機能性ペプチドによるβシート形成のための分子設計戦略

中山 徹

2017年 2月

筑波大学大学院博士課程

数理物質科学研究科博士論文

博士 (工学)

機能性ペプチドによるβシート形成のための分子設計戦略

中山 徹

物性·分子工学専攻

概要

有機材料において機能を発現させるためには、分子そのものの特性に加え、分子の集積構造の制 御が重要である。分子の集積構造を精密に制御する手法の一つに、自己組織化によるボトムアップ プロセスが挙げられる。自己組織化を材料開発や材料生産に活用することで、トップダウン的な微 細加工技術では作製できない高機能な材料が作製可能である。合成高分子材料においては、自己組 織化プロセスによって多様な構造制御が可能になり、高分子特有の自己組織化や機能性が多く発見 されてきた。生体高分子も高分子材料の一つであり、我々の身体を構成するタンパク質は、タンパ ク質内で特有のコンフォメーションを形成したり、タンパク質同士で集合化したりすることで、体 内で酵素として働いたり、エネルギーを産生したりしている。ペプチドは、アミノ酸がアミド結合 により連結することで構成され、水素結合部位を多く有していることから、分子内水素結合による α ヘリックス構造や分子間水素結合による β シート構造へと自己組織化する。特に、β シート構造 は、分子間での水素結合やファンデルワールス力、静電的な相互作用などによりペプチドが集合化 することで形成するため、ナノファイバーやナノリボンなど1次元~2次元的な広がりをもつナノ 構造体を形成するビルディングブロックとなり得る。また、ペプチドのアミノ酸側鎖への機能性分 子の導入により、バイオメディカル分野におけるドラッグデリバリーシステム(DDS)や再生医療 への応用、さらには有機半導体研究に至るまで、ペプチド ß シートを用いた応用研究は広く展開さ れている。本博士論文では、電荷や光電子機能をもつペプチドがβシートを形成するためのペプチ ドデザインに関する研究について記述する。

第1章では、ペプチドサイエンスやペプチドの二次構造形成、ペプチドを用いた機能性材料とし ての応用について概説する。これまでβシート形成のために知られていた荷電ペプチドのシーケン スモデルを元に、新しいペプチドβシートの設計デザインを行った研究経緯について記す。

「電荷分離型ペプチドβシート」:荷電ペプチドによるβシート形成のストラテジーとして、正電 荷および負電荷を側鎖に有する親水性アミノ酸と疎水性アミノ酸を交互に並べるシーケンスが一 般的である。このような自己電荷補償型(self-complementary)ペプチドがβシートを形成した際 に片面に正および負電荷が交互に配列し、反対面に疎水側鎖が集積することで、βシートはファイ バー構造へと階層的に集合化していく。本研究では、正電荷や負電荷を片面に集めるのではなく、 βシート平面に対して片側を正電荷面、もう片側を負電荷面のように電荷を分離したβシート構造 の形成について検討した。このような電荷分離構造を形成することで、ペプチドに新たな電気特性 や吸着特性が付与できると考えられる。

「ドナーアクセプター型ペプチドβシート」:電子ドナー性π共役分子と電子アクセプター性π共 役分子を側鎖に修飾したペプチドからβシート構造を形成することで、βシート表面にこれらの光 機能性分子部位を集積した自己組織化構造体の形成を検討した。

1

第2章ではペプチド合成について記載する。ペプチドの合成は、液相合成と固相合成の2つに大 別できる。固相合成法において、Boc 基や Fmoc 基と呼ばれる代表的な保護基を有するアミノ酸を 順次結合することで目的のシーケンスや長さのペプチドを合成する。本博士論文では、18種類の ペンタペプチドの合成を行なった。保護基の脱保護、アミノ酸の結合、未反応アミノ基のキャッピ ングを繰り返すことで目的のペンタペプチドの合成を行った。

第3章では、「電荷分離型ペプチドの β シート形成と吸着特性」について報告する。ペプチドの 二次構造はアミノ酸シーケンスに大きく依存し、構成アミノ酸側鎖の親水・疎水性、電荷等に影響 される。一般的に、荷電アミノ酸側鎖を多く含むペプチドは β シート構造を形成しにくいことが知 られている。しかしながら、荷電アミノ酸側鎖と疎水性アミノ酸側鎖を交互に配列したオリゴペプ チドが β シート構造を形成することが 1993 年に報告され、現在、このペプチドデザインを用いて、 DDS や再生医療への応用に向けた研究が進められている。一方で、上面に正電荷、下面に負電荷 のように2種類の荷電性側鎖を分離させて集積するようなペプチド β シート構造は実現できない だろうか。もし β シート平面の上下面に正および負に荷電した側鎖を分離して配置することができ れば、 β シート面を介して大きな分極が生じることが期待される。このことにより荷電基板や細胞 への β シートの選択的な吸着、さらには生体材料による光学・誘電特性が期待できる。本研究では、 プロトン化および脱プロトン化により、正および負に荷電するアミノ酸であるリシン(K)、グルタ ミン酸(E)と、疎水性アミノ酸であるバリン(V)を組み合わせたペンタペプチドを合成し、そ れらの β シート形成能について系統的に検討し、アミノ酸配列と電荷分離型ペプチド β シート形成 の関連性について明らかにした。

また、電荷分離型ペプチド β シートを用いて、基板表面との静電的相互作用によるペプチドファ イバーの配列についても検討した。ペプチドの自己組織化過程や集合様式は、アミノ酸配列に加え、 pH や温度など様々な外的要因により変化するため、集合化条件を制御・最適化することにより、 同一のシーケンスのペプチドから様々な集合形態が形成される。基板表面での自己組織化において、 上述の外的要因に加え、基板表面との相互作用もペプチドの集合様式に影響を与え、基板表面の荷 電状態や結晶方位によって様々な集合形態が形成する。したがって、適切な基板表面の選択と集合 化条件の制御により、一方向に配向したペプチドナノ構造体単分子膜の形成が可能である。電荷分 離型ペプチド β シートの基板表面での自己組織化や吸着様式について検討した結果、混合溶媒条件 を変化させることで、基板表面への β シートの吸着様式が大きく異なることを見出した。溶液中で Fmoc-EVVKV が β シート構造を形成する場合、マイカ基板面にはナノファイバーとして固定され、 マイカ基板の結晶方位を利用することによってペプチドが巨視的に配向して自己組織化すること を見出した。今後、荷電蛋白質や細胞表面への特異的な吸着など、細胞工学やバイオセンシング分 野への展開が期待できる。

 $\mathbf{2}$

第4章では、π共役系分子による電子ドナーおよびアクセプターの関係にあるπ共役系分子を荷 電側鎖に導入したペプチドの β シート構造の形成について報告する。これまでに記載したように、 親水性のアミノ酸と疎水性のアミノ酸を交互に配置することで、正電荷と負電荷を有するアミノ酸 側鎖の静電的な相互作用と疎水性アミノ酸側鎖の疎水性相互作用により安定化されるため β シー ト構造が形成される。本研究では、Zhang モデルにおける正および負の荷電側鎖部位に、電子供与 性(D)のフリーベースポルフィリン(TPP)および受容性(A)のナフタレンジイミド(NDI) をそれぞれ導入した人工ペプチドをデザインした。第3章で報告した「電荷分離型ペプチド β シー ト」へのπ共役系分子の修飾を考えた場合、電子ドナー間および電子アクセプター間での π - π ス タッキングが起きるとは限らない。そこで、ペプチドが β シート構造を形成した際に、電子ドナー 間およびアクセプター間で π - π スタックが起こるように Zhang モデルの荷電側鎖に π 共役系分子 を修飾するモデルを考えた。

7 量体ペプチドの2、4、6 番目の側鎖に電子ドナー性分子である TPP と電子アクセプター性で ある NDI を修飾し、残りの1、3、5、7 番目の位置に疎水性アミノ酸であるバリンを配置すること で、βストランドを形成した際に A-D-A が隣接するようにデザインした。このペプチドは、電荷 中性の溶媒条件下における自己組織化によりβシートを形成することを明らかにした。また、プロ トン化によりポルフィリン部位が荷電した溶媒条件での自己組織化においては二次構造を形成せ ず、脱プロトンによりポルフィリンが中性状態へと変化すると急速にβシート構造を形成すること を確認した。このようなペプチドデザインは、π共役系分子の導入がペプチドの集合化に及ぼす影 響に関する指針を与え、さらに、生体材料の電子および光機能発現への応用が期待できる。

まとめとして、本博士論文では、機能性を発現するためのペプチドβシート構造形成のための分 子設計戦略について研究を行った。電荷分離型ペプチドβシートは、複数のペプチドの組み合わせ の中から、条件設定をすることで18種類のペプチドシーケンスに絞り、βシート形成能に関して 系統的に議論した。また、電荷分離型ペプチドβシートの基板上への吸着特性についても議論した。 ドナーアクセプター型ペプチドβシートにおいては、生体分子の自己組織化を利用し、光・電子機 能分子をβシートの片面に集積した。混合溶媒におけるプロトン化の影響を議論することで、π共 役系分子がβシート構造形成に大きく影響することを示した。天然アミノ酸に加え、光・電子機能 を付与した人工アミノ酸を用いてペプチド二次構造形成に関する分子設計を提案した。

3

目次

概要•••••	•••••	 •••••	••••••	 1
目次・・・・・・・・・	•••••	 ••••		 4

第1章 序論

1・1 研究	背景······8
$1 \cdot 1 \cdot 1$	ペプチドサイエンス・・・・・8
$1 \cdot 1 \cdot 2$	ペプチドβシート構造の形成・・・・・10
$1 \cdot 1 \cdot 3$	ペプチドを用いた有機半導体の形成・・・・・・・・・・・・・・・・・・・・・・・・・12
1・2 研究	目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
$1 \cdot 2 \cdot 1$	電荷分離型ペプチドβシート構造の形成・・・・・・・・・・・・・・・・・・・・・13
$1 \cdot 2 \cdot 2$	ドナーアクセプター型ペプチドβシート構造の形成・・・・・・・・・・・13
参考文献····	

第2章 ペプチド合成

$2 \cdot 1$	ペプチド固相合成・・・・・・17
$2 \cdot 2$	合成ペプチドの同定・・・・・・18
$2 \cdot 3$	ペプチドの二次構造の同定・・・・・18
$2 \cdot 4$	Fmocペンタペプチドの合成・・・・・・20
参考文	献······22
MSデ	$-\beta \cdots 23$

第4章 ドナーアクセプター型ペプチドβシートの形成

$4 \cdot 1$	緒言・・・・・52
$4 \cdot 2$	ペプチドの合成・・・・・・・・・・・・・・・・・・・・・・・・・53
$4 \cdot 3$	ペプチドの自己組織化・・・・・54
$4 \cdot 4$	蛍光量子収率測定による電子ドナーアクセプターとしての機能の確認······61
4 • 5	電荷中性溶媒条件下におけるペプチドの集合様式の検討・考察・・・・・・・・・・61
4 · 6	プロトン性溶媒条件下におけるペプチドの集合様式の検討・考察・・・・・・・・・63
$4 \cdot 7$	自己組織化のタイミングと集合化様式検討······63
4 • 8	結論・・・・・65
参考文	献
MS デー	$-\beta \cdots \cdots$
¹ H NM	R データ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

第5章 総括

論文リスト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
特許・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
学会発表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;
謝辞••••••)

第1章

序論

1 · 1 研究背景

1・1・1 ペプチドサイエンス

生体高分子は、生物が作り出す高分子量物質のことで、多糖やタンパク質、拡散などがその例で ある(Fig. 1)。植物や蟹、昆虫などの生物個体の形態を形成する構造生多糖類として、セルロース やチキンが知られており、これらの合成はタンパク質でできた酵素が触媒する。一方で、タンパク 質の合成は、DNA や RNA といった核酸に書き込まれた設計図に従い、細胞内で精密に行われる。 最近や人間に至る全ての生物の営みを可能にしているのが、Figure 1 で示した多糖やタンパク質、 核酸などの各種生体高分子である。一方、合成高分子や合成ポリペプチドの分子設計でも天然の生 体高分子の構造や機能がよいモデルとなる。本章では、タンパク質・ペプチドについて概説する。

Figure 1. (a) 多糖であるグルコースを表した分子構造(引用:http://www.chemmater.kansai-u.ac.jp/biofunc/about -lab/about_lab1.html)。 (b) タンパク質を表したモデル(引用:http://www.tokushima-u.ac.jp/ier/divisions/protein. html)。 (c) 核酸の基本構造(引用:http://www.chiralgen.com/technology_jp.html)。

タンパク質は、アミノ酸がペプチド結合によって連結した直鎖状高分子である(Fig. 2)。一般に、 アミノ酸の数が 2~10 のものをオリゴペプチド、10~50 のものをポリペプチドと呼ぶ。ペプチド は体内では、ホルモンや抗酸化物質などとして働いているものがあり、近年、ペプチドの様々な機 能が注目されている。血圧降下ペプチドや抗菌ペプチド、ほかにも血栓抑制ペプチドなど多種多様 な機能性ペプチドが見出されている。ペプチドはタンパク質に比べ、吸収されやすく、特有の機能 性を持つことが多いという利点がある。今では、ペプチドの合成は自動で行えるため、大量合成す ることも可能である。次に、ペプチドの合成や構造について概説する。

Figure 2. (a) アミノ酸、ペプチド、タンパク質の関係(引用:http://topics.foodpeptide.com/?eid=1182609)。

ペプチド鎖の化学合成法は、アミノ酸を順次結合してゆく段階的伸長法とペプチドフラグメント 同士を結合するフラグメント結合法の2つに大別される。段階的伸長法には液相法と固相法がある。 例えば、固相法は有機溶媒に不溶の高分子担体上に、順次アミノ酸を導入して結合させることで目 的長のペプチドを合成する。その際、アミノ酸の保護基として、*tert*-ブトキシカルボニル(Boc) 基や9-フルオレニルメトキシカルボニル(Fmoc)基などを使用する。まず、合成しようとするペ プチドのC末端のアミノ酸を最初に高分子担体に結合させるが、このとき、アミノ酸のアミノ基は BocまたはFmoc誘導体になっているので、カルボニル基だけが担体に結合する。続いて、アミノ 基の保護基を外した後に、アミノ基を保護した2番目のアミノ酸を加えて結合させる。この脱保護 と結合の処理を繰り返し行うことで、目的とするアミノ酸配列を持ったペプチドをC末端からN 末端に向けて合成することができる(Fig.3)。

Figure 3. 固相ペプチド合成法の手順を表した模式図。

タンパク質やペプチドの分子構造と機能には関連性がある。そのため、立体構造や部分構造の共 通性を見出すことができれば新しい機能の発現および発見に繋がる。しかしながら、タンパク質の 立体的な構造の形成原理は複雑であり、一次構造、二次構造、三次構造、四次構造というような階 層構造を作り出す(Fig. 4)。

Figure 4. 上から、一次構造、二次構造、高次構造(三次、四次)。

ー次構造: タンパク質やペプチドは、アミノ酸がペプチド結合した多元的な共重合体であり、 そのアミノ酸残基の並びの順序を表すのが一次構造である。

二次構造: アミノ酸残基のα炭素主鎖結合の回転の自由度によって、タンパク質やペプチドの 主鎖が伸びたり、丸まったり、様々な折りたたみ構造を形成するが、側鎖間の立体障害のために、 その回転角は制限される。また、アミノ酸同士を繋ぐペプチド結合は回転できないが、C=O部位 が水素受容体、N-H部位が水素供与体となるため、離れた位置に存在するペプチド結合同士が水 素結合の形成により安定化される。これらの相互作用の結果、主鎖が示す規則的な部分構造が二次 構造である。例として、αヘリックスやβシート、β・ッターン構造などがある。

高次(三次・四次)構造: 三次構造は立体構造であり、ポリペプチド主鎖が空間的に管理広い 範囲でとっている構造で、二次構造がターンやランダム構造を介してさらに折りたたまれた構造体 のことを指す。三次構造は側鎖間の相互作用により安定化し、特殊な水素結合や静電引力、疎水性 相互作用による寄与が考えられている。

1・1・2 ペプチドβシート構造の形成

1・1・1で示したように、ペプチドは、アミノ酸がペプチド結合により連結することで構成さ れ、水素結合部位を多く有していることから、分子内水素結合によるαヘリックス構造や分子間水 素結合によるβシート構造を形成することが一般的によく知られている。特に、βシート構造は、 分子間での水素結合やファンデルワールス力、静電的な相互作用などによりペプチドが集合化する ことで形成するため、ナノファイバーやナノリボンなど1次元~2次元的な広がりをもつナノ構造 体を形成するビルディングブロックとなり得る。また、ペプチドのアミノ酸側鎖への機能性分子の 導入により、バイオメディカル分野におけるドラッグデリバリーシステム (DDS) や再生医療への 応用^[2]、さらには有機半導体研究^[3,4]に至るまで、ペプチドβシートを用いた応用研究は広く展開さ れている。

βシート構造: βシート構造は、多くのポリペプチドでみられる典型的な二次構造であり、主 鎖が伸びた構造となっている。隣接する主鎖同士が水素結合してシート構造を形成し安定化する。 βシート構造で隣接する分子鎖の伸長方向(N末端からC末端の方向)が同じであるときは平行 βシート構造、反対であるときを逆平行βシート構造とよぶ (Fig. 5)。βシート構造では、側鎖は シート面の表と裏に交互に垂直に伸びている。また隣り合う分子鎖間でも側鎖は同じ方向へ伸びる ことが知られている。

Figure 5. 平行ベータシート構造 (a) および逆平行 β シート構造 (b) の模式図。

ペプチドを構成するアミノ酸には多種多様な種類が存在する。側鎖が疎水性を示すアミノ酸を疎 水性アミノ酸、親水性を示すアミノ酸を親水性アミノ酸と呼び、一般的に、疎水性アミノ酸を多く 含むペプチドはβシート構造を形成しやすいことが知られている。親水性アミノ酸を多く含むペプ チドは、βシート構造ではなくαヘリックスといった螺旋構造やランダム構造をとりやすい。しか しながら、1993年にZhangらは、親水性アミノ酸を多く含むペプチドがβシート構造を形成する ことが報告された(Fig. 6)^[5]。Figure 5 で示したように、βシート構造が形成された際に、側鎖 が表面と裏面に交互に並ぶことを利用し、疎水性アミノ酸と親水性アミノ酸を交互に並べることで、 疎水面と親水面を作り、水中でナノファイバーが形成される。さらに詳しい説明をすると、親水性 アミノ酸は、正に荷電するアミノ酸と負に荷電するアミノ酸が交互に並んでいるため、正と負が相 補的な関係を作り出す(Fig. 7)。

Figure 6. 疎水性アミノ酸と親水性アミノ酸を交互に配列することによる β シート構造の形成。

Figure 7. 正電荷と負電荷を交互に配置させたペプチドがβシート構造を形成した際の模式図。

1・1・3 ペプチドを用いた有機半導体の形成

ペプチドは本来、生体高分子であるが、βシート構造が作り出すシート面を利用した研究が多く 報告されている。例えば、π共役系分子を一次元的に配向させるために、ペプチドのβシート構造 が利用されている。Parquette らは、ジペプチドの側鎖に単独のナフタレンジイミド (NDI) を修 飾し、それの一次元的な配向に成功している (Fig. 8a)^[6]。ジペプチド主鎖間の水素結合と NDI のπ-π相互作用が働き、ナノ構造体が形成される。また、Tovar らは、ジチオフェンをペプチド で挟むことで、主鎖間の水素結合を利用してジチオフェンを一次元的に配向された (Fig. 8b)^[7]。 実際に、チオフェン環を有するオリゴペプチドが、電流電圧特性を示すことが報告されている^[8]。

Figure 8. ナフタレンジイミドを側鎖に持つジペプチドの自己組織化によるナノシートおよびナノリボンの形成。

- 1・2 研究目的
- 1・2・1 電荷分離型ペプチドのβシート構造の形成

荷電ペプチドが β シート構造を形成するための分子設計戦略として、正電荷および負電荷を側鎖 に有する親水性アミノ酸と疎水性アミノ酸を交互に並べるシーケンスが一般的である。このような 自己電荷補償型 (self-complementary) ペプチドが、 β シート構造を形成した際に片面に正および 負電荷が交互に配列し、反対面に疎水側鎖が集積することで、 β シートはファイバー構造へと階層 的に集合化していく。一方、正電荷や負電荷を片面に偏らせるのではなく、 β シート平面に対して 片側を正電荷面、もう片側を負電荷面のように分離した β シート構造 (Fig. 9) が形成可能である かについて検討した。このような電荷分離構造を形成することで、ペプチドに新たな電気特性や吸 着特性が付与できる。

Figure 9. 正電荷と負電荷の側鎖を β シート面を介して、表面と裏面に隔てて配向させた電荷分離型ペプチド β シート構造の模式図。 E: 平行 β シート。右: 逆平行 β シート。

1・2・2 ドナーアクセプター型ペプチドのβシート構造の形成

上記した電荷分離型ペプチドβシートに加え、βシート形成のための新たなペプチド分子設計戦略を考えた。ポリマーを構成するモノマーやセンサーとして使用する用途が多いπ共役系分子をペ プチドの分子骨格に導入できないか考えた。π共役系分子は、π-π相互作用による集合化や複数の異なるπ共役系分子を組み合わせることでエネルギー移動や電子キャリアの移動パスを形成することができる(Fig. 10)。π共役系分子の組み合わせの中でも、代表的な組み合わせである電子

Figure 10. ドナーアクセプター型ペプチド β シート:電子ドナー(赤色)および電子アクセプター(青色)を側鎖に 有するペプチドによる β シート構造の形成。矢印は、 π - π 相互作用を表現。

ドナー性 π 共役分子と電子アクセプター性 π 共役分子を側鎖に修飾したペプチドのβシート構造 の形成を目指す。ペプチドβシート表面にこれらの光機能性分子を集積することで、ペプチドの自 己組織化能によりナノスケールでの π 共役系分子の精密な配向が可能になる。

参考文献

- [1] 基礎高分子化学(東京化学同人)
- [2] H. Cui et al. Biopolymers 2010, 94, 1.
- [3] B. D. Wall et al. Adv. Mater. 2011, 23, 5009.
- [4] A. M. Sanders et al. J. Am. Chem. Soc. 2016, 138, 3362.
- [5] S. Zhang et al. Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 3334.
- [6] H. Shao et al. J. Am. Chem. Soc. 2009, 131, 16374.
- [7] S. R. Diegelmann et al. J. Am. Chem. Soc. 2008, 130, 13840.
- [8] B. D. Wall et al. Adv. Mater. 2011, 23, 5009.

第2章

ペプチド合成

2・1 固相ペプチド合成

第1章の Figure 3 に示したように固相ペプチド合成は、脱保護と結合の処理を繰り返すことで 目的長のペプチドを合成する方法である。本博士論文のペプチド合成では、アミノ酸の保護基とし て Fmoc 基を使用した。Fmoc 基は、20%ピペリジン/DMF 溶液を用いて、室温で 20 分間撹拌する だけで簡便に切ることができる。また、半自動合成装置を用いることで効率的な合成を行った(Fig. 11)。半自動合成装置では、合成専用カラムに試薬の投入、反応プロセスに応じた時間だけ撹拌、 反応終了後に溶媒を用いて洗浄、未反応部位のキャッピングといった作業を繰り返すことで合成が 完了する。Fmoc アミノ酸を担持する高分子担体(樹脂)には、様々な種類があり、目的長やシー ケンスにより使い分けることができる。例えば、担持できる量が異なる樹脂や勘弁な条件(弱酸等) で切り出しが行える樹脂、すでにアミノ酸が結合している樹脂などがある。Fmoc アミノ酸の側鎖の 保護基においても、多種多様な種類の保護基があり、切り出す際の条件やシーケンス配列に応じて 適当な保護基を持つ Fmoc アミノ酸を使用する必要がある。こうした合成ルートを考えることがで きれば、自分が目的とするペプチドシーケンスを得ることができる。

Figure 11. 国産化学株式会社より販売されているマルチ固相合成装置(半自動合成装置)。国産化学株式会社のカタロ グより引用(http://www.kokusan-chem.co.jp/fylladio/KMS3.pdf)。

2・2 合成ペプチドの同定

合成ペプチドの同定方法について概説する。合成の進捗状況は、質量分析法(MALDI TOF-MS) で同定する。その際、途中経過に対応したペプチドの分子量が確認されるか(Fig. 12a)、未反応部 位を持つペプチドは確認されるか(Fig. 12b)、という点に注意する。例えば、4 量体ペプチド(*n*=4) を合成するために反応試薬を加えて撹拌した後に MS で確認したところ、Figure 12a のようにメ インピークが4 量体ペプチドであるならば、5 量体ペプチドを合成するためのステップへ進む。し かし、MS チャートにおいて、4 量体ペプチドに加え3 量体ペプチドのピークもメインピークとし て確認されたら、5 量体ペプチドへの合成は進めず、フレッシュな Fmoc アミノ酸を投入して、4 量体ペプチドの合成完了を目指す(Fig. 12b)。合成後のペプチドは、主に再沈殿法で精製する。例 えば、ペプチドをメタノールに溶解させ、貧溶媒としてジエチルエーテルを添加することでペプチ ドを再沈殿させる。また、必要に応じて高速液体クロマトグラフィー(HPLC)を用いて精製を行 う。

Figure 12. ペプチドの合成手順の説明。M はペプチドの分子量。n はペプチドの長さ。(a) 目的長のペプチドがメイン ピークの場合。(b) 未反応ペプチドもメインピークとして現れた場合。

2・3 ペプチドの二次構造の同定

ペプチドの二次構造の同定は、液相状態と固相状態に分けて行う。主に、水溶液や有機溶媒でペ プチドを自己組織化させた後、液中の二次構造の同定を円二色性(CD)スペクトルで行う。円二 色性(CD)とは、その内部構造がキラルな物質が円偏光を吸収する際に左円偏光と右円偏光に対 して吸光度に差が生じる現象のことを言う。その際に、Figure 13 のように二次構造に応じた特有のピークを表すためCDスペクトルはペプチドがどのような二次構造を形成しているかが容易にわかる測定法である^[1]。

典型的な二次構造のCDスペクトル

Figure 13. 典型的な二次構造の CD スペクトル。青色: α ヘリックス構造。赤色: β シート構造。緑色: ランダムコイル構造。(引用:http://www.chem.kindai.ac.jp/class/biophys/CD.htm)

ペプチド固体試料中においては、液中で自己組織化させたペプチドを乾固させることで、赤外吸 収(IR)分光法やX線回折(XRD)を用いてペプチドの二次構造の同定が可能である。IRにおい て、アミド I バンド(主に C=O 伸縮振動)、アミド II バンド(主に C-N 伸縮振動および N-H 変角 振動)と呼ばれる特徴的なピークが現れる範囲があり、そのピークの値によりペプチドの二次構造 が同定できる^[2]。αヘリックス構造の場合、全ての振動子がヘリックス長軸に沿って同じ位相で振 動するモードが 1640–1660 cm⁻¹領域に大きな強度を持ち、 β シートの場合は、「隣の振動子との位 相差が π。水素結合相手の振動子との位相差がゼロ」であるような振動が 1620-1640 cm⁻¹領域で 大きな強度を持つことが知られている。ランダムコイルの場合、主鎖構造が時間変化することに対 応して、振動子間の相互作用の仕方は一定ではない。そのため、特徴的な連成振動は見られず、孤 立振動子と同じ1640–1660 cm⁻¹領域に振動バンドが現れる。また、XRD を用いることで、βシー ト構造の同定が可能である^[3]。βシート構造を構成するペプチドをβストランドと呼ぶが、βスト ランド間の距離は 4.7 Åであることが知られている。また、βシートは単層であることもあるが主 に重なり合う特徴がある (クロス β シートと呼ぶ)。重なり合う β シート構造間の距離は、約9Å であることも知られている。βシート構造を形成するペプチドは、ナノファイバーを形成するため、 透過型電子顕微鏡(TEM)でペプチドナノファイバーを確認することができる。他にも、βシー ト表面に吸着する蛍光物質を用いた蛍光スペクトルから、βシート構造の形成を確認することがで きる[4]。

取り扱うペプチドの溶解性や安定性、量等に応じて、必要な同定法・測定法を選択することで、 目的とする構造体を形成しているか確認することができる。 2 • 4 Fmoc ペンタペプチドの合成

第3章では、18種類のペンタペプチドのβシート形成能について述べる。18種類のペンタペプ チド (Fig. 14)を固相ペプチド合成法により合成した。合成に至った経緯や条件は第3章で詳しく 記載する。ここでは、合成手順について概説する。

Figure 14.18 種類のペンタペプチドの構造式。Eは、側鎖の末端にカルボニル基を持つグルタミン酸。Kは、側鎖の 末端にアミノ基を持つリシン。Vは、疎水性アミノ酸であるバリン。N末端のRは、Fmoc 基もしくはH-の状態である。

固相ペプチド合成は、4 つの手順を踏むことで目的のペプチドを合成することができる^[5]。(a) Fmoc 基の脱保護、(b) Fmoc ペプチドの反応、(c) 未反応点のキャッピング、(d) 樹脂からの切 り出し、という4 つの手順があり、a~c を繰り返して、目的長までペプチドを伸長させた後に、d の作業を行う(Fig. 15)。

Figure 15. Fmoc-EVVKV を例に、固相ペプチド合成の手順を示したスキーム。ペプチドが左から右へ伸長していくため、N 末端と C 末端を反対にして表記してある。(a) Fmoc 基の脱保護、(b) Fmoc ペプチドの反応、(c) 未反応点のキャッピング、(d) 樹脂からの切り出し。

(a) Fmoc 基の脱保護:専用の反応カラムの中に 20%piperidine/DMF (10 mL) と Fmoc-SAL
 resin (0.58 mmol g⁻¹, 0.1 g) を加え、25 °C で 0.5 時間撹拌した。溶液をろ過した後に、MeOH (5 mL)と CH₂Cl₂ (5 mL) で交互に 3 回、樹脂を洗浄した。

(b) Fmoc ペプチドの反応: Fmoc ペプチドと HBTU (396 mg), HOBT (157 mg), DIPEA (405 µL) を DMF (10 mL)に溶解し、樹脂の入った反応カラムに注いだ後、25 °C で 1 時間撹拌した。反応 完了後、溶液をろ過し、DMF (5 mL) で 6 回、続けて MeOH (5 mL) と CH₂Cl₂ (5 mL) で交互に 2 回ずつ、最後に CH₂Cl₂ (5 mL) で 1 回、樹脂の洗浄作業を行なった。

(c) 未反応点のキャッピング:目的とは異なるシーケンスのペプチドを合成することを避けるために b の手順の次に未反応点のキャッピング作業を行う必要がある。Fmoc ペプチドをカップリングさせた樹脂に対して、benzoic anhydride (700 mg) と *N*-methylimidazole (250 μ L) を溶解した CH₂Cl₂ (10 mL) を添加し、25 °C で 1 時間撹拌した。溶液をろ過した後、DMF (5 mL)で 6 回、MeOH (5 mL) と CH₂Cl₂ (5 mL) で交互に 3 回、最後に CH₂Cl₂ (5 mL) で 1 回洗浄した。

(d) 樹脂からの切り出し:目的のシーケンスまで伸長させたペプチドを有する樹脂を Et₂O (3 mL) で 3 回洗浄した。再度、CH₂Cl₂ (3 mL) で 10 分撹拌させることで樹脂を膨らませた。CH₂Cl₂をろ 過し、TFA (2.85 mL) と Et₃SiH (75 μ L), H₂O (75 μ L) を添加し、25 °C で 2 時間撹拌した。樹脂 の洗浄は、MeOH (3 mL) と CH₂Cl₂ (3 mL) で交互に 3 回ずつ行った。ろ過した溶液を減圧濃縮 することでペンタペプチドの粗生成物を得た。MeOH と Et₂O を用いた再沈殿法でペプチドを精製 し、各ペンタペプチドをそれぞれ数十 mg 程度得た。

参考文献

- [1] S. Beychok et al. J. Biol. Chem. 1966, 241, 5150.
- [2] P. Kupser et al. J. Am. Chem. Soc. 2010, 132, 2085.
- [3] C. J. Bowerman et al. Pept. Sci. 2012, 98, 169.
- [4] M. Biancalana et al. Biochim. Biophys. Acta, Proteins Proteomics, 2010, 1804, 1405.
- [5] A. M. Fracaroli et al. Inorg. Chem. 2012, 51, 6437.

MS データ

Applied Biosystems MDS Analytical Technologies TOF/TOF™ Series Explorer™ 2019 Fmoc-EKVVV Mw: 793.96 TOF/TGr™ Reflector Spec #1 MC[BP = 816.5, 16259]

Applied Biosystems MDS Analytical Technologies TOF/TOF™ Series Explorer™ 2019

第3章

電荷分離型ペプチドβシートの形成

3·1 緒言

ペプチドの二次構造はアミノ酸シーケンスに大きく依存し、構成アミノ酸側鎖の親水・疎水性や 電荷等に影響される。一般的に、荷電アミノ酸側鎖を多く含むペプチドは β シート構造を形成しに くいことが知られている。しかしながら、荷電アミノ酸側鎖と疎水性アミノ酸側鎖を交互に配列し たオリゴペプチドが β シート構造を形成することが 1993 年に報告された^[1]。現在、このペプチド デザインを用いて、DDS や再生医療への応用に向けた研究が進められている^[2]。一方で、上面に正 電荷、下面に負電荷のように2種類の荷電性側鎖を分離させて集積するようなペプチド β シート構 造は実現できないだろうか。もし β シート平面の上下面に正および負に荷電した側鎖を分離して配 置することができれば(Fig. 16)、 β シート面を介して大きな分極が生じることが期待される。こ のことにより荷電基板や細胞への β シートの選択的な吸着や、生体材料による光学・誘電特性が期 待できる(Fig. 17)。本研究では、プロトン化および脱プロトン化により、正および負に荷電す るアミノ酸であるリシン(K)、グルタミン酸(E)と、疎水性アミノ酸であるバリン(V)を組み 合わせたペンタペプチド 18種類(Fig. 14)を合成し、それらの β シート形成能について系統的に 検討した。

Figure 16. (a) Molecular model structure of a pentapeptide with acidic (R_1 , R_3 , and R_5) and basic (R_2 and R_4) side chains on the odd- and even-numbered amino acid sequence. (b) Schematic representations of parallel (left) and antiparallel (right) β -sheets formed from pentapeptides.

Figure 17. Application examples of charge-separated peptide β -sheets. (a) Selective adsorption on a cell surface. (b) Appearance of dipole moments for the ferroelectric property.

3・2ペプチドの合成

電荷分離型ペプチドβシートを構築するため、上述の3種類のアミノ酸(K, E, V)を用いて、 以下の3条件を満たすペプチドを合成した(Fig. 14)。

[1] オリゴペプチドの奇数および偶数番目に E および K (もしくはその逆)を配置し、残りの部位 に V を配置する。

[2] ペプチド全体のネットチャージをゼロにするために E と K を同数導入する。

[3] 平行および逆平行 βシートどちらの場合でも、正および負に荷電したアミノ酸側鎖が βシート の上下面に分離するよう、オリゴペプチドを構成するアミノ酸残基数を奇数個とする。

今回、ペプチドのアミノ酸残基数を5つに設定し、上記した3条件を満たす18種類のペンタペ プチドを Figure 14 および Table 1 に示した。ペプチド合成は Fmoc 固相ペプチド合成法により行 った^[3]。アミノ基に Fmoc 基と呼ばれる保護基がついた Fmoc-K と Fmoc-E、Fmoc-V の 3 つ Fmoc アミノ酸をポリスチレンから成る樹脂に一つずつ繋げていくことで目的の長さのペプチドを得た。 合成したペンタペプチドの精製は、メタノールにペンタペプチドを溶解し、ジエチルエーテルを 徐々に添加する再沈殿法により行った。再沈殿は少なくとも3回以上行った。精製したペプチドの 同定は、MALDI-TOF MS により行った。

3・3 ペプチドの自己組織化

Table 1 に示した 18 種類のペンタペプチドをメタノール(MeOH)に溶解し、一晩室温にて静置することでペプチドの集合化を行った。それらを乾固して得た粉末におけるペプチドの集合様式について X 線回折(XRD)、全反射赤外吸収分光法(ATR FT-IR)、透過型電子顕微鏡(TEM)を用いて検討した。液相におけるペプチドの集合様式においては、円二色性スペクトル(CD)および蛍光スペクトル測定法(FL)で検討した。

Number of	_	$(\mathbf{E}, \mathbf{K}) = ($	(odd, even)	$(\mathbf{E}, \mathbf{K}) = (\text{even, odd})$	
E and K	Position	Compound	Sequence	Compound	Sequence
	Separated	R-1a	R-EVVKV	R-1a'	R-KVVEV
	E and K	R-1b	R-VKVVE	R-1b'	R-VEVVK
	Neighbored E and K	R-2a	R- <mark>EK</mark> VVV	R- 2a'	R- <mark>KE</mark> VVV
E X I, K X I		R- 2b	R-VVVKE	R- 2b'	R-VVVEK
		R-2c	R-VKEVV	R-2c'	R-VEKVV
		R-2d	R-VVEKV	R-2d'	R-VVKEV
E x 2, K x 2	Separeted EK Pairs	R- 3	R- <mark>EKVKE</mark>	R- 3'	R- KEVEK
	Consecutive	R-4a	R-EKEKV	R- 4a'	R-KEKEV
	EK Pairs	R- 4 b	R-VKEKE	R- 4 b'	R-VEKEK

Table 1. Eighteen Pentapeptides R-1-R-4 and R-1'-R-4' Satisfying Conditions [1]-[3].

3 · 4 Fmoc-EVVKV と H-EVVKV のβシート形成能の検討

固相ペプチド合成における保護基である Fmoc 基を有するペプチドの二次構造の形成能を検討す
るために、Fmoc-EVVKV (Fmoc-1a) と無保護のペプチドである H-EVVKV (H-1a) を用意し (Fig.
18a)、2つの集合様式を比較した。

MeOH ペプチド溶液を用いた CD スペクトルにおいて、H-1a は 198 nm に負のピークを示し、 ランダム構造の形成を示した。一方、Fmoc-1a は、220 nm に負のピーク、202 nm に正のピーク

Figure 18. (a) Molecular structures of R-1a (R = H, Fmoc). (b) CD spectra in MeOH with a concentration of 1 mM. (c) Powder XRD patterns (c), and FT-IR spectra (d) of self-assembled Fmoc-1a (red) and H-1a (black). For XRD, a synchrotron radiation ($\lambda = 1.00$ Å) was used. In (c), the dotted lines indicate q = 13 and 17 nm⁻¹ (d = 4.7 and 3.7 Å, respectively). In (d), each spectrum was normalized by the absorbance at 2926 cm⁻¹ (v_{as} CH₂), and the dotted lines indicate wavenumbers from 1540 and 1630 cm⁻¹. (e) PL spectra of Fmoc-1a (red) and H-1a (black) in aqueous buffer solutions containing 5 x 10⁻³ mM of ThT. $\lambda_{ex} = 440$ nm. (f) TEM micrographs of self-assembled Fmoc-1a and H-1a (g).
を示した(Fig. 18b)。これは、 β シート構造が形成された際に確認される CD シグナルである^[4]。 次に、粉末試料の XRD 測定を行った。Fmoc-1a は、4.7 Å ($q \sim 13.4 \text{ nm}^{-1}$)付近に明瞭な回折ピ ークが観測された。これは β シート形成時に観測される β ストランド間距離に対応する^[5]。H-1a においては、4.7 Å のピークが弱く、 β シート構造がほとんど形成されていないと考えられる(Fig. 18c)。また、ATR FT-IR スペクトルからもペプチドの二次構造がわかる^[4]。Fmoc-1a は、アミド I バンドが 1628 cm⁻¹付近に、アミド II バンドが 1540 cm⁻¹付近に観測され β シートの形成が示唆さ れた。一方で、H-1a は、アミド I および II バンドの吸収ピークは弱かった(Fig. 18d)。次に、TEM を用いて Fmoc-1a と H-1a のモルフォロジーを観察した。Fmoc-1a は、幅 15~50 nm 程度のフィ ブリル状の構造体を形成していたが、H-1a は不定形の凝集体が観察されるのみであった(Fig. 18f and g))。また、ペプチドやタンパク質の β シート形成の確認を行うチオフラビン T (ThT)を用 いた蛍光分析測定を行った。Fmoc-1a は、蛍光強度の増大が観測されたが、H-1a は、蛍光の増大 は全く見られなかった(Fig. 18e)。

以上の実験結果から、Fmoc 基をN末端に有する Fmoc-1a は、MeOH 中において β シート構造 を形成していることから、Fmoc 基が β シート形成を促進していること示唆された。Fmoc 疎水性 ペプチドが β シート構造を形成することがすでに報告されているが^[6-8]、極性アミノ酸である E や Kを含むペプチドであっても、Fmoc 基を N 末端に修飾することで β シート構造が形成されるとい うことがわかった。また、Fmoc-1a は逆平行 β シート構造を形成していることが実験結果から推測 でき、 β シート平面の上下方向に E と K の側鎖が分離した状態で配向されていることが示唆され る。

Fmoc-1a と H-1a を比較することで、**Fmoc** 基が β シート形成において重要な役割を果たしていることが明らかになった。

3 · 5 Fmoc ペンタペプチドの XRD、FT-IR、TEM および CD スペクトル測定

次に、EVVKV シーケンス以外の Fmoc ペンタペプチドについて XRD 測定を行った。E と K を 1 組含み E と K が離れて配置している 3 種類の Fmoc ペンタペプチド (Fmoc-1b, Fmoc-1a', Fmoc-1b') は、Fmoc-1a と同様に β ストランド間の距離に由来する d=4.7 Å の回折ピークが明確 に観測された (Fig. 19a)。また、E と K を 1 組含み E と K が隣接している 8 種類の Fmoc ペンタ ペプチド (Fmoc-2a, Fmoc-2b, Fmoc-2c, Fmoc-2d, Fmoc-2a', Fmoc-2b' Fmoc-2c', Fmoc-2d') にお いても d = 4.7 Å の回折ピークが観測された (Fig. 19b and c)。一方、E と K を 2 組含む Fmoc ペ ンタペプチドにおいて、EK ペアの間に V が挿入したシーケンス (Fmoc-3, Fmoc-3') は、 β スト ランド間の距離に相当する d = 4.7 Å に回折ピークが観測されたが、EK ペアが隣接したシーケン ス (Fmoc-4a, Fmoc-4b, Fmoc-4a', Fmoc-4b') は β シート構造を示唆するための特徴的な回折ピー クはほとんど観測されなかった (Fig. 19d)。

次に、18 種類の ATR FT-IR チャートについて示す (Fig. 5)。XRD チャート同様、EとKを1

組含みそれらが離れて配置している3種類のFmocペンタペプチド(Fmoc-1b, Fmoc-1a', Fmoc-1b') とEとKを1組含みそれらが隣接している8種類のFmocペンタペプチド(Fmoc-2a, Fmoc-2b, Fmoc-2c, Fmoc-2d, Fmoc-2a', Fmoc-2b' Fmoc-2c', Fmoc-2d')において、1630 cm⁻¹付近に明瞭な ピークが観測されていることから、 β シート構造を形成していることが示唆された(Fig. 20a,b and c)。一方、EKペアの間にVが挿入したシーケンス(Fmoc-3, Fmoc-3')は、 β シート形成に由来 する1630 cm⁻¹付近のピークが観測されたが、EKペアが隣接したシーケンス(Fmoc-4a, Fmoc-4b, Fmoc-4a', Fmoc-4b')においては、1630 cm⁻¹付近のピークは観測されなかった(Fig. 20d)。

Figure 19. Powder XRD patterns of self-assembled Fmoc-pentapeptides including separated one E and one K (a), neighbored one E and one K (b, c), and two E and two K (d). A synchrotron radiation ($\lambda = 1.00$ Å) was used for Fmoc-1 and Fmoc-1' in (a) and Fmoc-2c' in (c), while a Cu*K*a source ($\lambda = 1.5406$ Å) was used for the other samples. The dotted lines indicate q = 13 and 17 nm⁻¹ (d = 4.7 and 3.7 Å, respectively).

Figure 20. FT-IR spectra of self-assembled Fmoc-pentapeptides with separated one E and one K (a), neighbored one E and one K (b, c), and two E and two K (d). Each spectrum was normalized by the absorbance at 2926 cm⁻¹ (v_{as} CH₂), and the dotted lines indicate wavenumbers from 1540 and 1630 cm⁻¹.

また、18 種類の Fmoc ペンタペプチドの TEM 画像を示す。E と K を 1 組含みそれらが離れて 配置している 4 種類の Fmoc ペンタペプチドおよび E と K を 1 組含みそれらが隣接している 8 種 類の Fmoc ペンタペプチドは、ファイバー状の構造体を観測した(Fig. 21 and Fig. 22)。同様に、 EK ペアの間に V が挿入したシーケンスにおいても、繊維状の構造体が確認された(Fig. 23)。一 方、EK ペアの間に V が挿入されていないシーケンスは、TEM 観察において不定形な凝集体を観 測するのみであった(Fig. 24)。 **XRD、FT-IR** および **TEM** 観察の結果から、荷電アミノ酸側鎖である **E** と **K** を有するペンタペ プチドの β シート形成における傾向を掴めた。まず、**E** と **K** を 1 組含む 12 種類のペンタペプチド は、MeOH 中で自己組織化させることで β シート構造を形成することが明らかになった。一方で、 **EK** を 2 組含むシーケンスにおいては、疎水性アミノ酸である **V** がペンタペプチドのどの位置に入

Figure 21. TEM micrographs of self-assembled Fmoc-1a (a), Fmoc-1b (b), Fmoc-1a' (c), Fmoc-1b' (d). Insets show photographs of glass tubes containing 10 mM of corresponding Fmoc-pentapeptides. The glass tubes were put upside down in order to show gel formation.

Figure 22. TEM micrographs of self-assembled Fmoc-2a (a), Fmoc-2b (b), Fmoc-2c (c), Fmoc-2d (d), Fmoc-2a' (e), Fmoc-2b' (f), Fmoc-2c' (g), and Fmoc-2d' (h). Insets show photographs of glass tubes containing 10 mM of corresponding Fmoc-pentapeptides. The glass tubes were put upside down in order to show gel formation.

るかにより、βシート形成に大きな影響を与えることがわかった。EK ペアが並んでしまうとβシ ートを形成しないが、EK ペアの間に V が挿入されれば定量的にβシートを確認することができる ということが明らかになった。

これまでに、EK ペアを複数有するオリゴペプチドが水中で螺旋構造もしくはランダム構造を形成することが報告されている^[9,10]。そのため、今回合成した EK ペアを2組含むペンタペプチド Fmoc-4 や 4'の4 種類においても、 β シートを形成しているとは考えにくい。しかしながら今回、 MeOH 中で、2組の EK ペアの間に疎水性アミノ酸 V を挿入したペンタペプチド Fmoc-3 および Fmoc-3'が β シート構造を形成しうることが示唆された。ただし、Fmoc-3 および Fmoc-3'、Fmoc-4、 Fmoc-4'のメタノール中における 220~240 nm (β シート形成を判断する領域) および 280~320 nm (Fmoc 基のスタックを判断する領域) の範囲の CD シグナルは、ペプチド濃度が 1.0–5.0 mM の範囲で十分でないもしくは明瞭に確認できないことに注意する必要がある (Fig. 25)。ペンタペ プチドの中に EK ペアが 2 組あることで、MeOH 中におけるペプチドの溶解性を高める。そのた め、Fmoc-3 や 3'は XRD や FT-IR での β シート構造を示唆するピークや TEM 観察でのファイバ ーの確認はされるものの、高濃度 MeOH ペプチド溶液において自己組織化の平衡状態は、乖離す る方向へシフトしている可能性があると推定される。

Figure 23. TEM micrographs of self-assembled Fmoc-3 (a), Fmoc-3' (b). Insets show photographs of glass tubes containing 10 mM of corresponding Fmoc-pentapeptides.

Figure 24. TEM micrographs of self-assembled Fmoc-4a (a), Fmoc-4b (b), Fmoc-4a (c), Fmoc-4b' (d). Insets show photographs of glass tubes containing 10 mM of corresponding Fmoc-pentapeptides.

Figure 25. CD spectra at 25 °C of Fmoc-pentapeptides in MeOH with concentrations of 1 (black), 2.5 (red), and 5 mM (blue).

3・6 無保護ペンタペプチドの二次構造の確認

また、Fmoc 基が β シート構造の形成を誘起するかを確かめるために、Fmoc-2a と Fmoc-3の Fmoc 基を脱保護したペプチドである H-2a と H-3 を準備し、これらの XRD、FT-IR、蛍光スペ クトル、TEM 測定をそれぞれ行った。Figure26 と 27 に示したデータより、ペンタペプチドが Fmoc 基を有する場合に比べて、無保護のペプチドは β シートを形成しないことが示された。したがって、 無保護のペンタペプチド H-2a と H-3 を準備したことで、Fmoc 基が β シートの形成を促進させる ことがより明らかになった。

Figure 26. XRD (a), FT-IR (b), and PL (c) of Fmoc-2a (red) and H-2a (black). For FT-IR, each spectrum was normalized by the absorbance at 2926 cm⁻¹ (v_{as} CH2), and the dotted lines indicate wavenumbers from 1540 and 1630 cm⁻¹. (d) TEM micrograph of H-2a.

Figure 27. XRD (a), FT-IR (b), and PL (c) of Fmoc-2a (red) and H-3 (black). For FT-IR, each spectrum was normalized by the absorbance at 2926 cm⁻¹ (v_{as} CH2), and the dotted lines indicate wavenumbers from 1540 and 1630 cm⁻¹. (d) TEM micrograph of H-3.

3・7 Fmocペンタペプチドの集合化様式の考察

Figure 18e や Figure 26c、Figure 27c で、ThT を用いた蛍光スペクトルを示してきた。ThT は、 水溶液中でβシート面に吸着することで波長 480 nm 付近の蛍光を発する物質であることから、タ ンパク質やペプチドがβシートを形成しているかどうかの指標となる^[11]。合成した 18 種類のペン タペプチドがβシート構造を形成しているかを確かめるために、グリシンバッファーに ThT を添 加した溶液に MeOH 中で自己組織化した 1 8 種類のペンタペプチドをそれぞれ加え、それらの蛍 光強度を比較した。この蛍光強度比から水溶液中で電荷を帯びたペンタペプチドがどのような集合 形態を形成しているかを議論する。

まず、EK を 1 組含み E と K が隣接していないシーケンスである Fmoc-1a, 1a', 1b, 1b'は、XRD や FT-IR 測定、TEM 観察の結果から MeOH 中で β シートを形成していると考えられる。グリシンバッファー水溶液中においても、ThT 由来の強い蛍光が観測された(Figure 28a)。このことから、Fmoc-1a, 1a', 2a, 2a'は水中でも β シート構造を保持していると考えられる。ここで、Fmoc-1aを例に、Fmoc ペンタペプチドが平行、逆平行 β シート構造のどちらを形成しているか Figure 28を用いて考えてみる。

もし Fmoc-1a, 1a', 1b, 1b'が平行βシートを形成しているとすると、隣り合うβストランド間で E同士、もしくは K同士が隣り合うこととなる(Figure 28b)。水中ではグルタミン酸およびリシ ン側鎖が荷電していると考えられる。その際、隣り合う同一電荷間に反発が生じることでβシート 構造を保持できないと予測される。一方、逆平行βシートを形成していれば、Figure 28c に示すよ うに隣り合うβストランド間における側鎖の荷電部位は離れて存在することで荷電側鎖間の電荷 反発は小さいと予測できる。以上の考察から、Fmocペンタペプチドはβシート構造を形成する際 に逆平行βシート構造を形成していると考えられる。

Figure 28. (a) PL intensity at λ_{em} = 480 nm for Fmoc-pentapeptides in an aqueous buffer solution containing ThT. (b, c) Schematic representations of parallel (left) and antiparallel (right) β -sheets of Fmoc-1a. Red, blue, and gray spheres represent side chains of E, K, and V, respectively. The dotted red and blue squares indicate aligned side chains of E and K, respectively, between β -strands.

EKを1組含みEとKが並んでいるFmoc-2bやFmoc-2bに関しても同様に、ThTの強い蛍光 を示している(Figure 28a)。また、逆平行 β シート構造を形成すると考えた際、Figure 28bで示 したFmoc-1a同様に隣り合う β ストランドの側鎖間の電荷反発は少ないことが予測できる(Figure 29、左側)。一方、シーケンスの中心にEもしくはKが存在するFmoc-2c、Fmoc-2d、Fmoc-2c、 Fmoc-2d'において、逆平行 β シートを形成したとしても、シーケンスの中心に存在するEやKの 側鎖は必ず隣り合う(Figure 14、右側)。したがって、Fmoc-2c、Fmoc-2d、Fmoc-2c'、Fmoc-2d' の側鎖が水中で荷電したときに、電荷の反発で β シート構造を不安定化する可能性が高い。実際に、 水中におけるThTの蛍光強度は、前述したFmoc-1aやFmoc-2bといった6つのシーケンスに比 べてはるかに小さい(Figure 28a)。ただし、Fmoc-2aとFmoc-2a'に関しては、逆平行 β シートを 形成すれば電荷の反発はほとんど生じないと考えられるにも関わらず、ThTの蛍光はかなり低い (Figure 28a)。ゆえに、すべてのFmocペンタペプチドが逆平行 β シートを形成しているとは断

言できないが、12 種類の Fmoc ペンタペプチドのうち 10 種類がこの推論に沿った結果を示したこ

とから、荷電アミノ酸側鎖を有する Fmoc ペンタペプチドは逆平行 β シート構造を形成している可 能性が高い。

Figure 29. Schematic representations of antiparallel β -sheets of Fmoc-2b (left) and antiparallel β -sheets of Fmoc-2d (right). Red, blue, and gray spheres represent side chains of E, K, and V, respectively. The dotted red and blue squares indicate aligned side chains of E and K, respectively, between β -strands.

また、EとKを2組含むFmoc-3とFmoc-3'においては、蛍光はほとんど観測されなかった(Figure 28a)。Fmoc-3 とFmoc-3'は、アミノ酸配列が中心対称なシーケンスであるため平行でも逆平行 β シート構造でも隣り合う全てのEとKの側鎖が β ストランド間で隣接して並部ことから水中では 側鎖が荷電すると電荷反発が生じる。その結果、 β シート構造を保持できなかったと考えられる (Figure 30)。また、Fmoc-4a、Fmoc-4b、Fmoc-4a'、Fmoc-4b' もほとんど蛍光を示さなかった

が、これらはもともとβシート構造を形成しておらず、水中でも電荷の反発によりβシートを形成 しないためと考えられる。

Figure 30. Schematic representations of parallel (left) and antiparallel (right) β -sheets of Fmoc-3. Red, blue, and gray spheres represent side chains of E, K, and V, respectively. The dotted red and blue squares indicate aligned side chains of E and K, respectively, between β -strands.

```
また、βシート形成能を予測することができる TANGO<sup>[12]</sup>と呼ばれる計算アルゴリズムを用いて、
```

ペプチド二次構造の計算シミュレーションを行ったので、その結果を Figure 31 に示す(ただし、 この予測におけるペンタペプチドの N 末端は Fmoc 基ではなく無保護の条件である)。TANGO が 示す β シート構造の形成能の予測値は、Figure 13a で示した蛍光スペクトルの結果と類似している ことがわかった。EK を 1 組含むシーケンスにおいて、シーケンスの中央に V を持つペンタペプチ ド (1a、1a'、1b、1b'、2a、2a'、2b、2b')の β シート形成能の予測値は高い値を示した。一方で、 シーケンスの中央に極性側鎖である E もしくは K を持つペンタペプチド (2c、2c'、2d、2d')の β シート形成能の予測値は低い値を示した。EK を 2 組含み、中央に V が配置する 3 と 3' は、EK を 2 組含みそれらが連続して配列した 4a、4a'、4b、4b'より高い数値を示した。このことからも、 ペンタペプチドのシーケンスの中央に無極性アミノ酸を導入することで β シート形成能が高くな ることが示唆される。

Figure 31. β-sheet formation propensities of pentapeptides, simulated by the TANGO algorithm.

最後に、逆平行 β シートを形成しているという推論を X 線回折パターンからも考察する。XRD チャートにおける $q < 12 \text{ nm}^{-1}$ (d > 5.2 Å) に観測されている複数の回折は、クロス β 構造を形成 することにより形成した周期構造に由来している。このとき、アミノ酸の配列を左右に反転させる と一致するシーケンス同士 (例えば、EVVKV と VKVVE) が、類似した XRD パターンを示すも Analogous Side Chain Arrangement

Figure 32. Schematic representations of antiparallel β -sheets of Fmoc-1a (left) and Fmoc-1b (right). Red, blue, and gray spheres represent side chains of E, K, and V, respectively.

のがいくつか存在する (Figure 19)。同一化合物番号の a と b もしくは c と d の組合せが反転によ り一致するが、これらの中で、Fmoc-1a と Fmoc-1b、Fmoc-1a'と Fmoc-1b'、 Fmoc-2a と Fmoc-2b は回折パターンが類似している。Fmoc-2a'と Fmoc-2b'、 Fmoc-2c'と Fmoc-2d'の組合せも類似し ていると言える (Figure 19)。上記したシーケンスが逆向きの組合せにおいて、逆平行 β シートを 形成した場合、Fmoc 基の位置を一つずらすと、シート面上の側鎖の配置が一致する (Figure 32)。 このため、類似した β シート界面を形成し、結果としてクロス β 構造が類似したことで XRD パタ ーンが類似したと考えられる。そして、上記した考察に加えて、q = 17 nm⁻¹ (d = 3.7 Å 付近)に Fmoc 基の π スタック由来の回折ピーク (もしくはそのショルダーピーク)が観測されたことから、ペン タペプチドが逆平行 β シート構造を形成した際に β シートの横方向で Fmoc 基同士が噛み合うよう に相互貫入し、Fmoc 基の π スタックによる更なる安定化を得ていると考えられる。このことから も、Fmoc 基が β シート形成を誘起するということに矛盾はない。 3・8 電荷分離型ペプチドβシートの吸着特性の評価

次に、電荷分離型ペプチドβシートと基板表面との静電的相互作用による、ペプチドファイバー の基板表面への配列について記述する。ペプチドの自己組織化過程や集合様式は、アミノ酸配列に 加え、pH や温度など様々な外的要因により変化するため^[13-15]、集合化条件を制御・最適化するこ とにより、同一のシーケンスのペプチドから様々な集合形態が形成される^[16,17]。基板表面での自己 組織化において、上述の外的要因に加え、基板表面との相互作用もペプチドの集合様式に影響を与 え、基板表面の荷電状態や結晶方位によって様々な集合形態が形成する^[18]。したがって、適切な基 板表面の選択と集合化条件の制御により、一方向に配向したペプチドナノ構造体単分子膜の形成が 可能である^[19]。

ペプチドの自己組織化において溶媒の担う役割は大きく、混合溶媒中でのペプチドの自己組織化 挙動について知ることは、自己組織化のメカニズムを追求するための有効な方法である。これまで に、アルコール/水の組み合わせにおけるペプチドの集合様式の変化に関する研究などが報告されて いる^[18]。本章では、第2章で示した電荷分離型ペプチドβシート(Fig. 33)の基板表面での自己 組織化や吸着様式について検討した。その結果、混合溶媒条件を変化させることで、基板表面への βシートの吸着様式が大きく異なることを見出したので、その詳細について示す。

Figure 33. Molecular structure of Fmoc-EVVKV and schematic representation of the resultant antipararelle β-sheet.

(ペプチドの用意) 電荷分離型ペプチドβシートである Fmoc-EVVKV (Fig. 33)の MeOH/H₂O 混合溶液(0.5 mM)の MeOH と H₂O の混合割合を、10/0、9/1、7/3、5/5、3/7、1/9 になるよう に合計6種類調製した(Table 2a-f)。表面が負電荷に帯電しているマイカ基板を劈開することで 平たんな面を作り、その上にペプチド溶液を滴下した。原子間力顕微鏡(AFM)を用いて基板表 面における電荷分離型ペプチドである Fmoc-EVVKV の集合形態を観測した。また、MeOH/H₂O 混合溶液中でのペプチドの二次構造の確認は、CD スペクトル測定を用いて行った。

Table 2. Mixing Contents of MeOH and H₂O and Concentrations of Fmoc-EVVKV in solution.

	MeOH	H ₂ O	Concentration			
(a)	10	0				
(b)	9	1				
(c)	7	3	0.5 mM			
(d)	5	5	0.5 mivi			
(e)	3	7				
(f)	1	9				

	MeOH	H ₂ O	Concentration
(c)'	7	3	2 mM
(c)"	7	3	4 mM

3・9 ペプチドの MeOH/H2O 混合溶液中における二次構造の同定

CD スペクトル測定の結果から Table 3 に示した 6 種類の MeOH/H₂O 混合溶液中における Fmoc-EVVKV の集合様式を考察する。MeOH の量が水より多いもしくは同等である MeOH/H₂O = 10/0、9/1、7/3、5/5 溶液の CD シグナルは、ランダム構造を示すシグナルであった(Fig. 34a and d)。Fmoc-EVVKV は、MeOH に対してよく溶解するため 0.5 mM の濃度では液中で自己組織化が 進行しないということが考えられる。一方で、H₂O の量が水より多い MeOH/H₂O = 3/7、1/9 溶液 の条件では、205 nm および 225 nm 付近に CD シグナルのピークが発現した(Fig. 34e and f)。 このスペクトルは、典型的な β シート構造の CD シグナルである。H₂O の量が増えたことで、Fmoc 基同士が集合化し、Fmoc 基同士の π スタックがドライビングフォースとなり、0.5 mM という濃 度でも Fmoc-EVVKV は液中で β シート構造を形成したと考えられる。実際、Fmoc 基のような π 共役系分子は疎水性であることから考えても、Fmoc 基の集合化がきっかけで Fmoc-EVVKV は β シート構造を形成したと考えられる。

Figure 34. CD spectra of Fmoc-EVVKV in solutions with MeOH/H₂O = 10/0 (black), 9/1 (purple), 7/3 (blue), 5/5 (green), 3/7 (orange) and 1/9 (red). The concentration is 0.5 mM.

3・10 マイカ基板表面へのペプチドの吸着特性の検討

次に、AFM を用いてマイカ基板表面における Fmoc-EVVKV の吸着様式を観察した。 MeOH/H₂O = 10/0 および 9/1 ペプチド溶液をそれぞれマイカ基板表面に滴下したところ、AFM 観 察において粒状の不定形な集合体が観測された(Fig. 35a and b)。一方、MeOH/H₂O = 7/3 ペプチ ド溶液では、マイカ表面の結晶方位に沿ってペプチドが配向した AFM 画像が得られた(Fig. 35c)。 また、MeOH/H₂O = 5/5 のペプチド溶液からは、マイカ基板上で小さなペプチド集合体が観測され るのみであった(Fig. 35d)。そして、MeOH/H₂O = 3/7 や 1/9 のペプチド溶液においては、長さが 500 nm 以上のペプチドナノファイバーが観測された(Fig. 35e and f)。

Figure 35. AFM images of Fmoc-EVVKV aggregates on a mica surface, drop-cast from its MeOH/H₂O solutions. The mixing ratio MeOH/H₂O = 10/0 (a), 9/1 (b), 7/3 (c, c', c''), 5/5 (d), 3/7 (e), and 1/9 (f). The concentrations of Fmoc-EVVKV are 0.5 mM (a–f), 2.0 mM (c'), and 4.0 mM (c'').

以上の結果より、Fmoc-EVVKV の自己組織化のタイミングについて考察していく。まず、H₂O の割合が MeOH より多いとき(MeOH/H₂O = 3/7、1/9)、ペプチドの自己組織化は主に溶液中で進 行し (Fig. 34e and f)、形成した集合体がそのまま基板表面に固定化されたと考えられる (Fig. 35e and f)。一方、MeOH の割合が H₂O と同じもしくはそれ以上であるとき(MeOH/H₂O = 10/0、9/1、7/3、5/5)、溶液中では Fmoc-EVVKV は β シート構造を形成していないことが CD スペクトルから わかる (Fig. 34a-d)。そして、MeOH/H₂O = 7/3 ペプチド溶液がマイカ基板上に滴下された際に、マイカ表面の結晶方位に沿って配向しながら集合化が進行した理由について考える。MeOH/H₂O = 7/3 ペプチド溶液では、CD スペクトルが示すように Fmoc-EVVKV はランダムコイル構造を形成 している (Fig. 34c)。しかしながら、Figure 35c に示すようにマイカ基板上ではナノ構造体の形

成が確認できたことから、マイカ基板面がペプチドの二次構造の成長場となって自己組織化、つま り、βシート構造の形成が進行したと考えることができる。MeOH/H₂O 混合溶液中において、 Fmoc-EVVKV に含まれるグルタミン酸側鎖とリシン側鎖は、それぞれ負電荷と正電荷を帯びると 考えられる。劈開したマイカ基板面は負電荷に帯電しているため、マイカの負電荷面と Fmoc-EVVKV のリシン側鎖の正電荷とが静電相互作用を起こすことにより、Fmoc-EVVKV はマ イカが描き出す結晶方位に従って自己組織化が進行したのではないかと考えることができる(Fig. 35c)。そのため、MeOH/H₂O = 7/3 ペプチド溶液は、Fmoc-EVVKV がマイカ基板の結晶方位に沿 って自己組織化するために最も適当な MeOH と H2O の割合であると推察される。また、

MeOH/H₂O = 7/3 溶液における濃度依存性を確かめるために、0.5 mM より濃い濃度を2 種類 (Table 3c'-c"、2.0 mM および 4.0 mM) を新たに用意し、そのペプチド水溶液をマイカ基板上に ドロップキャストした後、AFM 測定を行った。2 mM の MeOH/H₂O = 7/3 ペプチド溶液は、マイ カ基板面に沿って配向していることが AFM 画像からわかる (Fig. 35c')。一方で、4 mM の MeOH/H₂O = 7/3 ペプチド溶液は、大きな集合体がマイカ基板に固定化された(Fig. 35c^{*})。した がって、MeOHO/H₂Oペプチド溶液が高濃度である場合、溶液中で Fmoc-EVVKV の自己組織化 が起こることでマイカ基板面を成長場として用いることはなく、マイカの結晶方位面を反映しない ことが示唆された。

$3 \cdot 1 1$ 結論

正電荷と負電荷を有するペンタペプチドのβシート構造の形成に成功した(Table 3)。そのペン タペプチドにおいて、正電荷と負電荷がβシート平面を介して上下に分けて存在している。MeOH 中の自己組織化により、EとKを1組有する 12 種類のペンタペプチドは Fmoc 基の力を借りるこ とによりβシート構造を形成することがわかった。その12種類の中で、グリシンバッファー溶液 中でもβシート構造を保持するシーケンスと保持しないシーケンスがあり、逆平行βシート構造を モデルとして考えた際の側鎖間の電荷反発に着目するとシーケンスの違いによるβシート構造の 保持の違いが理解できる。一方で、EとKを2組有する Fmoc ペンタペプチドは、疎水性アミノ 酸Vをシーケンスの真ん中に配置することで、MeOH 中でβシート構造が形成されうることが明 らかになった。TANGO を用いた計算シミュレーションの結果からも、シーケンスの中央に疎水性

Table 3. Summary of Eighteen Pentapeptides R-1–R-4 and R-1'–R-4' and β -Sheet Formation of the Fmoc-Substituted Pentapeptides in the Solid State and in Glycine Buffer Solution.

Number of E and K	Position	$(\mathbf{E}, \mathbf{K}) = (\text{odd}, \text{even})^a$			$(\mathbf{E}, \mathbf{K}) = (\text{even, odd})^a$				
		Compound Sequence	Assembly		Compound	Sequence	Assembly		
			Sequence	Solid ^b	Water ^c	Compound	sequence	Solid ^b	Water ^c
E x 1, K x 1	Separated	R-1a	R-EVVKV	β -Sheet	β -Sheet	R-1a'	R-KVVEV	β -Sheet	β -Sheet
	E and K	R-1b	R-VKVVE	β -Sheet	β -Sheet	R-1b'	R-VEVVK	β -Sheet	β -Sheet
		R-2a	R- <mark>EK</mark> VVV	β -Sheet	-	R-2a'	R- <mark>KE</mark> VVV	β -Sheet	-
	Neighbored	R-2b	R-VVVKE	β -Sheet	β -Sheet	R-2b'	R-VVVEK	β -Sheet	β -Sheet
	E and K	R-2c	R-VKEVV	β -Sheet	_	R-2c'	R-VEKVV	β -Sheet	_
		R-2d	R-VVEKV	β -Sheet	_	R-2d'	R-VVKEV	β -Sheet	-
E x 2, K x 2	Separeted	R-3	R- <mark>EKVKE</mark>	Q Sheet	-	R- 3'	R- <mark>KEVEK</mark>	β -Sheet	-
	EK Pairs			p-sneet					
	Consecutive	R-4a	R-EKEKV	Random	_	R-4a'	R-KEKEV	Random	-
	EK Pairs	R-4b	R-VKEKE	Random	_	R-4b'	R-VEKEK	Random	-

Position of E and K in a sequence

 ⁶ Secondary structures of Fmoc-pentapeptides assembled in MeOH and air-dried, as confirmed by FT-IR, XRD and TEM.
⁶ Secondary structures of Fmoc-pentapeptides in glycine buffer solution, as confirmed by ThT test. The long hyphen indicates that disassembly takes place subsequently upon addition of the MeOH suspension into the buffer solution

アミノ酸 V を配置させることは、 β シート構造を構築させるために中心的な役割を担うことが示唆 された。また、電荷分離型ペプチド β シートを構築する Fmoc-EVVKV が、マイカ基板の結晶方位 面を利用して自己組織化する条件を明らかにした。そのためには、[1] MeOH に対して、適当な混 合比の H₂O を混合することで Fmoc-EVVKV のリシン側鎖が正に帯電させて負に帯電したマイカ 基板面と静電相互作用を引き起こす必要がある。そして、[2] MeOH/H₂O ペプチド溶液中で、 Fmoc-EVVKV が β シート構造を形成しない濃度に調整する必要がある。溶液中で Fmoc-EVVKV が β シート構造を形成する場合、マイカ基板面にはナノファイバーとして固定されてしまう。した がって、溶液中ではランダム構造でありながらも、マイカ基板の結晶方位を利用することによって ペプチドが自己組織化することを見出した。

参考文献

- [1] S. Zhang et al. Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 3334.
- [2] H. Cui et al. Biopolymers **2010**, *94*, 1
- [3] A. M. Fracaroli et al. Inorg. Chem. 2012, 51, 6437.
- [4] E. L. Bakota et al. Biomacromolecules 2013, 14, 1370.
- [5] C. J. Bowerman *et al. Pept. Sci.* **2012**, *98*, 169.
- [6] Y. Zhang et al. J. Am. Chem. Soc. 2003, 125, 13680.
- [7] Z. Yang et al. Chem. Commun. 2004, 208.
- [8] H. Xu et al. Nanoscale **2010**, 2, 960.
- [9] S. Manhart et al. Biochemistry 2003, 42, 3081.
- [10] A. K. Nowinski et al. J. Am. Chem. Soc. 2012, 134, 6000.
- [11] M. Biancalana et al. Biochim. Biophys. Acta, Proteins Proteomics, 2010, 1804, 1405.
- [12] A.-M. Fernandez-Escamilla et al. Nat. Biotechnol. 2004, 22, 1302.
- [13] D. Ke et al. Angew. Chem. Int. Ed. 2011, 50, 3715.
- [14] S. Y. Qin et. al. Langmuir 2012, 28 2083.
- [15] I. W. Hamley et. al. Langmuir 2013, 29, 5050.
- [16] V. Jayawarna et. al. Adv. Mater. 2006, 18, 611.
- [17] I. Choi et. al. Chem. Commun. 2012, 48, 8481.
- [18] M. Xie et. al. J. Phys. Chem. B 2012, 116, 2927.
- [19] C. Chen et. al. Biomacromolecules **2013**, *14*, 2494.

第4章

ドナーアクセプター型ペプチドβシートの形成

4・1 緒言

第4章では、π共役系分子による電子ドナーおよびアクセプターの関係にあるπ共役系分子を荷 電側鎖に導入したペプチドのβシート構造の形成について報告する。これまでに記載したように、 親水性のアミノ酸と疎水性のアミノ酸を交互に配置することで、正電荷と負電荷を有するアミノ酸 側鎖の静電的な相互作用と疎水性アミノ酸側鎖の疎水性相互作用により安定化されるためβシー ト構造が形成される(Fig. 36a の Zhang モデル)^[1]。本研究では、Zhang モデルにおける正および 負の荷電側鎖部位に、電子供与性(D)のフリーベースのテトラフェニルポルフィリン(TPP)お よび受容性(A)のナフタレンジイミド(NDI)をそれぞれ導入した人工ペプチドをデザインした(Fig. 36b)。第3章までに報告してきた"電荷分離型ペプチドβシート"(ここの"電荷"は、アミノ酸側鎖上の 電荷を指す)へのπ共役系分子の修飾を考えた場合、電子ドナー間および電子アクセプター間でのππスタッキングが起きるとは限らない。そのため、ペプチドがβシート構造を形成した際に、電子ドナ ー間およびアクセプター間でπ-πスタックが起こるようにZhang モデルの荷電側鎖にπ共役系分子を 修飾するモデルを考えた(Fig. 21b)。

Figure 36. (a, b) Schematic representations of complementary charged peptide (Zhang's model, a) and D-A peptide designed in this study (b). (c) Molecular structure of heptapeptide VEVKVEV 1, bearing TPP and NDI units at the side chains of K and E, respectively.

Figure 37. Photoelectric conversion on peptide side chains with electron donors and acceptors.

7 量体ペプチドの2、4、6 番目の側鎖に電子ドナー性分子である TPP を 1 個と電子アクセプタ ー性である NDI を 2 個修飾し、残りの 1、3、5、7 番目の位置に疎水性アミノ酸であるバリンを配 置することで、βストランドを形成した際に A-D-A が隣接するようにデザインした(Fig. 36c)。 このペプチドは、電荷中性の溶媒条件下における自己組織化によりβシートを形成することを明らかに した。また、プロトン化によりポルフィリン部位が荷電した溶媒条件での自己組織化においては、初期 段階では二次構造を形成せず、脱プロトンの進行によりポルフィリンが中性状態へと変化すると急速に βシート構造を形成することを確認した。このようなペプチドデザインは、π 共役系分子の導入がペ プチドの集合化に及ぼす影響に関する指針を与え、さらに、生体材料の電子および光機能発現への 応用が期待できる(Fig. 37)。

4・2 ドナーアクセプター分子の電子準位の確認

ペプチド合成の前に、TPPとNDIの電子準位について、TPP誘導体2 とNDI誘導体3 (Fig. 38)を用意し、矩形波ボルタメトリー (SWV)によ る酸化還元電位測定とUVスペクトル測定によるエネルギーギャップによ り確認を行った。SWVでTPP誘導体2の酸化電位とNDI誘導体3の還元 電位を測定した後に (Fig. 39a)、UVスペクトルにおける吸収の立ち上がり からバンドギャップを見積もることで2と3のHOMOとLUMOを同定し た (Fig. 39b)。Figure 39bに示されるように、TPP誘導体2はNDI誘導 体3と比較して、HOMO、LUMOいずれも高いエネルギー準位にある。し たがって、これらの分子部位は、互いに電子供与性、および受容性の関係に あると考えられる。

Figure 38. Molecular structure of TPP and NDI derivatives 2 and 3.

Figure 39. (a) Square-wave voltammograms (SWV) of 2 and 3 in CH_2Cl_2 . (b) HOMO and LUMO energy levels of 2 and 3.

4・3 ペプチドの合成

ペプチドの合成は、第2章同様に Fmoc 固相ペプチド合成法により行った。1 を合成するには二 通りの方法が考えられる。[1] ペプチド主鎖を合成した後に、側鎖ヘヵ共役系分子を修飾する方法 (Fig. 40)。[2] アミノ酸側鎖へあらかじめヵ共役系分子を修飾し、それらを繋げることで目的の ペプチド長へ伸ばす方法 (Fig. 41)。これら二通りの合成法を検討した結果、私は[2]の方法で目的 のペプチド1 を合成した。実際に、金属錯体を有するアミノ酸を連結することで目的長のオリゴペ プチドを生成した論文も報告されている^[2]。本研究では、前駆体として、Kの側鎖に TPPを導入 した Fmoc-KTPP および E の側鎖に NDI を導入した Fmoc-ENDI を合成し、それぞれを Fmoc-V-OH と連結することで、ジペプチド Fmoc-KTPPV-OH および Fmoc-ENDIV-OH を得た。これら前駆体ジ ペプチドの精製は、シリカゲルクロマトグラフィーを用いて行い、MALDI TOF-MS および¹H NMR を用いて同定を行なった。前駆体ジペプチド Fmoc-KTPPV-OH および Fmoc-ENDIV-OH、そ して Fmoc-V-OH を交互に連結させ、最後に Fmoc 基の除去とアセチル化によるペプチド末端のキ ャッピング操作をすることで1 (Fig. 36c)を収率 31%で得た。トリフルオロエタノール (TFE)

Figure 40. Synthesis route 1: After the peptide main chain is synthesized, TPP and NDIs are chemically modified into the side chains.

Figure 41. Synthesis route 2: After dipeptides with TPP and NDI are synthesized, they are loaded onto the resin to produce the target peptide.

に対して副生成物は溶解し、1は溶解しないため、生成物をTFEに浸漬することで精製を行った。 MALDI TOF-MS により、合成したペプチド1の分子量に対応するピークを確認した。 以下に詳細な合成手順を示す。

Fmoc-LysTPP-OMe (5)の合成

化合物 4. CH₂Cl₂/MeOH (10 mL/90 mL) に Fmoc-Lys(Boc)-OH (417 mg, 0.89 mmol) を溶解し、 0 °C で冷却し、SOCl₂ (97 μL, 1.34 mmol)を攪拌しながら徐々に添加した。室温へと戻し、25 °C で4時間攪拌した。溶液を減圧濃縮し、残分に MeOH を加え、再び減圧濃縮した。MeOH と Et₂O を用いて再結晶を行うことで 3 を得た。収量 226 mg、収率 66%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₂₂H₂₆N₂O₄ (M⁺) 382.46, found 383.29. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm), 7.89 (d, 2H), 7.76 (m, 1H), 7.70 (m, 2H), 7.41 (t, 2H), 7.33 (t, 2H), 4.32 (m, 2H, Fmoc-CHCH₂), 4.22 (m, 1H, Fmoc-CH), 4.00 (m, 1H, Lys-CH), 3.62 (s, 3H, OCH₃), 2.74 (t, 2H, Lys-CH₂), 1.64 (m, 2H, Lys-CH₂), 1.50 (m, 2H, Lys-CH₂), 1.33 (q, 2H, Lys-CH₂)

化合物 **5**. **4** (188 mg, 0.45 mmol)と **2**^[3] (300 mg, 0.45 mmol) を CH₂Cl₂に溶解し、HBTU (170 mg, 0.45 mmol)と HOBT (61 mg, 0.45 mmol)、DIPEA (235 µL, 1.35 mmol)を添加し、25 °C で 5 時間攪拌した。水を加えて、有機溶液のみ抽出し、Na₂SO₄を用いて乾燥させた後、溶液を減圧濃縮した。EtOAc/CH₂Cl₂= 1/4 の条件でシリカゲルカラムクロマトグラフィーにより精製し、5 を得た。収量 538 mg、収率 89%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₆₇H₅₄N₆O₅ (M⁺) 1023.21, found 1023.75. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.83 (d, 10H), 8.28 (s, 5H), 8.21 (d, 7H), 7.84 (m, 14H), 7.70 (d, 2H), 7.32 (m, 5H), 4.31-4.08 (m, 3H, Fmoc-CHCH₂), 4.01 (m, 1H, Lys-CH), 3.66 (s, 3H, OCH₃), 1.75 (m, 2H, Lys-CH₂), 1.67 (m, 2H, Lys-CH₂), 1.50 (q, 2H, Lys-CH₂), -2.95 (s, 2H)

Fmoc-Lystpp-Val-OMe (8)の合成

化合物 6.5 (400 mg, 0.4 mmol) を THF/H₂O (4:1, 13 mL) に溶解し、0 °C に冷却した。0.3 M LiOH 溶液を 1.3 mL ずつ 10 分置きに滴下した後、1 時間攪拌させた。10% (w/v) クエン酸を加え、 CHCl₃で抽出した。シリカゲルカラムクロマトグラフィー (展開溶媒条件: EtOH/CHCl₃=1/4) で精製し、6 を得た。収量 290 mg、収率 72 %。MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₆₆H₅₂N₆O₅ (M⁺) 1009.18, found 1009.81. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.84 (d, 10H), 8.31-8.22 (m, 13H), 7.84 (d, 13H), 7.71 (d, 2H), 7.32 (m, 5H), 4.25 (m, 3H, Fmoc-CHCH₂), 1.82-1.49 (m, 6H, Lys-CH₂), -2.95 (s, 2H)

化合物 7.6 (109 mg, 0.10 mmol) と H-Val-OtBu·HCl (42 mg, 0.20 mmol)、HBTU (34 mg, 0.09 mmol)、HOBT (15 mg, 0.10 mmol)、DIPEA (70 μL, 0.40 mmol)を CHCl₃ (4 mL)に溶解し、25 °C で 2 時間攪拌させた。反応溶液に水を加え、有機溶液のみ抽出し、Na₂SO₄を用いて乾燥させた後、溶液を減圧濃縮した。EtOAc/CHCl₃= 1/9 の条件でシリカゲルカラムクロマトグラフィーにより精製し、7 を得た。収量 99 mg、収率 85%。MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₇₅H₆₉N₇O₆ (M⁺) 1164.42, found 1165.06. ¹H NMR (400 MHz, DMSO-*d_θ*): d (ppm) 8.84 (m, 8H), 8.31-8.21 (m, 10H), 7.83 (m, 10H), 7.73 (d, 2H), 7.57 (d, 1H), 7.31 (m, 4H), 4.29-4.02 (m, 5H, Val-CH, Lys-CH, Fmoc-CHCH₂), 2.06 (m, 1H, Val-CH), 1.69-1.42 (m, 15H, OtBu, Lys-CH₂), 0.90 (dd, 6H, Val-CH₃), -2.95 (s, 2H)

化合物 8.7 (84.7 mg, 0.07 mmol)を CHCl₃(1.4 mL)に溶解し、TFA (405 μL)と Et₃SiH (210 μL) を加え、25 °C、4 時間攪拌させた。溶液を減圧濃縮し、EtOH/CHCl₃ = 5/95 の条件でシリカゲル カラムクロマトグラフィーにより精製して、8 を得た。収量 66 mg、収量 94%。MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₇₁H₆₁N₇O₆ (M⁺) 1108.31, found 1109.00.¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.84 (m, 9H), 8.32-8.22 (m, 10H), 7.85-7.60 (m, 14H), 7.33 (m, 4H), 4.29-3.97 (m, 5H, Val-CH, Lys-CH, Fmoc-CHCH₂), 2.07 (m, 1H, Val-CH), 1.69-1.44 (m, 6H, Lys-CH₂), 0.88 (d, 6H, Val-CH₃), -2.95 (s, 2H) Fmoc-Glundi-OtBu (11)の合成

化合物 9. butylamine (1.97 mL, 20 mmol) と *N*-(*tert*-butoxycarbonyl)-1,2-diaminoethane (3.16 mL, 20 mmol)、naphthalene-1,4,5,8-tetracarboxylic dianhydride (2.68 g, 10 mmol) を DMF (40 mL)に溶解し、120 °C で 4 時間攪拌させた。溶液を減圧濃縮し、CHCl₃ を展開溶媒とし たゲル浸透クロマトグラフィーにより精製し、二番目のフラクションを回収することで 9 を得た。 収量 1.71 g、収率 36%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₂₅H₂₇N₃O₆ (M⁻⁾ 465.51, found 465.29. ¹H NMR (400 MHz, CDCl₃): d (ppm) 8.76 (s, 4H), 4.85 (s, 1H, NH), 4.39 (t, 2H, CH₂), 4.21 (t, 2H, CH₂), 3.57 (m, 2H, CH₂), 1.74 (m, 2H, CH₂), 1.50 (m, 2H, CH₂), 1.22 (s, 9H, OtBu), 1.00 (t, 3H, CH₃). ゲル浸透クロマトグラフィーの最初のフラクションを回収することで 3 を得た。 収量 1.53 g、収率 33%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₂₂H₂₂N₂O₄ (M⁻⁾ 378.43, found 378.26. ¹H NMR (400 MHz, CDCl₃): d (ppm) 8.76 (s, 4H), 4.21 (t, 4H, CH₂), 1.74 (m, 4H, CH₂), 1.47 (m, 4H, CH₂), 1.00 (t, 6H, CH₃)

化合物 10.9 (0.93 g) を 50%TFA/CH₂Cl₂ (10 mL) に溶解し、0.5 時間攪拌させた後、溶液を減 圧濃縮した。残分に CH₂Cl₂を加え、減圧濃縮をする作業を 2 回繰り返した。収量 0.68 g、収率 93%。 MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₂₀H₁₉N₃O₄ (M⁻) 365.39, found 365.27. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.70 (s, 4H), 7.74 (s, 2H), 4.34 (t, 2H, CH₂), 4.08 (t, 2H, CH₂), 3.18 (m, 2H, CH₂), 1.66 (m, 2H, CH₂), 1.39 (m, 2H, CH₂), 0.95 (t, 3H, CH₃)

化合物 **11**. 10 (680 mg, 1.9 mmol) と H-Val-OH・HCl (438 mg, 0.95 mmol)、HBTU (322 mg, 0.85 mmol)、HOBT (145 mg, 0.95 mmol)、DIPEA (504 µL, 2.9 mmol)を Acetone (38 mL) に溶 解し、25 °C で 2 時間攪拌させた。生成物をろ過し、CHCl₃を溶媒としたゲル浸透クロマトグラフィーで精製して、**11** を得た。収量 519 mg、収率 70%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₄₄H₄₄N₄O₉ (M⁻) 772.86, found 772.53. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.66 (s, 4H), 7.98 (t, 1H), 7.87 (d, 2H), 7.70-7.63 (m, 3H), 7.40 (m, 2H), 7.28 (m, 2H), 4.30-4.16 (m, 5H, NDI-CH₂, Fmoc-CHCH₂), 4.06 (q, 2H, NDI-CH₂), 2.02 (m, 2H, Glu-CH₂), 1.82 (m, 1H, Glu-CH₂),

1.65 (m, 3H, NDI-CH₂, Glu-CH₂), 1.36 (s, 9H, OtBu), 0.93 (t, 3H, NDI-CH₃)

Fmoc-Glundi-Val-OtBu (14)の合成

化合物 **12**. **11** (500 mg, 0.64 mmol)を溶解した CHCl₃ (13 mL) に TFA (3.8 mL) と Et₃SiH (1.9 mL)を加えて、**25** °C で 4 時間攪拌させた。溶液量が半分になるように減圧濃縮し、残った溶液を Et₂O に徐々に注ぐことで目的物を析出させた。最終的に、Et₂O で洗浄して、**12** を得た。収量 426 mg、収率 93%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₄₀H₃₆N₄O₉ (M⁻) 716.75, found 716.46. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.66 (s, 4H), 7.98 (t, 2H), 7.87 (d, 2H), 7.70-7.57 (m, 3H), 7.39 (m, 2H), 7.30 (m, 2H), 4.23-4.07 (m, 5H, NDI-CH₂, Fmoc-CHCH₂), 4.05 (t, 2H, NDI-CH₂), 2.04 (m, 2H, Glu-CH₂), 1.85 (m, 1H, Glu-CH₂), 1.63 (m, 3H, NDI-CH₂, Glu-CH₂), 1.36 (m. 2H, NDI-CH₂), 0.93 (t, 3H, NDI-CH₃)

化合物 **13**. **12** (300 mg, 0.42 mmol) と H-Val-OtBu·HCl (176 mg, 0.84 mmol)、HBTU (144 mg, 0.38 mmol)、HOBT (64 mg, 0.42 mmol)、DIPEA (330 µL, 1.89 mmol)を CHCl₃ (17 mL) に溶解 し、25 °C で 1 時間攪拌した。溶液量が半分になるように減圧濃縮した後、溶液を Et₂O に注ぐこ とで目的物を析出させた。最終的に、Et₂O で洗浄して、13 を得た。収量 276 mg、収率 69%。MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₄₉H₅₃N₅O₁₀ (M⁻) 871.99, found 871.61. ¹H NMR (400 MHz, DMSO-*d*₆): d (ppm) 8.65 (s, 4H), 7.88 (m, 2H), 7.68 (d, 2H), 7.47 (d, 1H), 7.40 (m, 2H), 7.28 (m, 2H), 4.20 (m, 5H, NDI-CH₂, Fmoc-CHCH₂), 4.01 (m, 4H, NDI-CH₂, Val-CH, Glu-CH), 2.00 (m, 3H, Glu-CH₂, Val-CH), 1.81 (m, 1H, Glu-CH₂), 1.61 (m, 3H, NDI-CH₂, Glu-CH₂), 1.39 (m, 11H, OtBu, NDI-CH₂), 0.91 (t, 3H, NDI-CH₃), 0.84 (d, 6H, Val-CH₃)

化合物 14. 13 (274mg, 0.26 mmol)を溶解した CHCl₃ (5.3 mL) に TFA (1.5 mL) と Et₃SiH (770 µL) を加えた。溶液量が半分になるように減圧濃縮し、溶液を Et₂O に注いだ。析出物を Et₂O と CH₂Cl₂ で洗うことで、14 を得た。収量 252 mg、収率 60%。MALDI TOF-MS (CHCA) *m/z* calcd. for C₄₅H₄₅N₅O₁₀ (M⁻) 815.88, found 815.60. ¹H NMR (400 MHz, DMSO-*d₆*): d (ppm) 8.66 (s, 4H), 7.87 (d, 2H), 7.69 (d, 2H), 7.49 (d, 1H), 7.39 (m, 2H), 7.29 (m, 2H), 4.23-3.99 (m, 9H, NDI-CH₂, Val-CH, Glu-CH, Fmoc-CHCH₂,), 2.04 (m, 3H, Glu-CH₂, Val-CH), 1.81 (m, 1H, Glu-CH₂), 1.64 (m, 3H, NDI-CH₂, Glu-CH₂), 1.37 (m, 2H, NDI-CH₂), 0.91 (t, 3H, NDI-CH₃), 0.84 (d, 6H, Val-CH₃)

Figure 42. Synthesis scheme to produce the target peptide with TPP and NDIs (1).

次に、固相ペプチド合成の詳細を以下に記す。

固相ペプチド合成は、4つの手順を踏むことで目的のペプチドを合成することができる(Fig. 42)。 (a) Fmoc 基の脱保護、(b) Fmoc ペプチドの反応、(c) 未反応点のキャッピング、(d) 樹脂から の切り出し、という 4 つの手順があり、a~c を繰り返して、目的長までペプチドを伸長させた後 に、d の作業を行った。また、今回は、ペプチドの N 末端をアセチル化するため、樹脂からペプチ ドを切り出す前に N 末端の Fmoc 基を除去した後に、アセチル化処理を行った。それでは、手順 通りに説明していく。

(a) Fmoc 基の脱保護:専用の反応カラムの中に 20%piperidine/DMF (10 mL) と Fmoc-SAL resin (0.58 mmol g⁻¹, 0.1 g) を加え、25 °C で 0.5 時間撹拌させた。溶液をろ過した後、MeOH (3 mL) と CH₂Cl₂ (3 mL) で交互に 3 回、樹脂の洗浄作業を行った。

(b) Fmoc ペプチドの反応: Fmoc ペプチドと HBTU (20.8 mg)、HOBT (8.2 mg)、 DIPEA (21 μL)を DMF (2 mL)に溶解し、樹脂を加えた反応カラムの中へ添加した後、25 °C で 12 時間撹拌さ せた。Fmoc-Val-OH は 120 μmol、Fmoc-LysTPP-Val-OH (8) と Fmoc-GluNDI-Val-OH は 60 μmol 使用した。反応完了後、溶液をろ過し、DMF (3 mL) で 6 回、続けて MeOH (3 mL) と CH₂Cl₂ (3

mL) で交互に 2 回ずつ、最終的に CH₂Cl₂ (3 mL) で 1 回、樹脂の洗浄作業を行なった。樹脂の切り出し前に行う N 末端のアセチル化処理については、acetic anhydride (126 mg) と
N-methylimidazole (100 μmol) を CH₂Cl₂ (4 mL) に溶解し、樹脂の入った反応カラムに添加した。
反応は、25 °C で 4 時間行った。反応終了後、溶液をろ過し、上記同様の洗浄作業を行なった。

(c) 未反応点のキャッピング:目的とは異なるシーケンスのペプチドを合成することを避けるために b の手順の次に未反応点のキャッピング作業を行う必要があった。Fmoc ペプチドをカップリングさせた樹脂に対して、benzoic anhydride (280 mg) と *N*-methylimidazole (100 μ L) を溶解した CH₂Cl₂ (4 mL) を加え、25 °C で 12 時間撹拌させた。ろ過した後に、DMF (3 mL)で 6 回、MeOH (3 mL) と CH₂Cl₂ (3 mL) で交互に 3 回、最終的に CH₂Cl₂ (3 mL) で 1 回洗浄した。

(d) 樹脂からの切り出し:目的のシーケンスまで伸長させたペプチドを有する樹脂を Et₂O (3 mL) で 3 回洗浄する。再度、CH₂Cl₂ (3 mL) で 10 分撹拌させることで樹脂を膨らませた。CH₂Cl₂をろ 過したら、TFA (2.85 mL) と Et₃SiH (75 μL), H₂O (75 μ L)を加えて、25 °C で 2 時間撹拌させた。 樹脂の洗浄は、MeOH (3 mL) と CH₂Cl₂ (3 mL) で交互に 3 回ずつ行った。この切り出し作業と 洗浄作業をろ過した溶液の色が薄くなるまで行った。ろ過した溶液を減圧蒸留することで 1 の粗生 成物を得た。Trifluoroethanol (TFE) を用いて洗浄し、赤茶色の粉末をおよそ 31%の収率で得た。 MALDI TOF-MS (CHCA) *m*/*z* calcd. for C₁₂₃H₁₂₉N₁₉NaO₁₉ ([M+Na]⁺) 2200.49, found 2200.07. ¹H NMR (400 MHz, CDCl₃/TFA-*d* (99/1, in vol.)): d (ppm) 8.86 (m, 8H), 8.74 (m, 18H), 8.03 (m, 17H), 4.41-4.38 (m, NDI-CH₂), 4.21-4.17 (m, 11H, NDI-CH₂, Val-CH, Lys-CH, Glu-CH), 1.73-1.42 (m, 17H, NDI-CH₂, Lys-CH₂, Glu-CH₂, CH₃CO), 1.01-0.92 (m, 30H, NDI-CH₃, Val-CH₃). 4・4 蛍光量子収率測定による電子ドナーアクセプターとしての機能の確認

まず、1 の TPP と NDI 部位が溶液状態において電子ドナーおよびアクセプターとして機能する かについて検討した。TPP 部位は、非プロトン性である 30%TFE 含有 CHCl₃混合溶媒中では中性 状態であるが、プロトン性である 50%TFE 含有 hexafluoroisopropanol (HFIP) 混合溶媒中では TPP はプロトン化する。また、プロトン化に伴い、溶液の色が茶色から緑色に変色する。そこで、 それぞれの混合溶媒中における 1 および TPP 前駆体 (2) からの蛍光スペクトルを測定し、それ ぞれの蛍光量子収率(*φ*_L)を比較した。その結果、30%TFE-CHCl₃溶液中では、2 において波長 630– 750 nm に観測される TPP 由来の蛍光(*φ*_L = 0.060)が、1 においては大きく消光した(*φ*_L = 0.011) (Fig. 43a)。したがって、1 は中性状態では TPP-NDI 間で光誘起電子移動が起こると考えられる。 一方、50%TFE-HFIP 混合溶媒中においてポルフィリン部位がプロトン化した状態では、1 および 2 のf_Lはそれぞれ 0.073 および 0.093 であり、非プロトン性溶媒条件の場合と比較して 1 の蛍光 消光の度合いは小さかった(Fig. 43b)。したがって、プロトン化した TPP と NDI 間においては、 光誘起電子移動が起こりにくいと考えられる。

Figure 43. PL spectra of **1** (dotted lines) and **2** (solid lines) in 30%TFE-CHCl₃ (a) and 50%TFE-HFIP (b). Insets show bar graph of ϕ_{PL} for **1** and **2** in 30%TFE-CHCl₃ (a) and 50%-TFE-HFIP (b). $\lambda_{ex} = 420$ nm.

4・5 電荷中性溶媒条件下におけるペプチドの集合様式の検討・考察

非プロトン性である 30% TFE-CHCl₃混合溶媒を用いて 1 の自己組織化を行った。1 の混合溶媒 ([1] = 2.17 mg mL⁻¹ (1 mM)) に対し、貧溶媒である isopropyl ether (IPE)の蒸気を拡散した。 3 日間、25 °C の条件で静置し、集合化を促進することで生成した凝集体を透過型電子顕微鏡 (TEM) で観察した結果、幅 30–50 nm のナノファイバーが確認できた(Fig. 44a)。また、凝集体を滴下 そして乾燥した試料の FT-IR スペクトルにおいて、 β シート形成時の amide I および amide II バ ンドに起因する吸収ピークが 1626 および 1541 cm⁻¹にそれぞれ観測されることから(Fig. 44c, red)、 このナノファイバー中におけるペプチド主鎖は、 β シート構造を形成していると考えられる^[4]。こ の懸濁液の CD スペクトルにおいて、TPP の Soret 帯に帰属される 400–500 nm 付近で特徴的な コットン効果([436(+)/449(–), 379(+)/406(–)]) が観測された(Fig. 44d, red)。懸濁液の UV スペク トルにおいても、TPP の Soret 帯の吸収波長が、集合化前の 421 nm から集合化に伴い 425 nm ヘ レッドシフトした。加えて、432 nm 付近にショルダーバンドが観測されたことから(Fig. 44e)、TPP 部位は J 会合体を形成していると考えられる^[5]。また、NDI の吸収帯に帰属する 250 nm および 320–380 nm 付近にも CD シグナルが観測されたことから、NDI 部位も会合体を形成していると考 えられる(Fig. 44d, red)^[6–8]。

Figure 44. (a, b) TEM micrographs of air-dried suspensions of 1, prepared by diffusion of IPE vapor into the 30%TFE-CHCl₃ (a) and 50%TFE-HFIP (b) solutions of 1. FT-IR spectra of 1 in a solid state (c), and CD (d) and electronic absorption spectra (e, f, solid curves) of suspension of 1, prepared by diffusion of IPE vapor into the 30%TFE-CHCl₃ (red) and 50%TFE-HFIP (blue) solutions of 1. The broken curves in (e) and (f) show absorption spectra of 30%TFE-CHCl₃ (e) and 50%TFE-HFIP (f) solutions of 1 (80 μ M).

4・6 プロトン性溶媒条件下におけるペプチドの集合様式の検討・考察

次に、TPP 部位がプロトン化した溶媒条件からの自己組織化について検討した。1 の 50%TFE-HFIP 混合溶液に対し、IPE の蒸気をゆっくりと拡散することで、先程と同様、凝集体を 得た。TEM 観察より、この溶媒系においても、ナノファイバーが形成していることを確認した(Fig. 44b)。また、FT-IR スペクトルにおいて、amide I および amide II バンドに由来する吸収が 1628 および 1541 cm⁻¹にそれぞれ観測されたことから(Fig. 44c, blue)、ナノファイバー中において 1 の 主鎖は β シート構造を形成していると考えられる。一方で、UV スペクトルにおいて、集合化の進 行に伴い TPP の Soret 帯は 424 nm から 418 nm へとブルーシフトし、さらに、397 nm に新たな 吸収帯が発現した (Fig. 44f)。これらの吸収変化より、1 の TPP 部位は H 会合体を形成している と考えられる^[9-11]。吸収スペクトルのブルーシフトに伴い、CD スペクトルにおいて観測されるコ ットン効果も全体的にブルーシフトした (400(–)/419(+), 437 (–)/453(+), Fig. 44d, blue)。

4・7 自己組織化のタイミングと集合化様式の検討

以上の結果をより詳細に考察するために、1 の各混合溶媒に対して IPE を少量ずつ添加し、その スペクトル変化を追跡した(Fig. 45)。まず、1 の 30%TFE-CHCl₃混合溶液に IPE を添加した場 合のスペクトル変化と Soret 帯の吸光度のプロットを Fig. 45a, b にそれぞれ示す。IPE の添加に 伴い、Soret 帯の吸収強度は徐々に減少し、IPE の混合比(添加割合)が 0.35 を超えるとほぼ一定 値となることから、この混合比以上において 1 は完全に集合化していると考えられる。一方、1 の 50%TFE-HFIP 混合溶液に IPE を添加した場合においては、IPE の添加割合が 0.3 以下の領域に おいては Soret 帯の吸光度はほとんど変化しなかった(Fig. 45d,上, blue)。それに対して、Q 帯 のスペクトル形状は IPE の添加に伴い徐々に変化し、プロトン化した TPP の脱プロトン化が IPE の添加に伴い進行したと考えられる(Fig. 45d,上, green)。IPE の添加割合の増加に伴い、液色は 緑から茶色へと変化し、添加割合が 0.3 付近で完全に脱プロトン化が完了したと考えられる(Fig. 45d,写真)。また、IPE の添加割合が 0.3 を超えると、急激に Soret 帯の吸光度が減少し、集合化 が進行した。

次に、IPE の添加に伴う CD スペクトルの変化を測定した。その結果、非プロトン化条件 (30%TFE-CHCl₃)の1においては、1の集合化の進行に対応して、TPP 部位のJ 会合に由来す る吸収帯の CD シグナルも徐々に増大した(Fig. 45b,下)。一方、プロトン化条件(50%TFE-HFIP) の1に対して IPE を添加したところ、脱プロトン化が完了し、1の集合化が進行した状態(IPE の割合:0.3)においても、CD の上昇は観測されず、IPE の割合が 0.4 を越えた付近から CD の急 激な増大が観測された(Fig. 45d,下)。これらの結果より、我々は、以下のことを推察する。非プ ロトン化条件(30%TFE-CHCl₃)における1の集合化においては、 β シート形成と TPP 部位のJ 会合が同時に進行し、結果として、熱力学的に最安定な構造体を形成する。実際、TEM 写真にお いても、幅が広い(30–50 nm)テープ状の構造体が観測されている。また、 β ストランド間の距 離は約 4.7 Å であり、典型的なJ 会合ポルフィリンの π スタック間隔(3.5 Å)よりも大きい^[12]た

Figure 45. (a, c) Electronic absorption spectral change of **1** in 30%TFE-CHCl₃ (a) and in 50%TFE-HFIP (c) by addition of IPE. ϕ_{IPE} : 0 (black), 0.16 (red), 0.29 (yellow), 0.38 (green), 0.44 (blue), and 0.50 (purple). The absorbance was corrected with the amount of dilution by the addition of IPE. Insets show magnified spectra at 500–690 nm range. (b, d) Plots of the absorbance at 422 nm (b, top) and CD at 424 nm (b, bottom) and absorbance at 421 and 628 nm (d, top) and CD at 422 nm (d, bottom) versus ϕ_{IPE} for **1** in 30%TFE-CHCl₃ (b) and 50%TFE-HFIP (d) by the addition of IPE. The absorbance and CD intensity was corrected with the amount of dilution with IPE. Insets show photographs of **1** in the mixed solvents, corresponding to each ϕ_{IPE} .

め、βストランド間の距離を保つために TPP 分子はJ 会合を形成する、つまり、ポルフィリン環 が斜めにずれてスタックしていると考えられるだろう(Fig. 46a)。一方、プロトン化条件

(50%TFE·HFIP) からの1の集合化においては、脱プロトン化と同時に(IPE の割合が 0.3 のときに) TPP 部位が H 会合し、速度論的な構造を形成する。さらに IPE の割合が増えてくると(IPE の割合が 0.4 のときに)、良溶媒であるアルコール(TFE, HFIP)の割合が減少し、それに伴いペプチド主鎖の水素結合による β シート構造が形成する。その結果、TPP 部位にねじれが誘起され、CD シグナルが観測される。このとき、TPP と NDI のスタックが β シートの形成の前に起こっていると考えることができる。UV スペクトルにおいて、TPP 部位のスタックは H 会合を示唆する挙動を示しており、J 会合した NDI が H 会合した TPP を挟んでいると推察される(Fig. 46b)。また、自己組織化させ、ゲル状になった 1 を乾固させることで XRD 測定を行なった結果、 β シート由来の回折ピークが観測された(Fig. 47)が、全体的にピークの強度が弱いことから、今回用いたペプチドの自己組織化は、長距離的に起きておらず、短い間隔でペプチドは自己集合しており、その様子が UV や CD スペクトルに表れていると考えられる。

~28 Å **Figure 46.** Schematic representations of the assembling structure of 1, self-assembled by diffusion of IPE vapor into the 30%TFE-CHCl₃ (a) and 50%TFE-HFIP (b) solutions of 1.

Figure 47. X-ray diffraction patterns of 1, self-assembled by diffusion of IPE vapor into the 30%TFE-CHCl₃ (red) and 50%TFE-HFIP (blue) solutions of 1.

4 · 8 結論

側鎖に電子供与性および受容性の分子部位を導入したオリゴペプチドがβシート構造を形成す ることを明らかにした。電子供与性分子であるフリーベースポルフィリン部位が電荷中性な状態に なる溶媒条件にて、貧溶媒の蒸気拡散による自己組織化を行うと、ポルフィリンがJ会合したβシ ートを形成することを明らかにした。一方、ポルフィリンがプロトン化して正に荷電した状態で貧 溶媒を加えていった際、初期段階では集合化は起こらず、貧溶媒の割合が上昇することにより脱プ ロトン化が進み、脱プロトン化が完了した時点で急速にβシート構造を形成する。その際のポルフ ィリンの集合様式は H 会合であることを見出した。同じβシート構造でも、ポルフィリンが異な る集合様式を取ることは、生体分子を用いた電子・光機能材料を構築する上で有用な知見を与える と考えられる。 参考文献

- [1] S. Zhang et al. Proc. Natl. Acad. Sci. U.S.A., 1993, 90, 3334.
- [2] K. Sajna et al. Inorg. Chem. 2015, 54, 1197.
- [3] A.Forneli, M.Planells, M. A. Sarmentero, E. Martinez-Ferrero, B. C. O'Regan, P. Ballester,
- E. Palomares, J. Mater Chem. 2008, 18, 1652.
- [4] T. Nakayama, T. Sakuraba, S. Tomita, A. Kaneko, E. Takai, K. Shiraki, K. Tashiro, N. Ishii,
- Y. Hasegawa, Y. Yamada, R. Kumai, Y. Yamamoto, Asian J. Org. Chem. 2014, 3, 1182.
- [5] S. Okada, H. Segawa, J. Am. Chem. Soc. 2003, 125, 2792.
- [6] J. Gawronski, M. Brzostowska, K. Kacprzak, H. Kolbon, P. Skowronek, *Chirality* 2000, 12, 263.
- [7] S. Yu, S. H. Kim, J. Joseph, D. A. Modarelli, J. R. Parquette, J. Am. Chem. Soc. 2011, 133, 19125.
- [8] H. Shao, M. Gao, S. H. Kim, C. P. Jaroniec, J. R. Parquette, Chem. Eur. J. 2011, 17, 12882.
- [9] N. C. Maiti, S. Mazumdar, N. Periasamy, J. Phys. Chem. B 1998, 102, 1528.
- [10] R. Rubires, J.-A. Farrera, J. M. Ribo, Chem. Eur. J. 2001, 7, 436.
- [11] M. A. Castriciano, M. Samperi, S. Camiolo, A. Romeo, L. M. Scolaro, *Chem. Eur. J.* 2013, 19, 12161.
- [12] M. A. Castriciano, M. Samperi, S. Camiolo, A. Romeo, L. M. Scolaro, *Chem. Eur. J.* 2013, 19, 12161.

MS データ

4740

821.

823

930.5930 956.5739

1004

Printed: 15:33, August 05, 2015

509.2917

550.330⁻ 579.3351

Mass (m/z)

50805 Boc-NDI col

642

A3 MS.t2d

391.2025 409.2168

436.2124 463.27

461

322.1691 345.1932 365.2267

280

ns MDS Analytical Technologies\TOFTOF Data\ExportT2D\Ya

20

10

0 99

C:VApplied Biosyste

188.0792

¹H NMR データ

第5章

総括

本博士論文では、機能性を発現するようなペプチド *β*シート構造形成のための分子設計戦略について研究を行った。

従来にないペプチドシーケンスとその二次構造の形成に着目することで電荷分離型ペプチドβ シートの設計を検討した。ペプチドのシーケンス長にも寄るが、天然および人工アミノ酸による天 文学的な数字の組み合わせによりペプチドは構成され得るため、目的とする物性や材料を見出すた めには十分な条件設定を行う必要があった。そうした前提がある中で、ペプチドがβシート面を形 成した際に、正電荷と負電荷を帯びるアミノ酸側鎖が、βシートの上下面に別れて配置するような 条件を設定することで、18 種類のペンタペプチドシーケンスに絞ることができ、βシート形成能 に関して、分光器や電子顕微鏡観察等を用いて系統的に議論することに成功した。電荷分離型ペプ チドβシートの応用に向けた用途に応じて、そのシーケンスや自己組織化の環境をうまく選択する 必要があることが、シーケンスの違いによる二次構造の違いからもわかった。

また、電荷分離型ペプチドβシートのマイカ基板上への吸着特性についても議論した。細胞培養 をする際に、方向性を持った培地を必要とする場合、今回見出した技術が役立つと考えられる。溶 液中では二次構造を形成せず、基板表面にキャストした際に、基板上の結晶方位を活用してペプチ ドが配向するためには、電荷分離型ペプチドが持つ Fmoc 基の自己集合を制御する適当な量の水が 必要であることが推察された。

電荷分離型ペプチドとは異なり、ペプチドβシート構造を形成するための新たな分子設計として、 電子ドナーアクセプターの関係にあるπ共役系分子をペプチドに修飾させたドナーアクセプター 型ペプチドのβシート形成について研究した。電子ドナー分子としてフリーベースのテトラフェニ ルポルフィリンを、電子アクセプターとしてナフタレンジイミドを選択した。フリーベースのポル フィリンを含んでいたことから、非プロトン性とプロトン性の溶媒を用いて、自己組織化環境の違 いによるペプチドのモルフォロジーの変化にどのようにポルフィリンが影響しているかについて 考察した。ポルフィリンの非プロトン化およびプロトン化が影響することで、熱力学的に安定なペ プチド集合体と速度論的に安定なペプチド集合体とを作り分けた。そして、ペプチド側鎖上のπ共 役系分子のスタックの違いを、分子モデルを作成して説明した。

以上のように本博士論文で、ペプチドがβシート構造を形成するための新たな分子設計指針を提 案した。ペプチドの合成は簡便であり、大量合成が可能である。且つ、生体分子であることから、 人体への応用も期待できる。ペプチドの自己組織化能を活用することで、精密な分子構造をボトム アップ的に作成できる。そうした観点から考えて、綺麗に分子を自己組織化させるためのビルディ ングブロックとしてβシート構造は重要視されている。βシート構造形成のための新たな分子設計 戦略は、今後の機能性材料の開発やドラッグデリバリーシステムへの応用、バイオセンサーへの展 開に向けた知見になる。

85

論文リスト

・原著論文

1. <u>Toru Nakayama</u>, Taro Sakuraba, Shunsuke Tomita, Akira Kaneko, Eisuke Takai, Kentaro Shiraki, Kentaro Tashiro, Noriyuki Ishii, Yuri Hasegawa, Yoichi Yamada, Reiji Kumai, and Yohei Yamamoto, Charge-Separated Fmoc-Peptide b-Sheets: Sequence-Secondary Structure Relationship for Arranging Charged Side Chains on Both Sides, *Asian Journal of Organic Chemistry*, **2014**, *3*, 1182–1188.

2. <u>Toru Nakayama</u>, Kentaro Tashiro, Toshiaki Takei, and Yohei Yamamoto, Controlled Self-Assembly of Oligopeptides Bearing Electron Donor and Acceptor Units on the Side Chains to Form β -Sheets with Selective π -Stacking Configuration, *Chemistry Letters*, **2017**, in press.

関連論文

1. Tsukasa Mizutaru, Taro Sakuraba, <u>Toru Nakayama</u>, Galina Marzun, Philipp Wagener, Christoph Rehbock, Stephan Barcikowski, Katsuhisa Murakami, Junichi Fujita, Noriyuki Ishiie and Yohei Yamamoto, Cysteine-containing oligopeptide b-sheets as redispersants for agglomerated metal nanoparticles, *Journal of Materials Chemistry A*, **2015**, *3*, 17612–17619.

 Satoru Yoneda, Tsuneaki Sakurai, <u>Toru Nakayama</u>, Kenichi Kato, Masaki Takata and Shu Seki, Systematic studies on side-chain structures of phthalocyaninato-polysiloxanes: Polymerization and self-assembling behaviors, *J. Porphyrins Phthalocyanines* 2014, 18, 2–11.

プロシーディング

1. <u>Toru Nakayama</u>, Taro Sakuraba, Yohei Yamamoto, Self-assembly and adsorption properties of Fmoc-substituted short peptide bearing charged side chains, *AIP Conference Proceeding ICCMSE 2015*.

特許

 山本洋平,<u>中山徹</u>,田代健太郎、「自己組織化ペプチド」特願 2013-110898(出願日 2013 年 5 月 21 日)

学会発表

1. 中山徹、田代健太郎、山本洋平、「相補的な電荷を有する Fmoc オリゴペプチドによる B シート 形成」日本化学会第 93 回春季年会(立命館大学)、2013 年 3 月 22-25 日、口頭発表 2. 中山徹、田代健太郎、山本洋平、「相補的な電荷を有する Fmoc ペプチドによる 6 シート構造の 形成」第62回高分子学会年次大会(京都国際会議場)、2013 年 5 月 29–31 日、口頭発表

3. 中山徹、金子暁、櫻庭太郎、田代健太郎、山本洋平、「荷電アミノ酸を含む Fmoc オリゴペプチ ドの 8 シート形成に関する検討」第 62 回高分子討論会(金沢大学)、2013 年 9 月 11–13 日、口頭 発表

4. Toru Nakayama, Akira Kaneko, Taro Sakuraba, Kentaro Tashiro, Yohei Yamamoto,
"Self-Assembly of Fmoc-Substituted Oligopeptides into Charge-Separated β-Sheets"
CeNIDE-HNMM-TIMS Joint Symposium on Nano-Science and Technology (Hsinchu, Taiwan),
Jan. 6–7, 2014. Poster.

5. 中山徹、櫻庭太郎、金子暁、冨田峻介、高井英輔、白木賢太郎、田代健太郎、石井則行、山本 洋平、「極性側鎖を有するペンタペプチドの 8-シート形成と集積構造に関する検討」第63回高分子 学会年次大会(名古屋国際会議場)、2014年5月28-30日、口頭発表

6. 中山徹、櫻庭太郎、金子暁、高井英輔、白木賢太郎、山本洋平、冨田峻介、田代健太郎、石井 則行、「電荷分離型ペプチド 6 シート: Fmoc ペンタペプチドによる 2 次構造形成とアミノ酸配列に 関する検討」平成 26 年度繊維学会年次大会(タワーホール船堀、東京)、2014 年 6 月 11–13 日、 ポスター発表

7. 中山徹、田代健太郎、山本洋平、「荷電側鎖を有する Fmoc ペプチド 6 シートの表面吸着特性」 第 63 回高分子討論会(長崎大学)、2014 年 9 月 24-26 日、ポスター発表

8. Toru Nakayama, Yohei Yamamoto, "Self-Assembly and Adsorption Properties of Fmoc-Peptide bearing Charged Side Chains" 2015 CENIDE-CNMM-TIMS Joint Symposium on Nanoscience and -technology (Duisburg, Germany), March 16–17, 2015. Poster

9. Toru Nakayama, Taro Sakuraba, Yohei Yamamoto, "Self-Assembly and Adsorption Properties of Fmoc-Substituted Short Peptide bearing Charged Side Chains", 11th International Conference of Computational Methods in Science and Engineering (ICCMSE 2015) (Athens, Greece), March 20–23, 2015. Poster

10. Toru Nakayama, Taro Sakuraba, Kentaro Tashiro, Noriyuki Ishii, Yohei Yamamoto, "Charge-Separated Peptide b-Sheets: Sequence-Secondary Structure Relationship for Arranging Charged Side Chains", Pacifichem 2015 (Honolulu, USA), December 15–20, 2015, Oral

11. 中山徹、田代健太郎、山本洋平、「II 共役分子を有するオリゴペプチドの自己組織化と電荷輸送 特性」第65回高分子学会年次大会(神戸国際会議場)、2016年5月27-29日、ポスター発表 謝辞

この場をお借りして、私がお世話になった人たちに感謝の気持ちを伝えたいと思います。2012 年に筑波大学に入学し、約5年間、山本研究室に所属してきました。指導教員である山本先生のも と、ペプチドに関する研究に従事してきました。当初は、実験環境を作ることから始めたことを昨 日のことのように覚えています。そうした環境を作ることも私一人で行なったわけではありません。 ペプチド合成に関して、物質材料研究機構の田代健太郎博士に教えて頂きました。研究の相談に乗 って頂き、様々な角度からヒントやアドバイスを頂きました。特に、ペプチド合成や有機分子の合 成は、田代健太郎博士のおかげで行うことができました。ペプチドの二次構造の同定や解析方法に 関して、筑波大学白木賢太郎教授をはじめ、冨田峻介博士や高井英輔博士といった白木研究室の皆 さんに大変お世話になりました。重ねて感謝申し上げます。

また、山本研究室で共に研究活動を行なってきた所属メンバーにも同様の感謝の気持ちがありま す。初期メンバーの安立さんや加藤君、佐々木君が快く迎え入れてくれたおかげで、山本研究室で 良い研究生活がスタートできました。後輩の田畑君や金子君、岡田君、櫛田君、桜庭君、愛敬君、 水垂君、高橋君、中嶋さんといった元気溢れるメンバーのおかげで笑いの絶えない研究室生活を送 れました。研究意欲や意識も高く、後輩ではありますが、尊敬できるメンバーばかりです。研究の 相談に乗ってもらうこともあり、みんなには感謝の気持ちでいっぱいです。研究をするために海を 渡ってきた童くんや Zakarias とのコミュニケーションも私にとって実りある経験になりました。

山本先生には、多くのご迷惑とご心配をお掛けしました。私のせいで心身ともにご負担をお掛け し、申し訳ない気持ちです。山本研究室の初の博士学生として、様々な経験をさせて頂きました。 国内外の多くの学会に出席させて頂き、山本先生の繋がりで多くの先生とそこに所属する学生との 交流もできました。山本先生の研究に対する熱意や真摯な姿勢は、今後私が社会人になる上で参考 になることばかりです。「なぜ」を追求する姿勢、妥協をしない姿勢、後回しにせずすぐに行動す る姿勢、何事にも貪欲な姿勢、これらは研究生活にだけではなく、会社で働く際にも応用できるこ とであると思います。研究へのアドバイス、サポート、そして、論文や学会発表のチェック等をお 忙しい中して頂き、誠にありがとうございました。

私は4月からは社会人として新たなスタートを切ります。これまでの研究生活が無駄にならない ように、山本研究室で培ったことを活かし、周りとは違う力や人間性を出して、会社の利益に貢献 したいと思います。

最後に、私を27年間育ててくれた両親に感謝の気持ちを伝えます。迷惑をかけた分、今後は一 生懸命働き、一生を掛けて親孝行していきたいと思います。これまで、元気に育ててくれて誠にあ りがとうございました。

2017年2月20日

89