilized for DNA sequencing, ion sensors and water desalination 

(Fig. 1-2(e), refs. [42]–[58]). Finally, defects, such as vacancies or impurities, are essential for 

chemistry and electrochemistry, where they can offer active sites for catalysis (Fig. 1-2(f), refs. 

[22], [59]–[77]). Assembling defects in desirable configurations would be beneficial for all the 

applications mentioned above. A first step in learning how to assemble desired structures is to 

visualize their behavior under well-controlled conditions. Therefore, it is essential to visualize 

structures of graphene defects (such as vacancies, dislocations, edges, dopant atoms, etc.) and to 

understand the mechanisms involved in fabricating such structures. 



Chapter 1 

4 

 

Figure 1-2 Effective utilization of defects in graphene 

(a) Atomic model of grain boundaries in polycrystalline graphene [31]. (b) Scanning tunneling microscopy 

(STM) image of grain boundary that acts as a metallic nanowire [33]. (c) STM image of graphene 

nanoribbons fabricated by bottom-up method [34]. (d) STM image of graphene quantum dots produced 

from C60 [39]. (e) Schematic of DNA sequencing by graphene nanopores [42]. (f) Pyridinic-nitrogen 

enhanced adsorption of metal atoms on graphene [74]. 

Many characterization techniques have been utilized to investigate graphene. Optical 

microscopy, Raman spectroscopy, SEM, and AFM are important tools for probing the properties 

of micro- and nano-scale structures. STM and TEM can analyze graphene at the atomic scale. 

STM is suitable for observation of nanostructures placed on flat substrates as well as their local 

electronic structure, but generally requires long measurement time. On the other hand, using TEM 

we can observe free-standing graphene without the effect of a support substrate. TEM provides 

atomic scale spatial resolution and better time resolution, which are suitable for imaging the 

structure and dynamics at the atomic scale in real time. 

Two recent key developments made it possible to observe individual atoms in single-layer 

graphene by TEM. The first key development for atomic-resolution imaging is the aberration 
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corrector, which dramatically improves spatial resolution of electron microscopies by reducing the 

spherical aberration of the lenses. Electron microscopy is a relatively new and growing field 

compared to other fields in physics. Although Ruska first constructed the prototype electron 

microscopy in 1931, multipole-based aberration correctors became commercially available only 

in the late 1990s [78], [79]. Using such correctors, atomic-resolution imaging of graphene was 

first reported in 2008 by two groups: Meyer et al. [80] and Gass et al. [81]. As shown in Fig. 1-3, 

the former group observed detailed structure of graphene in the conventional BF-TEM mode, 

while the latter performed scanning TEM (STEM) imaging combined with electron energy-loss 

spectroscopy (EELS). 

Figure 1-3 Atomic-resolution imaging of graphene in an electron microscope 

Atomic structure of graphene observed by (a) TEM and (b) STEM-EELS, reproduced from Refs. [80] and 

[81], respectively. Image in (a) shows a step between a single-layer (upper part) and a double-layer area 

(lower part of the image), where the double-layer region exhibited general Bernal (AB) stacking. Image in 

(b) is an annular dark-field (ADF) STEM image of single-layer graphene, and EEL spectra taken from 

nearby areas with 1–5 layers thickness. 

Another key progress expanding graphene research and potentially leading to applications is 

availability of reproducible graphene synthesis and sample preparation methods for the 

experiments. The mechanical exfoliation from graphite is a convenient and simple method to 

obtain high-quality graphene. The disadvantage is that it only allows to obtain small pieces with 

lateral dimensions from a few nanometers to a few micrometers. Obtaining free-standing graphene 

in large area is desirable not only for applications, but also for TEM studies. In 2009, Li et al. 

reported that single-layer graphene can uniformly grow on the entire surface of a Cu foil by 

chemical vapor deposition (CVD) [82]. They also demonstrated that it can be transferred onto an 

arbitrary substrate by wet etching method using poly(methyl methacrylate) as a support membrane 
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[12]. Using CVD graphene grown on a Cu foil followed by wet etching transfer, Bae et al. also 

reported that predominantly single-layer graphene can be produced on an industrial scale (Figure 

1-4, [11]). The transfer of graphene onto TEM grids has also been investigated [13], [83]–[85]. 

Graphene requires special treatment that is different from treatment of typical TEM samples 

prepared from the bulk, for example by ion milling or microtome cutting. In particular, 

experiments on graphene are more sensitive to contamination; only a small amount of hydrocarbon 

residue will disturb atomic-resolution imaging. Sample preparation methods are elaborated in 

section 2-3. 

Figure 1-4 Roll-based production of graphene [11] 

(a) Schematic of roll-to-roll transfer processes of graphene and (b–d) photographs taken during graphene 

transfer, after transfer onto a PET film and an assembled graphene/PET touch panel, respectively. 

As shown above, the synthesis, transfer, and electron microscopy characterization techniques of 

graphene have progressed simultaneously and very rapidly starting around 2008–2010. This is 

because many experimental techniques for CNTs were also suitable for graphene — the CVD 

equipment is nearly identical for the CNT and graphene synthesis, and electron-irradiation effects 

on graphene and CNT are also very similar; therefore, many CNT researchers could immediately 

start studying graphene using the same equipment. Japanese scientists pioneered the study of CNTs 

both in synthesis and characterization; Endo and his co-workers synthesized multi-walled CNTs 

in 1976 [86] and Iijima determined the structure of single-walled and multi-walled CNTs via TEM 
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in 1991 [3]. As a result, many outstanding experimentalists in Japan became interested in 

nanocarbon materials and Japan has been leading the field ever since [87]–[94]. While there are 

too many to be listed here, the group of Suenaga, which collaborates with Iijima, is famous for 

atomic-resolution imaging and spectroscopy of carbon nanostructures at low accelerating voltages 

down to 15 kV (Figure 1-5, refs. [74], [95]–[109]). Their research is conducted in collaboration 

with JEOL Ltd., a Japanese TEM manufacturer. 

Figure 1-5 Single-atom spectroscopy at graphene edge [99]. 

(a) A raw ADF-STEM image taken at 60 kV. (b) Low-pass filtered image of (a) with markers indicating C 

atomic positions. (c) Atomic models of bulk sp2 C atom (green) and edge atoms (blue and red). (d) EEL 

spectra of carbon K (1s) edge taken at the color-coded atoms in (b).  
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1-1-2  Electron irradiation effects 

Here we describe main driving force of the structural changes observed during TEM 

experiments; that is, energy transfer to the C atoms from high-energy incident electron beam. The 

principles and equations are further described in section 2-2. 

Transmission electron microscopes use beams of electrons that are typically accelerated to 80–

300 keV for materials science research. When a high-energy incident electron is elastically 

scattered by an atomic nucleus, it transfers a small part of its energy to the nucleus. The maximum 

amount of energy transfer is determined by two factors: 

(1) Incident electron energy (E) 

(2) Mass number (A) of the scattering nucleus. 

Since the knock-on threshold of atoms is determined by their binding energy, it is essential to use 

low accelerating voltage to reduce incident electron energy (factor (1)), so that atoms cannot be 

displaced from the graphene lattice. Large amount of energy can be transferred from incident 

electrons to light elements such as C atoms, while energy transfer to metal elements such as Cu is 

small due to its high atomic number (factor (2)). The table in Figure 1-6 summarizes the maximum 

value of energy transfer to C and Cu for incident energies of 80 keV and 200 keV. 

Graphene benefits from its high mechanical strength originating from sp2-hybridized bonding. 

The knock-on threshold energy of a C atom from perfect graphene lattice is ~22 eV (Fig. 1-6(a), 

[110], [111]), which is ~ 4 times higher than that for amorphous carbon materials. Owing to its 

high thermal conductivity and high electrical conductivity, graphene does not suffer from a 

temperature increase or electronic excitation arising from inelastic scattering of high-energy 

electrons, whereas amorphous carbon or biomaterials are often damaged by them. Nevertheless, 

high-energy incident electrons can destroy graphene via energy transfer from elastic scattering. 

The maximum value of energy transfer to C at an accelerating voltage of 200 kV is ~44 eV. 

Therefore, we have to use low accelerating voltage to prevent undesired damage to the sample. To 

reduce the maximum energy transfer below the 22 eV threshold, the incident energy needs to be 

about 110 keV or lower. Owing to the development of aberration correctors, we can routinely 

perform atomic-resolution imaging using low accelerating voltages of 60–80 kV, and microscopes 

with much lower voltages (~15–40 kV) are currently being developed and are available in some 
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laboratories [108], [109]. Our microscopes (JEM-ARM200F, JEOL) can operate at 60–200 kV. 

We used 80 kV for the research reported here. 

Figure 1-6 Energy-transfer and defect formations in graphene 

The equation and table show the maximum value of energy transfer to C and Cu atoms for incident energies 

of 80 keV and 200 keV, where scattering angle θ = 180°. (a–d) Schematics of typical deformations in 

graphene: C displacement from (a) perfect graphene lattice and (b) graphene edges, (c) rotation of C–C 

bond, and (d) Cu displacement from graphene. Blue shaded energy area (~1–15 eV) can be observed by 

TEM at time resolution 1 s and incident electron beam current density j = 105 e-/s·Å2. 

The 80 keV energy electrons can transfer up to ~15.7 eV to C atoms. While this value is lower 

than the knock-on threshold in perfect graphene, it is sufficiently high to dislocate or remove atoms 

at graphene edges (Fig. 1-6(b)) because of fewer bonds. A threshold energy of ~12 eV for the 

displacement at edges corresponds to ~62 keV incident electron energy. Furthermore, even in a 

perfect graphene lattice, electron irradiation can induce in-plane 90° rotation of C–C bond. Such 

rotation converts four hexagons into two pentagon-heptagon pairs, referred to as Stone-Wales 
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(SW) defects. There is no loss of C atoms in this rotation, hence the energy threshold for this 

mechanism is low: ~10 eV for defect formation and ~5 eV for its relaxation (Fig. 1-6(c)) [112], 

corresponding to incident electron energy of 52 keV and 26 keV, respectively. 

The stability of substitutional impurity atoms in graphene also depends on incident electron 

energy (factor (1)) and their atomic mass numbers (factor (2)). The 80 keV energy electrons can 

transfer up to ~2.97 eV to Cu atoms. This value is lower than the binding energy between 

substitutional Cu atom and graphene (~3.5–3.9 eV [113], [114]); therefore, Cu atoms cannot be 

displaced by 80 keV electron irradiation (Fig. 1-6(d)). However, impurity doping results in a 

reduction of energy requirements for C displacements. For example, C atoms next to Cu atoms 

have two strong C–C bonds (~5.2 eV/bond) and one weak C–Cu bond (~1.3 eV/bond); therefore, 

C atoms next to Cu atoms can be dislocated or removed due to elastic scattering at C atoms. That 

means, all of the aforementioned threshold values (Figs. 1-6(a)–(c)) reduced in the presence of 

impurity atoms. 

To reduce radiation damage, researchers reduce electron beam current density by several orders 

of magnitude [115], [116]. Indeed ideal graphene would not be damaged, if we used 100 times 

lower electron irradiation dose. However, the resulting image would be too noisy. Furthermore, 

low-dose imaging cannot entirely prevent the defect formations, especially when graphene 

contains defects or impurities. 

In this thesis, we utilized electron irradiation to induce structural changes in metal-doped 

graphene. The incident electron beam current density was ~5 × 104 – 1 × 106 e-/s·Å2, which is 

higher than in most other reports. At this beam current density, various transformations could be 

observed at defect sites, and atomic-resolution imaging could be performed with a satisfactory 

signal-to-noise ratio. We observed various transformations because C atoms experienced a wide 

range of energy transfer (~1–15 eV) at different time intervals. 

Having perfected the imaging tools for graphene characterization, we turned our attention to 

novel low-dimensional materials formed on graphene. The diffusion energy barriers of 

physisorbed metal atoms on graphene are typically below 0.5 eV, and those of the studied noble 

metals (Cu, Pt, Au) are far below 0.1 eV [117]. Hence it is not possible to observe physisorbed 

atoms on graphene surface by TEM, as they diffuse too fast under electron beam irradiation. 

Nevertheless, when atoms find suitable sites to chemisorb (i.e. edges, dislocations or substitutional 
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metal atoms), they become sufficiently stable for TEM imaging. The chemisorbed atoms further 

trap other atoms, which allows direct observation of the self-assembly of novel low-dimensional 

structures. 

1-1-3  Objective of the research 

(1) Understanding the structure of metal-doped graphene at the atomic scale 

(2) Direct observation of electron-induced transformations in graphene with different elements 

(3) Direct observation of self-assembly of novel low-dimensional structures, using graphene as 

a support membrane 

We strived to visualize and control novel structures, such as defects, edges, and atomic- or nano-

scale clusters. Interaction between metal and C atoms assisted by the electron beam irradiation 

presents interesting phenomena. Aberration-corrected TEM allows to induce moderate structural 

change in graphene, while retaining an atomic resolution.  
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1-2  Previous studies on graphene 

In recent years, more than 70 papers about graphene have been published every day. Hence, this 

section introduces only selection of the most relevant studies. In particular, subsection 1-2-1 

discusses defect engineering and subsection 1-2-2 reviews metal-graphene interactions. The third 

subsection (1-2-3) outlines the originality of this thesis compared to the previous reports. 

1-2-1  Defects in graphene and their engineering 

No material in nature is perfect and presence of defects needs to be considered. As is described 

in the first section, understanding the defect structure is extremely important, because it 

significantly influences mechanical, chemical, electronic and magnetic properties of a material. 

Typical defects of nanocarbon materials have been intensively studied. CNTs have been 

investigated for several decades, while graphene has investigated only for several years. 

At first, we describe the difference between graphene and other nanocarbon materials. An 

argument about the knock-on threshold by electron irradiation attracted significant attention in the 

research community [80], [87], [110], [111], [118]–[122]. Recently it has been accepted that the 

knock-on threshold is lower for curved-shape graphene forms, such as CNTs or fullerenes, than 

for planar graphene. This is because the curvature significantly strains the structure and thus lowers 

the formation energies of defects (Fig. 1-7). Experimental studies on nanocarbon materials started 

from CNTs and therefore the reported experimental values (~15–20 eV) were smaller than the 

theoretical values for the ideal graphene (~22 eV). 

A decrease in damage threshold energy also occurs at defects or at grain boundaries. Figure 1-8 

shows typical point defects and their reconstruction mechanisms. SW defects shown in Fig. 1-8(a) 

are well known, because they are common to other carbon materials [122]. Robertson, Warner and 

their co-workers [118], [123] reported irradiation-induced reconstructions of vacancies, where 

various types of SW defects can be created. C atoms around a single vacancy (Fig. 1-8(b)) have 

dangling bonds, which result in a reconstruction of the vacancy via a geometric Jahn-Teller 

distortion, and 5- and 9-membered rings are constructed [123], [124]. The two panels shown in 

Fig. 1-8(c) are reconstructed structure from a double vacancy. Double vacancy and its 

reconstructed structure are observed more frequently rather than a single vacancy, because single 
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vacancy has unstable atoms with dangling bonds and one of the atoms at the edge can be easily 

removed by electron irradiation, due to low knock on threshold ~14 eV [110]. 

Figure 1-7 Decrease of knock-on energy threshold due to curvature in CNTs [110] 

Knock-on threshold energy of a C atom from single-walled CNT and graphene calculated as a function of 

tube diameter. The images on the right panels show the corresponding atomic models of armchair and 

zigzag nanotubes. 

Figure 1-8 Typical point defects [123] 

Atomic models of (a) pentagon and heptagon pairs (Stone-Wales defect) in a pristine graphene created by 

C–C bond rotation (the right panel a-4 is a TEM image), (b) single vacancy and its reconstructed structure 

and (c) reconstructed double vacancy structures.   

 

 



Chapter 1 

14 

 

The strain arising from curvature and defects lowers dislocation threshold, and thereby promote 

further dislocations nearby and existing defect [125]. Using accelerating voltages of 80–120 kV, 

which are near or just above the knock-on threshold, we can intentionally introduce defects in 

nanocarbon materials. Electron beam can be focused onto small areas to cut materials locally. It 

can also be used to irradiate large areas to induce moderate structural changes [118], and thereby 

create new materials. For example, fabrication of 2D amorphous carbon (Fig. 1-9(a), [126], [127]), 

quasi-1D graphene nanoribbons (Fig. 1-9(b), [128]) and ideally 1D carbynes (Fig. 1-9(c), [97], 

[129]–[132]) from graphene or carbon nanotubes. Not only carbon materials, but also other 2D 

materials could be thinned by electron irradiation, including transition metal dichalcogenide 

nanowires [133] or boron nitride (BN) chains [103]. 

Figure 1-9 Engineering nanocarbon materials by electron irradiation 

TEM images of thinned materials by electron beam (a) 2D amorphous graphene [127], (b) graphene 

nanoribbons (false-color image) [128] and (c) carbon chains (carbyne) [97]. 

Among these novel low-dimensional materials, carbyne is a fundamental and ideal chain 

structure that has been an interesting research subject for theoreticians [134], [135]; long before 

the discovery of graphene or CNT. It is a linear monoatomic chain of sp-hybridized C atoms. We 

found a new formation method of carbynes on graphene, where substitutional metal atoms served 

as nucleation sites for carbyne, while graphene acted as a support membrane. This result is 

described in Chapter 4. 
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Now we discuss mending and growth effects promoted by electron beam irradiation or sample 

heating. As shown above, a high-energy electron beam can damage graphene, so that we can use 

it for nanofabrication by means of sample cutting at nearly atomic scale. On the other hand, there 

are several reports on mending of graphene pores or crystallization of adatoms under the electron 

beam irradiation. Zan et al. reported that graphene can mend small pores under electron irradiation 

at room temperature at 60 kV in STEM mode (Figure 1-10(a), [136]). Liu, Suenaga and coworkers 

observed that second-layer of graphene grew at the step-edge of double-layer graphene at 500–

650 °C (773–923 K). It is possibly promoted by presence of Si atoms (Fig. 1-10(b), [105]). 

Westenfelder et al. investigated the effect of elevated sample temperature by in situ heating TEM 

experiments up to T~2000 K, and found that amorphous hydrocarbon contaminants started 

crystalizing into graphene at ~1000 K (Fig. 1-10 (c), [137]). 

Figure 1-10 Graphene defect mending or growth under electron irradiation 

(a) STEM images before and after mending of a pore in graphene [136]. (b) Schematic and STEM image 

of graphene growth at step-edges [105]. (c) TEM image of crystalized structure originating from 

hydrocarbon contamination (in this image the signal from underlying graphene was removed) [137]. 
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These previous reports suggest that the temperature is an important factor in graphene defect 

mending and reconstruction. However, the catalytic activity of impurity atoms is unclear. For 

example, reports on the role of Si atoms are inconsistent. As is mentioned above, Liu et al. reported 

that Si atoms may catalyze a growth of second-layer of graphene (Fig. 1-10(b), [105]). On the 

other hand, Wang et al. reported that Si atoms promoted etching of graphene [138], while others 

reported that Si atoms can stabilize edges of graphene pores [139]–[142]. This inconsistence arises 

presumably because of the different experimental conditions, such as electron irradiation density, 

residue of contamination and vacuum conditions; in particular the presence of residual water vapor 

in the microscope vacuum. 

In summary, we described the structure of the basic defects and their reducing effect on the 

knock-on threshold energy. Using different accelerating voltages and in situ annealing, electron 

beam irradiation can modify graphene structure in two ways: etching or mending. To clarify the 

effect of impurities (especially metal atoms) on graphene etching and mending, the next subsection 

summarizes previous reports on metal-graphene interactions. 
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1-2-2  Interactions between metals and graphene 

Compared with the research on graphene itself, experimental investigations of interactions 

between metal atoms and graphene is still in its infancy. Theoretical studies are ahead of 

experiment, although they can be controversial due to the lack of experimental verification of the 

proposed models. At first, we summarizes existing studies on metal nanoparticles and graphene, 

which may be relevant to interaction of metal atoms with graphene. 

Pt nanoparticles are known to be a very efficient catalyst in polymer electrolyte fuel cells. 

Because of large specific surface area and mechanical strength, graphene and CNTs were regarded 

as a successor of carbon black, which had been extensively utilized as a support material of Pt 

catalyst nanoparticles. One of the critical problems of applications in catalysis has been its 

durability. The catalyst efficiency typically degrades during use. Investigations aimed to elucidate 

the degradation mechanisms concluded that metal nanoparticles, especially Pt, etch carbon support 

materials at elevated temperature in oxygen or hydrogen gas atmosphere [143], [144]. This etching 

is one of the reasons for degradation in nanocatalysts: metal nanoparticles etch and destroy 

graphene resulting in aggregation of nanoparticles, and thereby decrease surface area of catalysts 

and consequent decrease of their efficiency. 

The carbon etching, on the other hand, offers a promising method of fabricating graphene 

nanoribbons, as metal nanoparticles can etch graphene along a specific crystallographic direction 

[37], [145]–[148]. Porous graphene, prepared by metal-catalyzed etching, has attracted research 

interest as it may enhance the charge density in batteries [149]. Graphene perforation at nanoscale 

can also increase optical signals for DNA sequencing [47]. As such, metal-graphene interactions 

results are inextricably associated with each other. If it is beneficial for a particular application, it 

is likely to be detrimental for other applications. In both cases, it is important to understand which 

metals and under what conditions affect graphene structure in a particular way. 

An interesting question is whether single metal atoms can catalyze to modify graphene. Recently, 

researchers observed metal atoms in graphene by aberration-corrected (S)TEM, such as Fe atoms 

[150], [151] and single atoms of Pt, Co and In [152] doped into graphene vacancies. Observations 

of Au [153] and Fe [154] atoms diffusing along graphene edge were also reported. Under electron 

beam irradiation, Au and Fe atoms at graphene edges were reported to remove or add a few C 

atoms around their location, but the edge structure did not change significantly. Ramasse et al. 
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[155] suggested that many metal atoms (Cr, Ti, Pd, Ni or Al), except for Au, promoted etching of 

graphene even at room temperature (Figure 1-11). In their study, neither gas environment nor high 

temperatures were used, although the residual oxygen and water vapor in the microscope vacuum 

might assist this etching under electron beam irradiation. Based on these studies, it appears that 

not only nanoparticles, but also individual atoms possibly etch graphene. 

Figure 1-11 Metal mediated graphene etching [155] 

ADF-STEM images of (a) Ni cluster located at the edge of the hydrocarbon contaminants and (b) generation 

of pores by Ni after few scans. (c) EEL spectrum from a bright atom circled in image (b). 

However, the catalytic activity of single metal atoms is still unclear. Metal atoms hardly adsorb 

on clean graphene surface, and the etching phenomena shown in Fig. 1-11 could be caused by 

oxygen or hydrocarbon contamination or intense electron beam irradiation. As mentioned above, 

only a few experimental reports have been published so far discussing activity of metal on 

graphene. Therefore, it is essential to observe interaction of graphene with different chemical 

elements to clarify the intrinsic effects of metal atoms on graphene. 
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1-2-3  Originality of the thesis 

Although there has been a strong interest in controlling defects in graphene, to the best of our 

knowledge, there are no reports on the direct observation of single-atom metal catalysis of mending 

or reconstruction of graphene structure. As described above, most metal atoms either etch 

graphene or weakly interact with it. Many factors can contribute to etching or mending of graphene. 

Furthermore, we suspect that surface contamination hinders the intrinsic effects of metal atoms on 

graphene. Many earlier studies reported unintentional impurity atoms on graphene [74], [105], 

[138]–[142], [150], [154], [156], [157]. In most cases, they are Si and Fe, as these are the most 

common impurities incorporated in graphene during the sample preparation. 

We spent much effort to prepare clean graphene samples, as discussed in section 2-3. 

Fundamentally, it is impossible to remove all the impurities at atomic level. However, we were 

successful in removing metal impurities other than target atoms and minimized hydrocarbon 

contamination by in situ heating inside a TEM column at ~10-5 Pa. As a result, we demonstrated 

that single metal atoms could catalyze modification of graphene structure under electron 

irradiation. 

In this thesis, we investigate noble metals, Cu, Pt and Au, because they are promising elements 

for single-atom catalysis. Cu is known to be the best performing catalyst for graphene growth; 

therefore, it is expected to catalyze the growth or modification of other carbon nanostructures. 

Indeed, we have found that substitutional Cu atoms promote rotation of C–C bonds near Cu atoms, 

and thereby contribute to reconstruction of graphene grain structure. Relations between energy 

barrier of each transformation and electron irradiation effects are analyzed and discussed in 

Chapter 3. Furthermore, we found that individual Pt and Cu atoms promote opposite effects on 

graphene edges: etching and mending, respectively, under electron irradiation, as discussed in 

Chapter 4. 

During the observation of reconstruction phenomena, we discovered other novel low-

dimensional structures formed on graphene: “metal-terminated carbynes”, i.e., monoatomic linear 

carbon chains described in Chapter 5, and “one-atom-thick 2D copper oxide with square lattice” 

described in Chapter 6. It is difficult to produce and observe such small and thin materials by 

techniques other than in situ TEM. Furthermore, in situ TEM is required for understanding the 

structure and formation mechanisms of the novel nanomaterials. 
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At present, our findings are not directly linked to practical applications. This is because our 

experimental conditions are optimized for atomic-resolution imaging, including high vacuum, in 

situ heating and electron beam irradiation; they differ from device fabrication conditions. 

Nevertheless, our results provide fundamental insights into the structure of metal atoms and 

graphene. Our results also demonstrate a promising method of controlling atomic-scale structures 

both for fundamental research and for commercial applications. 
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1-3  Thesis outline 

This thesis consists of six chapters. In Chapter 1 background, important basics, objective and 

previous studies on metals and graphene are introduced. Chapter 2 contains the principles of 

technical methods: TEM imaging and analysis, electron beam irradiation effects, and sample 

preparation. 

Chapters 3 to 6 contains results and discussions of individual experiments. In summary, we 

report two major interesting phenomena: graphene reconstruction promoted by metal atoms 

chemisorbed in the graphene lattice (Chapters 3 and 4), and self-assembly of novel structures from 

physisorbed and diffusing atoms on graphene surface (Chapters 5 and 6). Figure 1-12 shows 

schematics of these electron beam assisted phenomena. 

Then Conclusions and suggestions for future research directions are described, followed by List 

of Figures, Tables, Abbreviations and Publications, References and Acknowledgements. 

Figure 1-12 Schematics of metal atoms in/on graphene 

Metal atoms (a) at graphene pores and lattice sites and (b) diffusing and forming novel structures 

on the graphene surface. 
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Basic principles and experimental methods 

A transmission electron microscope offers several imaging modes and chemical analysis 

methods. To obtain atomic-resolution images and chemical information, it is necessary to 

understand the basics of each mode and prepare appropriate samples. Basics and specific examples 

of each characterization method are provided in the first section (2-1) of this chapter. The second 

section (2-2) elaborates the electron beam irradiation effects, which are mostly related to the results 

of Chapters 3 and 4. Sample preparation methods are detailed in the third section (2-3). 

2-1  Electron microscopy 

The first subsection describes brief history about aberration corrector and experimental 

observation conditions. In the second subsection, we discuss the difference between three imaging 

modes used in this thesis. The last subsection explains a chemical analysis mode of EELS. 

2-1-1  Aberration corrector and our equipment component 

There are three steps in improving the spatial resolution. As shown in Figure 2-1(a), the long 

wavelength of light (a few hundred nm) has limited the resolution of optical microscopy, while the 

electron wavelength could be reduced by increasing the accelerating voltage, enabling nanoscale 

imaging of materials. Ruska constructed the first prototype electron microscope in the early 1930s 

and overcame the resolution of optical microscopy. He was awarded a Nobel Prize for this work 

in 1986. The resolution of electron microscopy had steadily increased over the next 50 years, and 

then saturated at ~2 Å due to limits arising from lens aberrations. Researchers tried to overcome 

this problem by applying higher accelerating voltages and thereby shortening the wavelength, but 

this brute-force method had limited the range of observable materials because of damage by high-

energy electrons. Since the wavelength of accelerated electron is about two orders of magnitude 

smaller than atoms (e.g. λ=4.18, 2.51, and 0.87 pm for accelerating voltages of 80, 200, and 1000 

kV, respectively), the resolution of electron microscopy was not limited by wavelength but by 

spherical aberrations. 
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Figure 2-1(b) shows a schematic of positive spherical lens aberration. In contrast to an optical 

lens, an electron lens always acts as a converging lens. Because of the lack of concave lens effects, 

aberrations of the objective lens are always positive and cannot be compensated by a combination 

of concave and converging lens as in light optics. The presence of lens aberrations leads to 

delocalized contrast, seen as blurred images. After the electron microscope was developed in 

1930s, there were many attempts to correct aberrations. Haider and Rose et al. succeeded to 

develop a spherical aberration corrector for TEM in the late 1990s [78], [158]. Shortly after that, 

Krivanek et al. developed an aberration corrector for STEM [159]. These correctors are 

commercialized by CEOS in the US and by Nion in Germany. 

Figure 2-1 Spatial resolution and aberration corrector 

(a) History of resolution improvement in microscopy. Blue triangles present optical microscopy. Yellow 

and red symbols correspond to the resolution of electron microscopy (including SEM, TEM and STEM) 

without and with aberration correctors, respectively (redrawn from [160]). (b) Schematics of spherical 

aberration. Panels (c) and (d) show diffractograms before and after application of a hexapole-based 

aberration corrector in TEM mode. (e) STEM Ronchigram of Au particles on an amorphous substrate taken 

after the alignment. Red circle corresponds to the beam area selected by the condenser lens aperture that 

we used for the reported experiments. 

We used JEM-ARM 200F transmission electron microscopes from JEOL equipped with CEOS 

hexapole-based aberration correctors in both the image-forming lens and probe-forming lens. The 
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microscopes were operated at an accelerating voltage of 80 kV to reduce knock-on damage to 

graphene samples. Figures 2-1(c) and (d) show screen images of the imaging aberration corrector. 

In TEM mode, we corrected aberration almost every time when we changed the sample or a beam 

parameter until achieving the following values: two-fold astigmatism (A1) less than 1 nm, three-

fold astigmatism (A2) and coma (B2) less than 50 nm, third-order spherical aberration (C3) −1 to 

−5 μm, and four-fold astigmatism (A3) and star aberration (S3) less than 1 μm. We set C3 to a 

negative value because TEM images were taken under overfocus conditions, as described in the 

next subsection. 

The Ronchigram in Fig. 2-1(e) shows a flat-phase region corresponding to the aberration-free 

beam conditions. We used the condenser aperture with a convergence semi-angle of 28.5 mrad to 

cut off the electrons passing outside the flat region. The angular range of electrons collected by the 

ADF detector was about 46–161 mrad. These values were measured using the diffraction signals 

of Si (standard sample) at the detector plane (see Appendix Fig. A-11). 

We used two aberration-corrected microscopes with different electron guns: a Schottky gun and 

a cold field emission gun (FEG). The Schottky gun is a field-assisted thermal gun, resulting in a 

larger chromatic aberration and hence a lower resolution than the cold FEG. The cold FEG emits 

electrons from W tip by quantum mechanical tunneling, leading to narrow energy distribution and 

a small chromatic aberration. Most experiments were therefore performed with the cold FEG 

instrument, except for the observation of Pt-terminated carbyne described in Chapter 4. In situ 

heating holder (AduroTM, Protochips) was used for heating experiments reported in Chapters 3–5, 

while a conventional double-tilt holder was used for observation of 2D copper oxide at room 

temperature (Chapter 6). 
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2-1-2  Imaging mode (TEM, DF-TEM, STEM) 

We used three imaging modes: conventional bright-field TEM (BF-TEM), dark-field TEM (DF-

TEM) and annular dark field STEM (ADF-STEM). This subsection describes the difference 

between TEM and STEM modes for atomic-resolution imaging of metal-doped graphene, 

followed by large area characterization using DF-TEM. 

Figure 2-2 shows illumination systems of TEM and STEM modes. In the conventional TEM 

mode, an almost parallel electron beam illuminates a sample, and images are simultaneously 

collected for all pixels across the entire field of view. On the other hand, STEM uses a convergent 

electron beam. A small probe (~0.8 Å in our microscope) is scanned across a sample and data are 

collected in a serial manner: pixel by pixel. 

TEM provides phase-contrast imaging and is highly sensitive to the defocus condition. We 

usually take atomic-resolution TEM images under overfocus conditions (defocus value: 

approximately 3–4 nm), so that atoms appear bright for single layer graphene with substitutional 

metal atoms (simulated images are shown in Figs. 2-3 (b)–(d)). Meanwhile, at underfocus 

(Scherzer focus) the contrast is reversed (Fig. 2-3(a)). We tried both defocus conditions and 

selected overfocus condition, because the dynamics of metal atoms was easier to follow. 

Figure 2-2 Illumination systems of TEM and STEM 

Researchers often perform TEM image simulations to evaluate the experimental image contrast. 

We simulated TEM images by multislice method using xHREMTM software (HREM Research 
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Inc.) under the following conditions: defocus spread 4 nm, beam convergence 0.3 mrad, third-

order spherical aberration coefficient −1 μm, fifth-order spherical aberration coefficient 1 μm, and 

defocus value 3 nm. Figures 2-3(b)–(d) show simulated TEM images of dopant atoms substituted 

in graphene at overfocus and the corresponding line profiles, which are normalized by C signals. 

Multislice simulation for the present overfocus conditions yielded Cu/C, Si/C, and Pt/C signal 

ratios of 1.92, 1.62, and 3.15, respectively. In TEM images, Si should be a little darker than Cu, 

but the difference is hard to detect. 

Figure 2-3 Simulated TEM images 

Simulated TEM images of two Cu atoms substituted in graphene at (a) underfocus and (b) overfocus. (c), 

(d) Simulated TEM images of Si and Pt, respectively. The lower-left bright atoms are Cu, and only the 

upper-right bright atoms are changed from (b). (e) Signal intensities along lines indicated in panels (b–d). 

The line profiles are normalized by C signals. 
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In STEM mode, the ADF signal difference of each atom is much clearer and is suitable for the 

chemical identification. The intensity of ADF-STEM images increases with atomic number as Zx, 

where x is expected to be in the range 1.5–1.8. Krivanek et al. reported that it is possible to identify 

the chemical type of atoms by combining atomic-resolution ADF-STEM imaging with a 

quantitative statistical analysis [161]. They used a sample consisting of B, C, N and O (Z=5, 6, 7, 

and 8, respectively), and every atom in the analyzed area could be assigned to a particular species 

with 99% confidence. Other researchers also identified nitrogen dopant atoms substituted in 

graphene by ADF-STEM or STEM-EELS imaging [104], [162], [163]. 

The exponent x depends on the signal collection geometry and studied elements. In our 

experimental STEM images, as shown in Figs. 2-4(a) and (b), the Cu/C signal ratio was about 10–

12; therefore we assumed that the image intensity was proportional to ~Z1.5 (Fig. 2-4 (h)). Using 

the xHREMTM software mentioned above, we performed image simulation under the following 

conditions: the aperture radius (convergence semi-angle) 28.5 mrad, third- and fifth-order 

spherical aberration coefficients 5 µm, ADF detector angle 46–161 mrad, and probe size 0.8 Å. 

Simulations included thermal diffuse scattering absorption with the Debye-Waller factors of each 

element taken from the literature [164]–[166]. 

Figures. 2-4(d) and (e) show simulated ADF-STEM images of a 2D copper oxide cluster on 

graphene, where Figs. 2-4(f) and (g) are corresponding line profiles. When we put additional Cu 

atoms on top of Cu atoms (Fig. 2-4(e)), the intensity doubled and was clearly different from that 

of a Cu monolayer. However, atomic positions of light elements (e.g. C and oxygen) are unclear 

in the presence of heavy metal atoms. The variation of Cu intensity (shown in Figs. 2-4(c) and (f)) 

arises from either underlying C atoms in graphene or adatoms (C or O) on Cu monolayer. In 

principle, it should be possible to record both metal atoms and C atoms in graphene in one image, 

but this proved difficult in our experiment: metal atoms appeared more than 10 times brighter than 

C atoms, which hindered the imaging of C atoms located next to them. 
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Figure 2-4 Intensity in ADF-STEM images 

(a) Experimental ADF-STEM image of 2D copper oxide cluster on graphene. (b) Low-pass filtered image 

of (a). (c) Line profile taken through the white line marked in (b). (d), (e) Simulated ADF-STEM images 

of 2D copper oxide clusters. In panel (e), we added two Cu atoms, marked by orange ellipse, on the Cu 

atoms in the first layer. (f), (g) Line profiles taken along the white lines marked in (d) and (e), respectively. 

A table in (h) shows C-based intensity of each element. 

In short, ADF-STEM mode is suitable for identification of impurity atoms, although it is 

difficult to visualize both heavy and light atoms in one image because of their large intensity 

difference. On the other hand, TEM mode is suitable for observing metal atoms substituted in 

graphene lattice, but is hard to distinguish chemical element of atoms, even those with significantly 

different atomic numbers like Si and Cu. We need to select appropriate imaging mode according 

to the chemical composition of the sample and the purpose of the experiment. We usually 

performed EELS analysis prior to TEM or STEM imaging to distinguish deposited target metals 

from unwanted impurity atoms such as Si. 
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Now we discuss the measurement of the number of graphene layers. Atomic-resolution imaging 

is a powerful technique, but it is not appropriate for large-area characterization. Meyer et al. 

reported that the intensity of diffraction spots is different for single- and double-layer graphene 

(Figure 2-5, [167]). Hence diffraction analysis is commonly used to check the number of graphene 

layers. However, graphene grown by chemical vapor deposition is a polycrystalline membrane that 

often contains many misoriented small grains or misoriented stacked layers. In such case, 

diffraction pattern combined with DF-TEM imaging is an easy way to examine grain boundaries, 

number of layers and stacking orientations of graphene over a large area [168]–[171]. 

Figure 2-5 Diffraction pattern of graphene [167] 

Diffraction pattern of (a) single-layer graphene and (b) double-layer graphene with AB Bernal stacking. 

The inner hexagon of diffraction spot corresponds to the {101̅0} planes of graphene (lattice spacing d = 

2.13 Å), while the outer hexagon corresponds to the {112̅0} planes (d = 1.23 Å). In the case with double-

layer graphene shown in (b), the intensity of the outer spots is clearly higher than that of inner spots. 

DF-TEM images are taken by inserting an objective aperture at the back focal plane to collect 

electrons only diffracted through a small range of angles (Fig. 2-6 (a)). Electron diffraction patterns 

of single-crystal graphene show a six-fold symmetry, where the appearance of different families 

of six-fold spots indicates the presence of multiple grains with different orientations. The 

diffraction pattern shown in Fig. 2-6(b) has 6 families of spots, and Fig. 2-6(c) shows 

corresponding grain structures. In this case, the grains were very small and miss-oriented. 

 



Chapter 2 

30 

 

Figure 2-6 Dark-field TEM 

(a) Schematic of TEM imaging optics. The projection system of the microscope is omitted for simplicity. 

(b) Diffraction pattern indicating polycrystalline graphene. (c) DF-TEM images taken from each spot 

shown in (b). (d) Colored and overlaid image of (c), where the six colors correspond to the diffraction spot 

in (b). (e) DF-TEM image indicating the boundary between single- and double-layer graphene regions. 

Panels (f) and (g) are DF- and bright-field (BF) TEM images taken from the light blue area in (e) 

Figures 2-6 (e–g) show the boundary between single- and double-layer graphene regions. AB-

stacked double-layer region appears bright [171] in DF-TEM image with dark lines, indicating the 

presence of stacking domain boundary. Lin et al. [170] reported that AB/AC stacking domain 

boundaries, mostly in the form of ripples, can be visualized by tilting the sample in DF-TEM. 
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Using this technique, we have evaluated the quality of graphene samples provided by our 

collaborators [172], [173]. We usually performed DF-TEM analysis prior to atomic-resolution 

imaging to select an appropriate area of the CVD graphene sample. 

In summary, we explained three imaging modes that we used: conventional BF-TEM, DF-TEM 

and ADF-STEM. DF-TEM was utilized for a preliminary, large-area analysis of graphene samples, 

while BF-TEM and ADF-STEM modes were employed for local atomic-resolution imaging. 

Figure 2-7 shows a specific example of DF-TEM analysis and atomic-resolution TEM and ADF-

STEM images of graphene. The contrast of TEM and ADF-STEM images differs when the sample 

contains heavy metal atoms. In general, STEM is suitable for chemical analysis; however, we 

strived to observe dynamics of both light C and heavy metal atoms. Although TEM imaging often 

requires chemical analysis prior to the atomic-resolution imaging, it is appropriate for our purpose 

in terms of image contrast and time resolution. Therefore, most experiments in this thesis were 

conducted using TEM mode, as described in Chapters 3–5. Then we turned attention to nanoscale 

materials on graphene, and observed 2D copper oxide by STEM-EELS, as described in Chapter 6. 
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Figure 2-7 DF-TEM, TEM and ADF-STEM images of graphene 

(a) False-color DF-TEM image, where the violet area corresponds to double-layer graphene with 

misoriented stacking, red and green areas correspond to single-layer graphene with different orientations. 

(b) TEM image corresponding to (a). Impurity nanoparticle in (b) was identified as SiO2 by EELS. (c) 

Atomic-resolution TEM image taken at a step between a single-layer (top) and a double-layer graphene 

(bottom, AB-stacking area). (d) Atomic-resolution ADF-STEM image of single-layer graphene with small 

defects, contamination and impurity atom. It took 1 s to obtain TEM image (c), while STEM image (d) 

required 1min for a satisfactory signal-to-noise ratio.  
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2-1-3  Electron energy-loss spectroscopy (EELS) 

This subsection explains principles of EELS on specific examples of carbon and copper. The 

explanation is based on the literature (Egerton [174]). 

Incident fast electrons interact with atomic electrons and cause excitation of inner or outer-shell 

electrons. These interactions are referred to as inelastic scattering, as significant amount of energy 

is usually transferred from the incident electron to the atomic electrons. The incident electrons lose 

a characteristic amount of energy determined by the chemical element of atom and the energy level 

of atomic electrons. An electron spectrometer separates the transmitted electrons according to their 

kinetic energy and produces an electron energy-loss spectrum, showing scattered intensity as a 

function of a decrease in kinetic energy. Using a transmission electron microscope, we can 

simultaneously record this energy loss (over a range of ~2000 eV) and a high-resolution image. 

Inelastic scattering from outer-shell electrons appears as a peak in the range of 4–40 eV, while 

that from inner-shell electrons appears as edges rather than peaks, because the inner-shell 

scattering probability rises rapidly and then falls slowly with increasing energy loss. The sharp rise 

occurs at the ionization threshold, and its energy-loss value corresponds to the binding energy of 

the atomic shell. Both the low-loss peaks and the ionization edges possess a fine structure that 

reflects the crystallographic or energy-band structure of the specimen. Therefore, analyzing such 

fine structure of energy-loss spectrum provides us information about not only chemical 

composition but also chemical bonding in a specimen. For example, we can distinguish the carbon 

allotropes (such as diamond, graphite and amorphous) from the shape and position of low-loss 

peak and K-ionization edges in energy-loss spectra. Furthermore, energy-loss near-edge fine 

structure (ELNES) of C atoms at graphene edge can be distinguished from that at bulk graphene 

(shown in Figure 1-5). 

Figure 2-8 shows core-loss spectra of the carbon K edge and copper L edge. Carbon K edge of 

graphene (Fig. 2-8(b)) shows sharper π and σ peaks than that of amorphous carbon film (Fig. 2-

8(b)). This graphene K-edge spectrum indicated the typical features of sp2-coordinated carbon. 

Sharp copper L threshold peaks (Fig. 2-8(d)) are so-called “white lines”, which indicate a partial 

emptying of the Cu 3d band caused by chemical bonding with oxygen [175], [176]. If Cu particles 

do not bond with O atoms, they exhibit no sharp Cu threshold peaks (Fig. 2-8(c)). Further examples 

are shown in Appendix Figs. A-2 to A-5. 
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Figure 2-8 EEL spectra of C and Cu 

EEL spectra of (a) amorphous carbon, (b) single-layer graphene, (c) bulk Cu and (d) bulk CuO. Green lines 

indicate background subtracted spectra. (a), (c) and (d) are reference spectra from EELS atlas [177], while 

(b) is obtained at a clean graphene area by TEM-EELS. 
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2-2  Principles of electron irradiation effects 

Electron-induced transformations are the most important part of this thesis (presented in Chapter 

3). Here we elaborate the electron irradiation effects that are relevant to this thesis. The related 

equations are taken from literature (Egerton [174], Reimer and Kohl [178]). 

2-2-1  Elastic and inelastic scattering 

When electrons enter a specimen, they interact with atoms and are scattered by Coulomb forces. 

The scattering is generally divided into two categories: elastic and inelastic. Elastic scattering is 

caused by Coulomb attraction with the atomic nuclei, while inelastic scattering results from 

Coulomb repulsion with the atomic electrons. As a result, elastic scattering causes energy transfer 

to atomic nuclei from high-energy incident electrons, while inelastic scattering induces excitation 

of atomic electrons as described in the previous section. 

Here we mainly describe elastic scattering, as inelastic scattering cannot cause movement of C 

atoms in graphene due to the following reasons [179]: 

1) Excitation or ionization of atomic electrons is quickly quenched and dissipated throughout 

the specimen due to the high density of delocalized electrons in metals and graphene. 

2) Plasmon has an energy of 5–30 eV; however, it is a collective excitation phenomenon, and 

the excess energy is shared among many atoms. 

3) De-excitation of electrons often results in thermal energy increase; however, graphene has 

a high thermal conductivity, and hence the temperature change is only ~5 K. 

The word “elastic” usually implies that the energy exchange is negligible, but when a high-

energy electron collides with and is scattered by an atomic nucleus of a specimen at a high angle, 

the scattering atom receives a few electron volts from the incident fast electron. It is a tiny fraction 

of energy for the incident electron, yet it is significant for the atoms, especially if their atomic mass 

number is small. 
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2-2-2  Energy transfer and binding energy of metal-carbon bond 

Before and after the collision between the incident electron and atomic nucleus, the total kinetic 

energy and momentum of the electron and nucleus are conserved as shown in Figure 2-9. 

Figure 2-9 Conservation of energy and momentum during elastic scattering 

The conservation of momentum gives the following equations: 

𝑝 = 𝑝′𝑐𝑜𝑠𝜃 + 𝑝𝑡𝑐𝑜𝑠𝜓 

0 = 𝑝′𝑠𝑖𝑛𝜃 − 𝑝𝑡𝑠𝑖𝑛𝜓 

where suffix t means transferred energy/momentum to atomic nucleus, and θ and ψ are scattering 

angles of incident electron and atomic nucleus, respectively. Relativistic momentum has to be used 

for a fast incident electron, whereas nonrelativistic momentum can be used for a slow atomic 

nucleus. They are given by, 

𝑝 =
1

𝑐
√2𝐸𝐸0 + 𝐸2, 𝑝′ =

1

𝑐
√2𝐸′𝐸0 + 𝐸′2 

𝑝𝑡 = √2𝑀𝐸𝑡  

where c is velocity of light (3.00×108 m/s), E is incident electron energy (in MeV), E0 is rest energy 

of electron (0.511 MeV) and M=Amp is rest mass of the atomic nucleus (A is atomic mass number, 

mp: atomic mass unit 1.66×10-24 g). We can use the approximation formula E – Et ≈ E, because 

the energy transfer Et is sufficiently small compared with the incident electron energy E. Solving 

the above equations, we obtain 

𝐸𝑡 =
2𝐸(𝐸 + 2𝐸0)

𝑀𝑐2
𝑠𝑖𝑛2

𝜃

2
=
𝐸(𝐸 + 1.02)

466𝐴
𝑠𝑖𝑛2

𝜃
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with Et, E, and E0 expressed in MeV. As described in section 1-1-2, the energy transfer Et is 

proportional to the incident electron energy E and is inversely proportional to the atomic mass 

number A; therefore light elements, such as C atoms (A=12), are more susceptible to high-energy 

electron irradiation and could be knocked out from the graphene lattice. Table 2-1 shows typical 

values of Et. We used E = 80 keV and obtained the maximum values of energy transfer Emax for all 

considered elements (a head-on collision θ = 180°). While the 200 keV electrons easily remove C 

atoms from the graphene lattice, the 80 keV electrons do not displace C or substitutional impurity 

atoms in graphene, because the maximum energy transfer Emax at 80 keV is smaller than the 

binding energies to C. Figure 2-10 shows binding energies between metal atoms and graphene. 

Table 2-1 Energy transfer Et 

Figure 2-10 Binding energies of substitutional metal atoms in graphene [113] 

Binding energies Eb of the graphene sheet with transition metal atoms adsorbed on single and double 

vacancies (red and blue curves, respectively). 

Krasheninnikov et al. reported that all the considered metal atoms (shown in Fig. 2-10) form 

covalent bonds with the neighboring C atoms in a graphene vacancy [113]. Since Cu, Zn and Au 

have filled d shells, their binding energies to C are smaller than those of other transition metal 

 

 

C Cu Pt Au C Cu Pt Au

12.0 63.5 195.1 197.0 12.0 63.5 195.1 197.0

10° 0.12 0.02 0.01 0.01 0.33 0.06 0.02 0.02

90° 7.87 1.49 0.48 0.48 21.83 4.12 1.34 1.33

180° 15.75 2.97 0.97 0.96 43.66 8.24 2.69 2.66

element

A

θ

80 keV 200 keVE
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atoms. Both Pt and Au atoms have a large atomic mass number A and receive a small energy Et 

from electron irradiation; however, the difference in their binding energies to C may result in 

different behaviors in graphene. One can expect that substitutional Pt atoms are less mobile than 

Au atoms. A Cu atom receives larger energy from electron irradiation compared with Pt and Au 

atoms due to its smaller atomic mass number, while the Cu-C binding energy is intermediate 

between Pt-C and Au-C. Based on our results, we propose that atomic mass number and binding 

energy of metal-C bonds determine whether metal atoms can promote structural changes in 

graphene under electron irradiation. Chapter 3 discusses substitutional Cu atoms in graphene, 

while Chapters 4 and 5 describe different behaviors of Cu and Pt atoms interacting with graphene. 

2-2-3  Scattering cross section 

Since energy transfer Et involves the factor sin2(θ/2), if the scattering angle θ is small enough, 

energy transfer to atomic nuclei is negligible (as shown in Table 2-1). On the other hand, high-

angle scattering (Rutherford scattering) results in a large energy transfer to the nuclei, but the 

probability of such high-angle scattering events is very low. 

We evaluate the probability of each scattering event using the total scattering cross section σ. 

Transformation occurs when the energy transfer Et becomes greater than the energy barrier Eb. 

Therefore, σ for an energy transfer Et ≥ Eb is given by, 

𝜎(𝜃𝑚𝑖𝑛) = 2𝜋∫
𝑑𝜎𝑒𝑙
𝑑𝛺

𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

𝜃𝑚𝑖𝑛

=
4𝑍2𝑅4(1 + 𝐸 𝐸0⁄ )2

𝑎𝐻2
2𝜋∫

𝑠𝑖𝑛𝜃

[1 + (𝜃 + 𝜃0)2]2
𝑑𝜃

𝜋

𝜃𝑚𝑖𝑛

 

 with 𝑅 = 𝑎𝐻𝑍
−1/3, 𝜃0 = 𝜆 2𝜋𝑅⁄ . 

Here θmin is the minimum scattering angle given by the equation for Et shown above, dσel / dΩ is 

the differential elastic cross section, 𝑎𝐻 is the Bohr radius (5.29 × 10-11 m), E is incident electron 

energy (0.08 MeV), E0 is rest energy of electron (0.511 MeV), λ is wavelength of incident electrons 

(4.18 × 10-12 m) and Z is the atomic number. 

Figures 2-11(a) and (b) show Et and σ values, respectively, as a function of scattering angle θ, 

and Et(σ) is plotted in Fig. 2-11(c). Figure 2-11(d) shows a time interval t of each event as a 

function of energy transfer to C. The time t is inversely proportional to the product of σ and the 

electron beam current density j (t = 1 /σj). We calculated t using j = 1 × 105 e-/s·Å2, which was 

typical for our atomic-resolution imaging experiments. 
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Under this condition, C atoms in graphene receive 1.3 eV every ~1s and 12.3 eV every ~100 s 

on average. The diffusion energy barriers of physisorbed atoms on graphene are typically below 

0.5 eV; therefore, it is not possible to observe atomic diffusion on graphene by TEM. On the other 

hand, high-angle scattering is much less probable than low-angle scattering (Fig. 2-11(b)), and is 

not observed even during ~1 hour of TEM observation. 

Figure 2-11 Energy transfer to C and its scattering cross section 

(a) Energy transfer Et to C from an 80 keV electron as a function of the electron scattering angle θ. (b) The 

scattering cross section σ as a function of θ. (c) σ as a function of Et. (d) Time interval t as a function of Et. 

Blue shaded area can be observed by TEM at time resolution 1 s. 

Figure 2-12 summarizes the energy transfer to C, Cu and Pt from 80 keV incident electrons. As 

described above, the maximum value of energy transfer is lower for metals than C atoms due to 

their high atomic mass number. Meanwhile, the scattering cross section is high even at high-angles, 

 



Chapter 2 

40 

 

so that Cu or Pt atoms nearly continuously receive ~3 or ~1 eV, respectively. Pt is three times 

heavier than Cu, and thus the energy transfer to Pt is small. This difference might affect the stability 

of metal atoms observed under electron beam irradiation during TEM imaging experiments; 

however, the difference is much smaller than the energy transfer to C atoms. 

In our TEM experiments, electron irradiation induced a variety of transformations, as C atoms 

received a wide range of energy (~1–15 eV) over various time intervals. We can estimate the 

energy barrier for each transformation by analyzing the related time intervals (Chapter 3). 

Figure 2-12 Energy transfer to C, Cu and Pt from 80 keV incident electrons 

Time interval t = 1 /σj as a function of energy transfer Et, using a tentative value of j = 1 × 105 e-/s·Å2. 
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2-3  Sample preparation 

Since graphene is a one-atom–thick material, preparation of clean samples is a key factor for 

atomic scale observations. Here we summarize the graphene synthesis and experimental methods 

and conditions used in this thesis. The first section (2-3-1) outlines the graphene growth, and the 

following sections elaborate the transfer processes (2-3-2) and the effect of heating before and 

after the metal deposition (2-3-3). 

2-3-1  Chemical vapor deposition (CVD) 

While mechanical exfoliation of graphite [1] had triggered the graphene boom, it does not 

provide a sufficient graphene yield for most applications. Many other graphene synthesis methods 

have been explored, such as chemical exfoliation from graphite [180]–[182], chemical reduction 

of graphene oxide [6], [183], [184], CVD using catalytic metals [82], [185] or nonmetals [172], 

epitaxial growth on SiC [186], and so on. Among these techniques, CVD appears most promising 

and best established in industrial settings. 

The quality of CVD graphene (number of layers, stacking orientations, grain sizes, amount of 

topological defects, etc.) strongly depends on the metal substrate. In most applications, graphene 

needs to be transferred to other substrates (e.g. PET film for transparent electrodes or SiO2/Si for 

field effect transistors). Researchers tried to grow graphene on many metallic substrates (Pd, Ru, 

Ir, Pt, etc.); however, such metals are expensive and hinder the graphene transfer. Then Ni and Cu 

became the most suitable candidates because they are inexpensive and can be easily etched away 

by chemical solutions, so that graphene grown on Ni or Cu can be transferred onto an arbitrary 

substrate. Ni was the popular catalyst in early studies; however, the resulting graphene had 

unsuitable uniformity and thickness (see Appendix Fig. A-6). 

Researchers investigated the growth mechanisms and found that the carbon solubility of the 

metal catalyst is a key factor. Li et al. [185] experimentally revealed the different graphene growth 

mechanisms on Ni and Cu. In the Ni case, first, Ni catalytically decomposes the feedstock (e.g. 

methane gas). Second, C and Ni form a solid solution at high temperatures (above 800 °C), due to 

the large carbon solubility of Ni in C (0.6 wt% at 1326 °C) [187]. Third, C diffuses out of Ni when 

cooled. This “carbon segregation” is heterogeneous at Ni grain boundaries, which results in a 

formation of non-uniform graphene with small grains. In contrast, Cu has a low carbon solubility 
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at high temperatures (0.008 wt% at 1084 °C) [187]; therefore, graphene formation on Cu occurs 

as a “surface process”. After the first layer of graphene forms on a Cu foil, Cu cannot decompose 

further feedstock, and therefore, we can obtain single-layer graphene over large areas. 

We examined several CVD graphene samples which were purchased from a company or were 

provided by our collaborators: single-layer graphene (Graphene Platform Corporation), AB-

stacked double-layer graphene (collaborated with Dr. Sakai and his coworkers, National Institutes 

for Quantum and Radiological Science and Technology), nitrogen-doped multi-layer graphene 

[173] (collaborated with Dr. Kalita, Prof. Tanemura and their students, Nagoya Institute of 

Technology). These three samples were grown on a Cu foil under different conditions. 

We also examined graphene grown on Ni (Ni-deposited membrane on SiO2/Si substrate, 

Graphene Supermarket®) or on nonmetal substrates using a Ga vapor catalyst [172] (collaborated 

with Dr. Murakami, Prof. Fujita and their students, University of Tsukuba). However, the former 

sample was a non-uniform multi-layer graphene with small random grains because of the reason 

described above. The latter material was almost single-layer graphene, but consisted of small 

grains (50–200nm in lateral size) and contained residual Ga catalyst. 

The features of CVD graphene samples varied according to their growth conditions, and we 

finally chose the purchased graphene grown on a Cu foil (Graphene Platform) for this thesis, 

because we needed single-layer graphene without metal or SiO2-based impurities. Although the 

graphene membrane was polycrystalline (grain sizes: ~1–3 µm in lateral size, shown in Fig. 2-6, 

2-7 and A-6), it contained less impurities, and mostly consisted of single-layer graphene. 

The photograph in Figure 2-13 shows CVD equipment (Graphene Platform Corporation) just 

after the graphene growth. We do not know the exact growth conditions (e.g. gas parameters), as 

they are industrial secrets. A general description is as follows: insert a Cu foil into an electric 

furnace and evacuate it, raise the temperature up to 1000 °C (over a period of ~1 hour) in a 

hydrogen gas atmosphere, flow carbon source (methane gas) at 1000 °C for ~30 min and naturally 

cool the sample inside the quartz-tube. Hydrogen gas should flow until graphene/Cu is cooled to 

the room temperature. 
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Figure 2-13 Photographs of CVD equipment for graphene growth 

As a result, a uniform single-layer membrane of polycrystalline graphene grew on the entire Cu 

surface (both sides of the foil). The next subsection elaborates the transfer process used to prepare 

TEM samples. 

2-3-2  Transfer process 

CVD graphene was transferred onto TEM grids or in situ heating chips using the poly(methyl 

methacrylate) (PMMA) support method. Because of surface contamination by polymer residues, 

other methods without using PMMA have been proposed, for example, utilizing surface tension of 

IPA (isopropanol) drop as an adhesion bond with carbon support film on a TEM grid [83]. This 

method proved to be difficult to reproduce in our laboratory. PMMA is a popular material in device 

processing [13], [85], [188], and its handling is well explained in the literature. Hence, we used 

PMMA and paid meticulous attention to minimize impurities, hydrocarbon contaminants, wrinkles 

and cracks, all of which hinder atomic-resolution imaging and degrade graphene properties. 

Preparing a clean sample is crucial for observing graphene by TEM, and the technique improved 

here might also be useful for device processing. 

The important point in our method is removal of metallic impurities. FeCl3 solutions are the 

most widely used Cu etchants [13], [14], [150], [151], [154], [156], [168], [169], [171], [187]–

[189], yet they leave some Fe-based contamination on graphene. Although some researchers 

observed residual Fe atoms in FeCl3-treated graphene by TEM [150], [154], [156], this method is 

not appropriate for studying other metal atoms. Furthermore, residual metal impurities often 

attracted hydrocarbon contaminants under electron irradiation [190] and/or damaged graphene 
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during high-temperature annealing [118]. To avoid those unwanted effects, we used a metal-free 

aqueous solution of (NH4)2S2O8 (ammonium persulfate) followed by a rinse in HCl to remove both 

Cu and CuO. Even when we aimed to observe Cu, we minimized the residual Cu first, and then 

intentionally deposited Cu by sputtering a Cu target onto clean graphene. 

Figure 2-14 briefly summarizes the transfer process. First, a thin PMMA film was spin-coated 

and cured on graphene/Cu. Second, Cu was etched away using a metal-free aqueous solution of 

(NH4)2S2O8 (Sigma Aldrich). Third, the PMMA/graphene film was rinsed in deionized (DI) water 

and transferred to a concentrated HCl solution to remove residual contaminants. A thorough rinse 

in DI water followed. Fourth, the PMMA/graphene film was transferred to a TEM grid or a heating 

chip and dried naturally overnight. Finally, PMMA was dissolved in acetone for ~2 hours. 

Figure 2-14 Schematic of graphene transfer processes 

Now we explain each step using photographs. In the first step of PMMA coating, the PMMA 

film should be thin enough not to strain graphene, while keeping a suitable thickness for handling 

the film on the solutions surface. We dissolved PMMA powder (996 molecular weight, Sigma 

Aldrich) by chlorobenzene (0.46 g / 10 ml). It is not necessary to create PMMA solution every 

time, but the concentration should be controlled, as chlorobenzene is highly volatile. We always 

checked the amount of solution before and after we used it (Fig. 2-15(a)). Before spin-coating 

PMMA, a thermal release tape was attached to the back of the Cu foil to keep the Cu foil flat and 

prevent it from PMMA coating; the PMMA-coated areas are hardly etched away by the following 

acid treatment. After the PMMA was spin-coated onto the top side of graphene at 4500 rpm for 40 
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s, the tape was released during the curing of PMMA at 180 °C for 5 min (Fig. 2-15(b)). CVD 

graphene grew on both sides of the Cu foil. We removed graphene from one side of the foil to 

avoid stacking and formation of misoriented double-layer graphene. The extra graphene layer was 

etched by 10 wt% (NH4)2S2O8 solution for 10 min (Fig. 2-15(c)). The foil was then gently rubbed 

with Bemcot wipers in water. During this removal process, the PMMA-coated side was covered 

by a PET film to prevent PMMA/graphene from breaking (Fig. 2-15(d)). 

Figure 2-15 PMMA coating and removal of extra graphene 

Photographs of (a) chlorobenzene solution of PMMA, (b) curing of PMMA and (c) removal of extra 

graphene. (d) Schematic of CVD graphene sample during the removal of extra graphene shown in (c). As 

shown in (b), the light green tape released shortly after set it on a hot plate at 180 °C. The photograph (c) 

shows partial etching of Cu back side as well as graphene in a 10 wt% (NH4)2S2O8 solution. 

In the second process (etching of Cu shown in Fig. 2-14), we used low concentrations of 2–5 

wt% (NH4)2S2O8 solution for ~6–20 hours. Although the etching rates by (NH4)2S2O8 solutions are 

lower than other metal-free etchants (e.g. HCl, HNO3 and H2O2), the acid treatment could damage 

graphene as well as Cu. We examined the damage threshold, and confirmed that the condition 

described above induced no detectable damage to graphene, while etching Cu almost completely. 

Figure 2-16 shows photographs taken during Cu etching. The PMMA/graphene film was 

transferred to a new acid solution after the visible Cu film was etched away (within ~1 hour), 

followed by further removal of microscopic Cu for more than 6 hours. 
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Figure 2-16 Etching of Cu by (NH4)2S2O8 solution 

Photographs of (a) handling the film with a glass slide and ceramics tweezers, (b) PMMA/graphene film 

floating on the surface of (NH4)2S2O8 solution and (c) PMMA/graphene film on a new colorless (NH4)2S2O8 

solution. The solution shown in (a) and (b) turned blue due to dissolved Cu2+ ions. 

In the third process (cleaning shown in Fig. 2-14), a rinse in HCl solution is a key factor. We 

found that hydrocarbon contaminants on graphene surface became mobile, and could be easily 

removed by electron irradiation during TEM observation. We attributed this mobility to the 

reduction of copper oxide and/or activation of hydrocarbon contaminants. Cu etching by 

(NH4)2S2O8 solution is an oxidation reaction, and some Cu2+ ions attach to the graphene surface 

forming CuO or Cu2O, which are insoluble in water but dissolve in HCl. The chemical reactions 

are as follows: 

Cu + (NH4)2S2O8→ CuSO4 + (NH4)2SO4 

CuO + 2HCl → Cu2+ + 2Cl- + H2O. 

We presumed that an alternative rinse in HCl and (NH4)2S2O8 solution may remove both Cu and 

CuO. Hence, samples were rinsed in HCl for ~10 min twice, and were moved back to (NH4)2S2O8 

for 30 min. This acid treatment caused no detectable damage to graphene, and Cu was almost 

completely removed. The PMMA/graphene film was then rinsed in DI water for more than 6 hours 

(while exchanging water several times) to remove HCl and (NH4)2S2O8. 

We slightly changed the fourth and fifth processes (transfer and dissolution of PMMA shown in 

Fig. 2-14) to fit the transfer targets: TEM grids (Quantifoil®, Quantifoil Micro Tools GmbH) and 

in situ heating chips (E-chips for AduroTM, Protochips). We describe them separately. 

The Quantifoil TEM grids were made of Au (3 mm in diameter) covered with an amorphous 

carbon support film with 2 μm diameter holes. They are robust, but flexible enough to make a 
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good contact with a PMMA/graphene film. We placed TEM grids on a glass plate, and pulled the 

PMMA/graphene film out of DI water, using glass plate as a tool to keep the film and grids flat. 

Figures 2-17(a) and (b) show the grids before and after this pulling-out process. After draining off 

water drops between the film and the glass plate by gentle air blow, the plate was dried naturally 

for more than 6 hours or overnight. Finally, PMMA was dissolved in acetone for ~2 hours, while 

exchanging acetone by pipette (Fig. 2-17(c)). Although careful control is necessary when picking 

up grids from acetone, we have successfully transferred graphene onto TEM grids (Figs. 2-17(d) 

and (e)). 

Figure 2-17 Transfer onto TEM grids 

Photographs of (a) PMMA/graphene film floating on water surface and TEM grids dipped in water on glass 

plate, (b) PMMA/graphene/TEM grids/glass plate and (c) dissolving PMMA in acetone. (d), (e) Low-

magnification TEM images of graphene transferred onto Quantifoil grid. 

In contrast to conventional TEM grids, the graphene transfer onto in situ heating chips was 

difficult and required extra care. Figure 2-18 shows the structure of an in situ heating chip, where 

a Si substrate (~3 × 5 mm in lateral size) was covered with a SiN film and an amorphous carbon 

support film having ~5 and 2 μm diameter holes, respectively. Each chip had a small window (0.5 
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× 0.5 mm2 in size) and Au electrodes on both sides. When we transferred graphene onto the chips 

using the methods described above, the chip resistance considerably decreased. Au electrodes 

should be covered by an insulator, but the reduction of the resistance indicates that graphene 

directly attached to the electrodes. This reduction made the heating temperature inaccurate, 

because the heating chips do not record the actual temperature and resistance during heating, but 

rely on the pre-measured resistance of original chips. Hence, we tried to avoid the resistance 

change by thinning down the PMMA/graphene film as shown in Fig. 2-18 (a). The film width must 

be less than 0.5 mm; therefore, a more careful control is required. 

Figure 2-18 Transfer onto in situ heating chips 

(a) Photograph of in situ heating chip (E-chips for AduroTM, Protochips) with annotations. PMMA/graphene 

film transferred onto yellow box region without connect with Au electrodes. (b), (c) SEM images of C/SiN 

films. 

Mechanical forces generated at the interface between the hard Si substrate and PMMA often 

broke graphene. We tried to improve the graphene coverage by introducing two extra measures. 

First, Suk et al. reported that the PMMA film softened by heating above its glass transition 

temperature at 150 °C, and the coverage of suspended graphene was improved [191]. Thus, we 

heated the sample at 180 °C for 30 min, according to the reported conditions. Second, fast 

evaporation of acetone often damaged graphene and the thin carbon support film. Therefore, after 

PMMA was dissolved, acetone was exchanged for ethanol, so that the slow evaporation of ethanol 

would not damage graphene. 

In summary, we strived to minimize metal impurities during the transfer of CVD graphene by 

means of PMMA support methods with metal-free etchant (NH4)2S2O8 and HCl. The handling 
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difficulty and quality of transferred graphene depended on the target substrates: Quantifoil TEM 

grids or in situ heating chips. We obtained acceptably clean graphene samples suspended on 

Quantifoil TEM grids. On the other hand, heating chips needed a further improvement to minimize 

the hydrocarbon contamination. The contamination increased during the PMMA/graphene heating 

and dipping in ethanol. As mentioned above, these processes improved graphene coverage, but 

also increased hydrocarbon residues originated from melted PMMA and ethanol. 

Annealing inside TEM column can reduce the hydrocarbon contamination. The next subsection 

elaborates the heating effects before and after the metal deposition. 

2-3-3  In situ heating effects 

We have annealed the transferred CVD graphene, mainly aiming to reduce chemical etching 

effects of water vapors or oxygen residues and to enlarge clean graphene patches free from 

hydrocarbon contaminants. Note that we heated the samples for the experiments presented in 

Chapters 3–5, but not for the experiment in Chapter 6. In Chapter 6, the presence of oxygen was 

critical for the formation of 2D copper oxide, but heating resulted in the removal of oxygen 

residues incorporated from air or PMMA. 

Lin et al. [85], Algara-Siller et al. [192] and Longchamp et al. [193] reported that ex situ 

annealing in specific conditions (in hydrogen gas atmosphere, in activated carbon, and on platinum 

deposited film, respectively) would reduce hydrocarbon contaminants. We confirmed that such 

annealing reduces initial PMMA residues; however, once the sample was heated and exposed to 

the air, it attracted more contamination under irradiation by a focused electron beam. In some cases, 

beam-induced contamination hindered room-temperature TEM observations, presumably because 

annealing made the sample surface highly reactive. 

Hence, we heated the sample inside the TEM column (~10-5 Pa) before the metal deposition. 

We used two commercial in situ heating holders, which were made by Protochips and Gatan Inc. 

The Protochips holder has excellent mechanical stability at high temperatures (up to 1200 °C), 

which is suitable for the atomic-resolution imaging. The stability of Gatan holder is worse, but it 

can be utilized with conventional TEM grids, and allows direct temperature measurements using 

a thermocouple. In situ heating in atomic-resolution imaging (Chapters 3–5) was realized with the 

Protochips heating holder. 
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Figures 2-19(a)–(c) show TEM images of transferred graphene at room temperature. At first, 

the clean graphene patches had a typical size of 20 × 20 nm2. Figures 2-19(d) and (e) show TEM 

images of graphene heated at ~1000 °C in a TEM column. Heating resulted in clean graphene 

patches of ~1000 × 1000 nm2 in size: most hydrocarbon contaminants remained at the step edges 

or grain boundaries, while the other areas were clean. 

Figure 2-19 Graphene before and after heating 

(a)–(c) TEM images taken at room temperature (RT) without annealing. (d) and (e) TEM images taken at 

1000 °C. After heating, the single-layer graphene regions shown in the lower pars of images (d) and (e) are 

almost perfectly clean. (f) TEM image of the graphene region irradiated by electron beam prior to annealing 

at 1000 °C. 

The TEM image in Figure 2-19(f) at 1000 °C shows no effect of annealing. As shown in Fig. 2-

19(c), strong electron beam irradiation at high magnification has partly graphitized amorphous 

hydrocarbon contaminants and fixed them on graphene. This observation taught us to avoid 
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electron irradiation at room temperature, because it fixed contaminants that could not be removed 

by either heating or electron-induced sputtering. 

Now we describe heating effect on metal-deposited graphene. Metals were deposited on 

graphene using an ion beam etching system (PECS, Gatan) for Cu, DC plasma sputtering system 

(JFC-1600, JEOL) for Pt and electron beam deposition system (RDEB-1206K, R-DEC) for Au. 

The samples were exposed to the air before TEM experiments, which led to incorporations of 

oxygen, hydrocarbons and water. Yuzvinsky et al. [194] reported that if samples contained oxygen 

or water, electron beam had significantly increased the cutting speed of carbon nanotubes, because 

electron irradiation created highly reactive radicals, which reacted with carbon materials. 

Therefore, we heated the sample at 150 °C or higher to remove them. 

Metal nanoparticles started to evaporate at much lower temperatures than the bulk melting point. 

For example, the melting point of bulk Cu is 1085 °C, while Cu nanoparticles evaporated at 

~300 °C. Electron beam irradiation also promoted the aggregation and evaporation of Cu, therefore 

we took a low-magnification TEM image and then turned off the beam. About half of the 

nanoparticles disappeared after 11 h of heating at 300 °C. At ~ 500 °C, Cu has rapidly disappeared. 

To avoid rapid evaporation, we observed all the metals at 150–300 °C. 

Interestingly, when graphene was cleaned up by heating prior to Cu deposition (Fig. 2-20(a)), 

particle sizes varied depending on the number of underlying graphene layers (Figs. 2-20(b)–(d)). 

Figures 2-20(c) and (d) show TEM images of single- and double-layer graphene, respectively, after 

the Cu deposition. Their difference indicates that stacking of graphene layers significantly 

weakened their interaction with metals. This difference appeared only when graphene was heated 

before and after the deposition, so that metal atoms and nanoparticles could freely migrate on the 

clean graphene surface. 
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Figure 2-20 Particle size difference on single- and double-layer graphene 

TEM images of graphene (a) before and (b)–(d) after Cu deposition. TEM image (a) was observed at 

1000 °C, while the others were observed at 300 °C. Panels (c) and (d) are magnified images of the boxed 

regions in (b); they show single- and double-layer graphene, respectively. Cu particles are clearly larger on 

double-layer graphene than on single-layer graphene. 
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Cu atoms reknit graphene structure 

Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic 

devices and to gain understanding of the catalytic activity of metals in nanocarbon structures. In 

this chapter, we report direct observation of interactions between substitutional Cu atoms and C 

atoms in graphene. We document stable configurations of Cu atoms in the graphene sheet and 

unique transformations of graphene promoted by Cu atoms. First-principles calculations reveal a 

reduction of energy barrier that caused rotation of C–C bonds near Cu atoms. We discuss two 

driving forces, electron irradiation and in situ heating, and conclude that the observed 

transformations were mainly promoted by electron irradiation. Our results suggest that individual 

Cu atoms can promote reconstruction of single-layer graphene. We focus on interactions between 

Cu atoms and graphene in this chapter, while the next chapter discusses the different behaviors of 

Cu, Pt and Au atoms at graphene edges. 

3-1  Introduction 

Interactions between metals and graphene have been extensively studied aiming to control the 

local properties of graphene for applications in electrocatalysts and nanoelectronic devices [15], 

[151], [195] and to create novel carbon nanostructures [185], [196]–[198]. Theoreticians predicted 

that transition metal atoms in graphene vacancies have unique electronic and magnetic properties 

[113], [114], [199]. However, there are only a few experimental reports on such metal–graphene 

systems, due to the difficulty of their direct observation. Recently, researchers applied aberration-

corrected (S)TEM to observe metal atoms in a graphene sheet, such as Fe dimers [151] and single 

atoms of Pt, Co and In [152] substituted in carbon vacancies in graphene, as well as etching of 

graphene mediated by metal atoms (Cr, Ti, Pd, Ni or Al)[155]. These studies suggest that most 

metal atoms, except for Au, promote etching of graphene. The etching can be destructive and may 

hinder practical applications. 

Here we report the structure and dynamics of Cu atoms embedded in a single-layer graphene 

observed by aberration-corrected TEM. We selected Cu because it has a similar electronic 
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configuration to Au, and is known to be the best catalyst for graphene growth [82], [187], [200]. 

Hence, Cu will not etch graphene and is expected to catalyze the growth or modification of 

graphene structures. We directly observed unique morphological changes in Cu-doped graphene 

that have not been observed with other metals: reconstruction of graphene grains, various 

transformations promoted near Cu atoms, and formation and mending of graphene nanopores. We 

performed first-principles calculations based on density functional theory (DFT) to explain the 

observed stability and dynamics, as well as Cu-assisted transformations of graphene. 

3-2  Methods 

This section provides specific experimental methods for this chapter, and all the details are 

described above in section 2-3. Note that Dr. Kaneko (NIMS) performed first-principles 

calculations according to the experiment within a collaborative research. 

3-2-1  Sample preparations 

Single-layer graphene on a Cu foil (Graphene Platform Corporation) was transferred onto an in 

situ heating chip (E-chips for AduroTM, Protochips). Figure 3-1(a) is a STEM image taken before 

the Cu deposition; heating in a TEM column (0.6–1×10-5 Pa) at temperatures above 400 °C created 

clean graphene patches about 200 × 200 nm2 in size. A small amount of Cu was then deposited 

onto graphene using an ion beam etching system (PECS, Gatan). 

When observed at room temperature just after deposition, Cu had not formed crystals; it was 

dispersed with oxygen and hydrocarbons. Oxidized Cu nanoparticles under electron beam 

irradiation promoted etching of graphene, whereas pure Cu nanoparticles did not. Therefore, we 

heated the sample to remove oxygen. The annealing temperature was set at 300 °C or lower 

because Cu atoms and nanoparticles gradually evaporated at 300 °C and rapidly disappeared at 

~500 °C. Although most Cu formed nanoparticles when heated (the size distributions are shown 

in Figs. 3-1 (b) and (c)), we could also observe individual Cu atoms that were trapped by small 

contamination patches on graphene or by vacancies in graphene. 
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Figure 3-1 Selecting observation areas 

(a) Low-magnification STEM image taken before the Cu deposition above 400 °C. (b) and (c) TEM images 

of Cu deposited graphene heated at 150 °C and 300 °C, respectively. Corresponding particle size 

distributions are shown below the images. 

Si contamination was possible because we used quartz-tube furnaces and SiN in situ heating 

chips, yet we believe that Si was a minor impurity and most of observed atoms were Cu due to the 

following reasons. First, we can exclude heavily Si-contaminated areas judging by Cu-

nanoparticle sizes. As described in Chapter 2, nanoparticle size varies with the number of 

underlying graphene layers. Si impurity aggregated with hydrocarbon contaminants when the 

sample was heated before the Cu deposition, and Cu nanoparticles were clearly larger on the 

contaminated areas (as seen in the peripheral image areas in Fig. 3-1(b)) than on clean single-layer 

graphene. Therefore, further observations were carried out near the centers of the clean patches. 

Second, we performed STEM-EELS analysis before and after Cu deposition (Fig. 3-2). All 

nanoparticles around the observation areas (yellow frame in Fig. 3-2(b)) and a few dispersed atoms 

(Fig. 3-2(c)) were identified as Cu. 
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Figure 3-2 STEM-EELS data for Si and Cu 

(a) Single Si atoms detected before the Cu deposition. After the Cu deposition, Cu was detected in (b) all 

the nanoparticles around the observed area (highlighted by the yellow frame) and (c) single atoms dispersed 

in/on the graphene. 

3-2-2  TEM imaging experiments 

We used aberration-corrected TEM (JEM-ARM200F, JEOL) operated at a low voltage of 80 kV 

to reduce knock-on damage to the graphene sheets. The sample temperature during observation 

was kept at 150 or 300 °C by an in situ heating holder (AduroTM, Protochips). Unless stated 

otherwise, most results are reported for 150 °C, but the frequency of each transformation type and 

lifetime for each structure were measured at both 150 and 300 °C. TEM movies were acquired at 

0.5–2 frames/s. Snapshots from the TEM movies were processed as follows: frames were shifted 

to compensate for thermal drift, and then averaged and low-pass filtered to improve the signal-to-

noise ratio. 
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3-2-3  First-principles calculations 

We performed first-principles DFT calculations using the PHASE/0 code [201]. The generalized 

gradient approximation [202] and ultrasoft pseudopotential [203] were employed. Spin 

polarization was considered. The cut-off energies of the plane-wave basis set and charge density 

were taken at 25 and 255 Ry, respectively. Each defect was introduced in a graphene supercell of 

6 × 4√3 periodicity (96 atoms). The lateral size of the unit cell was measured using the optimized 

lattice constant of graphene, 2.476 Å, which is 0.6% larger than the experimental value. The 

graphene sheet was isolated by a vacuum layer 10 Å thick (we used 12-Å-thick cells with ~2 Å 

distortion height). A Monkhorst and Pack mesh of 3 × 3 × 1 size was used for k-sampling [204]. 

The atomic positions were optimized until the residual force became smaller than 5.0 × 10-4 

hartree/bohr. To evaluate energy barriers, a climbing image nudged elastic band method with eight 

images was employed [205]. 

The geometrically optimized atomic models were redrawn using Materials Studio (BIOVIA). 
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3-3  Results and discussion 

This section is divided in five subsections: stable configurations of Cu atoms in the graphene 

sheet (3-3-1), graphene reconstruction promoted by Cu atoms shown in large and small areas (3-

2-2 and 3-3-3), discussion on driving forces (3-3-4), and discussion on reasons for different 

behavior of Cu from other metals (3-3-5). Most discussions are based on experimental facts, but 

the subsections 3-3-3 and 3-3-5 include first-principles calculations, which reveal a reduction of 

energy barriers for rotation of C–C bonds near Cu atoms. The repeated C–C bond rotations caused 

graphene reconstruction. 

3-3-1  Cu sites in single-layer graphene 

In the areas irradiated by focused electron beam, some Cu atoms replaced C atoms in the 

graphene lattice (Figure 3-3). This Cu substitution was frequently observed in areas containing 

residual oxygen and hydrocarbon contamination, while the substitution without any contaminants 

was rare, presumably because the contaminants reduced the energy required for Cu substitution. 

The TEM image of Fig. 3-3(b) shows more than 10 Cu atoms embedded in a ~4 × 4 nm2 area 

of graphene. We took TEM images at overfocus conditions to highlight Cu atoms, and Cu atoms 

appeared 1.8 ± 0.2 times brighter than C atoms. Multislice simulation for the present overfocus 

conditions yielded a Cu/C intensity ratio of 1.92 (further details on TEM image contrast are given 

in section 2-1. 

Most of previous studies [113], [114], [151], [152], [199], [206] focused on metal atoms in 

single or double vacancies (Figs. 3-4 (a) and (b)), i.e., the cases when metal atoms substituted for 

one or two C atoms in a pristine graphene lattice. In contrast, the Cu atoms in our experiments 

exhibited a more complex behavior and were frequently observed at Stone–Wales (SW) defects in 

graphene (shown in Figs. 3-4 (c–e)). We name the corresponding structures according to the 

number of atoms making up the carbon rings, including the central Cu atom. For example, the Cu 

atom shown in Fig. 3-4(c) makes two 6-membered rings and one 7-membered ring with 

neighboring C atoms, so we call this structure 667. 
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Figure 3-3 Cu atoms embedded in graphene 

TEM images taken at (a) low- and (b) high-magnification. Image (b) shows Cu atoms (brighter spots) 

embedded in graphene. Images were colored to highlight the Cu atoms. White hexagonal lines in (b) 

indicate the graphene honeycomb lattice. 

Figure 3-4 Cu sites in graphene 

(a–e) Averaged and low-pass filtered TEM images (top row) and corresponding DFT models of Cu sites 

(top and side views, second and third rows, respectively). 

DFT calculations suggest that most Cu-related defects are not planar, except for those containing 

four-coordinated Cu (Fig. 3-4(b)). Three-coordinated Cu atoms (Figs. 3-4(a) and (c–e)) protrude 

from the graphene surface because single vacancies are too small to accommodate them. The 577 

configuration (Fig. 3-4(d)) has smaller height than the 667 configuration where several C atoms 
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are displaced out of graphene plane along with Cu. Malola et al. [206] claimed that Au 

preferentially occupies double or larger vacancies to reduce the height; however, we observe no 

clear correlation between the height and stability (lifetime) of the observed structures. For example, 

the highly distorted 667 was more frequently observed and had a longer lifetime than the almost 

planar 577 structure. Krasheninnikov et al.[113] found that metal atoms, including Cu and Au, 

form covalent bonds with the C atoms at the vacancies. The stability primarily depends on the 

strain around the Cu atoms and the bonding strength between Cu and C; hence, the height of a 

defect is not a decisive factor. 

In addition, Cu atoms physically adsorbed on a pristine graphene surface were rarely observed, 

because their diffusion barrier is more than 10 times lower than that of substitutional Cu atoms 

[117]. As already mentioned in Chapters 1 and 2, the energy provided by heating and electron 

beam irradiation was sufficient to transform Cu atoms embedded in graphene and was too large to 

observe atoms adsorbed on its surface. 

3-3-2  Reconstruction of graphene 

Cu substitution resulted in a gradual reconstruction of graphene during the TEM observations. 

Figures 3-5(a) and (b) show TEM images before and after the reconstruction. It took ~13 min in 

this case (electron beam current density j = 1.56 × 107 e-/s·Å2 = 125 A/cm2, and temperature T = 

150 °C). A small misoriented region was created near Cu atoms. It contains pairs of SW defects at 

a 30° grain boundary (yellow in Fig. 3-5(c)). 

Figures 3-6(a) and (b) show TEM images taken before and after the reconstruction taken from 

another area. Note the broadening of the corresponding spots in the fast Fourier transform (FFT) 

pattern (cf. insets in Fig. 3-6(b)), which reveals that the reconstruction resulted in an angular 

disorder due to the formation of 1–3 nm sized grains. We numbered the four grains shown in Fig. 

3-6(b) as follows: grain #1 kept its original orientation, but became slightly distorted; #2 and #4 

reconstructed and rotated by 18° and 23° from the original, respectively; and #3 rotated while 

preserving its original honeycomb structure. 
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Figure 3-5 Reconstruction of graphene 

False-color TEM images taken (a) before and (b) after the reconstruction of graphene. Image (a) is the 

center area of Fig. 3-3, and image (b) was taken after ~13 min from (a). (c) Model of grain boundary marked 

by the white box in (b). Stone-Wales defects highlighted in yellow. 

Figure 3-6 Reconstruction of graphene 

False-color low-pass filtered TEM images taken (a) before and (b) after the reconstruction. Image (b) was 

taken ~20 min after (a). Insets in (c) and (d) are FFT patterns. 
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Most grains were disrupted by the local strain induced by the contaminants, and reconstructed 

via repeated rotation of C–C bonds near Cu atoms to minimize the overall strain. In Fig. 3-5(a), 

hydrocarbon contaminants on the left side of the image were partially graphitized by electron beam 

irradiation, distorting the underlying graphene lattice. Grain #2 was also covered by hydrocarbons 

(Fig. 3-6(a)); it reconstructed after their removal by electron irradiation, albeit with a different 

orientation. 

The TEM images shown in Figure 3-7 are selected snapshots between Figs. 3-6(a) and (b), 

which shows a different type of reconstruction, namely a grain rotation. In contrast to the former 

reconstruction, the grains kept the original graphene structure during the reconstruction. Grain #3 

retained its orientation until a small pore was mended by Cu atoms, and gradually rotated by about 

17° owing to the strain from contaminants on the left and defects on the right side. During this 

process, many SW defects moved via C–C bond rotation and helped fit grain #3 to its neighbors. 

Lehtinen et al. [207] found that aggregated interstitials in graphene, which leads to a strong local 

curvature in graphene, are energetically more favorable than isolated ones. The same was true of 

Cu atoms and SW defects: SW defects were reported to distort graphene [125], [208], and Cu 

atoms in our experiment tended to combine with them rather than remain isolated. Cu atoms can 

also distort graphene, thereby promoting both generation of defects and their healing via C–C bond 

rotation. Such repeated distortion and reconstruction, promoted by Cu atoms and electron 

irradiation, gradually changed the graphene structure in large area. 
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Figure 3-7 Selected snapshots of grain rotation 

(a–d) Low-pass filtered TEM images indicate the rotation of grain #3. Images (a-c) show the formation and 

mending of a nanopore in graphene. (e, f) Unprocessed TEM images corresponding to (b) and (d) with 

annotations. Green and yellow dotted lines in (a–d) indicate the orientations of grains #3 and #4, 

respectively. A part of grain #4 had an orientation differing by 30° from that of grain #3, and grain #3 

gradually rotated with that part of grain #4. 
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3-3-3  Transformations promoted by Cu atoms 

We analyzed the dynamics and stability of 56 single Cu atoms to elaborate on the graphene 

transformations mentioned above. Figure 3-8 shows the four typical transformation types: (a–b) 

and (c–d) are C–C bond rotations #1 and #2. They differ by that in #1 one of the rotating C atoms 

is attached to a Cu atom, while in #2 the rotating pair is separated from Cu. The third 

transformation is rotation of a C–Cu bond (e–g), and the fourth is ejection of one C atom (h–i). 

Figure 3-8 TEM images of the typical transformations 

(a, b) rotation of C–C bond attached to a Cu atom, (c, d) rotation of C–C bond near a Cu atom, (e–g) rotation 

of C–Cu bond, and (h, i) ejection of C atom next to Cu. Rotated C and Cu atoms are highlighted as blue 

and orange balls, respectively. (j) Observation frequency for each transformation (arb. unit). 

Figure 3-8(j) summarized the observed frequency of each transformation. The majority of the 

observed transformations were C–C rotations near the Cu atoms. C–C rotation #1 was most 

common and occurred reversibly, while C–C rotation #2 was less frequent. We can explain this 

preference by the number of bonds that break and recombine during each transformation (see Fig. 

3-9). Two strong C–C bonds break in process #2 (Fig. 3-9(a)), whereas #1 involves one C–C bond 

and one weak C–Cu bond (Fig. 3-9(b)). The binding energies of substitutional C and Cu atoms in 

graphene were calculated as 15.7 and 3.9 eV, respectively. Because each C and Cu atom is bonded 

with three neighboring C atoms, the energy difference between one C–C bond and one C–Cu bond, 
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or between rotations #2 and #1, is estimated to be ~3.9 eV. This scenario can explain the difference 

in the relative frequencies of C–C rotations #1 and #2, but does not explain why C–Cu rotation 

was less frequent. It predicts that C–C #1 and C–Cu rotation should be equally frequent, as they 

both involve one C–C and one C–Cu bond (Fig. 3-9(a) and (c)). Meanwhile the C–C #1 process 

was 3 times more common in our observations. Furthermore, C ejections were rather common, 

despite their expected high energy-barrier, whereas very few Cu ejections were observed. This 

inconsistency can be explained by electron beam irradiation (discussed in section 3-3-4). 

Figure 3-9 Comparison between three types of bond rotations 

Schematic atomic model images presenting rotation processes of (a) C–C bond next to Cu (C–C #1), (b) 

C–C bond separated from Cu (C–C #2), and (c) C–Cu bond. Yellow ellipses highlight the rotating bonds. 

Two bonds break and recombine during each bond rotation. The binding energy of one C–C bond in 

graphene is ~5.2 eV, while that of one C–Cu bond is ~1.3 eV. 
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According to the experimental results shown above, we performed first-principles DFT 

calculations to evaluate the activation energy barrier and the total energy change for each 

transformation. In short, our DFT calculations of the energy barrier do explain why the C–C 

rotations are promoted by Cu atoms. They agree with the analyzed observation frequency (Fig. 3-

8(j)) and stability of each structure and the binding energy estimates mentioned above, although 

the used models are simple and do not take in account the defect-related lattice distortions over a 

large area. First, Figures 3-10(a) and (b) show the C–C rotation that converts four 6-membered 

rings into two SW defects. Fig. 3-10(c) shows the energy diagram of C–C bond rotation without 

Cu atom. The total energy increased by 5.06 eV when a SW defect was created. The top of the 

barrier corresponds to the transition state with two broken C–C bonds; it is 9.36 eV above the 

pristine graphene (Fig. 3-10(a)) and 4.30 eV above the SW defect level (Fig. 3-10(b)). These values 

are consistent with a previous report [112]. The 9.36 eV energy can be easily supplied by an 

electron beam in a typical TEM operated at 200-300 kV, but not at 80 kV. 

Figure 3-10 Energy required for the bond rotations 

(a, b) Atomic models of C–C bond rotation without Cu atoms. Orange frames outline the cells used in DFT 

calculation, which contain 96 atoms. (c) Energy diagram of transformation between (a) and (b). (d–g) 

Atomic models of Cu sites in graphene. If the two C atoms highlighted by yellow ellipses are rotated, the 

model of Cu atoms embedded in SW defects (e–g) will become pristine structure (d). (h) Energy diagrams 

of transformations between (d) and (e), (f) or (g). Insets show models of transition states. 
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Then we calculated C–C bond rotation with Cu atoms (Figure 3-10(d–h)). Replacing one C atom 

with a Cu atom in these figures results in the 666, 667, 567 and 577 defects as shown in Figs. 3-

10(d–g), respectively. We found that the energy barrier of C–C rotations with Cu atom (Fig. 3-

10(h)) was significantly reduced from that in pristine graphene (Fig. 3-10(c)). The C–C rotation 

#1 was most frequently observed, because the energy barrier was reduced to 3.18 eV, and the 

energy required to return to the 666 structure (Fig. 3-10(d)) was only 0.84 eV. This reduction came 

from the low C–Cu binding energy and from the partial passivation of dangling C atoms by Cu 

atom (see inset in Fig. 3-10(h)). 

The stability of each structure depends on the energy barrier height rather than the total energy 

difference. For example, although the SW defect is 5.06 eV less stable than pristine graphene, once 

it is created, the energy barrier of 4.30 eV prevents its relaxation from SW defect to pristine 

graphene. The 577 structure (Fig. 3-10(g)) has a lower total energy than the 667 structure (Fig. 3-

10(e)); however, there is no energy barrier between the 577 and 666 structures (Fig. 3-10(d)), as 

shown in Fig. 3-10(h); therefore, it will soon transform into 666 (the pristine structure without SW 

defects). The 577 structure can also be regarded as a transition state of diffusion of Cu atoms. The 

Cu atom in the 666 structure will exchange positions with the neighboring C atom by the 180° C–

Cu rotation. The corresponding energy barrier is 2.32 eV (energy difference between the 577 and 

666 states), which is similar to the value of 2.2 eV for Au atom diffusion in graphene [209]. 

In short, DFT calculations reveal that the energy barrier of C–C bond rotation was significantly 

reduced by the presence of Cu atoms. The relevant experimental results are discussed above (Figs. 

3-8 and 3-9). Furthermore, a Cu atom at a vertex of the pentagon induces a large stress in graphene 

and therefore is less stable than in the other configurations, despite the low total energy of its 

optimized structure.  

The latter factor appeared in our experimental observations as the defect lifetime; that is, the 

time interval between two arbitrary transformations. Figure 3-11 shows a characteristic example 

of the analysis procedure. At high beam current densities (Figs. 3-11(i) and (ii)), the lifetime of all 

structures were almost the same (a few seconds). However, a difference appeared at lower beam 

current densities (see Fig. 3-11(iii)). Defects involving pentagon, such as 577 and 568, had 

approximately half the lifetime of the 667 or 677 structures. 
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Figure 3-11 Analysis and averaged lifetimes of typical structures 

(i), (ii) Specific example of the analysis at 150 °C and electron beam current density j = 900 A/cm2. (i, a–

t) Low-pass filtered TEM images. The table in (ii) shows actual lifetimes and transformation types 

corresponding to the images (i). “Mix” in the right column means that several transformations occurred 

within 1 s. (iii) Averaged lifetimes of typical structures at 150 °C with a variety of current density j: focusing 

the electron beam reduced the lifetime. At low beam current densities, 577 and 568 disappeared twice faster 

than other structures due to the large stress from the pentagon they contained. Red numbers correspond to 

observations that were seen only once in our experiments. 
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3-3-4  Driving force of the transformations 

In this section, we discuss two driving forces: in situ heating and electron irradiation. C–C bond 

rotations occurred within 5 min in our experiment, which had a temporal resolution of 1s. We 

estimated the energy required to rotate the C–C bond at 3.2 eV, which is sufficient to cause SW 

defect formation by C–C rotation #1 and relaxation by C–C rotation #2, as shown in Fig. 3-10(h). 

We then calculated the time required for the next rotation via thermal activation [139]: the C–C 

bond rotation takes ~1015 s at 300 °C, with an attempt frequency of 5 × 1012 s-1 given by the G-

mode vibration of graphene [210]. This calculation suggests that most transformations could not 

be induced by thermal activation (except for the relaxation of SW defects via C–C rotation #1), 

and were likely promoted by electron irradiation. This conclusion is supported by our observations 

that graphene structure remained unchanged in weakly irradiated sample areas. 

As discussed in sections 1-1-2 and 2-2, a large amount of energy can be transferred from incident 

electrons to C atoms, while the energy transfer to Cu atoms is small: Emax is 15.75 eV for C and 

2.97 eV for Cu at 80 keV incident electron beam energy. The energy transfer model can explain 

why C–C bond rotation and C atom ejection were more frequently observed than C–Cu bond 

rotation and Cu ejection. The energy transferred to Cu atoms cannot exceed 2.97 eV; hence, the 

observed transformations arose mainly via excitation of C atoms. Electron irradiation has less 

effect on Cu; thus, Cu atoms moved less frequently than C atoms. Therefore, we rarely observed 

Cu atom ejections from the graphene lattice, although the binding energy of a Cu atom in a single 

vacancy is 4–5 times smaller than that of a C atom. The ejected C and Cu atoms likely moved too 

fast to be observed by TEM and were trapped by other vacancies or contaminants in graphene. 

Figure 3-12 shows the averaged lifetimes, for all types of structures and transformations, at 

several electron beam current densities (respective lifetime values of typical structures are shown 

in Fig. 3-11(iii)). The green symbols correspond to the experimental values measured at 150 °C, 

while the blue and red squares represent the calculated values, assuming the energy transferred to 

C is in the range of 3–10 eV. The experimental values are in between the calculated values, and 

both lifetimes are inversely proportional to electron beam current density j. For j = 125 A/cm2, 

transformations occurred within a few seconds in defective areas, whereas stable structures such 

as 667, 666, 677 and 5656 in a relatively clean graphene often survived for more than 2 min under 

electron beam irradiation. 
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In addition, the temperature effect on the lifetime t became significant at lower current density 

j, although it was smaller than the electron irradiation effect. In contrast to the energy transferred 

from electron beam, the thermal activation energy affects C and Cu equally; hence, increasing the 

temperature reduced the lifetime of every Cu-graphene configuration. 

Figure 3-12 Lifetime under electron irradiation 

The observed lifetimes at 150 °C (green) and 300 °C (orange) were averaged and plotted as a function of 

the electron beam current density j. The red and blue symbols show the values calculated from the scattering 

cross section σ at Et>EB=10 or 3 eV, as discussed in section 2-2. The defect lifetime t is inversely 

proportional to the product of scattering cross section σ and current density j (t = 1/σj). 

In summary, we discuss two driving forces, and conclude that the energy transferred to C atoms 

from high-energy incident electrons promotes all the transformations described in the previous 

sections. The occurrence frequency of the transformation differed according to (1) their energy 

barriers and (2) chemical elements. Regarding (2), the observed transformations arose mainly via 

excitation of C atoms; therefore the transformations only involving C atoms (such as C–C bond 

rotations) were more frequently observed than the transformations involving Cu atoms (such as 

C–Cu bond rotations). Transformations occurred within a few seconds in defective areas, whereas 

stable structures in clean graphene survived for a longer time under the same irradiation conditions. 

Therefore, we conclude that Cu atoms promote C–C rotation when they are surrounded by defects, 

but not when reconstruction of the graphene is complete. 
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3-3-5  Uniqueness of Cu compared with other transition metals 

Many metals, including Cr, Ti, Pd, Ni and Al, were experimentally reported to etch graphene 

[155], and a similar activity was theoretically predicted for Fe and Co [211]. Cu atoms, however, 

promoted graphene reconstruction rather than etching in our experiment. Even when small pores 

were created by irradiation, Cu atoms attached their edges to prevent expansion of the pores and 

mended them by trapping C atoms diffusing around (e.g. Fig. 3-7). We have not observed such 

effects for Pt under similar experimental conditions, instead, Pt atoms etched graphene edges to 

widen the pores (see Chapter 4). As described in section 1-2-1, electron beam irradiation can 

induce structural transformations at single or double vacancies in graphene without Cu atoms; 

however, these transformations occur within atomically small regions. 

We believe this unique ability of Cu originates from its moderate binding energy with C atoms 

in graphene. The graph in Figure 3-13(i) shows the values of binding energy taken from literature 

[114] (almost the same values were reported in [113], as shown in Fig. 2-10). The binding energy 

of Cu at the single vacancy is 3.7 eV (our calculated value was 3.9 eV), whereas its values for 

other transition metals are 6–8 eV. These metal atoms strongly bind with C atoms and strain the 

graphene lattice, which may reduce the displacement threshold energy by electron beam irradiation. 

This effect should be much smaller for Cu, Ag, Au and Zn atoms (binding energy 1–3 eV). 

However, these metal atoms, except for Cu, may move away rather than reconstruct graphene, 

because their binding energy is too small to keep them in graphene. To confirm this prediction, we 

observed graphene with Pt, Cu, and Au atoms (see Chapter 4). 

Furthermore, we compared the energy difference ΔE between the structures with and without 

SW defects. Tables in Figures 3-13(ii) and (iii) show ΔE for Cu and other metals (Fe, Cr, Ni, and 

Co). We found that their ΔE are ~1 eV higher than for the Cu atoms in the same models. This result 

suggest that, compared to Fe, Cr, and Ni, Cu atoms are more stable near SW defects, and thereby 

promote C–C bond rotations and unique reconstructions. 
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Figure 3-13 Binding energy between metal and C atoms 

(i) Binding energy of metal atoms at a single vacancy. The graph was redrawn from Ref. [114]. (ii) The 

energy difference ΔE between the substitutional Cu structures with and without SW defects. (iii) ΔE data 

for Fe, Cr, Ni and Co, which are ~1 eV higher than for Cu shown in (ii). 

  

 



Cu atoms reknit graphene structure 

73 

 

3-4  Summary 

We directly observed atomic-scale transformations of Cu-doped graphene by an aberration-

corrected TEM. Our observations suggest that Cu atoms tend to combine with SW defects and 

preferentially replace C atoms in defective graphene areas. They also modify graphene by 

promoting C–C bond rotation, formation and mending of nanopores, and rotation of grains 

mediated by contaminants and lattice defects. Cu atoms and SW defects form grain boundaries 

between the reconstructed and original grains. All these transformations were assisted by electron 

irradiation, which affected C atoms much more than Cu atoms because of the higher energy 

transferred to them from the incident electron beam. Thermal effects need a further study, and our 

results reveal that Cu atoms are stable in graphene sheets up to 300 °C. We combined experiment 

with DFT calculations to investigate the stability of Cu atoms embedded in graphene and the 

activation energy barriers for the experimentally observed transformations. Our results reveal that 

individual Cu atoms can catalyze reconstruction of carbon nanostructures and suggest that Cu-

doped graphene may find applications in nanoelectronic devices. 
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Metal-mediated mending and etching of graphene edges 

Metal atoms at graphene edges are important because they can modify the structure and 

properties of graphene; however, there are very few reports on their direct observation. As 

described in Chapter 3, substitutional Cu atoms can promote unique reconstruction of single-layer 

graphene. Here we present different behaviors of Cu, Pt and Au atoms at graphene edges. We have 

found opposite effects of Cu ant Pt atoms on graphene edges: Cu atoms mend graphene edges, but 

Pt atoms etch them. Au atoms promoted neither etching nor mending because of the weak binding 

energy to C atoms in graphene. These transformations were assisted by electron irradiation. 

4-1  Introduction 

Functionalization by metal atoms has been predicted to improve the electronic, magnetic, and 

catalytic properties of graphene [27], [29], [151], [152], [212], [213]; however, it can also result 

in etching. Ramasse et al. reported that Cr, Ti, Pd, Ni and Al atoms etched graphene in vacuum, 

even at room temperature [155]. While this phenomena may be detrimental for the fabrication of 

large-area graphene devices, it offers a promising method for producing graphene nanoribbons, as 

metal nanoparticles can etch graphene along a specific crystallographic direction [37], [145]–[148]. 

It is therefore essential to visualize the interaction of graphene with different chemical elements. 

Aberration-corrected TEM enables imaging the structures and dynamics at the atomic scale in 

real time. As described in Chapters 1–3, a relatively low accelerating voltage of 80 kV induces 

little knock-on damage in graphene; however, it is sufficiently high to modify graphene edge 

structures (the knock-on threshold at graphene edge is ~50 kV [214]). There are many electron 

microscopy reports on the reconstruction of pure graphene edges (without metal atoms) [106], 

[179], but very few reports on the reconstruction with metal atoms. Although Au [153] and Fe 

[154] atoms were observed at graphene edges and electron irradiation resulted in the removal or 

addition of a few C atoms around the impurity atoms, the edge structure did not change 

significantly. 
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Since we found that substitutional Cu atoms promoted large-area reconstruction of bulk 

graphene via repeated C–C bond rotations (described in Chapter 3), we further studied on Cu atoms 

at graphene edges, and compared their behavior with Pt and Au. Our results reveal that Cu atoms 

mend graphene edges, Pt atoms etch them, while Au atoms move away rather than reconstruct 

graphene lattice. 

4-2  Methods 

Experimental details are described in Chapters 2 and 3. Single-layer graphene was transferred 

onto an in situ heating chip (E-chips for Aduro™, Protochips). Metals were then deposited on 

graphene using an ion beam etching system (PECS, Gatan) for Cu, DC plasma sputtering system 

(JFC-1600, JEOL) for Pt and electron beam deposition system (RDEB-1206K, R-DEC) for Au. 

We annealed the samples in the TEM column (~10-5 Pa) to remove the contamination. The 

annealing temperature was set at 300 °C or lower. 

The microscope (JEM-ARM200F, JEOL) was operated at 80 kV. First, we applied a relatively 

high electron beam current density j to create small pores in graphene. Then we observed Cu atoms 

at the pore edges at 150 or 300 °C and j = 63–1000 A/cm2. The electron density strongly affected 

the dynamics of C atoms at graphene edges, while the effect of temperature was less pronounced. 

Pt atoms were observed at 300 °C and j = 250 A/cm2. Under these conditions, the C configuration 

around Pt changed every few seconds. All the reported TEM images were taken from movies and 

were processed as follows: frames were aligned to compensate for sample drift, and then averaged 

and low-pass filtered to improve the signal-to-noise ratio. 
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4-3  Results 

Figures 4-1(a) and (b) show TEM images and models indicating the typical sites for Cu and Pt 

atoms at graphene edges. These images were taken under overfocus conditions to highlight the 

metal atoms. The Cu/C and Pt/C signal ratios were calculated as 1.92 and 3.15, respectively (see 

section 2-1-3 in Chapter 2). Our observations revealed that Cu atoms adsorbed on the edge surface, 

while Pt atoms replaced C atoms inside the edges. As shown in Fig. 4-1(c), we classify the sites 

according to the number of bonds with graphene edge: “surface” has two metal-C bonds, while 

“inside” corresponds to three bonds. Approximately 89% of Cu atoms were observed at the surface, 

while ~ 55% of Pt atoms remained inside graphene. 

Figure 4-1(c) shows four configurations of an impurity atom at the surface: pentagon and 

hexagon structures at an armchair edge, and tetragon and hexagon structures at a zigzag edge. The 

migration barriers of metal atoms at zigzag edges were smaller than those at armchair edges (0.14 

and 1.28 eV, respectively, for Au [153]); hence the tetragon structure at the zigzag edge was less 

stable and changed within a few seconds. When there was a vacancy at the edge, metal atoms 

adsorbed there and formed hexagon structures. In our observations, metal atoms migrated to 

intersections or steps of the edges, but not to flat edges. Cu atoms were frequently observed in 

pentagon structures at the edge intersections, and were stable for ~1–2 min under electron 

irradiation. 

Figure 4-1 Different configurations of Cu and Pt atoms 

TEM images and schematic atomic models of (a) Cu and (b) Pt. Scale bars: 0.5 nm. (c) Schematic atomic 

models of metal atoms at graphene edges (armchair and zigzag, the top and bottom rows, respectively).  
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Figure 4-2 consists of images that elaborate two different phenomena: (i) mending and (ii) 

etching. Cu atoms mediated the former, while Pt atoms mediated the latter. For each case, all the 

TEM images were taken from a same movie. Figures 4-2(a) and (b) (for both (i) and (ii)) are TEM 

images taken before and after the reactions, respectively, and TEM images and models of (c–g) 

elaborate each process. 

At first, we describe Cu-mediated mending of graphene edge under electron irradiation (Fig. 4-

2(i)). As discussed in Chapter 3, substitutional Cu atoms can promote rotations of C–C bonds in 

graphene, which convert pentagon-heptagon pairs (SW defects) into hexagons. Such rotations also 

occurred around Cu atoms at the edge (Figs. 4-2(i, c–d)), and triggered further rotations (Fig. 4-

2(i, e)). This behavior was also documented for pure graphene edges, where one C–C bond rotation 

strongly correlated with nearby edge structure [179]. Stable Cu atoms then trapped additional C 

atoms (Fig. 4-2(i, f)), which were presumably etched by electron beam from the nearby edges or 

amorphous carbon contamination and diffused along the edge. Cu atoms weakly bonded with C 

atoms could easily reknit the additional C atoms into graphene (Fig. 4-2(i, g)). The C–C bond 

rotations (Figs. 4-2(i, c–e)) occurred before and after the trapping of additional C atoms (Fig. 4-

2(i, f)). Cu-mediated mending occurred at both 150 and 300 °C. Cu mediated mending occurred 

at both 150 and 300 °C, and we chose the 150 °C data for Fig. 4-2 because the 300 °C migration 

was too fast (further details are given in Appendix Figs. A-11 to A-13). 

Second, we describe Pt-mediated etching of graphene edge under electron irradiation. Figure 4-

2(ii) was recorded at 300 °C for ~6 min. Pt atoms moved into a vacancy (Figs. 4-2(ii, c–d)), which 

was too small for accommodating a Pt atom, and hence the nearby C atoms were pushed aside. 

Compared with Cu atoms, Pt atoms were less mobile (heavy Pt atoms less affected by electron 

irradiation, as described in Chapter 2), and kept the configuration shown in Figs. 4-2(ii, f–g) for 

more than 20 s. However, they strained the edge, and C atoms that were not directly bonded with 

Pt were etched away by electron irradiation. Sputtered C atoms diffused along the edge, but 

continuous electron irradiation moved them outside the view soon. After that the Pt atom moved 

into the created vacancies, repeating the etching process in a new location. 
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Figure 4-2 (i) Cu-mediated mending and (ii) Pt-mediated etching 

TEM images taken (a) before and (b) after each reaction (it took ~3 min for (i) and ~6 min for (ii)). Image 

(a) corresponds to t = 0 s for each case. (c–g) TEM images and schematic atomic models showing (i) 

mending or (ii) etching of graphene edge. Scale bars: 0.5 nm. 
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Au atoms could be observed only at room temperature, and they promoted neither etching nor 

mending. When heated at 150 or 300 °C, Au aggregated to form nanoparticles and individual 

atoms could not be imaged in our experiments. Wang et al. also reported diffusion of individual 

Au atoms along graphene edges and found that it did not significantly affect the edge structure 

[153]. 

4-4  Discussions 

4-4-1  Binding energy of metal-carbon bond 

The different behaviors of Cu, Pt and Au toms at graphene edges can be explained by the binding 

energies to C. Substitutional metal impurities in graphene form covalent bonds with C atoms, and 

the binding energy of single Pt–C, Cu–C and Au–C bonds is approximately 2.6, 1.2 and 0.7 eV, 

respectively [113], [114], [215]–[217]. Because of their large atomic radii, the substituted atoms 

strain the graphene edge and shift out of the graphene plane. This strain or defect reduces the 

knock-on threshold [110] and thereby promotes etching in the case of Pt. It was reported that the 

strain caused by dislocations extends [125], hence we suppose that the strain caused by 

substitutional metal atoms also extends far enough to affect distant C atoms (Fig. 4-2(ii, g)). In the 

case of Cu, the binding energy to C is smaller, and the strain can be reduced via C–C rotations or 

Cu–C displacements. These mechanisms do not work for Au because the Au–C bonds are too 

weak to keep Au at graphene edges. 

4-4-2  Effects of heating and irradiation 

Heating to 150 or 300 °C had a minor effect on graphene edges – their transformations require 

a few eV, while thermal energy is only 0.036 eV and 0.049 eV, respectively. However, the energy 

requirements for migration of etched atoms are much lower, which is why C movements at 300 °C 

were relatively fast in this study. We did not observe structural changes in weakly irradiated areas; 

therefore, we conclude that the reported etching and mending phenomena are promoted by electron 

irradiation. The applied accelerating voltage of 80 kV transfers up to 15.75, 2.97, 0.97 and 0.96 

eV to C, Cu, Pt and Au atoms, respectively, that is, electron irradiation affects mostly the light C 

atoms. 

  



Chapter 5 

80 

 

4-5  Summary 

As described in Chapter 3, we found that substitutional Cu atoms can promote unique 

reconstruction of graphene, and expected different tendency for other metals. In this chapter, we 

report a direct visualization of dynamics of Cu and Pt atoms at graphene edges by TEM. Cu and 

Pt atoms formed different configurations in graphene and induced opposite effects: mending and 

etching, respectively. These transformations were promoted by electron irradiation, while the 

effect of heating between 150 and 300 °C was less pronounced. Our results suggest that deposition 

of different metals on graphene edges, combined with electron irradiation, allows us to control the 

edge structure. 
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Metal-terminated carbynes on graphene 

In this chapter, we report a direct observation of carbynes (monoatomic linear carbon chains) 

by in situ TEM. Cu or Pt atoms in graphene (described in Chapters 3 and 4) served as nucleation 

sites for carbyne formation. Migration of C adatoms on graphene was promoted by electron 

irradiation, and the carbon atoms were trapped by metal atoms. Carbynes were formed both at Cu 

and Pt atoms, albeit with different observed frequency and stability. Here we focus on the 

difference between Cu- and Pt-terminated carbynes. 

Note that a part of the experiment on Pt-terminated carbyne was performed when I was a 

master’s degree student. As a monoatomic carbyne chains are an attractive material, we continued 

to study carbynes; TEM experiments and image simulations were further performed after the 

completion of master’s course, and revealed that carbynes can also grow on substitutional Cu 

atoms in graphene.  

5-1  Introduction 

Carbyne is one of the many allotropes of carbon. It is a one-dimensional (1D) structure, 

composed of a linear chain of sp-hybridized C atoms. There are two possible structures of the 

linear carbon chain: cumulene (=C=C=)n and polyyne (−C≡C−)n, while alkane (CnH2n+2) and 

polyacetylene (CH)n are zigzag chains with bonding angles of 120° and 109.5°, respectively. In 

our experiment, no zigzag chains were observed, and thus the observed structures should be either 

cumulene or polyyne. They may co-exist, as they have similar dissociation energies. Theoretical 

studies predict that carbynes have unique properties that rival those of graphene and carbon 

nanotube (CNT): twice the tensile stiffness of graphene and CNT, a tension-induced increase in 

the electronic band gap, high stability at room temperature, and so on [218]. However, these 

properties have not yet been proven experimentally because of the difficulties encountered in 

production and observation of carbyne. Mass production is a key factor in expanding carbyne 

research. CNTs, for example, have become widely used since their mass production was made 

possible by chemical vapor deposition [88], [219], [220]. 
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Many carbyne synthesis methods have been reported. For example, finite-length carbon chains 

have been chemically synthesized in solution [221], [222], but it is difficult to determine their 

exact structures and properties only by spectroscopic analysis. Some researchers synthesized 

carbynes and observed their atomic structure by in situ TEM [97], [129]–[131]. They etched the 

graphene sheets or CNTs by the electron beam inside a TEM setup. This top-down approach is 

available for fundamental studies of the atomic structure of carbyne, but it is not suitable for 

applications. 

We have demonstrated a new approach to produce carbynes using Cu or Pt atoms as nucleation 

sites. Aberration-corrected TEM enabled us to both produce carbynes and observe their atomic 

structures. In this study, graphene acted as a support membrane, an ultimate thin film for the 

detection of carbynes by TEM. We observed carbynes only on clean graphene surface, as it 

contributed the lowest background required to detect weak carbyne signals; we could not 

unambiguously detect carbyne on defective or on contaminated graphene. 

5-2  Methods 

All the details about sample preparation method are described in Chapters 2 and 3. Single-layer 

graphene was transferred onto an in situ heating chip (E-chips for Aduro™, Protochips). Metals 

were then deposited on graphene using an ion beam etching system (PECS, Gatan) for Cu and DC 

plasma sputtering system (JFC-1600, JEOL) for Pt. The samples were annealed in the TEM 

column (~10-5 Pa) to reduce the contamination. 

An aberration-corrected TEM (JEM-ARM200F, JEOL) was operated at 80 kV. TEM movies 

were acquired at a speed of 1 frame/s. The annealing temperature was set at 150 °C for Cu because 

Cu atoms and nanoparticles started to evaporate at ~300 °C. Pt was stable at higher temperatures 

(~800 °C), and therefore we examined the temperature effect on carbyne formation using Pt atoms. 
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5-3  Results and discussion 

5-3-1  Formation and dynamics of carbyne 

Figure 5-1 shows the formation of a carbyne chain with Pt atoms observed at 400 °C. Carbon 

chains were observed even at room temperature, but they immediately collapsed when magnified 

(that is, irradiated by a focused electron beam). This presumably occurred due to the chemical 

etching by residual oxygen or hydrocarbon contamination under electron beam irradiation. As the 

temperature was raised towards 400 °C, carbynes survived for a longer time (a few minutes). 

Above 600 °C, Pt and C atoms moved rapidly and carbyne formation was not observed. Therefore, 

all experimental results described here were obtained at 400 °C for Pt. 

In Figure 5-1 three Pt atoms captured some C atoms, resulting in the formation of a C-shaped 

chain (Fig. 5-1(i, b)). The chain bent significantly (both ends are in contact) and fluctuated a little, 

but remained stable for about 1.5 min. Pt atoms could move around freely until carbyne suddenly 

turned into a linear chain (Figs. 5-1(i, c–e)). Both ends of the chain were terminated by Pt atoms, 

and the chain remained motionless for more than 20 s. The atomic structures described above are 

shown in Fig. 5-1(i, f). 

Figure 5-1(ii, a) shows a TEM image of a straight carbyne after averaging 5 snapshots of the 

movie. To separate the signals of chain structures and graphene sheet, we applied a Fourier filter 

to remove the graphene lattice signal (Fig. 5-1(ii, b)). From these experimental images, the distance 

between the Pt atoms at both ends was measured as 1.5 nm. Each C–C bond length is 1.2–1.3 Å, 

which falls between the bond lengths of cumulene and polyyne. Given the C–C bond length, 1.5 

nm carbyne corresponds to a structure comprising 11 C atoms and 2 Pt atoms (Fig. 5-1(ii, c)). Fig. 

5-1(ii, d) shows a simulated TEM image obtained using this atomic model. For comparison, we 

also modeled and simulated a TEM image of alkane, a zigzag hydrocarbon chain (Figs. 5-1(ii, f 

and g)). In Figs. 5-1(ii, b, e, and h), the chain structures are clearly seen after Fourier filtering the 

original images (Figs. 5-1(ii, a, d, and g)). No zigzag structure was observed in Fig. 5-1(ii, b), and 

the simulated straight structures of carbynes agreed well with the observation. 

After the above observation, the Pt atoms suddenly moved 3 nm away from the observed area. 

There was no pore where the Pt atoms had been before, suggesting that the source of the carbyne 

growth was the C adatoms on the graphene surface. When there were not enough C atoms, the Pt 
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atoms pulled C atoms from the graphene lattice and created small pores in the structure, as 

described in Chapter 4. Under such conditions, we observed no carbynes. 

Figure 5-1 Observation of carbyne with Pt atoms. 

(i) (a) TEM image of three Pt atoms on graphene taken at underfocus. The yellow arrows indicate single Pt 

atoms (atoms appear black). (b–e) Selected snapshots within the yellow frame in (a). (b) C-shaped carbyne. 

(c–d) Consecutive images indicating the change from a C-shape to a straight structure. (e) Straight carbyne 

terminated by Pt atoms at both ends. (f) Schematic of the carbyne structures corresponding to (b), (c), and 

(e). (ii) (a) Averaged TEM image of straight carbyne. One of the raw images is (i, e). The red framed area 

was modeled and simulated as shown in (c-h). (b) Fourier filtered image of (a), with the graphene signals 

removed as shown in the inset FFT. (c-e) Modeled, simulated, and filtered images of straight carbyne C11, 

terminated by Pt atoms. (f-h) Modeled, simulated, and filtered images of zigzag alkane C11H22, terminated 

by Pt atoms. Simulated images (d) and (g) were obtained at -4 nm defocus.  
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Figure 5-2 shows another carbyne chain that formed on three Cu atoms, where the Cu atoms 

substituted carbons in the graphene lattice and remained motionless. Fig. 5-2(i) shows the Fourier 

filtering process used to highlight carbyne and Cu atoms by removing the underlying graphene 

lattice in the left part. The misoriented grain to the right remained after the process. Contrary to 

Pt-terminated carbyne, carbyne on Cu was formed within 1 s, exhibited no C-shaped structure, and 

was observed relatively often. However, it was unstable, presumably because of the weak bonds 

between the Cu atoms and the ends of the chain. The two carbyne chains formed on 3 Cu atoms 

fluctuated a little for ~ 18 s (shown in the 11-28 s frames in Fig. 5-2(ii)). Then one end suddenly 

departed from Cu; unfolded, forming a single chain (29-32 s in Fig. 5-2(ii)), and got trapped by 

defects located at a grain boundary. Both ends hopped around by a few atomic steps and then 

stabilized (44-55 s in Fig. 5-2(ii)). 

Figure 5-2 Cu-terminated carbyne 

(i) Graphene signal was removed by Fourier filtering as follows: (a) a raw TEM image, (b) 

corresponding FFT image, (c) FFT mask and (d) filtered TEM image. (ii) Fourier-filtered 

consecutive images indicating the movement of carbyne. Substituted Cu atoms were quite stable 

and motionless. The inset numbers indicate frame time, where image (i, a) correspond to t=0 s. 
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5-3-2  Bending strength of carbyne 

Theoretically, a straight carbyne chain should be stable. The persistence length lp is often used 

to quantify the bending stiffness of a polymer. It is defined as lp = Bs / kBT, where Bs is the bending 

stiffness, kB is the Boltzmann constant, and T is the temperature. The persistence length of carbyne 

was estimated at 14 nm at 300 K [218], which corresponds to 6.24 nm at 400 °C (673 K). This 

means a carbyne chain longer than 6.24 nm may bend thermally at 673 K. 

However, in the present in situ observations, bending chains were also observed at an early stage 

of carbyne formation. Hu calculated the structures and properties of the bending chains using 

density functional theory [223]. He argued that because the strain energy of bending is much 

smaller than the energy required to break the chain, carbyne is a special soft material that is difficult 

to break by bending. The strain energy of bending Estrain is determined by the bending angles (θi) 

at all C atoms using the following equation: 

𝐸𝑠𝑡𝑟𝑎𝑖𝑛 = 2.54∑ (1 − 𝑐𝑜𝑠(𝜃𝑖))
𝑛−1
𝑖=2                                            (5-1) 

To simplify the tortuosity measurement of a curved line, Hu used the arc–chord ratio, which is 

the ratio of the length of a chain divided by the distance between its two ends. A larger arc–chord 

ratio means that the line is more curved. The arc–chord ratio that we observed was greater than the 

largest ratio in the model. For example, with Pt atoms, the carbyne ends merged and formed a ring. 

Its length was approximately 1.8 nm, corresponding to a chain of 14 C atoms with 1 Pt atom at 

one end. Assuming that all of the bending angles at the C atoms were the same, the bending strain 

energy was calculated as 2.6 eV from equation (5-1). 

Belenkov et al. calculated the energy difference between a closed ring and C-shaped chain (ring 

with one broken bond) [224]. The energy falls in the range 122.04–149.80 kcal/mol (5.29–6.50 

eV), which is close to the C=C binding energy. The strain energy 2.6 eV, due to the large bending, 

is two times smaller than the energy required to break the chain. Because the strain energy of 

bending increases with a decrease in the number of atoms, straight chains should preferentially 

form in case of a small carbon cluster. In our experiment, however, C-shaped chains were also 

observed in the early formation stage, possibly because both ends tended to be near the metal 

atoms. Carbynes are strong enough to maintain the curved structure without breaking, but the strain 

energy of bending rendered them unstable; for example, they fluctuated after strong bending and 
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assumed a linear shape. These changes were rapid for both Pt-terminated carbyne (Fig. 5-1) and 

Cu-terminated carbyne (Fig. 5-2). 

5-3-3  Role of Pt and Cu atoms 

We now discuss the role of terminated metal atoms. Both Pt and Cu served as nucleation sites 

for carbyne formation. If graphene has an ideal structure without any defects, all the atoms only 

weakly adsorb on graphene. The diffusion of such weakly adsorbed atoms is too fast for TEM 

imaging. Metal dopants in the graphene lattice play an important role in immobilizing atoms on 

graphene and in forming nucleation sites for new materials. 

As mentioned above, the carbyne formation was faster and more frequent for Cu than Pt 

termination. We explain this observation by different binding energies between C and metal atoms, 

as discussed in Chapters 3 and 4: Cu atoms can promote nearby C–C rotations due to weak binding 

energy to C, while Pt atoms strongly bind nearby C atoms. On the other hand, once carbyne had 

formed, the strong bonding with Pt resulted in a more stable structure compared to Cu-terminated 

carbyne. 

5-4  Summary 

We have demonstrated a novel carbyne synthesis method using metal atoms on a clean graphene 

surface. Pt and Cu atoms act as nucleation sites and terminate the carbyne ends. Graphene allows 

both the movement and TEM observation of a carbyne chain. The chain bends significantly 

because the bending strain is small enough for the structure to remain intact; it can even form a 

ring that finally straightens into a linear shape when terminated by Pt atoms at both ends. Our 

observations prove the stability and bending strength of carbynes. In contrast to other top-down 

approaches (using carefully controlled tools to cut large materials), the observed carbyne chains 

were built up from single molecules: such a bottom-up approach can produce devices in parallel 

and is much cheaper than top-down approaches.  

 



Chapter 6 

88 

 

  

2D copper oxide on graphene 

We have discussed formation of monoatomic linear chain of carbyne in Chapter 4. The 

successful isolation and remarkable properties of graphene have recently triggered investigation 

of low-dimensional materials. However, one-atom-thick 2D materials without bulk-layered 

counterparts are scarcely reported. In this chapter, we report the structure and properties of novel 

2D copper oxide cluster on graphene. STEM-EELS observations reveal that copper oxide can form 

monoatomic layers with an unusual square lattice on graphene. 

6-1  Introduction 

2D and quasi-2D materials have attracted increasing attention since the discovery of graphene, 

a one-atom-thick carbon sheet with honeycomb structure, obtained by exfoliation of bulk graphite 

[1], [2]. Single-layer graphene can maintain its structure because of strong covalent bonding within 

a layer, whereas the weak van der Waals forces acting between the layers allow its isolation. In the 

same way, 2D hexagonal boron nitride (h-BN) [225], [226] and quasi-2D sheets of transition metal 

dichalcogenides [227] and metal oxides, including perovskite-based oxides [228], [229], have been 

found so far, and reported to exhibit unique and attractive properties. These materials have their 

bulk counterparts with layered structures.  

In contrast to the above reports, non-layered materials with wurtzite [230] and cubic [231] 

crystal structures were theoretically predicted to form 2D layers, and this possibility is important 

as it significantly widens the range of potential 2D materials. Very recently, graphene-like 2D zinc 

oxide clusters [232] and 2D iron clusters with a square lattice [156] have been observed by 

aberration-corrected TEM. In both cases the 2D layers were in the small pores in graphene, and 

their edges can be stabilized by bonding with carbon, whereas such geometry limits the size and 

properties of 2D materials [156], [233]. On the other hand, 2D zinc oxide sheets were also observed 

on metal surfaces by scanning tunneling microscopy [234], [235], indicating that large 2D sheets 

without bulk layered counterpart can be grown on a suitable substrate. 
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Here we report the structure and properties of a novel 2D material, copper oxide on graphene, 

observed by aberration-corrected STEM combined with EELS. In contrast to TEM images using 

bright field phase contrast [156], [232], ADF-STEM images are directly interpretable and useful 

for determining chemical species and number of atoms, as described in section 2-1. In STEM 

images, we observed one-atom-thick Cu clusters with a square lattice, while EELS analysis 

revealed that the 2D clusters contain oxygen. Density functional theory (DFT) calculations 

indicate that oxygen atoms play a key role in stabilizing the square 2D Cu lattice. They also predict 

that 2D copper oxide sheets have unusual electronic and magnetic properties different from 3D 

bulk copper oxide. 

6-2  Methods 

This section describes experimental methods that are specific to this chapter. Although the 

sample preparation methods are almost the same, experimental conditions are different from those 

described in Chapters 3–5. In particular, STEM-EELS experiments were conducted at room 

temperature without using a heating holder. The reported results are part of international 

collaborative research: the author experimentally observed 2D copper oxide on graphene, while 

Dr. Kvashnin (MISIS, Russia) performed first-principles calculations according to the experiments. 

6-2-1  STEM-EELS experiments 

The single-layer graphene on a Cu foil was transferred onto TEM grids. The grids were made 

of gold covered with an amorphous carbon support film with 2 μm diameter holes (Quantifoil®, 

Quantifoil Micro Tools GmbH). Cu was then deposited using an ion beam etching system (PECS, 

Gatan Inc.). The samples include PMMA residue and were exposed to the atmosphere before 

STEM experiments, which consequently leads to incorporations of oxygen and hydrocarbon 

species. Those were attracted as contamination to the region where the focused electron beam was 

irradiated. As discussed above, heating inside the microscope reduced built-up contamination and 

chemical etching, but also reduced oxygen and led most of Cu atoms aggregate into 3D 

nanoparticles. When heated, 2D clusters have not been observed until now. Instead of heating, 

contamination was suppressed by wide-are electron-beam irradiation of the sample at room 

temperature. 
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Microscope (JEM-ARM200F, JEOL) was operated at 80 kV with a CEOS probe Cs corrector. 

The angular range of electrons that collected in the ADF detector was about 46–161 mrad. The 

incident beam current was ~55 pA, and a typical dose was ~105 electrons per Å2 per image. All 

the results about 2D copper oxide were obtained at room temperature. To improve the signal-to-

noise ratio, STEM images were low-pass filtered, and the EEL spectrum of 2D copper oxide was 

spatially averaged. Image simulation was performed using multislice software (xHREMTM, 

HREM Research Inc.) under the following conditions: the convergence semi-angle 28.5 mrad, 

third- and fifth-order spherical aberration coefficients 5 µm, ADF detector angle 46–161 mrad, 

and probe size 0.8 Å. Simulations included thermal diffuse scattering absorption with the Debye-

Waller factors of each element taken from the literature [164]–[166]. 

6-2-2  First-principles calculations 

All calculations of the atomic structure and stability of the 2D copper oxide were performed 

using DFT within the Perdew-Burke-Ernzerhof (PBE) functional [202]. We used the projector 

augmented wave method [236] approximation with the periodic boundary conditions and a Vienna 

Ab initio Simulation Package [237]–[240]. The plane-wave energy cut-off was set to 450 eV. To 

calculate the equilibrium atomic structures, the Brillouin zone was sampled according to the 

Monkhorst–Pack scheme [204] with a 16×16×1 grid in the k space. The structural relaxation was 

performed until the forces acting on each atom became less than 0.001 eV/Å. The model of the 2D 

copper oxide cluster on graphene consisted of 161 C atoms, 22 Cu atoms and 24 O atoms, including 

atoms at the cluster edges. The cell size was larger than 15 Å to avoid the interaction between 

clusters. For investigation of the stability, elastic, electronic and magnetic properties, we used 

infinite models with the unit cell comprising 4 Cu atoms and 4 O atoms. The evolution of 2D 

copper oxide cluster structure at the finite constant temperature was described in the framework 

of the molecular dynamics (MD) simulations using the Nosé–Hoover thermostat [241], [242]. 

Temperature was set at 300 K and 600 K to match the experimental conditions. The total time of 

the simulations was 0.45 ns with the time step of 1 fs. Atomic structure was written after every 

ionic steps.  
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6-3  Results and discussion 

6-3-1  STEM-EELS observations 

Figure 6-1 shows ADF-STEM images of Cu clusters and atoms on graphene observed at room 

temperature. Because of the electron irradiation prior to high-resolution imaging, contamination 

was suppressed, but it also damaged graphene (small pores shown in Fig. 6-1 (a)). When we 

magnified the light blue area in Fig. 6-1 (a), structure of the thin cluster slightly modified; the 

intensity of constituent atoms of the cluster became uniform (Fig. 6-1(b)). We colored the STEM 

images to enhance the intensity contrast (Fig. 6-1(c). The blue areas correspond to graphene, 

isolated red dots are Cu atoms, and yellow to white parts correspond to 3D nanoparticles. Intensity 

of ADF-STEM images increases with the atomic number Z as about Z1.5-1.8 and is proportional to 

the sample thickness [161]. In our images, Cu atoms were ~12 times brighter than C atoms of 

graphene. All atoms in the thin Cu cluster had almost the same intensity as single Cu atoms 

dispersed on graphene. This indicates that the clusters are composed of a 2D Cu sheet with one-

atom thickness. 

Figure 6-1 STEM images of copper oxide on a graphene sheet 

(a) Low-magnification STEM image of Cu doped graphene, where red circle indicate graphene pores that 

made by electron irradiation at room temperature. (b) Magnified STEM image taken at blue box area in (a). 

(c) Colored version of (b) that highlights the contrast. 
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We performed EELS analysis to elucidate the composition of this 2D cluster. Figures 6-2(a) and 

(b) show another 2D cluster on graphene (indicated by the green arrow in (a)), where (b) is low-

pass filtered, magnified and trimmed. EEL spectra from this cluster indicate the presence of C, O 

and Cu. Figure 6-2(c) shows a carbon K-edge spectrum, which exhibits the typical features of sp2-

coordinated carbon, graphene. The top two spectra in Fig. 6-2(d) are the experimental spectra of 

the 2D copper oxide cluster (green) and 3D Cu nanoparticle (black), together with the reference 

spectra of bulk CuO and Cu [177]. In the green spectra, we can see the oxygen K-edge and sharp 

cupper L2 and L3 peaks, the so-called white lines, indicate a partial emptying of the Cu 3d band 

caused by chemical bonds with oxygen [175], [176]. Although the black spectra also contain small 

oxygen peaks presumably originating from residues, they do not show sharp Cu threshold peaks. 

These results allow us to conclude that the 2D clusters consist of one-atom-thick copper oxide 

supported on a graphene sheet. 

Figure 6-2 STEM-EELS analysis of 2D copper oxide on a graphene sheet 

(a) Colored STEM image of a 2D cluster on graphene. The white dashed curve indicates boundaries 

between single- and double-layer graphene. (b) Low-pass filtered image of the 2D cluster marked by the 

green arrow in (a), where trimmed and magnified. (c) Extracted carbon K-edge spectrum obtained from the 

2D cluster shown in (a) and (b). (d) Extracted copper L-edge EEL spectra. The top green spectrum was 

obtained from the 2D cluster at room temperature, while the second black spectrum was obtained from pure 

Cu nanoparticles aggregated at 300 °C. The bottom two spectra are reference spectra of copper oxide and 

pure copper [177]. 
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Figure 6-3 shows other STEM images of 2D copper oxide clusters. The intensity line-profiles 

shown in Fig. 6-3(d) were taken along the white dashed lines in Fig. 6-3(b) and (c). As illustrated 

in Fig. 6-3(d), the cluster in Fig. 6-3(c) had several additional Cu atoms on the top of Cu atoms in 

the first Cu layer, judging from the fact that the intensities of the brighter dots on the dashed line 

were twice as large as that of the single Cu atom. Again, all atoms in the thinnest Cu cluster (e.g. 

Fig. 6-3(b)) had almost the same intensity as single Cu atoms dispersed on graphene, indicating 

that the clusters had one-atom thickness. 

We measured the distances between Cu atoms in the 2D copper oxide cluster in Fig. 6-3(b). The 

2D clusters had a square lattice with a different lattice spacing from that of a top-left 3D 

nanoparticle. The Cu–Cu distance in the 2D cluster (yellow square in Fig. 1a) was 2.83 ± 0.06 Å, 

while that of the 3D nanoparticle was 2.13 ± 0.01 Å. The latter value is identical to the spacing 

between (200) planes of bulk Cu2O; hence, we identify the 3D nanoparticle as Cu2O. Meanwhile 

the former value of the 2D cluster does not fit into any lattice spacing of bulk Cu, Cu2O or CuO. 

Figure 6-3 Distance between neighboring Cu atoms in 2D copper oxide 

(a) Colored STEM images of Cu clusters on graphene. The 2D clusters marked by the yellow and light blue 

boxes in (a) were magnified and low-pass filtered in (b) and (c), respectively. (d) Line-profiles with 

schematic of 2D copper oxide and graphene taken through the white lines marked in (c) and (d). 
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These experimental results reveal that the observed 2D cluster consists of one-atom-thick copper 

oxide. From the measured Cu–Cu distance of 2.83 ± 0.06 Å, we presumed that the atomic positions 

of Cu and O in 2D clusters differ from general 3D bulk CuO or Cu2O, as shown in Fig. 6-4. Bulk 

Cu2O has a larger distance between neighboring Cu atoms of 3.02 Å in a cubic structure. Figure 

6-4(c) shows model of 2D copper oxide calculated using the CASTEP module of Materials Studio 

(BIOVIA). When we located O atoms at the center of the Cu square lattice, the Cu-Cu distance 

(2.75 Å) agreed with the experiment. Bulk CuO does not have a cubic structure, but the O position 

in (010) plane is similar to our 2D atomic model. 

Figure 6-4 Bulk Cu2O and 2D copper oxide 

Atomic models of (a) bulk Cu2O and its cross-section along the (001) plane and (b) bulk CuO and its cross-

section along the (010) plane. (c) Atomic model of 2D flat copper oxide optimized using the CASTEP 

module of Materials Studio. Cu and O are illustrated by red and blue balls, respectively. 
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6-3-2  DFT calculations and image simulations 

DFT calculations were performed to further investigate the structure and stability of 2D clusters. 

We designed models of 2D copper oxide, pure copper, and copper carbide with square lattices 

according to the experimental STEM image in Fig. 6-2. DFT calculations revealed that only copper 

oxide could maintain its square lattice on graphene (Fig. 6-5(a)), while other structures collapsed 

into an amorphous state even at 0 K (Fig. 6-5(b) and (c)). During the optimization, pure copper 

clusters transformed into a hexagonal lattice, while C atoms in copper carbide moved out from the 

Cu square lattice to form dimers. 

These calculations allow us to exclude pure copper and copper carbide from consideration, and 

we conclude that only oxygen can stabilize a square 2D Cu lattice. The DFT calculations show 

that the O atoms locate at the center of the Cu squares; they strengthen the square lattice and 

suppress out-of-plane distortions. Compared with Cu-O bonds, Cu-C bonds have low polarity due 

to the small electronegativity difference between Cu and C; therefore, copper carbide prefers to 

form tetrahedral structures. Cu-O bonds are more flexible due to the polar covalent nature and can 

be uniformly arranged in a square lattice. This configuration is unusual and might be intrinsic to 

2D metal oxides. 

The arrangement of O atoms in 2D copper oxide was also confirmed by STEM. Figures 6-6(a) 

and (b) are experimental and simulated ADF-STEM images, and the intensity line profiles were 

obtained along the white dashed lines. The experimental line profile agrees well with the simulated 

one for both Cu and O atoms represented by the large and small peaks, respectively. 

Figure 6-5 2D copper oxide, pure copper and copper carbide 

Atomic models of (a) 2D copper oxide, (b) pure copper and (c) copper carbide after DFT relaxation at 0 K. 
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Figure 6-6 Comparison between experiment and image simulation 

(a) Low-pass filtered STEM image of the 2D cluster and line-profile through the white line. (b) Simulated 

STEM image using the model of Fig. 6-5(a) and line-profiles through the white line. In the simulated line 

profiles, the positions of Cu, O, and C atoms are illustrated by red, blue, and gray balls, respectively. The 

dashed line profile in (b) indicates the intensity of the separately simulated image of the graphene sheet 

without the 2D cluster. 

We calculated the activation energy and total energy change for the transformation between 2D 

infinite sheets of copper oxide and pure copper (Figure 6-7). During STEM experiment, a part of 

O might be removed from the Cu square lattice by strong electron irradiation, but O atoms can 

easily fill in the square Cu lattice without an energy barrier. Furthermore, the high energy-barrier 

suppresses removal of O atoms from 2D Cu2O. These results explain how oxygen can stabilize 2D 

copper oxide, although we used simplified models not taking into account the effect of underlying 

graphene substrate. DFT calculations further suggest that O atoms at the cluster edges additionally 

stabilize the 2D square lattice. 2D copper oxide clusters bind with graphene only when the 

graphene sheet has vacancy defects, and even in that case the other parts of the cluster can maintain 

its structure without forming strong bonds with graphene. 

Yang et al. [243], [244] reported that the hexagonal lattice is the most stable structure for the 

infinite 2D Ag or Au sheet; however, we should take into account the edge instability for finite 2D 

metal sheets. The edges of the hexagonal 2D Cu clusters are strained and chemically active; 

therefore, they bind with the graphene surface. The bonds distort the 2D structure and transform it 

into 3D structure. 
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Figure 6-7 Energy diagram of transformation between CuO and Cu 

Energy diagram of the simplified transformation between infinite square 2D CuO and hexagonal 2D Cu 

with physisorbed O2 molecules, including the transition state of 2D Cu2O. Desorption of O from 2D Cu2O 

lattice requires huge energy penalty of ~6 eV/unit cell (the unit cell consisted of 4 Cu and 4 O atoms). 

6-3-3  Properties of 2D copper oxide 

The unusual atomic geometry of 2D copper oxide leads to unexpected electronic and magnetic 

properties. 2D copper oxide is predicted to have semiconducting properties with the band gap of 

2.7 eV, and major contributions of Cu states at the bottom of the conduction band and O states at 

the top of the valence band. In contrast, bulk CuO is a semiconductor with the band gap of ~1.5 

eV [245]. Furthermore, 2D copper oxide has an antiferromagnetic ground state, whereas bulk Cu 

and CuO are paramagnetic. 

We also estimated the in-plane stiffness of 2D copper oxide at 123.7 N/m by ab initio calculation, 

which is lower than that of graphene (340 N/m) [246], but comparable with those of transition 

metal dichalcogenides (123–180 N/m for single-layer MoS2 and WS2) [247]–[249]. 2D copper 

oxide has a high stiffness because Cu and O atoms in the 2D sheet form strong covalent bonds 

with the binding energy of 4.07 eV. In addition, the mechanical stability of the 2D cluster against 

bending was examined by comparing the total energy of flat 2D copper oxide with copper oxide 

nanotubes. Calculations show that the copper oxide nanotube with a radius (~ 0.86 nm) is 
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energetically more stable than the 2D sheet, implying necessity of graphene as a substrate for the 

2D copper oxide. 

MD simulations further suggest that a small 2D copper oxide cluster (~1.4 nm in lateral size) 

on graphene has a curved structure slightly displaced from the graphene surface with keeping its 

square lattice at 300 K (Figure 6-8 (a)). In contrast, the simulation at 600 K shows that a 2D copper 

oxide cluster on graphene started to melt in a short time (~0.25 ns, Fig. 6-8(b)). These results 

explain the experimental fact that the 2D copper oxide clusters were observed in the present study 

at room temperature, but not observed when the sample was heated at 300 °C. 

Figure 6-8 Molecular dynamics simulation of 2D cluster on graphene 

Top and side views of the atomic structure of 2D copper oxide cluster on graphene (a) after 0.45 ns 

simulated at 300 K and (b) after 0.25 ns at 600 K. The curvature radius in (a) agree with the radius of the 

stable nanotube. 

6-4  Summary 

We have demonstrated and characterized one-atom-thick 2D copper oxide clusters with unusual 

square lattice on graphene. STEM-EELS observations and DFT modelling reveal that O is located 

at the center of the square Cu lattice and thereby stabilize it. Calculations show that 2D copper 

oxide has a metallic conductivity and antiferromagnetic spin ordering different from bulk copper 

oxide. We believe that the present results will pave the way for the investigation of novel 2D 

nanostructures with unusual lattice geometry. 
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Conclusions 

Interaction dynamics between metals and graphene was observed by in situ aberration-corrected 

TEM and STEM combined with EELS. We have found following two interesting phenomena 

under electron beam irradiation: 

(1) Graphene reconstruction promoted by substitutional metal atoms in graphene lattice 

 Substitutional Cu atoms reknit graphene via repeated C–C rotation (Chapter 3) 

 Opposite effects of Cu and Pt at graphene edges: mending and etching (Chapter 4) 

(2) Self-assembly of novel low-dimensional structures on graphene surface 

 Pt- or Cu-terminated carbyne (Chapter 5) 

 One-atom-thick 2D copper oxide with unusual square lattice (Chapter 6) 

Both phenomena were promoted by the energy transferred from incident electron beam, which 

offers enough energy to reconstruct graphene (1). The same electron beam also promoted 

migration of source atoms to create novel low-dimensional materials (2). Electron beam irradiation 

effects explain most phenomena reported in this thesis. An aberration-corrected microscope and a 

clean sample preparation technique allows us to observe dynamics of individual atoms on 

graphene. 

In regards to (1), we demonstrated for the first time that single Cu atoms could catalyze 

reconstruction of graphene structures under electron irradiation. In this thesis we investigate noble 

metals, Cu, Pt and Au, because they are promising elements for single-atom catalysis. Indeed, we 

have found that substitutional Cu atoms promote reconstruction of single-layer graphene, via 

repeated rotation of C–C bonds near Cu atoms, see Chapter 3. Furthermore, we report that 

individual Cu and Pt atoms promote opposite effects on graphene edge: Cu mediated mending, 

while Pt mediated etching, promoted by electron beam irradiation, see Chapter 4. The difference 

can be explained by the binding energies to C. Strong Pt-C bond would strain graphene lattice and 

promote etching, while Cu can compensate such strain via C–C bond rotations. 

Regarding (2), we observed bottom-up nucleation processes, i.e. self-assembly from single 

atoms or molecules of metal-terminated carbyne and 2D copper oxide cluster. Metal-doping in 

graphene served as a nucleation for the formation. Self-assembly offers an important advantage 
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over top down fabrication. It potentially allows production of novel structures in parallel. In this 

case, graphene acted as a support membrane, an ultimate thin film for the visualization of small 

and thin materials in a TEM. It is difficult to produce and observe such small and thin materials; 

therefore, in situ TEM observations are important for understanding their structures and formation 

mechanisms. 

Future perspectives 

Thermal effects 

We have demonstrated electron beam-induced transformation, which provides important insight 

in the materials. In situ heating was useful to prepare and observe clean graphene. Our improved 

the sample preparation methods allowed us to avoid unwanted metal impurities on graphene. Our 

methods can be applied to the other experiments where clean surface are essential. However, we 

cannot take into account thermal energy effect because 150–300 °C heating temperature was too 

low to become a main driving force of observed structural transformations. To consider growth 

mechanisms of nanocarbon materials, it would be desirable to observe the behavior of metal and 

C atoms at the higher temperatures. For reference, graphene and carbon nanotubes grow by CVD 

methods at ~1000 °C. Cu atoms and nanoparticles rapidly evaporated in vacuum at ~500 °C, thus 

a different element that strongly binds with graphene or that has a higher melting point may be 

suited for high-temperature experiments. 

Substrate effects on the formation of novel structures 

When considering self-assembly of novel structures, substrate would strongly affect their 

structure and stability. This thesis describes the formation of metal-terminated carbyne and 2D 

copper oxide on graphene surface. It is obvious that graphene acts as the ultimate-thin substrate. 

However, it is not entirely clear if graphene is essential not only for visualization but also for the 

growth of novel nanostructures. It is possible that both carbyne and 2D copper oxide could grow 

on the support materials because the interaction with graphene is expected to be weak. The source 

atoms or molecules are only weakly adsorbed on graphene and their diffusion is easily promoted 

by heating or by electron beam irradiation; therefore, their formation is possible on graphene. A 
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strong interaction with substrate may strain and disturb the synthesized structure, for example due 

to a lattice mismatch. 

Regarding the effect of substrate on nanostructure growth, other 2D materials, such as transition 

metal dichalcogenides or BN, may also be used as ultrathin substrates for the formation of novel 

nanostructures and for in situ TEM experiments. Many 2D materials can be utilized as a substrate, 

and the choice depends on the type of nanostructure to be deposited. 

Analysis of clusters and nanoparticles 

Although single-atom catalysis is an exciting fundamental research field, it is also important to 

investigate what happens when atoms form clusters or nanoparticles. Clusters containing only a 

handful of atoms may exhibit different features and structures that does not exist in the bulk. The 

analysis of small clusters and their interaction with graphene is an exciting direction of future 

research. 

 

In closing, a variety of novel low-dimensional structures has been found so far, and it is likely 

that many more are still to be discovered. Although atomic-resolution imaging provides only local 

information, it is a powerful technique providing undisputable evidence of existence of the 

reported nanostructures and their crystallographic structure. In this thesis, we demonstrated that 

single metal atoms could catalyze modification of graphene structure. Electron beam irradiation 

can be utilized as a means of controlling and fabricating such new nanostructures, thereby opening 

a new field in material sciences. Our results provide fundamental insights into the interaction 

between metal atoms and graphene. Furthermore, our results offer a promising method of 

controlling structures at the atomic scale for future applications. 
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Appendix 

Detector angle of ADF-STEM (cf. subsection 2-1-1) 

Figure A-1 Measurement of detector angle for ADF-STEM 

(a) Schematics of convergent-beam electron-diffraction (CBED). (b) CBED pattern of Si sample taken 

at the detector plane. (c) Table of detector angle for each camera length L (wavelength λ=0.00418 nm 

for accelerating voltages of 80 kV). Our microscope (JEM-ARM 200F) equips two ADF detectors, and 

we used Gatan ADF detector with L = 2.5 cm for STEM-EELS measurements. The detector angles were 

measured using the smallest condenser aperture with a convergence semi-angle of 6.6 mrad, while high-

resolution imaging were performed using larger aperture with that of 28.5 mrad. 
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EELS analysis (cf. section 2-1-3) 

Figure A-2 TEM-EELS analysis of graphene on an in situ heating chip 

(a) TEM image of single layer graphene taken at 1000 °C. (b) EEL spectra obtained from the clean 

graphene area in (a). (c) EEL spectra obtained from the SiO2 contaminated area in (a). Graphene 

spectrum from clean graphene area is shown in Fig. 2-8(b) of the main text. 

Figure A-3 STEM-EELS analysis of graphene on in situ heating chip 

STEM image and corresponding EEL spectra of Cu-deposited graphene taken at 400 °C. Most Cu 

nanoparticles and atoms were evaporated at 400 °C. Furthermore, heating at temperatures above 400 °C 

for long time resulted in diffusion of Si-based impurities, although we excluded the heavily Si-

contaminated areas, as discussed in subsection 3-2-1. 
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Figure A-4 STEM-EELS analysis of graphene on Mo grid 

STEM image and corresponding EEL spectra of graphene taken at ~500 °C. The CVD graphene was 

transferred onto a TEM grid made of Mo covered with an amorphous carbon support film (Quantifoil®, 

Quantifoil Micro Tools GmbH). As described in subsection 2-3-2, we used Au grids to avoid Mo 

impurities from the grids. 

Figure A-5 STEM-EELS analysis of Pt-deposited graphene 

STEM image and corresponding EEL spectra of Pt-deposited graphene taken at room temperature after 

heating at 1000 °C. Since it is hard to detect EELS signals from individual atoms, we analyzed 

nanoparticles and confirmed that the deposited metal was Pt. Furthermore, Pt atoms appear much 

brighter than C, Si, or Cu in both TEM and STEM images, as described in subsection 2-1-2, so that they 

are easy to detect by image intensity. 
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CVD graphene grown on Ni (cf. subsection 2-3-1) 

Figure A-6 Comparison between Cu-CVD and Ni-CVD graphene 

(a) BF-TEM and (b) colored and overlaid DF-TEM images of uniform single-layer graphene grown on 

Cu foil (Graphene Platform Corporation). (c) BF-TEM and (d) DF-TEM images of nonuniform thick 

graphene grown on Ni (Graphene Supermarket®). In the Ni-CVD sample, there are tiny graphene flakes, 

as shown in the inset in (d)  
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Dynamics of Cu atoms substituted in a graphene lattice (cf. Chapter 3) 

Figure A-7 DFT calculation of energy diagram of C–Cu rotation 

There were two paths for the 180° C–Cu rotation (clockwise or counterclockwise) and two 

corresponding small valleys at 90° rotation. The 577 structure in the left diagram will easily transform 

into either the structure a or b (both energy barrier were smaller than 1 eV), whereas the 677 structure 

in the right diagram will preferentially transform into the structure b. These halfway structures contain 

multi SW defects and have higher total energies than the other structure. Therefore, whole 

transformations will proceed to reduce these defects, although both generation of defects and their 

healing will occur along the way. 
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Figure A-8 DFT calculation for double vacancy 

When a metal atom substitute two C atom at the positions indicated by the red rings, it forms four 

coordinated structures with the neighboring C atoms. We compared the energy difference ΔE between 

the structures with and without Stone-Wales (SW) defects. The table shows ΔE data for Cu at double 

vacancy, and energy diagrams of C–C rotations #1 and #2. As described in section 3-3, the energy barrier 

was smaller for C–C rotation #1 than #2; however, both rotations required higher energy at double 

vacancy than at single vacancy, because of the larger distance between the rotating C atoms and Cu 

atom. 
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Figure A-9 Transformation of Cu dimer 

(a), (b) Consecutive TEM images. (c), (d) Low-pass filtered images of (a) and (b). (e-h) atomic models 

of Cu atoms in graphene vacancies (SV: single vacancy, TV: tri-vacancy, QV: quad-vacancy) shown in 

(a-d). Metal dimers and trimers rotated more frequently than single atoms. Scale bars: 0.5 nm. 

Figure A-10 Formation and mending of SW defects 

(a) TEM image taken ~1 min after Fig. 3-5(b). The atomic model of yellow box area is shown in (b). 

(c)–(f) Atomic models of the observed transformations. C–Cu rotations were repeatedly occurred, 

possibly promoted via nearby C–C rotations (rotated atoms are highlighted in red and light blue). Orange 

balls present Cu, while C atoms in C–Cu rotation are highlighted in yellow. 
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Cu-mediated mending of graphene nanopores (cf. Chapter4) 

Figure A-11 Cu-mediated mending at 150 °C and current density j = 250 A/cm2 

Low-pass filtered TEM images taken (a) before and (b) after the mending. The inset numbers indicate 

frame time. In this case, C atoms at first constructed chain-like structure, as shown in frame 17, and then 

reconstructed into honeycomb structure of graphene. 
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Figure A-12 Mending of small nanopore at 300 °C and current density j = 250 A/cm2 

TEM images of (a) a graphene nanopore, (b) mended but defective graphene, and (c) mended graphene 

with less defects. Between panels (b) and (c), many SW defects were mended via repeated C–C rotations. 

We often observed mending of small nanopores (< ~1 nm) into almost perfect graphene. 

Figure A-13 Mending of nanopore at 150 °C without continuous electron irradiation 

In contrast to other cases (Figs. 4-2, A-11 and A-12), we turned off the electron beam and took TEM 

images every 10 min. Larger nanopore was also mended without continuous electron irradiation, but it 

might be promoted by a short time electron irradiation while taking images. 
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